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Algebraic Geometry

Algebraic Geometry is the study of geometric objects defined
by polynomial equations.

In this talk we will consider complex varieties.

For example an affine variety X = V (p1, . . . , pr ) ⊂ CN is
defined as the vanishing set of polynomial equations
p1, . . . , pr ∈ C[x1, . . . , xN ].

A familiar example is {y − x2 = 0} ⊂ C2 which corresponds
to a sphere minus a point.

It is often convenient to consider compact varieties in
projective space.
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Projective space

Projective space PN
C ⊃ CN is a natural compactification

obtained by adding the hyperplane at infinity
H = PN

C \ CN ∼= PN−1
C .

It is defined by PN
C = (CN+1 \ 0̄)/C∗ so that

(c0, . . . , cN) ∼ (λc0, . . . , λcN) for any non-zero constant
λ ∈ C∗. The equivalence class of (c0, . . . , cN) is denoted by
[c0 : . . . : cN ].

CN corresponds to {[1 : c1 : . . . : cN ]|ci ∈ C} and
H to PN−1 ≡ {[0 : c1 : . . . : cN ]|ci ∈ C}/ ∼.

We then consider projective varieties X ⊂ Pn defined by
homogeneous polynomials P1, . . . ,Pr ∈ C[x0, . . . , xN ].

Note that is P is homogeneous, then P(λc0, . . . , λcN) = 0 iff
P(c0, . . . , cN) = 0.

For example:
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From now on we consider projective varieties

X = V (P1, . . . ,Pr ) ⊂ PN
C

where Pi ∈ C[x0, . . . , xn] are homogeneous polynomial
equations and PN

C = (CN+1 \ 0̄)/C∗ is N-dimensional
projective space.

For any affine variety X = V (p1, . . . , pr ) ⊂ CN we obtain a
projective variety X̄ = V (P1, . . . ,Pr ) ⊂ PN

C where

Pi = pi (x1/x0, . . . , xN/x0)xdegpi0 .

Typically we will assume that X ⊂ PN
C is irreducible and

smooth, hence a complex manifold of dimension d = dimX .

The closed subsets in the Zariski topology are zeroes of
polynomial equations.

C(X ) = {P/Q s.t. Q|X 6≡ 0} is the field of rational
functions.
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Birational equivalence

Two varieties are birational if they have isomorphic open
subsets.

It is easy to see that two varieties are birational if they have
the same field of rational functions C(X ) ∼= C(Y ).

Recall that by Hironaka’s theorem on the resolution of
singularities (1964), every variety X ⊂ PN

C is birational to a
smooth variety.

More precisely there is a finite sequence of blow ups along
smooth subvarieties

X ′ = Xn → Xn−1 → . . .X1 → X

such that X ′ is smooth.

If Z ⊂ X are smooth varieties, then the blow up blZ (X )→ X
of X along Z replaces the subset Z ⊂ X by the codimension 1
subvariety E = P(NZX ).

We say that E is an exceptional divisor.
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Canonical ring

The geometry of varieties X ⊂ PN
C is typically studied in terms

of the canonical line bundle ωX = ∧dimXT∨X .

A section s ∈ H0(ω⊗nX ) can be written in local coordinates as

f (z1, . . . , zn)(dz1 ∧ . . . ∧ dzn)⊗m.

Of particular importance is the canonical ring

R(ωX ) =
⊕
n≥0

H0(ω⊗nX )

a birational invariant of smooth projective varieties.

The Kodaira dimension of X is defined by

κ(X ) := tr.deg.CR(ωX )− 1 ∈ {−1, 0, 1, . . . , d = dimX}.

Note that complex projective manifolds have no non-constant
global holomorphic functions, so it is natural to consider
global sections of line bundles.

There is only one natural choice: the canonical line bundle!
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Canonical ring of hypersurfaces

For example, if X = PN
C then ωX = OPN

C
(−N − 1).

If Xk ⊂ PN
C is a smooth hypersurface of degree k , then

ωXk
= OPN

C
(k − N − 1)|Xk

.

Here OPN
C

(l) is the line bundle corresponding to homogeneous

polynomials of degree l and OPN
C

(l)|Xk
is the line bundle

obtained by restriction to Xk ⊂ PN
C .

It is easy to see that if k ≤ N then R(ωXk
) ∼= C and so

κ(Xk) = −1,

if k = N + 1, then R(ωXk
) ∼= C[t] and so κ(Xk) = 0, and

if k ≥ N + 2, then κ(Xk) = dimXk .

Eg. if k = N + 2, then C[x0, . . . , xn]� R(ωXk
).
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Canonical ring of curves

When d = dimX = 1 we say that X is a curve and we have 3
cases:

κ(X ) = −1: Then X ∼= P1
C is a rational curve. Note that

ωP1
∼= OP1(−2) and so R(ωX ) ∼= C.

κ(X ) = 0: Then ωX
∼= OX and X is an elliptic curve. There

is a one parameter family of these given by the equations

x2 = y(y − 1)(y − s).

In this case H0(ω⊗mX ) ∼= H0(OX ) ∼= C and so R(ωX ) ∼= C[t].
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Canonical ring of curves

If κ(X ) = 1, then we say that X is a curve of general type.
These are Riemann surfaces of genus g ≥ 2.

For any g ≥ 2 they belong to a 3g − 3 dimensional irreducible
algebraic family. We have deg(ωX ) = 2g − 2 > 0.

By Riemann Roch, it is easy to see that ω⊗mX is very ample
for m ≥ 3. This means that if s0, . . . , sN are a basis of
H0(ω⊗mX ), then

φm : X → PN , x → [s0(x) : s1(x) : . . . : sN(x)]

is an embedding.

Thus ω⊗mX
∼= φ∗mOPN (1) and in particular R(ωX ) is finitely

generated.

In fact X ∼= ProjR(ωX ) is the variety defined by the
generators and relations of the canonical ring.
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Birational equivalence

One would like to prove similar results in higher dimensions.

If dimX ≥ 2, the birational equivalence relation is non-trivial.

In dimension 2, any two smooth birational surfaces become
isomorphic after finitely many blow ups of smooth points
(Zariski, 1931).

In dimension ≥ 3 the situation is much more complicated,
however it is known by work of Wlodarczyk (1999) and
Abramovich-Karu-Matsuki-Wlodarczyk (2002), that the
birational equivalence relation amongst smooth varieties is
generated by blow ups along smooth centers.

It is easy to see that if X ,X ′ are birational smooth varieties,
then π1(X ) ∼= π1(X ′) and R(ωX ) ∼= R(ωX ′).

However, typically, they have different Betti numbers eg.
b2(X ) 6= b2(X ′).
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Canonical models of surfaces

It is then natural to try to classify varieties up to birational
equivalence.

We would like to identify a unique ”best” representative in
each equivalence class: the canonical model.

In dimension 2, the canonical model is obtained by first
contracting all −1 curves (E ∼= P1, c1(ωX ) · E = −1) to get
X → Xmin,

Then we contract all 0-curves (E ∼= P1, c1(ωX ) · E = 0) to get
Xmin → Xcan.

Note that Xcan may have some mild singularities
(duVal/RDP/canonical). In particular ωXcan is a line bundle.

Bombieri’s Theorem says that if κ(X ) = 2 (i.e. ωXcan is
ample), then φ5 embeds Xcan in PN = PH0(ω⊗5X ).

It follows easily that Xcan
∼= ProjR(ωX ), and

ωXcan = OXcan(1) = OPN (1)|Xcan .

There are some nice consequences.
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Canonical models of surfaces

As mentioned above, φ5 embeds Xcan in PN = PH0(ω⊗5X ) as a
variety of degree 25c1(ωXcan)2.

So for any fixed integer v = c1(ωXcan)2, canonical surfaces
depend on finitely many algebraic parameters.

The number

v = c1(ωXcan)2 = lim
dimH0(ω⊗mX )

m2/2
,

is the canonical volume.

Generalizing this picture to higher dimensions is a hard
problem which was solved in dimension 3 in the 80’s by work
of Mori, Kawamata, Kollár, Reid, Shokurov and others.

In higher dimension there has been much recent progress
which I will now discuss.
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Finite generation

Theorem (Birkar, Cascini, Hacon, McKernan, Siu 2010)

Let X be a smooth complex projective variety, then the canonical
ring R(ωX ) = ⊕m≥0H

0(ω⊗mX ) is finitely generated.

Corollary (Birkar, Cascini, Hacon, McKernan)

If X is of general type (κ(X ) = dimX ), then X has a canonical
model Xcan and a minimal model Xmin.

Conjecture

If κ(X ) < 0, then X is birational to a Mori fiber space
X ′ → Z where the fibers are Fano varieties (ω∨F is ample).

If 0 ≤ κ(X ) < dimX , then X is birational to a ω-trivial
fibration X ′ → Z ( ω⊗mF = OF some m > 0).
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Canonical models

Assume that X is of general type (κ(X ) = dimX ).

The canonical model Xcan := Proj(R(ωX )) is a distinguished
”canonical” (unique) representative of the birational
equivalence class of X which is defined by the generators and
relations in the finitely generated ring R(ωX ).

Xcan may be singular, but its singularities are mild (canonical).
In particular they are cohomologically insignificant (rational
sings) so that e.g. H i (OX ) ∼= H i (OXcan) for 0 ≤ i ≤ dimX .

The ”canonical line bundle” is now a Q-line bundle which
means that ω⊗nXcan

is a line bundle for some n > 0.

ωXcan is ample so that ω⊗mXcan
= φ∗mOPN (1) for some m > 0.
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Varieties of general type

In higher dimensions, we define the canonical volume

vol(X ) = c1(ωXcan)d = lim
dimH0(ω⊗mX )

md/d!
,

Theorem (Hacon-McKernan, Takayama, Tsuji)

Let Vd be the set of canonical volumes of smooth projective
d-dimensional varieties. Then Vd is discrete. In particular
vd := minVd > 0.

Theorem (Hacon-McKernan, Takayama, Tsuji)

Fix d ∈ N and v ∈ Vd , then the set Cd ,v of d-dimensional
canonical models Xcan such that vol(Xcan) = v is bounded
(depends algebraically on finitely many parameters, and in
particular has finitely many topological types).
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Varieties of general type

The proof relies on first showing that there exists an integer
md depending on d such that for any m ≥ md , if X is a
smooth complex projective variety of dimension d , then
φm : X 99K PN is birational for m ≥ md .

For fixed volume v , we then obtain an algebraic family
X → T such that for any X as above with vol(ωX ) = v , there
exists t ∈ T and a birational isomorphism X 99K Xt .

We then replace X → T by a resolution and consider the
corresponding relative canonical model.

There is no known value for vd ,md when d ≥ 4.
md = 3, 5,≤ 77, vd = 2, 1,≤ 1/420.

Effective results in dimension 3 where obtained by Jungkai
Chen and Meng Chen using Reid’s Riemann-Roch formula.
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Stable curves

Cd ,v can also be compactified by adding stable varieties.

When d = 1 and v = 2g − 2 > 0, then Mg = C1,2g−2.

In order to compactify this space Mg ⊂ M̄g , we must allow
Curves (Riemann surfaces) to degenerate to the well known
stable curves (Deligne and Mumford 1969).

A stable curve C = ∪Ci is a union of curves whose only
singularities are nodes and ωC is ample.

If νi : C ′i → Ci ⊂ C denotes the desingularization and Bi is
the inverse image of the nodes, then ν∗i ωC = ωC ′i

(Bi ) is ample
(we allow logarithmic poles along Bi ).

In higher dimensions there is a similar theory of KSBA moduli
spaces (Kollár, Shepherd-Barron, and Alexeev).
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Semi-log-canonical models

We say that X = ∪Xi is a slc model if X is S2, Xi intersects
Xj transversely in codimension 1, ωX is ample Q-Cartier and if
ν :

∐
X ν
i → X is the normalization, then ν∗i ωX = ωXν

i
(Bi )

where (X ν
i ,Bi ) is log-canonical (e.g. X is smooth and Bi has

simple normal crossings support).

We denote SLCd ,v the set of d-dimensional slc models of
volume d .

Theorem (Alexeev, Hacon-Xu, Hacon-McKernan-Xu, Kollár,
Fujino, Kovács-Patakfalvi, ....)

Fix d ∈ N and v > 0. Then SLCd ,v is projective.

Note however that these moduli spaces can be arbitrarily
singular (Vakil).

Moreover Cd ,v is not dense in SLCd ,v .
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Boundedness of SLC models

Theorem (Hacon-McKernan-Xu)

Fix d ∈ N. The set of volumes of d-dimensional slc models is well
ordered (satisfies the DCC so that there are no accumulation
points from above and in particular there is a positive minimum).

This generalizes a celebrated result of Alexeev in dimension 2.

Note that we have accumulation points from below. Eg
consider P2 and B the union of 4 lines. If we do f : X → P2 a
weighted blow up with weights (1, n) at the intersection of 2
lines then (X , f −1∗ B) has volume 1− 1

n .

Consider S = {vol(KX + B)|slc model , dimX = 2} ∩ [0,M].

S ′ the set of accumulation points of S , S (n) = (S (n−1))′. Is
S (k) = 0 for k � 0?
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Volumes of log pairs

Theorem (Hacon-McKernan-Xu)

Fix d ∈ N and I ⊂ [0, 1] a well ordered set. The set of volumes of
d-dimensional klt pairs (X ,B) where the coefficients of B are in I
is well ordered (satisfies the DCC so that there are no accumulation
points from above and in particular there is a positive minimum).

Eg. if d = 1 and I = {1− 1
n |n ∈ N}, then

vol(KX + B) = 2g − 2 +
∑

bi where B =
∑

biBi .

An easy case by case analysis shows that the smallest positive
volume is 1/42 (g ≥ 2 implies vol ≥ 2, g = 1 implies
vol ≥ 1− 1/2, g = 0.....).

As a consequence one can show that if X is a curve of genus
g ≥ 2, then |Aut(X )| ≤ 84(g − 1).
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Intermediate Kodaira dimension.

In fact, let f : X → Y = X/Aut(X ), then
ωX = f ∗ωY (

∑
(1− 1

ri
)Pi ) where f is ramified to order ri at Pi .

y = x r , dy = rx r−1dx = ry
r−1
r dx .

Then 2g − 2 = degωX = deg(f ) · deg(ωY (
∑

(1− 1
ri

)Pi ) ≥
|Aut(X )| · 1

42 .

In higher dimesion, this says that
vol(ωX ) ≥ |Aut(X )| · vol(ωY (

∑
(1− 1

ri
)Pi ).

If v0 is the minimum of positive volumes of the form
vol(ωY (

∑
(1− 1

ri
)Pi )), then |Aut(X )| ≤ 1

v0
· vol(ωX ).
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Intermediate Kodaira dimension.

Consider now the case 0 ≤ κ(X ) < dimX .

X 99K Z := ProjR(KX ) has positive dimensional general
fibers F with κ(F ) = 0.

Conjecturally F has a minimal model F 99K F ′ such that
KF ′ ≡ 0. (True if dimX ≤ 3.)

Typical examples are Abelian Varieties, Hyperkahler varieties
and Calabi-Yau’s.

We view these varieties (KF ′ ≡ 0) as the building blocks of
varieties of intermediate Kodaira dimension.

We hope to understand X in terms of the geometry of F ′ and
of its moduli space.

Unluckily it is not even known if in dimension 3, F ′ can have
finitely many topological types!
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Mori Fiber Spaces

Next we consider varieties with κ(X ) < 0.

Conjecturally these are the uniruled varieties (i.e. covered by
rational curves). This is known if dimX ≤ 3.

Theorem (Birkar-Cascini-Hacon-McKernan)

Let X be a uniruled variety. Then there is a finite sequence of flips
and divisorial contractions X 99K X ′ and a morphism f : X ′ → Z
such that: dimX ′ > dimZ , ρ(X ′/Z ) = 1, c1(ωX ′) · C < 0 for any
curve C contained in a fiber of f .

f : X ′ → Z is a Mori fiber space.

The fibers F of f are Fano varieties with terminal
singularities so that ω−1F is an ample Q-line bundle.
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Mori Fiber Spaces

Fano varieties are well understood.

For example π1(F ) = 0 and for any divisor D, the
corresponding ring R(D) = ⊕m≥0H

0(mD) is finitely
generated.

We think of Fano varieties as the building blocks for uniruled
varieties.

They play an important role in algebraic geometry and many
related subjects.
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Fano

The most important question related to Fano varieties is:
Are Fano varieties with mild singularities (terminal or even
ε-log-terminal singularities) bounded?

Several versions of this questions have appeared prominently
in the litterature and are known to have many important
consequences (existence of Kahler-Einstein metrics,
applications to Cremona groups, ....)

In dimension 2, varieties with terminal singularities are smooth
and it is known that there are 10 possibilities (algebraic
families).

In dimension 3, there are 105 families of smooth Fano’s
(Iskovskih 1989 and Mori-Mukai 1991) and many more
families of terminal 3-folds.

The boundedness of smooth Fano varieties in any dimension
was shown by Campana, Nadel, Kollár, Mori and Miyaoka in
the early 1990’s.
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BAB conjecture

The boundedness of terminal Fano 3-folds was shown by
Kawamata (1992) (Kollár, Mori, Miyaoka and Takagi, 2000
for the canonical case).

The boundedness of (ε-log-) terminal toric Fanos was shown
by A. Borisov and L. Borisov in 1993 and for ε-log terminal
surfaces by Alexeev in 1994.

The BAB conjecture claims that for any ε > 0 Fano varieties
with with ε-log terminal singularities are bounded.

In recent spectacular progress, Caucher Birkar was able to
prove that this conjecture is true.

Theorem (Birkar)

The BAB conjecture holds, in particular the set of all terminal
Fano varieties in any fixed dimension is bounded.
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Characteristic p > 0 and mixed characteristic

Since all of the proofs rely on involved applications of Kodaira
Vanishing, they do not work in char(p) > 0.

Most of what I discussed so far is known in positive
characteristic and dimension ≤ 2 with some exceptions:

Does semistable reduction hold in characteristic p > 0? (OK
if you fix vol(ωX ) and let p � 0.)

Does inversion of adjunction work in characteristic p > 0 or
mixed characteristic?

The most important/natural question is: Is R(ωX ) is finitely
generated? (OK if d ≤ 2 or in most cases if d = 3, p > 5.)

If X is smooth over a DVR, then is Pm(Xk) = Pm(XK ) for m
sufficiently divisible?

Fix d > 0, then for p � 0, if X is log terminal, then is it CM?
(OK if d = 2.)
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