Fall 2015 MATH 54 001 LEC

Linear Algebra and Differential Equations
Schedule: 
SectionDays/TimeLocationInstructorCCN
001 LEC TuTh 8-930A WHEELER AUD NADLER, D 53942
Units/CreditFinal Exam GroupEnrollment
4 11: WEDNESDAY, DECEMBER 16, 2015 3-6P Limit:702 Enrolled:700 Waitlist:0 Avail Seats:2 [on 10/04/15]

Note: Enrollment instructions are available at math.berkeley.edu/courses/enrollment-scheduling.

Discussions: 
SectionDays/TimeLocationInstructorCCN
101 DIS MWF 8-9A 285 CORY CHO, C 53945
102 DIS MWF 8-9A 87 EVANS WORMLEIGHTON, B 53948
103 DIS MWF 9-10A 289 CORY YOTT, D T 53951
104 DIS MWF 9-10A 9 EVANS CHO, C 53954
105 DIS MWF 10-11A 3105 ETCHEVERRY KRISHNAN, J 53957
106 DIS MWF 10-11A B51 HILDEBRAND YUAN, Q 53960
107 DIS MWF 11-12P 70 EVANS YUAN, Q 53963
108 DIS MWF 11-12P 87 EVANS DING, Y 53966
109 DIS MWF 12-1P 285 CORY REYBURN, S M 53969
110 DIS MWF 12-1P 70 EVANS HANLON, A D 53972
111 DIS MWF 1-2P 85 EVANS HANLON, A D 53975
112 DIS MWF 1-2P 254 SUTARDJA DAI HSIEH, D H 53978
113 DIS MWF 2-3P 30 WHEELER RYDER, N R 53981
114 DIS MWF 2-3P 3119 ETCHEVERRY KRISHNAN, J 53984
115 DIS MWF 3-4P 285 CORY WORMLEIGHTON, B 53987
116 DIS MWF 8-9A 110 WHEELER YOTT, D T 53990
117 DIS MWF 4-5P 254 SUTARDJA DAI HSIEH, D H 53993
118 DIS MWF 5-6P 83 DWINELLE GLEASON, J 53996
119 DIS MWF 5-6P 106 WHEELER FERNANDO, R 53999
120 DIS MWF 3-4P 71 EVANS FERNANDO, R 54001
121 DIS MWF 4-5P B51 HILDEBRAND RYDER, N R 55331
122 DIS MWF 12-1P 179 DWINELLE DING, Y 53310
123 DIS MWF 8-9A 39 EVANS JIANG, C 53313
124 DIS MWF 9-10A 740 EVANS JIANG, C 53316
125 DIS MWF 9-10A 186 BARROWS GHOSH, R 53319
126 DIS MWF 10-11A 186 BARROWS GHOSH, R 53322
Additional Information: 

Lecture room (as of 8/7/15): WHEELER AUDITORIUM

For enrollment questions or issues: Please speak with the registrar or an academic advisor.

The math department undergraduate advisors are:

Thomas Brown, 965 Evans, and Jennifer Sixt, 964 Evans.

Prerequisites: 1B.

Syllabus: Basic linear algebra; matrix arithmetic and determinants. Vector spaces; inner product as spaces. Eigenvalues and eigenvectors; linear transformations. Homogeneous ordinary differential equations; first-order differential equations with constant coefficients. Fourier series and partial differential equations.

Course Webpage: https://math.berkeley.edu/~nadler/54fall2015.html