This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully. In general, there is no need to simplify numerical answers.

1 (5 points). Let a and b be positive integers for which a^{4} divides b^{3}. Prove that a divides b.

2 (10 points). Let $f(x)=x^{2}-x-1$. Here are some values of f :

i	0	1	2	3	4	5	6	7	8	9	10	\cdots
$f(i)$	-1	-1	1	5	11	19	29	41	55	71	89	\cdots.

Find integers a and b so that $f(a)$ and $f(b)$ are both divisible by 11^{2} but so that $a-b$ is not divisible by 11^{2}. Find the number of solutions $\bmod 5 \cdot 11^{2}$ to the congruence $f(x) \equiv 0 \bmod 5 \cdot 11^{2}$.

3 (3 points). Let $m=173 \cdot 193$. Find positive integers a and b with $\sqrt{m}<b<$ $\frac{m+1}{2}$ for which $m=b^{2}-a^{2}$.

4 (5 points). Use the identity

$$
\begin{equation*}
1=89 \cdot 24-61 \cdot 35 \tag{*}
\end{equation*}
$$

to solve the simultaneous congruences

$$
x \equiv\left\{\begin{array}{cc}
3 & \bmod 89 \\
12 & \bmod 61
\end{array}\right.
$$

5 (4 points). Using $\left(^{*}\right)$, find integers a and b with $1=24 a+35 b$ and $|a|$ as small as possible.

6 (3 points). Using $\left(^{*}\right)$ yet again, solve the congruence $35 x \equiv 2 \bmod 89$.

