Symmetries of polynomial equations

James M` ${ }^{\text {C }}$ Kernan
UCSD
February 19, 2019

Motivating Question

- How large is the automorphism group of a variety?

Motivating Question

- How large is the automorphism group of a variety?
- The answer reveals an interesting trichotomy.

Motivating Question

- How large is the automorphism group of a variety?
- The answer reveals an interesting trichotomy.
- We will be guided by the principle: the more symmetry the better.

Motivating Question

- How large is the automorphism group of a variety?
- The answer reveals an interesting trichotomy.
- We will be guided by the principle: the more symmetry the better.
- Start with the line $\mathbb{R} . x \longrightarrow a x+b, a \neq 0, b \in \mathbb{R}$.

Motivating Question

- How large is the automorphism group of a variety?
- The answer reveals an interesting trichotomy.
- We will be guided by the principle: the more symmetry the better.
- Start with the line $\mathbb{R} . x \longrightarrow a x+b, a \neq 0, b \in \mathbb{R}$.
- The automorphisms of the polynomial ring $\mathbb{R}[x]$.

Motivating Question

- How large is the automorphism group of a variety?
- The answer reveals an interesting trichotomy.
- We will be guided by the principle: the more symmetry the better.
- Start with the line $\mathbb{R} . x \longrightarrow a x+b, a \neq 0, b \in \mathbb{R}$.
- The automorphisms of the polynomial ring $\mathbb{R}[x]$.
- Replace \mathbb{R} with $\mathbb{C} . z \longrightarrow a z+b, a \neq 0, b \in \mathbb{C}$.

Motivating Question

- How large is the automorphism group of a variety?
- The answer reveals an interesting trichotomy.
- We will be guided by the principle: the more symmetry the better.
- Start with the line $\mathbb{R} . x \longrightarrow a x+b, a \neq 0, b \in \mathbb{R}$.
- The automorphisms of the polynomial ring $\mathbb{R}[x]$.
- Replace \mathbb{R} with $\mathbb{C} . z \longrightarrow a z+b, a \neq 0, b \in \mathbb{C}$.
- The automorphisms of the polynomial ring $\mathbb{C}[z]$.

Motivating Question

- How large is the automorphism group of a variety?
- The answer reveals an interesting trichotomy.
- We will be guided by the principle: the more symmetry the better.
- Start with the line $\mathbb{R} . x \longrightarrow a x+b, a \neq 0, b \in \mathbb{R}$.
- The automorphisms of the polynomial ring $\mathbb{R}[x]$.
- Replace \mathbb{R} with $\mathbb{C} . z \longrightarrow a z+b, a \neq 0, b \in \mathbb{C}$.
- The automorphisms of the polynomial ring $\mathbb{C}[z]$.
- Replace \mathbb{C} with the Riemann sphere $\mathbb{C} \cup\{\infty\}$.

Motivating Question

- How large is the automorphism group of a variety?
- The answer reveals an interesting trichotomy.
- We will be guided by the principle: the more symmetry the better.
- Start with the line $\mathbb{R} . x \longrightarrow a x+b, a \neq 0, b \in \mathbb{R}$.
- The automorphisms of the polynomial ring $\mathbb{R}[x]$.
- Replace \mathbb{R} with $\mathbb{C} . z \longrightarrow a z+b, a \neq 0, b \in \mathbb{C}$.
- The automorphisms of the polynomial ring $\mathbb{C}[z]$.
- Replace \mathbb{C} with the Riemann sphere $\mathbb{C} \cup\{\infty\}$.
- $z \longrightarrow \frac{a z+b}{c z+d}, a d-b c \neq 0, \in \mathbb{C}$, the group of Möbius transformations.

Projective space

- \mathbb{P}^{1} is the set of lines through the origin; equivalence classes [v] of non-zero vectors $v \in \mathbb{C}^{2} \bmod$ scalars.

Projective space

- \mathbb{P}^{1} is the set of lines through the origin; equivalence classes [v] of non-zero vectors $v \in \mathbb{C}^{2} \bmod$ scalars.
- $\mathrm{GL}_{2}(\mathbb{C})$ acts on \mathbb{P}^{1}. Trivial action of scalar matrices.

$$
\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c \neq 0 \in \mathbb{C}\right\}
$$

2×2 matrices modulo scalars;

Projective space

- \mathbb{P}^{1} is the set of lines through the origin; equivalence classes [v] of non-zero vectors $v \in \mathbb{C}^{2} \bmod$ scalars.
- $\mathrm{GL}_{2}(\mathbb{C})$ acts on \mathbb{P}^{1}. Trivial action of scalar matrices.

$$
\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c \neq 0 \in \mathbb{C}\right\}
$$

2×2 matrices modulo scalars; the Galois group $\operatorname{Gal}(\mathbb{C}(x), \mathbb{C})$;

Projective space

- \mathbb{P}^{1} is the set of lines through the origin; equivalence classes [v] of non-zero vectors $v \in \mathbb{C}^{2} \bmod$ scalars.
- $\mathrm{GL}_{2}(\mathbb{C})$ acts on \mathbb{P}^{1}. Trivial action of scalar matrices.

$$
\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c \neq 0 \in \mathbb{C}\right\}
$$

2×2 matrices modulo scalars; the Galois group $\operatorname{Gal}(\mathbb{C}(x), \mathbb{C})$; the group of Möbius transformations.

Projective space

- \mathbb{P}^{1} is the set of lines through the origin; equivalence classes [v] of non-zero vectors $v \in \mathbb{C}^{2} \bmod$ scalars.
- $\mathrm{GL}_{2}(\mathbb{C})$ acts on \mathbb{P}^{1}. Trivial action of scalar matrices.

$$
\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c \neq 0 \in \mathbb{C}\right\}
$$

2×2 matrices modulo scalars; the Galois group $\operatorname{Gal}(\mathbb{C}(x), \mathbb{C})$; the group of Möbius transformations.

- Aut $\left(\mathbb{P}^{1}\right)$ is infinite, but the dimension is three=4-1.

Projective space

- \mathbb{P}^{1} is the set of lines through the origin; equivalence classes [v] of non-zero vectors $v \in \mathbb{C}^{2} \bmod$ scalars.
- $\mathrm{GL}_{2}(\mathbb{C})$ acts on \mathbb{P}^{1}. Trivial action of scalar matrices.

$$
\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c \neq 0 \in \mathbb{C}\right\}
$$

2×2 matrices modulo scalars; the Galois group $\operatorname{Gal}(\mathbb{C}(x), \mathbb{C})$; the group of Möbius transformations.

- Aut $\left(\mathbb{P}^{1}\right)$ is infinite, but the dimension is three=4-1.
- \mathbb{P}^{n} is the set of lines through the origin of \mathbb{C}^{n+1}.

Projective space

- \mathbb{P}^{1} is the set of lines through the origin; equivalence classes [v] of non-zero vectors $v \in \mathbb{C}^{2} \bmod$ scalars.
- $\mathrm{GL}_{2}(\mathbb{C})$ acts on \mathbb{P}^{1}. Trivial action of scalar matrices.

$$
\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c \neq 0 \in \mathbb{C}\right\}
$$

2×2 matrices modulo scalars; the Galois group $\operatorname{Gal}(\mathbb{C}(x), \mathbb{C})$; the group of Möbius transformations.

- Aut $\left(\mathbb{P}^{1}\right)$ is infinite, but the dimension is three=4-1.
- \mathbb{P}^{n} is the set of lines through the origin of \mathbb{C}^{n+1}.
- $\operatorname{Aut}\left(\mathbb{P}^{n}\right)=\operatorname{PGL}_{n+1}(\mathbb{C})$, dimension $(n+1)^{2}-1$.

Smooth plane curves

- Let C be a smooth plane curve of degree d in \mathbb{P}^{2}.

Smooth plane curves

- Let C be a smooth plane curve of degree d in \mathbb{P}^{2}.
- If $d=1$ then $C=\mathbb{P}^{1}$ a line, $\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C})$.

Smooth plane curves

- Let C be a smooth plane curve of degree d in \mathbb{P}^{2}.
- If $d=1$ then $C=\mathbb{P}^{1}$ a line, $\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C})$.
- If $d=2$ then C is a conic isomorphic to \mathbb{P}^{1} by stereographic projection and $\operatorname{Aut}(C)=\mathrm{PGL}_{2}(\mathbb{C})$.

Smooth plane curves

- Let C be a smooth plane curve of degree d in \mathbb{P}^{2}.
- If $d=1$ then $C=\mathbb{P}^{1}$ a line, $\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C})$.
- If $d=2$ then C is a conic isomorphic to \mathbb{P}^{1} by stereographic projection and $\operatorname{Aut}(C)=\mathrm{PGL}_{2}(\mathbb{C})$.
- If $d=3$ then C is a cubic, an elliptic curve.

Smooth plane curves

- Let C be a smooth plane curve of degree d in \mathbb{P}^{2}.
- If $d=1$ then $C=\mathbb{P}^{1}$ a line, $\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C})$.
- If $d=2$ then C is a conic isomorphic to \mathbb{P}^{1} by stereographic projection and $\operatorname{Aut}(C)=\mathrm{PGL}_{2}(\mathbb{C})$.
- If $d=3$ then C is a cubic, an elliptic curve.
- C is a group with the rule three points sum to zero if they are collinear; the point [$0: 1: 0$] is the identity if the line $Z=0$ is a flex line.

Smooth plane curves

- Let C be a smooth plane curve of degree d in \mathbb{P}^{2}.
- If $d=1$ then $C=\mathbb{P}^{1}$ a line, $\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C})$.
- If $d=2$ then C is a conic isomorphic to \mathbb{P}^{1} by stereographic projection and $\operatorname{Aut}(C)=\mathrm{PGL}_{2}(\mathbb{C})$.
- If $d=3$ then C is a cubic, an elliptic curve.
- C is a group with the rule three points sum to zero if they are collinear; the point [$0: 1: 0$] is the identity if the line $Z=0$ is a flex line.
- $C=\mathbb{C} / \Lambda$ is a curve of genus 1 , Lie group $S^{1} \times S^{1}$.

Smooth plane curves

- Let C be a smooth plane curve of degree d in \mathbb{P}^{2}.
- If $d=1$ then $C=\mathbb{P}^{1}$ a line, $\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C})$.
- If $d=2$ then C is a conic isomorphic to \mathbb{P}^{1} by stereographic projection and $\operatorname{Aut}(C)=\mathrm{PGL}_{2}(\mathbb{C})$.
- If $d=3$ then C is a cubic, an elliptic curve.
- C is a group with the rule three points sum to zero if they are collinear; the point [$0: 1: 0$] is the identity if the line $Z=0$ is a flex line.
- $C=\mathbb{C} / \Lambda$ is a curve of genus 1 , Lie group $S^{1} \times S^{1}$.
- C acts on itself by translation, and $\operatorname{Aut}(C)$ is a finite extension of C. The dimension of $\operatorname{Aut}(C)$ is one.

Plane curves of $d \geq 4$

- Theorem: If C is a smooth plane curve of degree $d \geq 4$ then $\operatorname{Aut}(C)$ is finite.

Plane curves of $d \geq 4$

- Theorem: If C is a smooth plane curve of degree $d \geq 4$ then $\operatorname{Aut}(C)$ is finite.
- Fix d. The maximum is achieved by

Plane curves of $d \geq 4$

- Theorem: If C is a smooth plane curve of degree $d \geq 4$ then $\operatorname{Aut}(C)$ is finite.
- Fix d. The maximum is achieved by
- The Fermat curve $C=\left(x^{d}+y^{d}+z^{d}=0\right)$. $|\operatorname{Aut}(C)|=6 d^{2}, d \neq 4,6$.

Plane curves of $d \geq 4$

- Theorem: If C is a smooth plane curve of degree $d \geq 4$ then $\operatorname{Aut}(C)$ is finite.
- Fix d. The maximum is achieved by
- The Fermat curve $C=\left(x^{d}+y^{d}+z^{d}=0\right)$. $|\operatorname{Aut}(C)|=6 d^{2}, d \neq 4,6$.
- The Klein quartic $C=\left(x^{3} y+y^{3} z+z^{3} x=0\right)$. $\operatorname{Aut}(C)=\operatorname{PGL}_{3}\left(\mathbb{F}_{2}\right)$.
$|\operatorname{Aut}(C)|=168$.

Plane curves of $d \geq 4$

- Theorem: If C is a smooth plane curve of degree $d \geq 4$ then $\operatorname{Aut}(C)$ is finite.
- Fix d. The maximum is achieved by
- The Fermat curve $C=\left(x^{d}+y^{d}+z^{d}=0\right)$. $|\operatorname{Aut}(C)|=6 d^{2}, d \neq 4,6$.
- The Klein quartic $C=\left(x^{3} y+y^{3} z+z^{3} x=0\right)$. $\operatorname{Aut}(C)=\operatorname{PGL}_{3}\left(\mathbb{F}_{2}\right)$. $|\operatorname{Aut}(C)|=168$.
- The Wiman sextic C, given by

$$
10 x^{3} y^{3}+9\left(x^{5}+y^{5}\right) z-45 x^{2} y^{2} z^{2}-135 x y z^{4}+27 z^{6}
$$

$\operatorname{Aut}(C)=A_{6} .|\operatorname{Aut}(C)|=360$.

Birational automorphisms

- A rational map $X \rightarrow Y$ is a map given by rational functions, defined on an open subset.

Birational automorphisms

- A rational map $X \rightarrow Y$ is a map given by rational functions, defined on an open subset. For example, $x \longrightarrow 1 / x$ defined away from $x=0$.

Birational automorphisms

- A rational map $X \rightarrow Y$ is a map given by rational functions, defined on an open subset. For example, $x \longrightarrow 1 / x$ defined away from $x=0$.
- Category of dominant (composition ok) rational maps: isomorphism $=$ birational $\operatorname{Bir}(X)$. Equivalent to the category of fields. Rational means birational to \mathbb{P}^{n}.

Birational automorphisms

- A rational map $X \rightarrow Y$ is a map given by rational functions, defined on an open subset. For example, $x \longrightarrow 1 / x$ defined away from $x=0$.
- Category of dominant (composition ok) rational maps: isomorphism $=$ birational $\operatorname{Bir}(X)$. Equivalent to the category of fields. Rational means birational to \mathbb{P}^{n}.
- One of the most interesting elements of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is

$$
\sigma:[x: y: z] \rightarrow[1 / x: 1 / y: 1 / z]=[y z: x z: x y] .
$$

Birational automorphisms

- A rational map $X \rightarrow Y$ is a map given by rational functions, defined on an open subset. For example, $x \longrightarrow 1 / x$ defined away from $x=0$.
- Category of dominant (composition ok) rational maps: isomorphism $=$ birational $\operatorname{Bir}(X)$. Equivalent to the category of fields. Rational means birational to \mathbb{P}^{n}.
- One of the most interesting elements of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is

$$
\sigma:[x: y: z] \rightarrow[1 / x: 1 / y: 1 / z]=[y z: x z: x y] .
$$

- Involution, sends coord lines to coordinate points.

Birational automorphisms

- A rational map $X \rightarrow Y$ is a map given by rational functions, defined on an open subset. For example, $x \longrightarrow 1 / x$ defined away from $x=0$.
- Category of dominant (composition ok) rational maps: isomorphism $=$ birational $\operatorname{Bir}(X)$. Equivalent to the category of fields. Rational means birational to \mathbb{P}^{n}.
- One of the most interesting elements of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is

$$
\sigma:[x: y: z] \rightarrow[1 / x: 1 / y: 1 / z]=[y z: x z: x y] .
$$

- Involution, sends coord lines to coordinate points.

Birational automorphisms

- A rational map $X \rightarrow Y$ is a map given by rational functions, defined on an open subset. For example, $x \longrightarrow 1 / x$ defined away from $x=0$.
- Category of dominant (composition ok) rational maps: isomorphism $=$ birational $\operatorname{Bir}(X)$. Equivalent to the category of fields. Rational means birational to \mathbb{P}^{n}.
- One of the most interesting elements of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is

$$
\sigma:[x: y: z] \rightarrow[1 / x: 1 / y: 1 / z]=[y z: x z: x y] .
$$

- Involution, sends coord lines to coordinate points.

- Noether's Theorem: $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is generated by $\operatorname{lgAut}\left(\mathbb{P}^{2}\right)=\operatorname{PGL}_{3}(\mathbb{C})$ and σ.

Birational automorphisms

- A rational map $X \rightarrow Y$ is a map given by rational functions, defined on an open subset. For example, $x \longrightarrow 1 / x$ defined away from $x=0$.
- Category of dominant (composition ok) rational maps: isomorphism $=$ birational $\operatorname{Bir}(X)$. Equivalent to the category of fields. Rational means birational to \mathbb{P}^{n}.
- One of the most interesting elements of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is

$$
\sigma:[x: y: z] \rightarrow[1 / x: 1 / y: 1 / z]=[y z: x z: x y] .
$$

- Involution, sends coord lines to coordinate points.

- Noether's Theorem: $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is generated by $\operatorname{lgAut}\left(\mathbb{P}^{2}\right)=\operatorname{PGL}_{3}(\mathbb{C})$ and σ.
- This Theorem is very deceptive.

Rational surfaces

- Minimal rational surfaces S (Mori fibre spaces): \mathbb{P}^{2}, or a \mathbb{P}^{1}-bundle over \mathbb{P}^{1}, $\mathbb{F}_{n}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$.

Rational surfaces

- Minimal rational surfaces S (Mori fibre spaces): \mathbb{P}^{2}, or a \mathbb{P}^{1}-bundle over \mathbb{P}^{1}, $\mathbb{F}_{n}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$.
- $\operatorname{Aut}\left(\mathbb{F}_{n}\right)$ is an extension of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ by matrices

$$
\left\{\left.\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \right\rvert\, \operatorname{deg} A, D=0, \operatorname{deg} B=n, \operatorname{deg} C=-n\right\} .
$$

Rational surfaces

- Minimal rational surfaces S (Mori fibre spaces): \mathbb{P}^{2}, or a \mathbb{P}^{1}-bundle over \mathbb{P}^{1}, $\mathbb{F}_{n}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$.
- $\operatorname{Aut}\left(\mathbb{F}_{n}\right)$ is an extension of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ by matrices

$$
\left\{\left.\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \right\rvert\, \operatorname{deg} A, D=0, \operatorname{deg} B=n, \operatorname{deg} C=-n\right\}
$$

- $A=a, D=d$ scalars, $C=0$ and B has degree n.

Rational surfaces

- Minimal rational surfaces S (Mori fibre spaces): \mathbb{P}^{2}, or a \mathbb{P}^{1}-bundle over \mathbb{P}^{1}, $\mathbb{F}_{n}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$.
- $\operatorname{Aut}\left(\mathbb{F}_{n}\right)$ is an extension of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ by matrices

$$
\left\{\left.\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \right\rvert\, \operatorname{deg} A, D=0, \operatorname{deg} B=n, \operatorname{deg} C=-n\right\}
$$

- $A=a, D=d$ scalars, $C=0$ and B has degree n.
- So the dimension is $3+1+1+n+1-1=n+5$.

Rational surfaces

- Minimal rational surfaces S (Mori fibre spaces): \mathbb{P}^{2}, or a \mathbb{P}^{1}-bundle over \mathbb{P}^{1}, $\mathbb{F}_{n}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$.
- $\operatorname{Aut}\left(\mathbb{F}_{n}\right)$ is an extension of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ by matrices

$$
\left\{\left.\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \right\rvert\, \operatorname{deg} A, D=0, \operatorname{deg} B=n, \operatorname{deg} C=-n\right\}
$$

- $A=a, D=d$ scalars, $C=0$ and B has degree n.
- So the dimension is $3+1+1+n+1-1=n+5$.
- Check: $\mathbb{F}_{1}=\mathrm{BI}_{p} \mathbb{P}^{2}, \operatorname{dim} \operatorname{Aut}\left(\mathbb{F}_{1}\right)=8-2=6$.

Rational surfaces

- Minimal rational surfaces S (Mori fibre spaces): \mathbb{P}^{2}, or a \mathbb{P}^{1}-bundle over \mathbb{P}^{1}, $\mathbb{F}_{n}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$.
- $\operatorname{Aut}\left(\mathbb{F}_{n}\right)$ is an extension of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ by matrices

$$
\left\{\left.\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \right\rvert\, \operatorname{deg} A, D=0, \operatorname{deg} B=n, \operatorname{deg} C=-n\right\}
$$

- $A=a, D=d$ scalars, $C=0$ and B has degree n.
- So the dimension is $3+1+1+n+1-1=n+5$.
- Check: $\mathbb{F}_{1}=\mathrm{BI}_{p} \mathbb{P}^{2}, \operatorname{dim} \operatorname{Aut}\left(\mathbb{F}_{1}\right)=8-2=6$.
- $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is infinite dimensional; if we pick $f: \mathbb{P}^{2} \rightarrow \mathbb{F}_{n}$, then $f^{-1} \operatorname{Aut}\left(\mathbb{F}_{n}\right) f \subset \operatorname{Bir}\left(\mathbb{P}^{2}\right)$.

Cremona Group C_{n}

- $C_{n}: \operatorname{Bir}\left(\mathbb{P}^{n}\right)=\operatorname{Gal}\left(\mathbb{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right) / \mathbb{C}\right)$.

Cremona Group C_{n}

- $C_{n}: \operatorname{Bir}\left(\mathbb{P}^{n}\right)=\operatorname{Gal}\left(\mathbb{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right) / \mathbb{C}\right)$.
- If f is a polynomial of degree d in x, y and z, the birational map $\phi: \mathbb{P}^{3} \longrightarrow \mathbb{P}^{3}$,

$$
[x: y: z: t] \longrightarrow\left[x\left(t^{d}+f\right): y\left(t^{d}+f\right): z\left(t^{d}+f\right): t f\right]
$$

blows down the cone over $C=(f=0) \subset \mathbb{P}^{2}$.

Cremona Group C_{n}

- $C_{n}: \operatorname{Bir}\left(\mathbb{P}^{n}\right)=\operatorname{Gal}\left(\mathbb{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right) / \mathbb{C}\right)$.
- If f is a polynomial of degree d in x, y and z, the birational map $\phi: \mathbb{P}^{3} \longrightarrow \mathbb{P}^{3}$,

$$
[x: y: z: t] \longrightarrow\left[x\left(t^{d}+f\right): y\left(t^{d}+f\right): z\left(t^{d}+f\right): t f\right],
$$

blows down the cone over $C=(f=0) \subset \mathbb{P}^{2}$.

- If $\Sigma \in M_{g}$ is any curve of genus g, first embed Σ into \mathbb{P}^{n} and project down to $C \subset \mathbb{P}^{2}$.

Cremona Group C_{n}

- $C_{n}: \operatorname{Bir}\left(\mathbb{P}^{n}\right)=\operatorname{Gal}\left(\mathbb{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right) / \mathbb{C}\right)$.
- If f is a polynomial of degree d in x, y and z, the birational map $\phi: \mathbb{P}^{3} \rightarrow \mathbb{P}^{3}$,

$$
[x: y: z: t] \longrightarrow\left[x\left(t^{d}+f\right): y\left(t^{d}+f\right): z\left(t^{d}+f\right): t f\right],
$$

blows down the cone over $C=(f=0) \subset \mathbb{P}^{2}$.

- If $\Sigma \in M_{g}$ is any curve of genus g, first embed Σ into \mathbb{P}^{n} and project down to $C \subset \mathbb{P}^{2}$.
- If the set R generates C_{n} then R must contain an element which blows down the cone over C.

Cremona Group C_{n}

- $C_{n}: \operatorname{Bir}\left(\mathbb{P}^{n}\right)=\operatorname{Gal}\left(\mathbb{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right) / \mathbb{C}\right)$.
- If f is a polynomial of degree d in x, y and z, the birational map $\phi: \mathbb{P}^{3} \rightarrow \mathbb{P}^{3}$,

$$
[x: y: z: t] \longrightarrow\left[x\left(t^{d}+f\right): y\left(t^{d}+f\right): z\left(t^{d}+f\right): t f\right]
$$

blows down the cone over $C=(f=0) \subset \mathbb{P}^{2}$.

- If $\Sigma \in M_{g}$ is any curve of genus g, first embed Σ into \mathbb{P}^{n} and project down to $C \subset \mathbb{P}^{2}$.
- If the set R generates C_{n} then R must contain an element which blows down the cone over C.
- Any generating set is infinite dimensional, it must contain a copy of $\bigcup_{g} M_{g}$, $\operatorname{dim} M_{g}=3 g-3$.

Jordan Property

- A group G is Jordan if there is a constant J such that if $H \subset G$ is any finite subgroup then there is an abelian subgroup $K \subset H$ of index at most J.

Jordan Property

- A group G is Jordan if there is a constant J such that if $H \subset G$ is any finite subgroup then there is an abelian subgroup $K \subset H$ of index at most J.
- Examples: finite groups; abelian groups; subgroups and products of Jordan.

Jordan Property

- A group G is Jordan if there is a constant J such that if $H \subset G$ is any finite subgroup then there is an abelian subgroup $K \subset H$ of index at most J.
- Examples: finite groups; abelian groups; subgroups and products of Jordan.
- Theorem: (Jordan) $\mathrm{GL}_{n}(\mathbb{C})$ is Jordan.

Jordan Property

- A group G is Jordan if there is a constant J such that if $H \subset G$ is any finite subgroup then there is an abelian subgroup $K \subset H$ of index at most J.
- Examples: finite groups; abelian groups; subgroups and products of Jordan.
- Theorem: (Jordan) $\mathrm{GL}_{n}(\mathbb{C})$ is Jordan.
- Corollary: Aut $\left(\mathbb{P}^{n}\right)$ is Jordan.

Jordan Property

- A group G is Jordan if there is a constant J such that if $H \subset G$ is any finite subgroup then there is an abelian subgroup $K \subset H$ of index at most J.
- Examples: finite groups; abelian groups; subgroups and products of Jordan.
- Theorem: (Jordan) $\mathrm{GL}_{n}(\mathbb{C})$ is Jordan.
- Corollary: $\operatorname{Aut}\left(\mathbb{P}^{n}\right)$ is Jordan.
- Proof: $\operatorname{Aut}\left(\mathbb{P}^{n}\right)=\mathrm{PGL}_{n+1}(\mathbb{C}) \subset \mathrm{GL}_{N}(\mathbb{C})$.

Jordan Property

- A group G is Jordan if there is a constant J such that if $H \subset G$ is any finite subgroup then there is an abelian subgroup $K \subset H$ of index at most J.
- Examples: finite groups; abelian groups; subgroups and products of Jordan.
- Theorem: (Jordan) $\mathrm{GL}_{n}(\mathbb{C})$ is Jordan.
- Corollary: Aut $\left(\mathbb{P}^{n}\right)$ is Jordan.
- Proof: $\operatorname{Aut}\left(\mathbb{P}^{n}\right)=P G L_{n+1}(\mathbb{C}) \subset G L_{N}(\mathbb{C})$.
- Conjecture: (Serre) $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is Jordan.

The MMP and the Jordan Property

- Theorem (Birkar; BCHM; Prokhorov and Shramov): C_{n} is Jordan.

The MMP and the Jordan Property

- Theorem (Birkar; BCHM; Prokhorov and Shramov): C_{n} is Jordan.
- In fact we will prove this if X is rationally connected, meaning any two points are connected by a rational curve. We will also show there is a finite (or better bounded) index subgroup which fixes a point.

The MMP and the Jordan Property

- Theorem (Birkar; BCHM; Prokhorov and Shramov): C_{n} is Jordan.
- In fact we will prove this if X is rationally connected, meaning any two points are connected by a rational curve. We will also show there is a finite (or better bounded) index subgroup which fixes a point.
- Sketch of Proof: If $G \subset \operatorname{Bir}(X)$ is finite then replace X by a model $G \subset \operatorname{Aut}(X)$.

The MMP and the Jordan Property

- Theorem (Birkar; BCHM; Prokhorov and Shramov): C_{n} is Jordan.
- In fact we will prove this if X is rationally connected, meaning any two points are connected by a rational curve. We will also show there is a finite (or better bounded) index subgroup which fixes a point.
- Sketch of Proof: If $G \subset \operatorname{Bir}(X)$ is finite then replace X by a model $G \subset \operatorname{Aut}(X)$.
- $Y=X / G, X^{\prime}$ normalisation of Y in $K(X) / K(Y)$, replace X^{\prime} by G-equivariant resolution.

The MMP and the Jordan Property

- Theorem (Birkar; BCHM; Prokhorov and Shramov): C_{n} is Jordan.
- In fact we will prove this if X is rationally connected, meaning any two points are connected by a rational curve. We will also show there is a finite (or better bounded) index subgroup which fixes a point.
- Sketch of Proof: If $G \subset \operatorname{Bir}(X)$ is finite then replace X by a model $G \subset \operatorname{Aut}(X)$.
- $Y=X / G, X^{\prime}$ normalisation of Y in $K(X) / K(Y)$, replace X^{\prime} by G-equivariant resolution.
- Run the G-equivariant MMP. Construct a sequence of birational maps $X_{i} \rightarrow X_{i+1}$, flips and divisorial contractions. End product $X=X_{k}$ is a Mori fibre space.

The MMP and the Jordan Property

- Theorem (Birkar; BCHM; Prokhorov and Shramov): C_{n} is Jordan.
- In fact we will prove this if X is rationally connected, meaning any two points are connected by a rational curve. We will also show there is a finite (or better bounded) index subgroup which fixes a point.
- Sketch of Proof: If $G \subset \operatorname{Bir}(X)$ is finite then replace X by a model $G \subset \operatorname{Aut}(X)$.
- $Y=X / G, X^{\prime}$ normalisation of Y in $K(X) / K(Y)$, replace X^{\prime} by G-equivariant resolution.
- Run the G-equivariant MMP. Construct a sequence of birational maps $X_{i} \rightarrow X_{i+1}$, flips and divisorial contractions. End product $X=X_{k}$ is a Mori fibre space.
- $G \subset \operatorname{Aut}(X), X \longrightarrow Z, Z$ smaller dimension.

Boundedness and Mori fibre space

- Two cases

Boundedness and Mori fibre space

- Two cases
- $\operatorname{dim} Z>0 . Z$ is rationally connected. Let $z \in Z$ be a point fixed by a finite index subgroup of image of G in $\operatorname{Aut}(Z)$. Let F be the fibre over z. Reduce to the case $G \subset \operatorname{Aut}(F)$ and apply induction on the dimension.

Boundedness and Mori fibre space

- Two cases
- $\operatorname{dim} Z>0 . Z$ is rationally connected. Let $z \in Z$ be a point fixed by a finite index subgroup of image of G in $\operatorname{Aut}(Z)$. Let F be the fibre over z. Reduce to the case $G \subset \operatorname{Aut}(F)$ and apply induction on the dimension.
- $\operatorname{dim} Z=0 .-K_{X}$ is ample, X is Fano.

Boundedness and Mori fibre space

- Two cases
- $\operatorname{dim} Z>0 . Z$ is rationally connected. Let $z \in Z$ be a point fixed by a finite index subgroup of image of G in $\operatorname{Aut}(Z)$. Let F be the fibre over z. Reduce to the case $G \subset \operatorname{Aut}(F)$ and apply induction on the dimension.
- $\operatorname{dim} Z=0 .-K_{X}$ is ample, X is Fano.
- Theorem: Birkar Fix $n=\operatorname{dim} X$. Then X is bounded. In particular $X \subset \mathbb{P}^{N}, N$ fixed.

Boundedness and Mori fibre space

- Two cases
- $\operatorname{dim} Z>0 . Z$ is rationally connected. Let $z \in Z$ be a point fixed by a finite index subgroup of image of G in $\operatorname{Aut}(Z)$. Let F be the fibre over z. Reduce to the case $G \subset \operatorname{Aut}(F)$ and apply induction on the dimension.
- $\operatorname{dim} Z=0 .-K_{X}$ is ample, X is Fano.
- Theorem: Birkar Fix $n=\operatorname{dim} X$. Then X is bounded. In particular $X \subset \mathbb{P}^{N}, N$ fixed.
- This was a conjecture due to Borisov, Alexeev and Borisov.

Boundedness and Mori fibre space

- Two cases
- $\operatorname{dim} Z>0 . Z$ is rationally connected. Let $z \in Z$ be a point fixed by a finite index subgroup of image of G in $\operatorname{Aut}(Z)$. Let F be the fibre over z. Reduce to the case $G \subset \operatorname{Aut}(F)$ and apply induction on the dimension.
- $\operatorname{dim} Z=0 .-K_{X}$ is ample, X is Fano.
- Theorem: Birkar Fix $n=\operatorname{dim} X$. Then X is bounded. In particular $X \subset \mathbb{P}^{N}, N$ fixed.
- This was a conjecture due to Borisov, Alexeev and Borisov.
- $G \subset \operatorname{Aut}(X) \subset \operatorname{Aut}\left(\mathbb{P}^{N}\right)$, which is Jordan.

Quartic Threefolds

Let me end the section on K_{X}-negative case with a celebrated result due to Iskvoskih and Manin:

Quartic Threefolds

Let me end the section on K_{X}-negative case with a celebrated result due to Iskvoskih and Manin:

Theorem If $X \subset \mathbb{P}^{4}$ is a smooth quartic threefold, then

$$
\operatorname{Bir}(X)=\operatorname{Aut}(X)=\operatorname{Aut}\left(X, \mathbb{P}^{4}\right)
$$

is finite

Quartic Threefolds

Let me end the section on K_{X}-negative case with a celebrated result due to Iskvoskih and Manin:

Theorem If $X \subset \mathbb{P}^{4}$ is a smooth quartic threefold, then

$$
\operatorname{Bir}(X)=\operatorname{Aut}(X)=\operatorname{Aut}\left(X, \mathbb{P}^{4}\right)
$$

is finite

In particular X is irrational.

Finite generation

- If X is a smooth projective variety, then $\operatorname{Aut}(X)$ is a group scheme. In particular a topological group.

Finite generation

- If X is a smooth projective variety, then $\operatorname{Aut}(X)$ is a group scheme. In particular a topological group.
- Let $\mathrm{Aut}^{0}(X)$ be the connected component of the identity. If X is not ruled then Aut ${ }^{0}(X)$ is an abelian variety of dimension $q(X)=h^{1}\left(X, \mathcal{O}_{X}\right)$.

Finite generation

- If X is a smooth projective variety, then $\operatorname{Aut}(X)$ is a group scheme. In particular a topological group.
- Let $\mathrm{Aut}^{0}(X)$ be the connected component of the identity. If X is not ruled then Aut ${ }^{0}(X)$ is an abelian variety of dimension $q(X)=h^{1}\left(X, \mathcal{O}_{X}\right)$.
- Call the quotient $\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X)$ the discrete part of the automorphism group (aka $\pi_{0}(\operatorname{Aut}(X))$).

Finite generation

- If X is a smooth projective variety, then $\operatorname{Aut}(X)$ is a group scheme. In particular a topological group.
- Let $\operatorname{Aut}^{0}(X)$ be the connected component of the identity. If X is not ruled then Aut ${ }^{0}(X)$ is an abelian variety of dimension $q(X)=h^{1}\left(X, \mathcal{O}_{X}\right)$.
- Call the quotient $\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X)$ the discrete part of the automorphism group (aka $\pi_{0}(\operatorname{Aut}(X))$).
- Theorem: Lesieutre There are examples of smooth projective varieties X whose discrete part is not finitely generated.

Curves of genus $g \geq 2$

Theorem: If C is a smooth curve of genus $g \geq 2$, then $|\operatorname{Aut}(C)| \leq 42(2 g-2)$.

Curves of genus $g \geq 2$

Theorem: If C is a smooth curve of genus $g \geq 2$, then $|\operatorname{Aut}(C)| \leq 42(2 g-2)$. Proof: $G=\operatorname{Aut}(C)$ is finite. Let

$$
\pi: C \longrightarrow B=C / G,
$$

be the quotient map.

Curves of genus $g \geq 2$

Theorem: If C is a smooth curve of genus $g \geq 2$, then $|\operatorname{Aut}(C)| \leq 42(2 g-2)$. Proof: $G=\operatorname{Aut}(C)$ is finite. Let

$$
\pi: C \longrightarrow B=C / G
$$

be the quotient map.
Riemann-Hurwitz:

$$
K_{C}=\pi^{*}\left(K_{B}+\Delta\right)
$$

where

$$
\Delta=\sum_{b \in B} \frac{r_{b}-1}{r_{b}} b .
$$

The degree

Taking the degree of both sides we get

$$
2 g-2=|G| \operatorname{deg}\left(K_{B}+\Delta\right)
$$

The degree

Taking the degree of both sides we get

$$
2 g-2=|G| \operatorname{deg}\left(K_{B}+\Delta\right)
$$

Let $\delta=\operatorname{deg}\left(K_{B}+\Delta\right)>0$. Then

$$
|G|=\frac{1}{\delta}(2 g-2) \quad \text { and } \quad \delta=2 h-2+\sum_{i=1}^{k} \frac{r_{i}-1}{r_{i}}
$$

The degree

Taking the degree of both sides we get

$$
2 g-2=|G| \operatorname{deg}\left(K_{B}+\Delta\right)
$$

Let $\delta=\operatorname{deg}\left(K_{B}+\Delta\right)>0$. Then

$$
|G|=\frac{1}{\delta}(2 g-2) \quad \text { and } \quad \delta=2 h-2+\sum_{i=1}^{k} \frac{r_{i}-1}{r_{i}}
$$

Objective Bound δ from below.

The degree

Taking the degree of both sides we get

$$
2 g-2=|G| \operatorname{deg}\left(K_{B}+\Delta\right)
$$

Let $\delta=\operatorname{deg}\left(K_{B}+\Delta\right)>0$. Then

$$
|G|=\frac{1}{\delta}(2 g-2) \quad \text { and } \quad \delta=2 h-2+\sum_{i=1}^{k} \frac{r_{i}-1}{r_{i}}
$$

Objective Bound δ from below.
Case by case analysis. $\left(r_{1}, r_{2}, r_{3}\right)=(2,3,7)$ and $h=0$ achieves bound $1 / 42$.

When do we get equality?

- For which genera g, can we find C such that $|\operatorname{Aut}(C)|=42(2 g-2)$?

When do we get equality?

- For which genera g, can we find C such that $|\operatorname{Aut}(C)|=42(2 g-2)$?
- The Klein quartic has genus 3 and $168=42 \cdot 4$.

When do we get equality?

- For which genera g, can we find C such that $|\operatorname{Aut}(C)|=42(2 g-2)$?
- The Klein quartic has genus 3 and $168=42 \cdot 4$.
- There are infinitely many g s.t. we get equality and infinitely many g s.t. $|\operatorname{Aut}(C)| \leq 8(g+1)$.

When do we get equality?

- For which genera g, can we find C such that $|\operatorname{Aut}(C)|=42(2 g-2)$?
- The Klein quartic has genus 3 and $168=42 \cdot 4$.
- There are infinitely many g s.t. we get equality and infinitely many g s.t.

$$
|\operatorname{Aut}(C)| \leq 8(g+1)
$$

- Note that this question is entirely topological. Can we find a topological cover ramified over 0,1 and ∞ to order 2, 3 and 7 ?

When do we get equality?

- For which genera g, can we find C such that $|\operatorname{Aut}(C)|=42(2 g-2)$?
- The Klein quartic has genus 3 and $168=42 \cdot 4$.
- There are infinitely many g s.t. we get equality and infinitely many g s.t.

$$
|\operatorname{Aut}(C)| \leq 8(g+1)
$$

- Note that this question is entirely topological. Can we find a topological cover ramified over 0,1 and ∞ to order 2,3 and 7 ?
- Can we find an appropriate representation on the free group on two letters?

When do we get equality?

- For which genera g, can we find C such that $|\operatorname{Aut}(C)|=42(2 g-2)$?
- The Klein quartic has genus 3 and $168=42 \cdot 4$.
- There are infinitely many g s.t. we get equality and infinitely many g s.t.

$$
|\operatorname{Aut}(C)| \leq 8(g+1)
$$

- Note that this question is entirely topological. Can we find a topological cover ramified over 0,1 and ∞ to order 2,3 and 7 ?
- Can we find an appropriate representation on the free group on two letters?
- Question: Is the Wiman sextic the curve with the maximum number of automorphisms, amongst all smooth curves of genus 10 ?

Higher dimensions

- Definition: The volume of a divisor D on a variety X is

$$
\operatorname{vol}(X, D)=\limsup _{m \rightarrow \infty} \frac{n!h^{0}(X, m D)}{m^{n}}
$$

Higher dimensions

- Definition: The volume of a divisor D on a variety X is

$$
\operatorname{vol}(X, D)=\limsup _{m \rightarrow \infty} \frac{n!h^{0}(X, m D)}{m^{n}}
$$

- If D is nef then $\operatorname{vol}(X, D)=D^{n}$.

Higher dimensions

- Definition: The volume of a divisor D on a variety X is

$$
\operatorname{vol}(X, D)=\limsup _{m \rightarrow \infty} \frac{n!h^{0}(X, m D)}{m^{n}}
$$

- If D is nef then $\operatorname{vol}(X, D)=D^{n}$.
- D is big if and only if $\operatorname{vol}(X, D)>0$.

Higher dimensions

- Definition: The volume of a divisor D on a variety X is

$$
\operatorname{vol}(X, D)=\limsup _{m \rightarrow \infty} \frac{n!h^{0}(X, m D)}{m^{n}}
$$

- If D is nef then $\operatorname{vol}(X, D)=D^{n}$.
- D is big if and only if $\operatorname{vol}(X, D)>0$.
- Theorem (Hacon- - -Xu): Fix n. There is a constant c such that if X is a smooth projective variety of general type, then

$$
|\operatorname{Bir}(X)| \leq c \cdot \operatorname{vol}\left(X, K_{X}\right)
$$

Higher dimensions

- Definition: The volume of a divisor D on a variety X is

$$
\operatorname{vol}(X, D)=\limsup _{m \rightarrow \infty} \frac{n!h^{0}(X, m D)}{m^{n}}
$$

- If D is nef then $\operatorname{vol}(X, D)=D^{n}$.
- D is big if and only if $\operatorname{vol}(X, D)>0$.
- Theorem (Hacon- - -Xu): Fix n. There is a constant c such that if X is a smooth projective variety of general type, then

$$
|\operatorname{Bir}(X)| \leq c \cdot \operatorname{vol}\left(X, K_{X}\right)
$$

- If $X=C$ is a smooth curve, then C is of general type if and only if $g \geq 2$ and $\operatorname{vol}\left(C, K_{C}\right)=2 g-2$.

Optimal value for c ?

- $n=1, c=42$.

Optimal value for c ?

- $n=1, c=42$.
- $n=2, c=(42)^{2}$. Alexeev + Xiao Take $S=C \times C$, where C achieves maximum. $K_{S}=p^{*} K_{C}+q^{*} K_{C}$ is ample, $\operatorname{vol}\left(S, K_{S}\right)=2(2 g-2)^{2}$ and $|\operatorname{Aut}(S)|=(42)^{2} 2(2 g-2)^{2}$.

Optimal value for c ?

- $n=1, c=42$.
- $n=2, c=(42)^{2}$. Alexeev + Xiao Take $S=C \times C$, where C achieves maximum. $K_{S}=p^{*} K_{C}+q^{*} K_{C}$ is ample, $\operatorname{vol}\left(S, K_{S}\right)=2(2 g-2)^{2}$ and $|\operatorname{Aut}(S)|=(42)^{2} 2(2 g-2)^{2}$.
- Stupid Question: Is $c=(42)^{n}$?

Optimal value for c ?

- $n=1, c=42$.
- $n=2, c=(42)^{2}$. Alexeev + Xiao Take $S=C \times C$, where C achieves maximum. $K_{S}=p^{*} K_{C}+q^{*} K_{C}$ is ample, $\operatorname{vol}\left(S, K_{S}\right)=2(2 g-2)^{2}$ and $|\operatorname{Aut}(S)|=(42)^{2} 2(2 g-2)^{2}$.
- Stupid Question: Is $c=(42)^{n}$?
- No, let $X=\left(X_{0}^{d}+X_{1}^{d}+\cdots+X_{n+1}^{d}=0\right) \subset \mathbb{P}^{n+1}$.

Optimal value for c ?

- $n=1, c=42$.
- $n=2, c=(42)^{2}$. Alexeev + Xiao Take $S=C \times C$, where C achieves maximum. $K_{S}=p^{*} K_{C}+q^{*} K_{C}$ is ample, $\operatorname{vol}\left(S, K_{S}\right)=2(2 g-2)^{2}$ and $|\operatorname{Aut}(S)|=(42)^{2} 2(2 g-2)^{2}$.
- Stupid Question: Is $c=(42)^{n}$?
- No, let $X=\left(X_{0}^{d}+X_{1}^{d}+\cdots+X_{n+1}^{d}=0\right) \subset \mathbb{P}^{n+1}$.
- $K_{X}=(d-n-2) H$, ample if and only if $d \geq n+3$. Take $d=n+3$.

Optimal value for c ?

- $n=1, c=42$.
- $n=2, c=(42)^{2}$. Alexeev + Xiao Take $S=C \times C$, where C achieves maximum. $K_{S}=p^{*} K_{C}+q^{*} K_{C}$ is ample, $\operatorname{vol}\left(S, K_{S}\right)=2(2 g-2)^{2}$ and $|\operatorname{Aut}(S)|=(42)^{2} 2(2 g-2)^{2}$.
- Stupid Question: Is $c=(42)^{n}$?
- No, let $X=\left(X_{0}^{d}+X_{1}^{d}+\cdots+X_{n+1}^{d}=0\right) \subset \mathbb{P}^{n+1}$.
- $K_{X}=(d-n-2) H$, ample if and only if $d \geq n+3$. Take $d=n+3$.
- $|\operatorname{Aut}(X)|=(n+3)^{n+2}(n+2)$! and $\operatorname{vol}\left(X, K_{X}\right)=(n+3)$, ratio is $(n+3)^{n+1}(n+2)$! which beats $(42)^{n}(n=5$ will do $)$.

Review of finite simple groups

- Let $V=\mathbb{F}_{q^{2}}^{m}$. There is a sesquilinear pairing

$$
V \times V \longrightarrow \mathbb{F}_{q^{2}} \quad \text { given by } \quad \sum a_{i} \bar{b}_{i},
$$

where $\bar{x}=x^{q}$, so that $\overline{\bar{x}}=x^{q^{2}}=x$.

Review of finite simple groups

- Let $V=\mathbb{F}_{q^{2}}^{m}$. There is a sesquilinear pairing

$$
V \times V \longrightarrow \mathbb{F}_{q^{2}} \quad \text { given by } \quad \sum a_{i} \bar{b}_{i},
$$

where $\bar{x}=x^{q}$, so that $\overline{\bar{x}}=x^{q^{2}}=x$.

- The natural group is $U_{m}(q)$, the unitary group fixing this pairing.

Review of finite simple groups

- Let $V=\mathbb{F}_{q^{2}}^{m}$. There is a sesquilinear pairing

$$
V \times V \longrightarrow \mathbb{F}_{q^{2}} \quad \text { given by } \quad \sum a_{i} \bar{b}_{i},
$$

where $\bar{x}=x^{q}$, so that $\overline{\bar{x}}=x^{q^{2}}=x$.

- The natural group is $U_{m}(q)$, the unitary group fixing this pairing.
- $U_{m}(q)$ fixes the null cone,

$$
\sum a_{i}^{q+1}=0
$$

Review of finite simple groups

- Let $V=\mathbb{F}_{q^{2}}^{m}$. There is a sesquilinear pairing

$$
V \times V \longrightarrow \mathbb{F}_{q^{2}} \quad \text { given by } \quad \sum a_{i} \bar{b}_{i},
$$

where $\bar{x}=x^{q}$, so that $\overline{\bar{x}}=x^{q^{2}}=x$.

- The natural group is $U_{m}(q)$, the unitary group fixing this pairing.
- $U_{m}(q)$ fixes the null cone,

$$
\sum a_{i}^{q+1}=0
$$

- $U_{m}(q)$ is simple, one of the groups of Lie type.

Characteristic p ?

- $\operatorname{Aut}(X)=U_{n+2}(q), X$ the Fermat of degree $q+1$.

Characteristic p ?

- $\operatorname{Aut}(X)=U_{n+2}(q), X$ the Fermat of degree $q+1$.
- $\left|U_{n+2}(q)\right|=\frac{1}{(n+2, q+1)} q^{\binom{n+2}{2}} \prod_{i=2}^{n+2}\left(q^{i}-(-1)^{i}\right)$.

Characteristic p ?

- $\operatorname{Aut}(X)=U_{n+2}(q), X$ the Fermat of degree $q+1$.
- $\left|U_{n+2}(q)\right|=\frac{1}{(n+2, q+1)} q^{\binom{n+2}{2}} \prod_{i=2}^{n+2}\left(q^{i}-(-1)^{i}\right)$.
- Roughly like $q^{\alpha}, \alpha=\binom{n+2}{2}+\binom{n+3}{2}-1$.

Characteristic p ?

- $\operatorname{Aut}(X)=U_{n+2}(q), X$ the Fermat of degree $q+1$.
- $\left|U_{n+2}(q)\right|=\frac{1}{(n+2, q+1)} q^{\binom{n+2}{2}} \prod_{i=2}^{n+2}\left(q^{i}-(-1)^{i}\right)$.
- Roughly like $q^{\alpha}, \alpha=\binom{n+2}{2}+\binom{n+3}{2}-1$.
- Volume goes like q^{n+1}.

Characteristic p ?

- $\operatorname{Aut}(X)=U_{n+2}(q), X$ the Fermat of degree $q+1$.
- $\left|U_{n+2}(q)\right|=\frac{1}{(n+2, q+1)} q^{\binom{n+2}{2}} \prod_{i=2}^{n+2}\left(q^{i}-(-1)^{i}\right)$.
- Roughly like $q^{\alpha}, \alpha=\binom{n+2}{2}+\binom{n+3}{2}-1$.
- Volume goes like q^{n+1}.
- $n=1, g \sim q^{2},|\operatorname{Aut}(C)| \sim q^{8} .|\operatorname{Aut}(C)| \leq c \cdot g^{4}$.

Characteristic p ?

- $\operatorname{Aut}(X)=U_{n+2}(q), X$ the Fermat of degree $q+1$.
- $\left|U_{n+2}(q)\right|=\frac{1}{(n+2, q+1)} q^{\binom{n+2}{2}} \prod_{i=2}^{n+2}\left(q^{i}-(-1)^{i}\right)$.
- Roughly like $q^{\alpha}, \alpha=\binom{n+2}{2}+\binom{n+3}{2}-1$.
- Volume goes like q^{n+1}.
- $n=1, g \sim q^{2},|\operatorname{Aut}(C)| \sim q^{8} .|\operatorname{Aut}(C)| \leq c \cdot g^{4}$.
- Question: Are there constants c, d such that

$$
|\operatorname{Bir}(X)| \leq c \operatorname{vol}\left(X, K_{X}\right)^{d} .
$$

Birational boundedness

Definition: Let D be a divisor on a normal projective variety X.

Birational boundedness

Definition: Let D be a divisor on a normal projective variety X. $H^{0}(X, D)=\{f \mid(f)+D \geq 0\}$.

Birational boundedness

Definition: Let D be a divisor on a normal projective variety X. $H^{0}(X, D)=\{f \mid(f)+D \geq 0\}$.
There is a positive integer r such that

$$
\phi_{m\left(K_{X}+\Delta\right)}: X \longrightarrow \mathbb{P}\left(H^{0}\left(X, m\left(K_{X}+\Delta\right)\right)^{*}\right)=\mathbb{P}^{N}
$$

is birational onto its image W, for all $m \geq r$.

Birational boundedness

Definition: Let D be a divisor on a normal projective variety X. $H^{0}(X, D)=\{f \mid(f)+D \geq 0\}$.
There is a positive integer r such that

$$
\phi_{m\left(K_{X}+\Delta\right)}: X \longrightarrow \mathbb{P}\left(H^{0}\left(X, m\left(K_{X}+\Delta\right)\right)^{*}\right)=\mathbb{P}^{N}
$$

is birational onto its image W, for all $m \geq r$. $\operatorname{vol}\left(X, r\left(K_{X}+\Delta\right)\right) \geq \operatorname{vol}(W, H)=1$, so that

Birational boundedness

Definition: Let D be a divisor on a normal projective variety X. $H^{0}(X, D)=\{f \mid(f)+D \geq 0\}$.
There is a positive integer r such that

$$
\phi_{m\left(K_{X}+\Delta\right)}: X \longrightarrow \mathbb{P}\left(H^{0}\left(X, m\left(K_{X}+\Delta\right)\right)^{*}\right)=\mathbb{P}^{N}
$$

is birational onto its image W, for all $m \geq r$.
$\operatorname{vol}\left(X, r\left(K_{X}+\Delta\right)\right) \geq \operatorname{vol}(W, H)=1$, so that
$\operatorname{vol}\left(X, K_{X}+\Delta\right) \geq 1 / r^{n}$.

