Birational classification of algebraic varieties

Christopher Hacon

Bowen Lecture, 20-th February, 2019

Algebraic Geometry

- Algebraic Geometry is the study of geometric objects defined by polynomial equations.
- In this talk we will consider complex varieties.
- For example an affine variety $X=V\left(p_{1}, \ldots, p_{r}\right) \subset \mathbb{C}^{N}$ is defined as the vanishing set of polynomial equations $p_{1}, \ldots, p_{r} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$.
- A familiar example is $\left\{y-x^{2}=0\right\} \subset \mathbb{C}^{2}$ which corresponds to a sphere minus a point.
- It is often convenient to consider compact varieties in projective space.
- Projective space $\mathbb{P}_{\mathbb{C}}^{N} \supset \mathbb{C}^{N}$ is a natural compactification obtained by adding the hyperplane at infinity $H=\mathbb{P}_{\mathbb{C}}^{N} \backslash \mathbb{C}^{N} \cong \mathbb{P}_{\mathbb{C}}^{N-1}$.
- It is defined by $\mathbb{P}_{\mathbb{C}}^{N}=\left(\mathbb{C}^{N+1} \backslash \overline{0}\right) / \mathbb{C}^{*}$ so that $\left(c_{0}, \ldots, c_{N}\right) \sim\left(\lambda c_{0}, \ldots, \lambda c_{N}\right)$ for any non-zero constant $\lambda \in \mathbb{C}^{*}$. The equivalence class of $\left(c_{0}, \ldots, c_{N}\right)$ is denoted by [$\left.c_{0}: \ldots: c_{N}\right]$.
- \mathbb{C}^{N} corresponds to $\left\{\left[1: c_{1}: \ldots: c_{N}\right] \mid c_{i} \in \mathbb{C}\right\}$ and H to $\mathbb{P}^{N-1} \equiv\left\{\left[0: c_{1}: \ldots: c_{N}\right] \mid c_{i} \in \mathbb{C}\right\} / \sim$.
- We then consider projective varieties $X \subset \mathbb{P}^{n}$ defined by homogeneous polynomials $P_{1}, \ldots, P_{r} \in \mathbb{C}\left[x_{0}, \ldots, x_{N}\right]$.
- Note that is P is homogeneous, then $P\left(\lambda c_{0}, \ldots, \lambda c_{N}\right)=0$ iff $P\left(c_{0}, \ldots, c_{N}\right)=0$.
- For example:
$y=x^{2} \quad$ Affine variety in $\mathbb{C}^{2} \quad y z=x^{2}$ subvariety of \mathbb{P}_{4}^{2}

- From now on we consider projective varieties

$$
X=V\left(P_{1}, \ldots, P_{r}\right) \subset \mathbb{P}_{\mathbb{C}}^{N}
$$

where $P_{i} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ are homogeneous polynomial equations and $\mathbb{P}_{\mathbb{C}}^{N}=\left(\mathbb{C}^{N+1} \backslash \overline{0}\right) / \mathbb{C}^{*}$ is N-dimensional projective space.

- For any affine variety $X=V\left(p_{1}, \ldots, p_{r}\right) \subset \mathbb{C}^{N}$ we obtain a projective variety $\bar{X}=V\left(P_{1}, \ldots, P_{r}\right) \subset \mathbb{P}_{\mathbb{C}}^{N}$ where $P_{i}=p_{i}\left(x_{1} / x_{0}, \ldots, x_{N} / x_{0}\right) x_{0}^{\operatorname{deg} p_{i}}$.
- Typically we will assume that $X \subset \mathbb{P}_{\mathbb{C}}^{N}$ is irreducible and smooth, hence a complex manifold of dimension $d=\operatorname{dim} X$.
- The closed subsets in the Zariski topology are zeroes of polynomial equations.
- $\mathbb{C}(X)=\{P / Q$ s.t. $Q \mid X \not \equiv 0\}$ is the field of rational functions.

Birational equivalence

- Two varieties are birational if they have isomorphic open subsets.
- It is easy to see that two varieties are birational if they have the same field of rational functions $\mathbb{C}(X) \cong \mathbb{C}(Y)$.
- Recall that by Hironaka's theorem on the resolution of singularities (1964), every variety $X \subset \mathbb{P}_{\mathbb{C}}^{N}$ is birational to a smooth variety.
- More precisely there is a finite sequence of blow ups along smooth subvarieties

$$
X^{\prime}=X_{n} \rightarrow X_{n-1} \rightarrow \ldots X_{1} \rightarrow X
$$

such that X^{\prime} is smooth.

- If $Z \subset X$ are smooth varieties, then the blow up $\mathrm{bl}_{Z}(X) \rightarrow X$ of X along Z replaces the subset $Z \subset X$ by the codimension 1 subvariety $E=\mathbb{P}\left(N_{Z} X\right)$.
- We say that E is an exceptional divisor.

Blow up a point in \mathbb{C}^{2}

Blow up a curve in a threefold

Canonical ring

- The geometry of varieties $X \subset \mathbb{P}_{\mathbb{C}}^{N}$ is typically studied in terms of the canonical line bundle $\omega_{X}=\wedge^{\operatorname{dim} X} T_{X}^{\vee}$.
- A section $s \in H^{0}\left(\omega_{X}^{\otimes n}\right)$ can be written in local coordinates as

$$
f\left(z_{1}, \ldots, z_{n}\right)\left(d z_{1} \wedge \ldots \wedge d z_{n}\right)^{\otimes m}
$$

- Of particular importance is the canonical ring

$$
R\left(\omega_{X}\right)=\bigoplus H^{0}\left(\omega_{X}^{\otimes n}\right)
$$

a birational invariant of smooth projective varieties.

- The Kodaira dimension of X is defined by

$$
\kappa(X):=\operatorname{tr} \cdot \operatorname{deg} \cdot \mathbb{C} R\left(\omega_{X}\right)-1 \in\{-1,0,1, \ldots, d=\operatorname{dim} X\} .
$$

- Note that complex projective manifolds have no non-constant global holomorphic functions, so it is natural to consider global sections of line bundles.
- There is only one natural choice: the canonical line bundle!

Canonical ring of hypersurfaces

- For example, if $X=\mathbb{P}_{\mathbb{C}}^{N}$ then $\omega_{X}=\mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{N}}(-N-1)$.
- If $X_{k} \subset \mathbb{P}_{\mathbb{C}}^{N}$ is a smooth hypersurface of degree k, then $\omega_{X_{k}}=\mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{N}}(k-N-1) \mid X_{k}$.
- Here $\mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{N}}(I)$ is the line bundle corresponding to homogeneous polynomials of degree I and $\mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{N}}(I) \mid x_{k}$ is the line bundle obtained by restriction to $X_{k} \subset \mathbb{P}_{\mathbb{C}}^{N}$.
- It is easy to see that if $k \leq N$ then $R\left(\omega_{x_{k}}\right) \cong \mathbb{C}$ and so $\kappa\left(X_{k}\right)=-1$,
- if $k=N+1$, then $R\left(\omega_{X_{k}}\right) \cong \mathbb{C}[t]$ and so $\kappa\left(X_{k}\right)=0$, and
- if $k \geq N+2$, then $\kappa\left(X_{k}\right)=\operatorname{dim} X_{k}$.
- Eg. if $k=N+2$, then $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] \rightarrow R\left(\omega_{X_{k}}\right)$.

Canonical ring of curves

- When $d=\operatorname{dim} X=1$ we say that X is a curve and we have 3 cases:
- $\kappa(X)=-1$: Then $X \cong \mathbb{P}_{\mathbb{C}}^{1}$ is a rational curve. Note that $\omega_{\mathbb{P}^{1}} \cong \mathcal{O}_{\mathbb{P}^{1}}(-2)$ and so $R\left(\omega_{X}\right) \cong \mathbb{C}$.
- $\kappa(X)=0$: Then $\omega_{X} \cong \mathcal{O}_{X}$ and X is an elliptic curve. There is a one parameter family of these given by the equations

$$
x^{2}=y(y-1)(y-s)
$$

- In this case $H^{0}\left(\omega_{X}^{\otimes m}\right) \cong H^{0}\left(\mathcal{O}_{X}\right) \cong \mathbb{C}$ and so $R\left(\omega_{X}\right) \cong \mathbb{C}[t]$.

Canonical ring of curves

- If $\kappa(X)=1$, then we say that X is a curve of general type. These are Riemann surfaces of genus $g \geq 2$.
- For any $g \geq 2$ they belong to a $3 g-3$ dimensional irreducible algebraic family. We have $\operatorname{deg}\left(\omega_{X}\right)=2 g-2>0$.
- By Riemann Roch, it is easy to see that $\omega_{X}^{\otimes m}$ is very ample for $m \geq 3$. This means that if s_{0}, \ldots, s_{N} are a basis of $H^{0}\left(\omega_{X}^{\otimes m}\right)$, then

$$
\phi_{m}: X \rightarrow \mathbb{P}^{N}, \quad x \rightarrow\left[s_{0}(x): s_{1}(x): \ldots: s_{N}(x)\right]
$$

is an embedding.

- Thus $\omega_{X}^{\otimes m} \cong \phi_{m}^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$ and in particular $R\left(\omega_{X}\right)$ is finitely generated.
- In fact $X \cong \operatorname{Proj} R\left(\omega_{X}\right)$ is the variety defined by the generators and relations of the canonical ring.

Rational curve

Elliptic curve

$$
g=1 \quad k=0
$$

Curve of general type

$$
y \geqslant 2 \quad k=1
$$

Birational equivalence

- One would like to prove similar results in higher dimensions.
- If $\operatorname{dim} X \geq 2$, the birational equivalence relation is non-trivial.
- In dimension 2, any two smooth birational surfaces become isomorphic after finitely many blow ups of smooth points (Zariski, 1931).
- In dimension ≥ 3 the situation is much more complicated, however it is known by work of Wlodarczyk (1999) and Abramovich-Karu-Matsuki-Wlodarczyk (2002), that the birational equivalence relation amongst smooth varieties is generated by blow ups along smooth centers.
- It is easy to see that if X, X^{\prime} are birational smooth varieties, then $\pi_{1}(X) \cong \pi_{1}\left(X^{\prime}\right)$ and $R\left(\omega_{X}\right) \cong R\left(\omega_{X^{\prime}}\right)$.
- However, typically, they have different Betti numbers eg. $b_{2}(X) \neq b_{2}\left(X^{\prime}\right)$.

Canonical models of surfaces

- It is then natural to try to classify varieties up to birational equivalence.
- We would like to identify a unique "best" representative in each equivalence class: the canonical model.
- In dimension 2, the canonical model is obtained by first contracting all -1 curves ($E \cong \mathbb{P}^{1}, c_{1}\left(\omega_{X}\right) \cdot E=-1$) to get $X \rightarrow X_{\text {min }}$,
- Then we contract all 0-curves $\left(E \cong \mathbb{P}^{1}, c_{1}\left(\omega_{X}\right) \cdot E=0\right)$ to get $X_{\text {min }} \rightarrow X_{\text {can }}$.
- Note that $X_{\text {can }}$ may have some mild singularities (duVal/RDP/canonical). In particular $\omega_{X_{\text {can }}}$ is a line bundle.
- Bombieri's Theorem says that if $\kappa(X)=2$ (i.e. $\omega_{X_{\text {can }}}$ is ample), then ϕ_{5} embeds $X_{\text {can }}$ in $\mathbb{P}^{N}=\mathbb{P} H^{0}\left(\omega_{X}^{\otimes 5}\right)$.
- It follows easily that $X_{\text {can }} \cong \operatorname{Proj} R\left(\omega_{X}\right)$, and

$$
\omega_{X_{\mathrm{can}}}=\mathcal{O}_{X_{\mathrm{can}}}(1)=\left.\mathcal{O}_{\mathbb{P}^{N}}(1)\right|_{X_{\mathrm{can}}}
$$

- There are some nice consequences.

Canonical models of surfaces

- As mentioned above, ϕ_{5} embeds $X_{\text {can }}$ in $\mathbb{P}^{N}=\mathbb{P}^{0}\left(\omega_{X}^{\otimes 5}\right)$ as a variety of degree $25 c_{1}\left(\omega_{X_{\text {can }}}\right)^{2}$.
- So for any fixed integer $v=c_{1}\left(\omega_{X_{\text {can }}}\right)^{2}$, canonical surfaces depend on finitely many algebraic parameters.
- The number

$$
v=c_{1}\left(\omega_{X_{\text {can }}}\right)^{2}=\lim \frac{\operatorname{dim} H^{0}\left(\omega_{X}^{\otimes m}\right)}{m^{2} / 2},
$$

is the canonical volume.

- Generalizing this picture to higher dimensions is a hard problem which was solved in dimension 3 in the 80's by work of Mori, Kawamata, Kollár, Reid, Shokurov and others.
- In higher dimension there has been much recent progress which I will now discuss.

Finite generation

Theorem (Birkar, Cascini, Hacon, M${ }^{\text {c}}$ Kernan, Siu 2010)

Let X be a smooth complex projective variety, then the canonical ring $R\left(\omega_{X}\right)=\oplus_{m \geq 0} H^{0}\left(\omega_{X}^{\otimes m}\right)$ is finitely generated.

Corollary (Birkar, Cascini, Hacon, M ${ }^{\text {c Kernan) }}$

If X is of general type $(\kappa(X)=\operatorname{dim} X)$, then X has a canonical model $X_{\text {can }}$ and a minimal model $X_{\text {min }}$.

Conjecture

- If $\kappa(X)<0$, then X is birational to a Mori fiber space $X^{\prime} \rightarrow Z$ where the fibers are Fano varieties (ω_{F}^{\vee} is ample).
- If $0 \leq \kappa(X)<\operatorname{dim} X$, then X is birational to a ω-trivial fibration $X^{\prime} \rightarrow Z\left(\omega_{F}^{\otimes m}=\mathcal{O}_{F}\right.$ some $\left.m>0\right)$.

Canonical models

- Assume that X is of general type $(\kappa(X)=\operatorname{dim} X)$.
- The canonical model $X_{\text {can }}:=\operatorname{Proj}\left(R\left(\omega_{X}\right)\right)$ is a distinguished "canonical" (unique) representative of the birational equivalence class of X which is defined by the generators and relations in the finitely generated ring $R\left(\omega_{X}\right)$.
- $X_{\text {can }}$ may be singular, but its singularities are mild (canonical). In particular they are cohomologically insignificant (rational sings) so that e.g. $H^{i}\left(\mathcal{O}_{X}\right) \cong H^{i}\left(\mathcal{O}_{X_{\text {can }}}\right)$ for $0 \leq i \leq \operatorname{dim} X$.
- The "canonical line bundle" is now a \mathbb{Q}-line bundle which means that $\omega_{X_{\text {can }}}^{\otimes n}$ is a line bundle for some $n>0$.
- $\omega_{X_{\text {can }}}$ is ample so that $\omega_{X_{\text {can }}}^{\otimes m}=\phi_{m}^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$ for some $m>0$.

Varieties of general type

- In higher dimensions, we define the canonical volume

$$
\operatorname{vol}(X)=c_{1}\left(\omega_{X_{\mathrm{can}}}\right)^{d}=\lim \frac{\operatorname{dim} H^{0}\left(\omega_{X}^{\otimes m}\right)}{m^{d} / d!},
$$

Theorem (Hacon-McKernan, Takayama, Tsuji)

Let V_{d} be the set of canonical volumes of smooth projective d-dimensional varieties. Then V_{d} is discrete. In particular $v_{d}:=\min V_{d}>0$.

Theorem (Hacon-McKernan, Takayama, Tsuji)

Fix $d \in \mathbb{N}$ and $v \in V_{d}$, then the set $\mathcal{C}_{d, v}$ of d-dimensional canonical models $X_{\text {can }}$ such that vol $\left(X_{\text {can }}\right)=v$ is bounded (depends algebraically on finitely many parameters, and in particular has finitely many topological types).

Varieties of general type

- The proof relies on first showing that there exists an integer m_{d} depending on d such that for any $m \geq m_{d}$, if X is a smooth complex projective variety of dimension d, then $\phi_{m}: X \longrightarrow \mathbb{P}^{N}$ is birational for $m \geq m_{d}$.
- For fixed volume v, we then obtain an algebraic family $\mathcal{X} \rightarrow T$ such that for any X as above with $\operatorname{vol}\left(\omega_{X}\right)=v$, there exists $t \in T$ and a birational isomorphism $X \rightarrow \mathcal{X}_{t}$.
- We then replace $\mathcal{X} \rightarrow T$ by a resolution and consider the corresponding relative canonical model.
- There is no known value for v_{d}, m_{d} when $d \geq 4$. $m_{d}=3,5, \leq 77, v_{d}=2,1, \leq 1 / 420$.
- Effective results in dimension 3 where obtained by Jungkai Chen and Meng Chen using Reid's Riemann-Roch formula.
- $\mathcal{C}_{d, v}$ can also be compactified by adding stable varieties.
- When $d=1$ and $v=2 g-2>0$, then $M_{g}=\mathcal{C}_{1,2 g-2}$.
- In order to compactify this space $M_{g} \subset \bar{M}_{g}$, we must allow Curves (Riemann surfaces) to degenerate to the well known stable curves (Deligne and Mumford 1969).
- A stable curve $C=\cup C_{i}$ is a union of curves whose only singularities are nodes and ω_{C} is ample.
- If $\nu_{i}: C_{i}^{\prime} \rightarrow C_{i} \subset C$ denotes the desingularization and B_{i} is the inverse image of the nodes, then $\nu_{i}^{*} \omega_{C}=\omega_{C_{i}^{\prime}}\left(B_{i}\right)$ is ample (we allow logarithmic poles along B_{i}).
- In higher dimensions there is a similar theory of KSBA moduli spaces (Kollár, Shepherd-Barron, and Alexeev).

$$
\operatorname{dug} W_{C}:\left(B_{i}\right)=1
$$

Semi-log-canonical models

- We say that $X=\cup X_{i}$ is a slc model if X is S_{2}, X_{i} intersects X_{j} transversely in codimension $1, \omega_{X}$ is ample \mathbb{Q}-Cartier and if $\nu: \amalg X_{i}^{\nu} \rightarrow X$ is the normalization, then $\nu_{i}^{*} \omega_{X}=\omega_{X_{i}^{\nu}}\left(B_{i}\right)$ where $\left(X_{i}^{\nu}, B_{i}\right)$ is log-canonical (e.g. X is smooth and B_{i} has simple normal crossings support).
- We denote $\mathcal{S L C}_{d, v}$ the set of d-dimensional slc models of volume d.

> Theorem (Alexeev, Hacon-Xu, Hacon-McKernan-Xu, Kollár, Fujino, Kovács-Patakfalvi,)

Fix $d \in \mathbb{N}$ and $v>0$. Then $\mathcal{S L C}_{d, v}$ is projective.

- Note however that these moduli spaces can be arbitrarily singular (Vakil).
- Moreover $\mathcal{C}_{d, v}$ is not dense in $\mathcal{S L C}_{d, v}$.

Boundedness of SLC models

Theorem (Hacon-McKernan-Xu)

Fix $d \in \mathbb{N}$. The set of volumes of d-dimensional slc models is well ordered (satisfies the DCC so that there are no accumulation points from above and in particular there is a positive minimum).

- This generalizes a celebrated result of Alexeev in dimension 2.
- Note that we have accumulation points from below. Eg consider \mathbb{P}^{2} and B the union of 4 lines. If we do $f: X \rightarrow \mathbb{P}^{2}$ a weighted blow up with weights $(1, n)$ at the intersection of 2 lines then $\left(X, f_{*}^{-1} B\right)$ has volume $1-\frac{1}{n}$.
- Consider $S=\left\{\right.$ vol $\left(K_{X}+B\right) \mid$ slc model, $\left.\operatorname{dim} X=2\right\} \cap[0, M]$.
- S^{\prime} the set of accumulation points of $S, S^{(n)}=\left(S^{(n-1)}\right)^{\prime}$. Is $S^{(k)}=0$ for $k \gg 0$?

Volumes of log pairs

Theorem (Hacon-McKernan-Xu)

Fix $d \in \mathbb{N}$ and $I \subset[0,1]$ a well ordered set. The set of volumes of d-dimensional klt pairs (X, B) where the coefficients of B are in I is well ordered (satisfies the DCC so that there are no accumulation points from above and in particular there is a positive minimum).

- Eg. if $d=1$ and $I=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$, then $\operatorname{vol}\left(K_{X}+B\right)=2 g-2+\sum b_{i}$ where $B=\sum b_{i} B_{i}$.
- An easy case by case analysis shows that the smallest positive volume is $1 / 42$ ($g \geq 2$ implies vol $\geq 2, g=1$ implies $\mathrm{vol} \geq 1-1 / 2, g=0 \ldots .$.$) .$
- As a consequence one can show that if X is a curve of genus $g \geq 2$, then $|\operatorname{Aut}(X)| \leq 84(g-1)$.

Intermediate Kodaira dimension.

- In fact, let $f: X \rightarrow Y=X / \operatorname{Aut}(X)$, then $\omega_{X}=f^{*} \omega_{Y}\left(\sum\left(1-\frac{1}{r_{i}}\right) P_{i}\right)$ where f is ramified to order r_{i} at P_{i}.
- $y=x^{r}, d y=r x^{r-1} d x=r y^{\frac{r-1}{r}} d x$.
- Then $2 g-2=\operatorname{deg} \omega_{X}=\operatorname{deg}(f) \cdot \operatorname{deg}\left(\omega_{Y}\left(\sum\left(1-\frac{1}{r_{i}}\right) P_{i}\right) \geq\right.$ $|\operatorname{Aut}(X)| \cdot \frac{1}{42}$.
- In higher dimesion, this says that

$$
\operatorname{vol}\left(\omega_{X}\right) \geq|\operatorname{Aut}(X)| \cdot \operatorname{vol}\left(\omega_{Y}\left(\sum\left(1-\frac{1}{r_{i}}\right) P_{i}\right)\right.
$$

- If v_{0} is the minimum of positive volumes of the form $\operatorname{vol}\left(\omega_{Y}\left(\sum\left(1-\frac{1}{r_{i}}\right) P_{i}\right)\right)$, then $|\operatorname{Aut}(X)| \leq \frac{1}{v_{0}} \cdot \operatorname{vol}\left(\omega_{X}\right)$.

Intermediate Kodaira dimension.

- Consider now the case $0 \leq \kappa(X)<\operatorname{dim} X$.
- $X \rightarrow Z:=\operatorname{Proj} R\left(K_{X}\right)$ has positive dimensional general fibers F with $\kappa(F)=0$.
- Conjecturally F has a minimal model $F \rightarrow F^{\prime}$ such that $K_{F^{\prime}} \equiv 0$. (True if $\operatorname{dim} X \leq 3$.)
- Typical examples are Abelian Varieties, Hyperkahler varieties and Calabi-Yau's.
- We view these varieties $\left(K_{F^{\prime}} \equiv 0\right)$ as the building blocks of varieties of intermediate Kodaira dimension.
- We hope to understand X in terms of the geometry of F^{\prime} and of its moduli space.
- Unluckily it is not even known if in dimension $3, F^{\prime}$ can have finitely many topological types!

Mori Fiber Spaces

- Next we consider varieties with $\kappa(X)<0$.
- Conjecturally these are the uniruled varieties (i.e. covered by rational curves). This is known if $\operatorname{dim} X \leq 3$.

Theorem (Birkar-Cascini-Hacon- M^{C} Kernan)

Let X be a uniruled variety. Then there is a finite sequence of flips and divisorial contractions $X \rightarrow X^{\prime}$ and a morphism $f: X^{\prime} \rightarrow Z$ such that: $\operatorname{dim} X^{\prime}>\operatorname{dim} Z, \rho\left(X^{\prime} / Z\right)=1, c_{1}\left(\omega_{X^{\prime}}\right) \cdot C<0$ for any curve C contained in a fiber of f.

- $f: X^{\prime} \rightarrow Z$ is a Mori fiber space.
- The fibers F of f are Fano varieties with terminal singularities so that ω_{F}^{-1} is an ample \mathbb{Q}-line bundle.

Mori Fiber Spaces

- Fano varieties are well understood.
- For example $\pi_{1}(F)=0$ and for any divisor D, the corresponding ring $R(D)=\oplus_{m \geq 0} H^{0}(m D)$ is finitely generated.
- We think of Fano varieties as the building blocks for uniruled varieties.
- They play an important role in algebraic geometry and many related subjects.
- The most important question related to Fano varieties is: Are Fano varieties with mild singularities (terminal or even ϵ-log-terminal singularities) bounded?
- Several versions of this questions have appeared prominently in the litterature and are known to have many important consequences (existence of Kahler-Einstein metrics, applications to Cremona groups,)
- In dimension 2, varieties with terminal singularities are smooth and it is known that there are 10 possibilities (algebraic families).
- In dimension 3, there are 105 families of smooth Fano's (Iskovskih 1989 and Mori-Mukai 1991) and many more families of terminal 3-folds.
- The boundedness of smooth Fano varieties in any dimension was shown by Campana, Nadel, Kollár, Mori and Miyaoka in the early 1990's.

BAB conjecture

- The boundedness of terminal Fano 3-folds was shown by Kawamata (1992) (Kollár, Mori, Miyaoka and Takagi, 2000 for the canonical case).
- The boundedness of (ϵ-log-) terminal toric Fanos was shown by A. Borisov and L. Borisov in 1993 and for ϵ-log terminal surfaces by Alexeev in 1994.
- The BAB conjecture claims that for any $\epsilon>0$ Fano varieties with with ϵ-log terminal singularities are bounded.
- In recent spectacular progress, Caucher Birkar was able to prove that this conjecture is true.

Theorem (Birkar)

The BAB conjecture holds, in particular the set of all terminal Fano varieties in any fixed dimension is bounded.

Characteristic $p>0$ and mixed characteristic

- Since all of the proofs rely on involved applications of Kodaira Vanishing, they do not work in $\operatorname{char}(p)>0$.
- Most of what I discussed so far is known in positive characteristic and dimension ≤ 2 with some exceptions:
- Does semistable reduction hold in characteristic $p>0$? (OK if you fix $\operatorname{vol}\left(\omega_{X}\right)$ and let $p \gg 0$.)
- Does inversion of adjunction work in characteristic $p>0$ or mixed characteristic?
- The most important/natural question is: Is $R\left(\omega_{X}\right)$ is finitely generated? (OK if $d \leq 2$ or in most cases if $d=3, p>5$.)
- If X is smooth over a DVR, then is $P_{m}\left(X_{k}\right)=P_{m}\left(X_{K}\right)$ for m sufficiently divisible?
- Fix $d>0$, then for $p \gg 0$, if X is \log terminal, then is it CM? (OK if $d=2$.)

