Math 115	Professor K. A. Ribet
First Midterm Exam	September 29, 2000

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully. In general, there is no need to simplify numerical answers.

1 (5 points). Let a and b be positive integers for which a^4 divides b^3 . Prove that a divides b.

2 (10 points). Let $f(x) = x^2 - x - 1$. Here are some values of f:

i	0	1	2	3	4	5	6	7	8	9	10	
f(i)	-1	-1	1	5	11	19	29	41	55	71	89	••••

Find integers a and b so that f(a) and f(b) are both divisible by 11^2 but so that a - b is not divisible by 11^2 . Find the number of solutions mod $5 \cdot 11^2$ to the congruence $f(x) \equiv 0 \mod 5 \cdot 11^2$.

3 (3 points). Let $m = 173 \cdot 193$. Find positive integers a and b with $\sqrt{m} < b < \frac{m+1}{2}$ for which $m = b^2 - a^2$.

4 (5 points). Use the identity

$$1 = 89 \cdot 24 - 61 \cdot 35 \tag{(*)}$$

to solve the simultaneous congruences

$$x \equiv \begin{cases} 3 \mod 89\\ 12 \mod 61. \end{cases}$$

5 (4 points). Using (*), find integers a and b with 1 = 24a + 35b and |a| as small as possible.

6 (3 points). Using (*) yet again, solve the congruence $35x \equiv 2 \mod 89$.