
Von Neumann Algebras.

Vaughan F.R. Jones 1

October 1, 2009

1Supported in part by NSF Grant DMS93–22675, the Marsden fund UOA520,
and the Swiss National Science Foundation.



2



Chapter 1

Introduction.

The purpose of these notes is to provide a rapid introduction to von Neumann
algebras which gets to the examples and active topics with a minimum of
technical baggage. In this sense it is opposite in spirit from the treatises of
Dixmier [], Takesaki[], Pedersen[], Kadison-Ringrose[], Stratila-Zsido[]. The
philosophy is to lavish attention on a few key results and examples, and we
prefer to make simplifying assumptions rather than go for the most general
case. Thus we do not hesitate to give several proofs of a single result, or repeat
an argument with different hypotheses. The notes are built around semester-
long courses given at UC Berkeley though they contain more material than
could be taught in a single semester.

The notes are informal and the exercises are an integral part of the ex-
position. These exercises are vital and mostly intended to be easy.
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Chapter 2

Background and Prerequisites

2.1 Hilbert Space
A Hilbert Space is a complex vector spaceH with inner product 〈, 〉 : HxH →
C which is linear in the first variable, satisfies 〈ξ, η〉 = 〈η, ξ〉, is positive
definite, i.e. 〈ξ, ξ〉 > 0 for ξ 6= 0, and is complete for the norm defined by test

||ξ|| =
√
〈ξ, ξ〉.

Exercise 2.1.1. Prove the parallelogram identity :

||ξ − η||2 + ||ξ + η||2 = 2(||ξ||2 + ||η||2)

and the Cauchy-Schwartz inequality:

|〈ξ, η〉| ≤ ||ξ|| ||η||.

Theorem 2.1.2. If C is a closed convex subset of H and ξ is any vector in
H, there is a unique η ∈ C which minimizes the distance from ξ to C, i.e.
||ξ − η′|| ≤ ||ξ − η|| ∀η′ ∈ C.

Proof. This is basically a result in plane geometry.
Uniqueness is clear—if two vectors η and η′ in C minimized the distance

to ξ, then ξ, η and η′ lie in a (real) plane so any vector on the line segment
between η and η′ would be strictly closer to ξ.

To prove existence, let d be the distance from C to ξ and choose a sequence
ηn ∈ C with ||ηn − ξ|| < d + 1/2n. For each n, the vectors ξ, ηn and ηn+1

define a plane. Geometrically it is clear that, if ηn and ηn+1 were not close,
some point on the line segment between them would be closer than d to ξ.
Formally, use the parallelogram identity:

||ξ − ηn + ηn+1

2
||2 = ||ξ − ηn

2
+
ξ − ηn+1

2
||2
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= 2(||ξ − ηn
2
||2 + ||ξ − ηn+1

2
||2 − 1/8||ηn − ηn+1||2)

≤ (d+ 1/2n)2 − 1/4||ηn − ηn+1||2

Thus there is a constant K such that ||ηn−ηn+1||2 < K/2n or ||ξ− ηn+ηn+1

2
||2

would be less than d2.
Thus (ηn) is Cauchy, its limit is in C and has distance d from ξ.

Exercise 2.1.3. If φ ∈ H∗ (the Banach-space dual of H consisting of all
continuous linear functionals from H to C), kerφ is a closed convex subset
of H. Show how to choose a vector ξφ orthogonal to kerφ with φ(η) = 〈ξφ, η〉
and so that φ 7→ ξφ is a conjugate-linear isomorphism from H∗ onto H.

We will be especially concerned with separable Hilbert Spaces where there
is an orthonormal basis, i.e. a sequence {ξ1, ξ2, ξ3, ...} of unit vectors with
〈ξi, ξj〉 = 0 for i 6= j and such that 0 is the only element of H orthogonal to
all the ξi.

Exercise 2.1.4. Show that an orthonormal basis always exists (e.g. Gram-
Schmidt) and that if {ξi} is an orthonormal basis for H then the linear span
of the {ξi} is dense in H.

A linear map (operator) a : H → K is said to be bounded if there is a
number K with ||aξ|| ≤ K||ξ|| ∀ξ ∈ H. The infimum of all such K is called
the norm of a, written ||a||. The set of all bounded operators from H to K
is written B(H,K) and if H = K we use B(H). Boundedness of an operator
is equivalent to continuity.

To every bounded operator a between Hilbert spacesH and K, by exercise
2.1.3 there is another, a∗, between K and H, called the adjoint of a which is
defined by the formula 〈aξ, η〉 = 〈ξ, a∗η〉.

Exercise 2.1.5. Prove that

||a|| = sup

||ξ|| ≤ 1, ||η|| ≤ 1
|〈aξ, η〉|

= ||a∗|| = ||a∗a||1/2.

Some definitions:
The identity map on H is a bounded operator denoted 1.
An operator a ∈ B(H) is called self-adjoint if a = a∗.
An operator p ∈ B(H) is called a projection if p = p2 = p∗.
An operator a ∈ B(H) is called positive if 〈aξ, ξ〉 ≥ 0 ∀ξ ∈ B(H). We say
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a ≥ b if a− b is positive.
An operator u ∈ B(H) is called an isometry if u∗u = 1.
An operator v ∈ B(H) is called a unitary if uu∗ = u∗u = 1.
An operator u ∈ B(H) is called a partial isometry if u∗u is a projection.
The last three definitions extend to bounded linear operators between dif-

ferent Hilbert spaces.
If S ⊆ B(H) then the commutant S ′ of S is {x ∈ B(H)|xa = ax ∀a ∈ S}.
Also S ′′ = (S ′)′.

Exercise 2.1.6. Show that every a ∈ B(H) is a linear combination of two
self-adjoint operators.

Exercise 2.1.7. A positive operator is self-adjoint.

Exercise 2.1.8. Find an isometry from one Hilbert space to itself that is
not unitary. (The unilateral shift on H = `2(N) is a fine example. There is
an obvious orthonormal basis of H indexed by the natural numbers and the
shift just sends the nth. basis element to the (n+ 1)th.)

Exercise 2.1.9. If K is a closed subspace of H show that the map PK : H →
K which assigns to any point in H the nearest point in K is linear and a
projection.

Exercise 2.1.10. Show that the correspondence K → PK of the previous
exercise is a bijection between closed subspaces of H and projections in B(H).

If S is a subset of H, S⊥ is by definition {ξ ∈ H : 〈ξ, η〉 = 0 ∀η ∈ S}.
Note that S⊥ is always a closed subspace.

Exercise 2.1.11. If K is a closed subspace then K⊥⊥ = K and PK⊥ = 1−PK.

Exercise 2.1.12. If u is a partial isometry then so is u∗. The subspace u∗H
is then closed and called the initial domain of u, the subspace uH is also
closed and called the final domain of u. Show that a partial isometry is the
composition of the projection onto its initial domain and a unitary between
the initial and final domains.

The commutator [a, b] of two elements of B(H) is the operator ab− ba.

Exercise 2.1.13. If K is a closed subspace and a = a∗ then

aK ⊆ K iff [a, PK] = 0.

In general (aK ⊆ K and a∗K ⊆ K) ⇐⇒ [a, PK] = 0.
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2.2 The Spectral Theorem

The spectrum σ(a) of a ∈ B(H) is {λ ∈ C : a− λ1 is not invertible}.

Exercise 2.2.1. (Look up proofs if necessary.) Show that σ(a) is a non-
empty closed bounded subset of C and that if a = a∗, σ(a) ⊆ [−||a||, ||a|| ]
with either ||a|| or −||a|| in σ(a).

The spectral theorem takes a bit of getting used to and knowing how
to prove it does not necessarily help much. If one cannot “see” the spectral
decomposition of an operator it may be extremely difficult to obtain—except
in a small finite number of dimensions where it is just diagonalisation. But
fortunately there is nothing like a course in operator algebras, either C∗ or
von Neumann, to help master the use of this theorem which is the heart of
linear algebra on Hilbert space. The book by Reed and Simon, “Methods of
mathematical physics” vol. 1, Functional Analysis, contains a treatment of
the spectral theorem which is perfect background for this course. We will
make no attempt to prove it here—just give a vague statement which will
establish terminology.

The spectral theorem asserts the existence of a projection valued measure
from the Borel subsets of σ(a) (when a = a∗ or more generally when a is
normal i.e. [a, a∗] = 0) to projections in B(H), written symbolically λ →
E(λ), such that

a =

∫
λdE(λ).

This integral may be interpreted as a limit of sums of operators (necessitating
a topology on B(H)), as a limit of sums of vectors: aξ =

∫
λdE(λ)ξ or simply

in terms of measurable functions 〈ξ, aη〉 =
∫
λd〈ξ, E(λ)η〉. The projections

E(B) are called the spectral projections of a and their images are called the
spectral subspaces of a.

Given any bounded Borel complex-valued function f on σ(a) one may
form f(a) by f(a) =

∫
f(λ)dE(λ).

Exercise 2.2.2. If µ is a sigma-finite measure on X and f ∈ L∞(X,µ),
the operator Mf : L2(X,µ) → L2(X,µ), (Mfg)(x) = f(x)g(x), is a bounded
(normal) operator with ||Mf || = ess-supx∈X(|f(x)|). If f is real valued then
Mf is self adjoint. Find σ(f) and the projection-valued measure E(λ).

Exercise 2.2.3. If dim(H) < ∞ find the spectrum and projection-valued
measure for a (which is a Hermitian matrix).
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The example of exercise 2.2.2 is generic in the sense that there is a version
of the spectral theorem which asserts the following. If ξ ∈ H is any vector
and a = a∗ ∈ B(H), let K be the closed linear span of the {anξ : n =
0, 1, 2, 3, ...}, then a defines a self-adjoint operator on K and there is a finite
measure µ on the spectrum σ(a) such that (K, a) is isomorphic in the obvious
sense to (L2(σ(a), µ), multiplication by x). Continuing such an argument by
restricting to K⊥ one obtains a full spectral theorem.

Exercise 2.2.4. Show that a self-adjoint operator a is the difference a+−a−
of two positive commuting operators called the positive and negative parts of
a, obtained as functions of a as above.

2.3 Polar decomposition
Exercise 2.3.1. Show that every positive operator a has a unique positive
square root a1/2.

Given an arbitrary a ∈ B(H) we define |a| = (a∗a)1/2.

Exercise 2.3.2. Show that there is a partial isometry u such that a = u|a|,
and that u is unique subject to the condition that its initial domain is ker(a)⊥.
The final domain of this u is Im(a) = ker(a∗)⊥.

2.4 Tensor product of Hilbert Spaces.
If H and K are Hilbert spaces one may form their algebraic tensor product
H ⊗alg K (in the category of complex vector spaces). On this vector space
one defines the sesquilinear form 〈, 〉 by:

〈ξ ⊗ η, ξ′ ⊗ η′〉 = 〈ξ, ξ′〉〈η, η′〉

and observes that this form is positive definite. The Hilbert space tensor
product H ⊗ K is then the completion of H ⊗alg K. It is easy to see that if
a ∈ B(H), b ∈ B(K), there is a bounded operator a⊗ b on H⊗K defined by
a⊗ b(ξ ⊗ η) = aξ ⊗ bη.

Exercise 2.4.1. Let L2(X,H, µ) be the Hilbert space of measurable square
integrable functions (up to null sets) f : X → H, with H a separable Hilbert
space. For each ξ ∈ H and f ∈ L2(X,µ) let fξ ∈ L2(X,H, µ) be defined
by fξ(x) = f(x)ξ. Show that the map ξ ⊗ f 7→ fξ defines a unitary from
H⊗ L2(X,µ) onto L2(X,H, µ).
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Chapter 3

The definition of a von Neumann
algebra.

3.1 Topologies on B(H)

1. The norm or uniform topology is given by the norm ||a|| defined in
the previous chapter.

2. The topology on B(H) of pointwise convergence on H is called the
strong operator topology. A basis of neighbourhoods of a ∈ B(H) is
formed by the

N(a, ξ1, ξ2, ..., ξn, ε) = {b : ||(b− a)ξi|| < ε ∀i = 1, · · · , n}

3. The weak operator topology is formed by the basic neighbourhoods

N(a, ξ1, ξ2, ..., ξn, η1, η2, .., ηn, ε) = {b : |〈(b−a)ξi, ηi〉| < ε ∀i = 1, · · · , n}

Note that this weak topology is the topology of pointwise convergence on H
in the “weak topology” on H defined in the obvious way by the inner product.

The unit ball of H is compact in the weak topology and the unit ball
of B(H) is compact in the weak operator topology. These assertions follow
easily from Tychonoff’s theorem.

Exercise 3.1.1. Show that we have the following ordering of the topologies
(strict in infinite dimensions).

(weak operator topology) < (strong operator topology) < (norm topology)

Note that a weaker topology has less open sets so that if a set is closed in
the weak topology it is necessarily closed in the strong and norm topologies.
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3.2 The bicommutant theorem.
We will now prove the von Neumann “density” or “bicommutant” theorem
which is the first result in the subject. We prove it first in the finite dimen-
sional case where the proof is transparent then make the slight adjustments
for the general case.

Theorem 3.2.1. Let M be a self-adjoint subalgebra of B(H) containing 1,
with dim(H) = n <∞. Then M = M ′′.

Proof. It is tautological that M ⊆M ′′.
So we must show that if y ∈M ′′ then y ∈M . To this end we will “amplify”

the action ofM onH to an action onH⊗H defined by x(ξ⊗η) = xξ⊗η. If we
choose an orthonormal basis {vi} of H then H⊗H = ⊕ni=1H and in terms of
matrices we are considering the n xn matrices over B(H) and embedding M
in it as matrices constant down the diagonal. Clearly enough the commutant
of M on H⊗H is the algebra of all n xn matrices with entries in M ′ and the
second commutant consists of matrices having a fixed element of M ′′ down
the diagonal.

Let v be the vector ⊕ni=1vi ∈ ⊕ni=1H and let V = Mv ⊆ H ⊗ H. Then
MV ⊆ V and since M = M∗, PV ∈M ′ (on H⊗H) by exercise 2.1.13. So if
y ∈M ′′ (onH⊗H), then y commutes with PV and yMv ⊆Mv. In particular
y(1v) = xv for some x ∈M so that yvi = xvi for all i, and y = x ∈M .

Theorem 3.2.2. (von Neumann) Let M be a self-adjoint subalgebra of B(H)
containing 1. Then M ′′ = M (closure in the strong operator topology).

Proof. Commutants are always closed so M ⊆M ′′.
So let a ∈ M ′′ and N(a, ξ1, ξ2, ..., ξn, ε) be a strong neighbourhood of

a. We want to find an x ∈ M in this neighbourhood. So let v ∈ ⊕ni=1H
be ⊕ni=1ξi and let B(H) act diagonally on ⊕ni=1H as in the previous theorem.
Then the same observations as in the previous proof concerning matrix forms
of commutants are true. Also M commutes with PMv which thus commutes
with a (on ⊕ni=1H). And since 1 ∈ M , av = ⊕aξi is in the closure of Mv so
there is an x ∈M with ||xξi − aξi|| < ε for all i.

Corollary 3.2.3. If M = M∗ is a subalgebra of B(H) with 1 ∈M , then the
following are equivalent:

1. M = M ′′

2. M is strongly closed.

3. M is weakly closed.
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Definition 3.2.4. A subalgebra of B(H) satisfying the conditions of corollary
3.2.3 is called a von Neumann algebra.

(A self-adjoint subalgebra of B(H) which is closed in the norm topology
is called a C∗-algebra.)

3.3 Examples.
Example 3.3.1. Any finite dimensional *-subalgebra of B(H) containing 1.

Example 3.3.2. B(H) itself.

Exercise 3.3.3. Let (X,µ) be a finite measure space and consider A =
L∞(X,µ) as a *-subalgebra of B(L2(X,µ)) (as multiplication operators as
in exercise 2.2.2). Show that A = A′, i.e. A is maximal abelian and hence a
von Neumann algebra. (Hint: if x ∈ A′ let f = x(1). Show that f ∈ L∞ and
that x = Mf .)

Example 3.3.4. If S ⊆ B(H), we call (S ∪ S∗)′′ the von Neumann algebra
generated by S. It is, by theorem 3.2.2 the weak or strong closure of the
*-algebra generated by 1 and S. Most constructions of von Neumann algebras
begin by considering some family of operators with desirable properties and
then taking the von Neumann algebra they generate. But is is quite hard,
in general, to get much control over the operators added when taking the
weak closure, and all the desirable properties of the generating algebra may
be lost. (For instance any positive self-adjoint operator a with ||a|| ≤ 1
is a weak limit of projections.) However, if the desirable properties can
be expressed in terms of matrix coefficients then these properties will be
preserved under weak limits since the matrix coefficients of a are just special
elements of the form 〈ξ, aη〉. We shall now treat an example of this kind of
property which is at the heart of the subject and will provide us with a huge
supply of interesting von Neumann algebras quite different from the first 3
examples.

Let Γ be a discrete group and let `2(Γ) be the Hilbert space of all functions
f : Γ→ C with

∑
γ∈Γ

|f(γ)|2 <∞ and inner product 〈f, g〉 =
∑
γ∈Γ

f(γ)g(γ). An

orthonormal basis of `2(Γ) is given by the {εγ} where εγ(γ′) = δγ,γ′ so that
f =

∑
γ∈Γ

f(γ)εγ in the `2 sense. For each γ ∈ Γ define the unitary operator uγ

by (uγf)(γ′) = f(γ−1γ′). Note that uγuρ = uγρ and that uγ(ερ) = εγρ. Thus
γ 7→ uγ is a unitary group representation called the left regular representation.
The uγ are linearly independent so the algebra they generate is isomorphic

13



to the group algebra CΓ. The von Neumann algebra generated by the uγ
goes under various names, U(Γ), λ(Γ) and L(Γ) but we will call it vN(Γ) as
it is the “group von Neumann algebra” of Γ.

To see that one can control weak limits of linear combinations of the uγ,
consider first the case Γ = Z/nZ. With basis u0, u1, u2, · · · , un−1, the element
u1 is represented by the matrix:

0 1 0 0 . .
0 0 1 0 0 .
0 . 0 1 0 0
0 . . 0 1 0
0 0 . . 0 1
1 0 0 . . 0


which is a matrix constant along the “diagonals”. Clearly all powers of u1 and
all linear combinations of them have this property also so that an arbitrary
element of the algebra they generate will have the matrix form (when n = 6):

a b c d e f
f a b c d e
e f a b c d
d e f a b c
c d e f a b
b c d e f a


(Such matrices are known as circulant matrices but to the best of our knowl-
edge this term only applies when the group is cyclic.) If Z/nZ were replaced
by another finite group the same sort of structure would prevail except that
the “diagonals” would be more complicated, according to the multiplication
table of the group.

Now let Γ be an infinite group. It is still true that the (γ, ρ) matrix entry of
a finite linear combination of the uγ’s will depend only on γ−1ρ. As observed
above, the same must be true of weak limits of these linear combinations,
hence of any element of vN(Γ).

We see that the elements of vN(Γ) have matrices (w.r.t. the basis εγ)
which are constant along the “diagonals” : {(γ, ρ) : γρ−1 is constant}.

Exercise 3.3.5. Check whether it should be γ−1ρ or γρ−1 or some other
similar expression.....

Using the number cγ on the diagonal indexed by γ we can write, formally
at least, any element of vN(Γ) as a sum

∑
γ∈Γ

cγuγ. It is not clear in what
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sense this sum converges but certainly
∑
γ∈Γ

cγuγ must define a bounded linear

operator. From this we deduce immediately the following:
(i) The function γ 7→ cγ is in `2. (Apply

∑
γ∈Γ

cγuγ to εid.)

(ii) (
∑
γ∈Γ

cγuγ)(
∑
γ∈Γ

dγuγ) =
∑
γ∈Γ

(
∑
ρ∈Γ

cρdρ−1γ)uγ

where the sum defining the coefficient of uγ on the right hand side con-
verges since ρ 7→ cρ and ρ 7→ dρ−1γ are in `2.

Exactly what functions γ 7→ cγ define elements of vN(Γ) is unclear but
an important special case gives some intuition.

Case 1. Γ = Z.
It is well known that the map

∑
cnεn →

∑
cne

inθ defines a unitary V from
`2(Γ) to L2(T). Moreover V unV −1(eikθ) = V un(εk) = V ε(k+n) = einθeikθ so
that V unV −1 is the multiplication operator Meinθ . Standard spectral theory
shows that Meinθ generates L∞(T) as a von Neumann algebra, and clearly
if Mf ∈ L∞(T), V −1MfV =

∑
cnεn where

∑
cne

inθ is the Fourier series
of f . We see that, in this case, the functions γ 7→ cγ which define elements
of vN(Z) are precisely the Fourier series of L∞ functions. In case we forget
to point it out later on when we are in a better position to prove it, one
way to characterise the functions which define elements on vN(Γ) is as all
functions which define bounded operators on `2(Γ). This is not particularly
illuminating but can be useful at math parties.

At the other extreme we consider a highly non-commutative group, the
free group on n generators, n ≥ 2.

Case 2. Γ = Fn.
“Just for fun” let us compute the centre Z(vN(Γ)) of vN(Fn), i.e. those∑
cγuγ that commute with all x ∈ vN(Γ). By weak limits of linear combi-

nations, for
∑
cγuγ to be in Z(vN(Γ)) it is necessary and sufficient that it

commute with every uγ. This clearly is the same as saying cγργ−1 = cρ ∀γ, ρ,
i.e. the function c is constant on conjugacy classes. But in Fn all conjugacy
classes except that of the identity are infinite. Now recall that γ 7→ cγ is in
`2. We conclude that cγ = 0 ∀γ 6= 1, i.e. Z(vN(Γ)) = C1.

Note that the only property we used of Fn to reach this conclusion was
that every non-trivial conjugacy class is infinite (and in general it is clear
that Z(vN(Γ)) is in the linear span of the uγ with γ in a finite conjugacy
class.) Such groups are called i.c.c. groups and they abound. Other examples
include S∞ (the group of finitely supported permutations of an infinite set),
PSL(n,Z) and Q o Q∗.

Unsolved problem in von Neumann algebras:
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Is vN(Fn) ∼= vN(Fm) for n 6= m (for n and m ≥ 2)?

Note that it is obvious that the group algebras CFn and CFm are not iso-
morphic. Just consider algebra homomorphisms to C. But of course these
homomorphisms will not extend to vN(Γ).

Definition 3.3.6. A von Neumann algebra whose centre is C1 is called a
factor.

Exercise 3.3.7. Show that B(H) is a factor.

Exercise 3.3.8. Suppose H = K1 ⊗ K2 and let M = B(K1) ⊗ 1 Show that
M ′ = 1⊗ B(K2) so that M and M ′ are factors.

This exercise is supposed to explain the origin of the term “factor” as in
this case M and M ′ come from a tensor product factorisation of H. Thus in
general a factor and its commutant are supposed to correspond to a bizarre
"factorisation" of the Hilbert space.

The factor we have constructed as vN(Γ) is of an entirely different nature
from B(H). To see this consider the function tr : vN(Γ) → C defined by
tr(a) = 〈aε1, ε1〉, or tr(

∑
cγuγ) = c1. This map is clearly linear, weakly

continuous, satisfies tr(ab) = tr(ba) and tr(x∗x) =
∑

γ |cγ|2 ≥ 0 (when
x =

∑
γ cγuγ). It is called a trace on vN(Γ). If Γ = Z it obviously equals

1
2π

∫ 2π

0
f(θ)dθ under the isomorphism between vN(Z) and L∞(T).

Exercise 3.3.9. (i)Suppose dimH < ∞. If tr : B(H) → C is a linear map
with tr(ab) = tr(ba), show that there is a constant K with tr(x) = Ktrace(x).

(ii) There is no non-zero weakly continuous linear map tr : B(H) → C
satisfying tr(ab) = tr(ba) when dim(H) =∞.

(iii) There is no non-zero linear map tr : B(H) → C satisfying tr(ab) =
tr(ba) and tr(x∗x) ≥ 0 when dim(H) =∞.

(iv) (harder) There is no non-zero linear map tr : B(H) → C satisfying
tr(ab) = tr(ba) when dim(H) =∞.

Thus our factors vN(Γ) when Γ is i.c.c. are infinite dimensional but seem
to have more in common with B(H) when dimH < ∞ than when dimH =
∞! They certainly do not come from honest tensor product factorisations of
H.

Let us make a couple of observations about these factors.
1)They contain no non-zero finite rank operators, for such an operator

cannot be constant and non-zero down the diagonal. (Take x∗x if necessary.)
2)They have the property that tr(a) = 0⇒ a = 0 for a positive element

a (a positive operator cannot have only zeros down the diagonal).
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3)They have the property that uu∗ = 1 ⇒ u∗u = 1 (i.e. they contain no
non-unitary isometries).

Proof. If u∗u = 1, uu∗ is a projection so 1 − uu∗ is too and tr(1 − uu∗) =
1− tr(u∗u) = 0.

Exercise 3.3.10. Show that in vN(Γ), ab = 1⇒ ba = 1. Show that if F is
any field of characteristic 0, ab = 1⇒ ba = 1 in FΓ.

Hints: 1) You may use elementary property 8 of the next chapter.
2) Only finitely many elements of the field are involved in ab and ba in

FΓ .

As far as I know this assertion is still open in non-zero characteristic. The
above exercise is a result of Kaplansky.

The next observation is a remarkable property of the set of projections.
4) If Γ = Fn, {tr(p) : p a projection in vN(Γ)} = [0, 1].

Proof. It is clear that the trace of a projection is between 0 and 1. To see that
one may obtain every real number in this interval, consider the subgroup 〈a〉
generated by a single non-zero element. By the coset decomposition of Fn the
representation of 〈a〉 on `2(Fn) is the direct sum of countably many copies
of the regular representation. The bicommutant of ua is then, by a matrix
argument, vN(Z) acting in an “amplified” way as block diagonal matrices
with constant blocks so we may identify vN(Z) with a subalgebra of vN(Γ).
Under this identification the traces on the two group algebras agree. But as
we have already observed, any element f ∈ L∞(0, 2π) defines an element of
vN(Z) whose integral is its trace. The characteristic function of an interval
is a projection so by choosing intervals of appropriate lengths we may realise
projections of any trace.

We used the bicommutant to identify vN(Z) with a subalgebra of vN(Γ).
It is instructive to point out a problem that would have arisen had we tried
to use the weak or strong topologies. A vector in `2(Γ) is a square summable
sequence of vectors in `2(Z) so that a basic strong neighbourhood of a on
`2(Γ) would correspond to a neighbourhood of the form {b :

∑∞
i=1 ||(a −

b)ξi||2 < ε} for a sequence (ξi) in `2(Z) with
∑∞

i=1 ||ξi||2 < ∞. Thus strong
convergence on `2(Z) would not imply strong convergence on `2(Γ). This
leads us naturally to define two more topologies on B(H).

Definition 3.3.11. The topology defined by the basic neighbourhoods of a,
{b :

∑∞
i=1 ||(a − b)ξi||2 < ε} for any ε and any sequence (ξi) in `2(H) with∑∞

i=1 ||ξi||2 <∞, is called the ultrastrong topology on B(H).
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The topology defined by the basic neighbourhoods

{b :
∞∑
i=1

|〈(a− b)ξi, ηi〉| < ε}

for any ε > 0 and any sequences (ξi), (ηi) in `2(H) with

∞∑
i=1

||ξi||2 + ||ηi||2 <∞

is called the ultraweak topology on B(H).

Note that these topologies are precisely the topologies inherited on B(H)
if it is amplified infinitely many times as B(H)⊗ 1K with dimK =∞.

Exercise 3.3.12. Show that the ultrastrong and strong topologies coincide
on a bounded subset of B(H) as do the weak and ultraweak topologies. That
they differ will be shown in 5.1.4.

Exercise 3.3.13. Repeat the argument of the von Neumann density theorem
(3.2.2) with the ultrastrong topology replacing the strong topology.

Here are some questions that the inquisitive mind might well ask at this
stage. All will be answered in succeeding chapters.

Question 1) If there is a weakly continuous trace on a factor, is it unique
(up to a scalar multiple)?

Question 2) If there is a trace on a factor M is it true that {tr(p) :
p a projection in M} = [0, 1]?

Question 3) Is there a trace on any factor not isomorphic to B(H)?

Question 4) Are all (infinite dimensional) factors with traces isomorphic?

Question 5) If M is a factor with a trace, is M ′ also one? (Observe that
the commutant of a factor is obviously a factor.)

Question 6) Is vN(Γ)′ the von Neumann algebra generated by the right
regular representation?

Question 7) If φ : M → N is a ∗-algebra isomorphism between von
Neumann algebras on Hilbert spaces H and K is there a unitary u : H → K
so that φ(a) = uau∗ for a ∈M?

18



3.4 Elementary properties of von Neumann al-
gebras.

Throughout this chapter M will be a von Neumann algebra on a Hilbert
space H.

EP1) If a = a∗ is an element of M , all the spectral projections and all
bounded Borel functions of a are in M . Consequently M is generated by its
projections.

According to one’s proof of the spectral theorem, the spectral projections
E(λ) of a are constructed as strong limits of polynomials in a. Or the prop-
erty that the spectral projections of a are in the bicommutant of a may be
an explicit part of the theorem. Borel functions will be in the bicommutant.

EP2) Any element in M is a linear combination of 4 unitaries in M .

Proof. We have seen that any x is a linear combination of 2 self-adjoints,
and if a is self-adjoint, ||a|| ≤ 1, let u = a+ i

√
1− a2. Then u is unitary and

a = u+u∗

2
.

EP3) M is the commutant of the unitary group of M ′ so that an alter-
native definition of a von Neumann algebra is the commutant of a unitary
group representation.

This follows from EP2)

Exercise 3.4.1. Show that multiplication of operators is jointly strongly con-
tinuous on bounded subsets but not on all of B(H).

Show that ∗ : B(H) 7→ B(H) is weakly continuous but not strongly con-
tinuous even on bounded sets.

The following result is well known and sometimes called Vigier’s theorem.

Theorem 3.4.2. If {aα} is a net of self-adjoint operators with aα ≤ aβ
for α ≤ β and ||aα|| ≤ K for some K ∈ R, then there is a self-adjoint
a with a = limαaα, convergence being in the strong topology. Furthermore
a = lub(aα) for the poset of self-adjoint operators.

Proof. A candidate a for the limit can be found by weak compactness of
the unit ball. Then 〈aαξ, ξ〉 is increasing with limit 〈aξ, ξ〉 for all ξ ∈ H and
a ≥ aα ∀α. So limα

√
a− aα = 0 in the strong topology. Now multiplication

is jointly strongly continuous on bounded sets so s−lim aα = a.
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Note that we have slipped in the notation s−lim for a limit in the strong
topology (and obviously w−lim for the weak topology).

If a and (aα) are as in 3.4.2 we say the net (aα) is monotone convergent
to a.

EP4) M is closed under monotone convergence of self-adjoint operators.

The projections on B(H) form an ortholattice with the following proper-
ties:

p ≤ q ⇐⇒ pH ⊆ qH

p ∧ q = orthogonal projection onto pH ∩ qH

p⊥ = 1− p

p ∨ q = (p⊥ ∧ q⊥)⊥ = orthogonal projection onto pH + qH.

Exercise 3.4.3. Show that p ∧ q = s−lim n→∞(pq)n.

The lattice of projections in B(H) is complete (i.e. closed under arbitrary
sups and infs) since the intersection of closed subspaces is closed.

EP5) The projections in M generate M as a von Neumann algebra, and
they form a complete sublattice of the projection lattice of B(H).

Proof. If S is a set of projections in M then finite subsets of S are a directed
set and F →

W
p∈F p is a net in M satisfying the conditions of 3.4.2. Thus the

strong limit of this net exists and is in M . It is obvious that this strong limit
is

W
p∈Sp, the sup being in B(H).

Easier proof. For each projection p ∈M , pH is invariant under each element
of M ′. Thus the intersection of these subspaces is also.

EP6) Let A be a *-subalgebra of B(H). Let W be
T
a∈Aker(a) and K =

W⊥. Then K is invariant under A and if we let B = {a|K : a ∈ A}, then 1K is
in the strong closure of B, which is thus a von Neumann algebra. Moreover
on K, B′′ is the strong (weak, ultrastrong, ultraweak) closure of B.

Proof. By the above, if p and q are projections p ∨ q = 1− (1− p) ∧ (1− q)
is in the strong closure of the algebra generated by p and q. By spectral
theory, if a = a∗ the range projection Pker(a)⊥ is in the strong closure of the
algebra generated by a so we may apply the argument of the proof of EP5)
to conclude that

W
a∈APker(a)⊥ is in the strong closure of A. But this is 1K.
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Finally, on K, let C be the algebra generated by 1 and B. Clearly C ′ = B′

and just as clearly the strong closure of B is the same as the strong closure
of C. So B′′ is the strong closure of B by the bicommutant theorem.

Thus if we were to define a von Neumann algebra as a weakly or strongly
closed subalgebra of B(H), it would be unital as an abstract algebra but its
identity might not be that of B(H) so it would not be equal to its bicommu-
tant. However on the orthogonal complement of all the irrelevant vectors it
would be a von Neumann algebra in the usual sense.

EP7) If M is a von Neumann algebra and p ∈M is a projection, pMp =
(M ′p)′ and (pMp)′ = M ′p as algebras of operators on pH. Thus pMp and
M ′p are von Neumann algebras.

Proof. Obviously pMp and M ′p commute with each other on pH. Now
suppose x ∈ (M ′p)′ ⊆ B(pH) and define x̃ = xp(= pxp) ∈ B(H). Then if
y ∈ M ′, yx̃ = yxp = ypxp = (xp)(yp) = xpy = x̃y, so x̃ ∈ M and x = px̃p.
Thus (pM ′)′ = pMp which is thus a von Neumann algebra.

If we knew that M ′p were a von Neumann algebra on pH we would be
done but a direct attempt to prove it strongly or weakly closed fails as we
would have to try to extend the limit of a net in M ′p on pH to be in M ′.

So instead we will show directly that (pMp)′ ⊆M ′p by a clever extension
of its elements to H. By EP2 it suffices to take a unitary u ∈ (pMp)′. Let
K ⊆ H be the closure of MpH and let q be projection onto it. Then K is
clearly invariant under M and M ′ so q ∈ Z(M). We first extend u to K by

ũ
∑

xiξi =
∑

xiuξi

for xi ∈M and ξi ∈ pH. We claim that ũ is an isometry:

||ũ
∑

xiξi||2 =
∑
i,j

〈xiuξi, xjuξj〉

=
∑
i,j

〈px∗jxipuξi, uξj〉

=
∑
i,j

〈upx∗jxipξi, uξj〉

= ... = ||
∑

xiξi||2

This calculation actually shows that ũ is well defined and extends to an
isometry of K. By construction ũ commutes with M on MpH,hence on K.
So ũq ∈M ′ and u = ũqp. Hence (pMp)′ = M ′p.
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Corollary 3.4.4. If M is a factor, pMp is a factor on pH, as is pM ′.
Moreover the map x 7→ xp from M ′ to M ′p is a weakly continuous *-algebra
isomorphism.

Proof. As in the proof of the previous result, the projection onto the closure
of MpH is in the centre of M , hence it is 1 . So if xp = 0 for x ∈ M ′,
xmpξ = mxpξ = 0 for any m ∈ M , ξ ∈ H. Hence the map x 7→ px is an
injective ∗-algebra map and pM ′ is a factor. So by the previous result (pMp)′

is a factor and so is pMp. Continuity and the is obvious.

Corollary 3.4.5. If M is a factor and a ∈ M and b ∈ M ′ then ab = 0
implies either a = 0 or b = 0.

Proof. Let p be the range projection of b and apply the previous corollary.

Exercise 3.4.6. Show that if M is a von Neumann algebra generated by the
self-adjoint, multiplicatively closed subset S, then pSp generates pMp (if p is
a projection in M or M ′). Show further that the result fails if S is not closed
under multiplication.

Exercise 3.4.7. Show that if M is a factor and V and W are finite dimen-
sional subspaces of M and M ′ respectively then the map a ⊗ b 7→ ab defines
a linear isomorphism between V ⊗W and the space VW spanned by all vw
with v ∈ V and w ∈ W .

EP8) If a ∈M and a = u|a| is the polar decomposition of a then u ∈M
and |a| ∈M .

Proof. By the uniqueness of the polar decomposition both |a| and u commute
with every unitary in M ′.

EP9) None of the topologies (except || ∗ ||) is metrizable on B(H) but
they all are on the unit ball (when H is separable) and B(H) is separable for
all except the norm topology.

Proof. First observe that a weakly convergent sequence of operators is bounded.
This follows from the uniform boundedness principle and 2.1.5 which shows
how to get the norm from inner products.

Here is the cunning trick. Let {ηi, i = 1, · · ·∞} be an orthonormal basis of
H and let ei be projection onto Cηi. Consider the family {em +men : m,n =
1, · · ·∞}. Let V a basic ultrastrong neighbourhood of 0 defined by ε and {ξi :∑
||ξi||2 < ∞} and let | − |V be the corresponding seminorm, then writing
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ξi =
∑

j ξ
i
jηj we have

∑
i,j |ξij|2 <∞. Now choose m so that

∑
i |ξim|2 < ε2/4

and n so that
∑

i |ξin|2 < ε2/4m2. Observing that ||en(ξi)||2 = |ξni |2 we have

|em +men|V ≤ |em|V +m|en|V

=

√∑
i

||emξ||2 +m

√∑
i

||enξ||2

≤ ε/2 + ε/2

so that en +men ∈ V .
On the other hand no subsequence of {em + men : m,n = 1, · · ·∞} can

tend even weakly to 0 since it would have to be bounded in norm which would
force some fixed m to occur infinitely often in the sequence, preventing weak
convergence! So by the freedom in choosing m and n to force em + men to
be in V , there can be no countable basis of zero for any of the topologies
(except of course the norm).

If we consider the unit ball, however, we may choose a dense sequence ξi of
unit vectors and define d(a, b) = [

∑
i 2
−i||(a− b)ξi||2]1/2 which is a metric on

the unit ball defining the strong topology. (Similarly for the weak topology.)
We leave non-separability of B(H) in the norm topology as an exercise.

EP10) An Abelian von Neumann algebra on a separable Hilbert space is
generated by a single self-adjoint operator.

Proof. Let {e0, e1, e2, · · · } be a sequence of projections that is strongly dense
in the set of all projections in the Abelian von Neumann algebra A. Let
a =

∑∞
n=0

1
3n
en. The sum converges in the norm topology so a ∈ A. The

norm of the self-adjoint operator a1 =
∑∞

n=1
1

3n
en is obviously at most 1/2

so that the spectral projection for the interval [3/4, 2] for a is e0. Continuing
in this way we see that all the e′ns are in {a}′′.

This relegates the study of Abelian von Neumann algebras to the spectral
theorem. One can show that any Abelian von Neumann algebra on a sepa-
rable Hilbert space is isomorphic to either `∞({0, 1, · · · , n}) (where n = ∞
is allowed) or L∞([0, 1], dx) or a direct sum of the two. This is up to ab-
stract algebra isomorphism. To understand the action on a Hilbert space,
multiplicity must be taken into account.
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Chapter 4

Finite dimensional von Neumann
algebras and type I factors.

4.1 Definition of type I factor.

The first crucial result about factors (remember a factor is a von Neumann
algebra with trivial centre) will be the following “ergodic” property.

Theorem 4.1.1. If M is a factor and p and q are non-zero projections in
M there is an x ∈M with pxq 6= 0. Moreover x can be chosen to be unitary.

Proof. Suppose that for any unitary u ∈ M , puq = 0. Then u∗puq = 0 and( W
u∈M u

∗pu
)
q = 0. But clearly

W
u∈M u

∗pu commutes with all unitaries u ∈M
so is the identity.

The reason we have called this an “ergodic” property is because of a per-
vasive analogy with measure-theoretic dynamical systems (and it will become
much more than an analogy). A transformation T : (X,µ) → (X,µ) pre-
serving the measure µ is called ergodic if T−1(A) ⊆ A implies µ(A) = 0 or
µ(X \ A) = 0 for a measurable A ⊆ X. If T is invertible one can then show
that there is, for any pair A ⊂ X and B ⊂ X of non-null sets, a power T n
of T such that µ(T n(A) ∩B) 6= 0. Or, as operators on L2(X,µ), ATNB 6= 0
where we identify A and B with the multiplication operators by their char-
acteristic functions. The proof is the same—the union of all T n(A) is clearly
invariant, thus must differ from all of X by a set of measure 0.

Corollary 4.1.2. Let p and q be non-zero projections in a factor M . Then
there is a partial isometry u ( 6= 0) in M with uu∗ ≤ p and u∗u ≤ q. p and q had been swapped

around in the proof, so we
interchanged uu∗ and u∗u
in the statement.
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Proof. Let u be the partial isometry of the polar decomposition of pxq for x
such that pxq 6= 0.

Definition 4.1.3. If M is a von Neumann algebra, a non-zero projection
p ∈M is called minimal, or an atom, if (q ≤ p)⇒ (q = 0 or q = p).

Exercise 4.1.4. Show that p is minimal in M iff pMp = Cp.
Definition 4.1.5. A factor with a minimal projection is called a type I
factor.

4.2 Classification of all type I factors
We will classify all type I factors quite easily. We begin with the model,
which we have already seen.

Let B(H)⊗1 be the constant diagonal matrices on H⊗K. Its commutant
1⊗B(K) will be our model. It is the algebra of all matrices defining bounded
operators with every matrix entry being a scalar multiple of the identity
matrix on H. A matrix with a single 1 on the diagonal and zeros elsewhere
is obviously a minimal projection.

Theorem 4.2.1. IfM is a type I factor of a Hilbert space L, there are Hilbert
spaces H and K and a unitary u : L → H⊗K with uMu∗ = B(H)⊗ 1.

Proof. Let {p1, p2, ...} be a maximal family of minimal projections inM such
that pipj = 0 for i 6= j. (We assume for convenience that L is separable.) Our
first claim is that

∨
i pi = 1 so that L = ⊕ipiL. For if 1−

∨
i pi were nonzero,

by corollary 4.1.2 there would be a u 6= 0 with uu∗ ≤ p1 and u∗u ≤ 1−
∨
i pi.

By minimality uu∗ is minimal and hence so is u∗u contradicting maximality of
the pi. Now for each i choose a non-zero partial isometry e1i with e1ie

∗
1i ≤ p1

and e∗1ie1i ≤ pi. By minimality e1ie
∗
1i = p1 and e∗1ie1i = pi. Then M is

generated by the e1i’s, for if a ∈M we have a =
∑

i,j piapj the sum converging
in the strong topology, and piapj = e∗1ie1iae

∗
1je1j ∈ p1Mp1 = Cp1. Thus there

are scalars λij so that a =
∑

i,j λije
∗
1ie1j. (The details of the convergence of

the sum are unimportant—we just need that a be in the strong closure of
finite sums.)

If n is the cardinality of {pi}, let X = {1, 2, ..., n} and define the map
u : `2(X, p1L)→ L by

uf =
∑
i

e∗1if(i).

Observe that u is unitary and u∗e1iu is a matrix on `2(X, p1L) with an identity
operator in the (1, i) position and zeros elsewhere. The algebra generated by
these matrices is B(`2(X))⊗ 1 on `2(X)⊗ p1L and we are done.
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Remark 4.2.2. The importance of being spatial.

We avoided all kinds of problems in the previous theorem by constructing
our isomorphism using a unitary between the underlying Hilbert spaces. In
general given von Neumann algebras M and N generated by S and T respec-
tively, to construct an isomorphism between M and N it suffices to construct
(if possible !!!) a unitary u between their Hilbert spaces so that T is contained
in uSu∗. To try to construct an isomorphism directly on S could be arduous
at best.

4.3 Tensor product of von Neumann algebras.
If M is a von Neumann algebra on H and N is a von Neumann algebra on
K we define M ⊗N to be the von Neumann algebra on H⊗K generated by when you use \h, make sure

it’s enclosed in $ signs{x⊗ y : x ∈M, y ∈ N}.

Exercise 4.3.1. Show that M ⊗ N contains the algebraic tensor product
M ⊗alg N as a strongly dense *-subalgebra.

Definition 4.3.2. Let M be a von Neumann algebra. A system of matrix
units (s.m.u.) of size n in M is a family {eij : i, j = 1, 2, ..., n} (n = ∞
allowed) such that

(i) e∗ij = eji.

(ii) eijekl = δj,keil

(iii)
∑

i eii = 1.

Exercise 4.3.3. Show that if {eij; i, j = 1, ..., n} is an s.m.u. in a von
Neumann algebra M , then the eij generate a type I factor isomorphic to
B(`2({1, 2, ..., n})) and that M is isomorphic (unitarily equivalent to in this
instance) to the von Neumann algebra e11Me11 ⊗ B(`2({1, 2, ..., n})).

4.4 Multiplicity and finite dimensional von Neu-
mann algebras.

Theorem 4.2.1 shows that type I factors on Hilbert space are completely
classified by two cardinalities (n1, n2) according to:

n1 = rank of a minimal projection in M , and
n2 = rank of a minimal projection in M ′.

We see that the isomorphism problem splits into “abstract isomorphism”
(determined by n2 alone), and “spatial isomorphism”, i.e. unitary equivalence.

27



A type In factor is by definition one for which n = n2. It is abstractly
isomorphic to B(H) with dimH = n. The integer n1 is often called the
multiplicity of the type I factor.

We will now determine the structure of all finite dimensional von Neu-
mann algebras quite easily. Note that in the following there is no requirement
that H be finite dimensional.

Theorem 4.4.1. Let M be a finite dimensional von Neumann algebra on
the Hilbert space H. Then M is abstractly isomorphic to ⊕ki=1Mni(C) for
some positive integers k, n1, n2, ..., nk. (Mn(C) is the von Neumann algebra
of all n × n matrices on n-dimensional Hilbert space.) Moreover there are
Hilbert spaces Ki and a unitary u : ⊕i`2(Xi,Ki) → H (with |Xi| = ni) with
u∗Mu = ⊕iB(`2(Xi))⊗ 1.

Proof. The centre Z(M) is a finite dimensional abelian von Neumann al-
gebra. If p is a minimal projection in Z(M), pMp is a factor on pH.
The theorem follows immediately from theorem 4.2.1 and the simple facts
that Z(M) = ⊕ki=1piC where the pi are the minimal projections in Z(M)
(two distinct minimal projections p and q in Z(M) satisfy pq = 0), and
M = ⊕ipiMpi.

The subject of finite dimensional von Neumann algebras is thus rather
simple. It becomes slightly more interesting if one considers subalgebras N ⊆
M . Let us deal first with the factor case of this. Let us point out that the
identity of M is the same as that of N .

Theorem 4.4.2. If M is a type In factor, its type Im factors are all uniquely
determined, up to conjugation by unitaries in M , by the integer (or ∞)
k > 0 such that pMp is a type Ik factor, p being a minimal projection in
the subfactor N and mk = n.

Proof. Let N1 and N2 be type Im subfactors with generating s.m.u.’s {eij}
and {fij} respectively. If k is the integer (in the statement of the theorem)
for N1 then 1 =

∑m
1 eii and each eii is the sum of k mutually orthogonal

minimal projections of M , hence n = mk. The same argument applies to
N2. Build a partial isometry u with uu∗ = e11 and u∗u = f11 by adding
together partial isometries between maximal families of mutually orthogonal
projections less than e11 and f11 respectively. Then it is easy to check that
w =

∑
i ej1uf1j is a unitary with wfklw∗ = ekl. So wN2w

∗ = N1.

Now we can do the general (non-factor) case. If N = ⊕ni=1Mki(C) and
M = ⊕mj=1Mrj(C) and N ⊆ M as von Neumann algebras, let pj be minimal
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central projections inM and qi be those of N . Then for each (i, j), pjqiMqipj
is a factor and pjqiN is a subfactor so we may form the matrix Λ = (λij)
where λij is the integer associated with pjqiN ⊆ pjqiMqipj by theorem 4.4.2.

Exercise 4.4.3. Show that the integer λij defined above is the following:
if ei is a minimal projection in the factor qiN , λij = trace of the matrix
pjei ∈MrjC.

Example 4.4.4. Let M = M5(C)⊕M3(C) and N be the subalgebra of ma-
trices of the form: (

X 0 0
0 X 0
0 0 z

)
⊕ (X 0

0 z )

where z ∈ C and X is a 2×2 matrix. Then N is isomorphic toM2(C)⊕C
and if p1 = 1⊕ 0, q1 = 1⊕ 0, etc., we have

Λ = ( 2 1
1 1 ) .

The matrix Λ is often represented by a bipartite graph with the number
of edges between i and j being λij. The vertices of the graph are labelled by
the size of the corresponding matrix algebras. Thus in the above example
the picture would be:

This diagram is called the Bratteli diagram for N ⊆M .

Exercise 4.4.5. Generalise the above example to show that there is an in-
clusion N ⊆ M corresponding to any Bratteli diagram with any set of di-
mensions for the simple components of N .

4.5 A digression on index.
If N ⊆M are type I factors we have seen that there is an integer k (possibly
∞) such that M is the algebra of k × k matrices over N . If k < ∞, M is
thus a free left N-module of rank k2. It seems reasonable to call the number
k2 the index of N in M and write it [M : N ]. This is because, if H < G
are groups and CH ⊆ CG their group algebras, the coset decomposition of
G shows that CG is a free left CH-module of rank [G : H].
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Chapter 5

Kaplansky Density Theorem.

5.1 Some simple but telling results on linear
functionals.

We begin with a result about linear functionals of independent interest.

Theorem 5.1.1. Let V be a subspace of B(H) and let φ : V → C be a linear
functional. The following are equivalent:

(i) There are vectors in H, ξ1, ξ2, ..., ξn and η1, η2, ..., ηn with

φ(x) =
n∑
i=1

〈xξi, ηi〉

(ii) φ is weakly continuous.

(iii) φ is strongly continuous.

Proof. (i) ⇒ (ii) ⇒ (iii) are obvious, so suppose φ is strongly continuous.
One may use the seminorms

√∑n
i=1 ||aξi||2 as {ξ1, ξ2, ..., ξn} ranges over all

finite subsets of H to define the strong topology. Srong continuity implies
that there is an ε > 0 and {ξ1, ξ2, ..., ξn} such that

√∑n
i=1 ||aξi||2 < ε implies

|φ(a)| ≤ 1. But then if
√∑n

i=1 ||aξi||2 = 0 then multiplying a by large scalars
implies φ(a) = 0. Otherwise it is clear that |φ(a)| ≤ 1

ε

√∑n
i=1 ||aξi||2.

Now let ξ = ξ1 ⊕ ...ξn ∈ ⊕iH and let K = (V ⊗ 1)(ξ). Then define
φ̃ on V ⊗ 1(ν) by φ̃(⊕ixξi) = φ(x). Observe that φ̃ is well-defined and
continuous so extends to K which means there is a vector η = ⊕ηi ∈ K with
φ(x) = φ̃(x⊗ 1)(η) = 〈(x⊗ 1)(ξ), η〉.

Exercise 5.1.2. Replace weak and strong by ultraweak and ultrastrong, and
the finite sequences of vectors by `2-convergent ones in the previous theorem.
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Corollary 5.1.3. If C is a convex subset of B(H), its weak and strong clo-
sures coincide.

Proof. Two locally convex vector spaces with the same continuous linear
functionals have the same closed convex sets. This is a consequence of the
Hahn-Banach theorem to be found in any text on functional analysis.

Corollary 5.1.4. If dimH =∞ the strong and ultrastrong topologies differ
on B(H).

Proof. Let (ξi) be an orthonormal basis of H and let ω(x) =
∑

i
1
n2 〈xξi, ξi〉.

Then ω is ultraweakly continuous but not strongly continuous. For if it were
weakly continuous it would be of the form

∑n
i=1〈xνi, ηi〉 and ω(p) = 0 where p

is the projection onto the orthogonal complement of the vector space spanned
by the νi. But by positivity ω(p) = 0 forces p(ξi) = 0 for all i.

5.2 The theorem
In our discussion of vN(Γ) we already met the desirability of having a norm-
bounded sequence of operators converging to an element in the weak closure
of a *-algebra of operators. This is not guaranteed by the von Neumann
density theorem. The Kaplansky density theorem fills this gap.

Theorem 5.2.1. Let A be a *-subalgebra of B(H). Then the unit ball of A
is strongly dense in the unit ball of the weak closure M of A, and the self-
adjoint part of the unit ball of A is strongly dense in the self-adjoint part of
the unit ball of M .

Proof. By EP6) we may assume 1 ∈ M and the worried reader may check
that we never in fact suppose 1 ∈ A. We may further suppose that A is
norm-closed, i.e. a C∗-algebra. Consider the closure of Asa, the self-adjoint
part of A. The * operation is weakly continuous so if xα is a net converging
to the self-adjoint element x ∈M , xα+x∗α

2
converges to x so the weak closure

of Asa is equal to Msa. Since Asa is convex, the strong closure is also equal
to Msa by 5.1.3.

Let us now prove the second assertion of the theorem. Let x = x∗ ∈ M ,
||x|| < 1, and ξ1, ..., ξn, ε > 0 define a strong neighbourhood of x. We must
come up with a y ∈ Asa, ||y|| < 1, with ||(x−y)ξi|| < ε. The function t→ 2t

1+t2

is a homeomorphism of [−1, 1] onto itself. So by the spectral theorem we may
choose an X ∈Msa with ||X|| ≤ 1, so that 2X

1+X2 = x. Now by strong density
choose Y ∈ Asa with

||Y xξi −Xxξi|| < ε, and || Y

1 +X2
ξi −

X

1 +X2
ξi|| < ε/4.
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Put y = 2Y
1+Y 2 and note that ||y|| ≤ 1.

Now consider the following equalities:

y − x =
2Y

1 + Y 2
− 2X

1 +X2

= 2(
1

1 + Y 2
(Y (1 +X2)− (1 + Y 2)X)

1

1 +X2
)

= 2(
1

1 + Y 2
(Y −X)

1

1 +X2
+

Y

1 + Y 2
(X − Y )

X

1 +X2
)

=
2

1 + Y 2
(Y −X)

1

1 +X2
+

1

2
y(X − Y )x.

By the choice of Y , we see that ||(y − x)ξi|| < ε. This proves density for
the self-adjoint part of the unit ball.

Now consider a general x ∈M with ||x|| ≤ 1. The trick is to form ( 0 x
x∗ 0 ) ∈

M ⊗M2(C). Strong convergence of a net
(
aα bα
cα dα

)
to ( a bc d ) is equivalent to

strong convergence of the matrix entries soA⊗M2(C) is strongly dense inM⊗
M2(C). Moreover if

(
aα bα
cα dα

)
→ ( 0 x

x∗ 0 ) strongly then bα tends strongly to x.
And ||bα|| ≤ 1 follows from ||

(
aα bα
cα dα

)
|| ≤ 1 and 〈bαξ, η〉 = 〈

(
aα bα
cα dα

) (
0
ξ

)
, ( η0 )〉.

Corollary 5.2.2. If M is a *-subalgebra of B(H) containing 1 then M is a
von Neumann algebra iff the unit ball of M is weakly compact.

Proof. The unit ball of B(H) is weakly compact, and M is weakly closed.
Conversely, if the unit ball of M is weakly compact, then it is weakly

closed. Let x be in the weak closure of M . We may suppose ||x|| = 1. By
Kaplansky density there is a net xα weakly converging to x with ||xα|| ≤ 1.
Hence x ∈M .
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Chapter 6

Comparison of Projections and
Type II1 Factors.

6.1 Order on projections

Definition 6.1.1. If p and q are projections in a von Neumann algebra M
we say that p � q if there is a partial isometry u ∈ M with uu∗ = p and
u∗u ≤ q. We say that p and q are equivalent, p ≈ q if there is a partial
isometry u ∈M with uu∗ = p and u∗u = q.

Observe that ≈ is an equivalence relation.

Theorem 6.1.2. The relation � is a partial order on the equivalence classes
of projections in a von Neumann algebra.

Proof. Transitivity follows by composing partial isometries. The issue is to
show that e � f and f � e imply e ≈ f . Compare this situation with sets
and their cardinalities.

Let u and v satisfy uu∗ = e, u∗u ≤ f and vv∗ = f, v∗v ≤ e. Note the
picture:

We define the two decreasing sequences of projections e0 = e, en+1 =
v∗fnv and f0 = f, fn+1 = u∗enu. The decreasing property follows by induc-
tion since p→ v∗pv gives an order preserving map from projections inM less
than f to projections inM less than e and similarly interchanging the roles of

e and f , v and u. Let e∞ =
∞∧
i=0

ei and f∞ =
∞∧
i=0

fi. Note that v∗f∞v = e∞ and

f∞vv
∗f∞ = f∞ so that e∞ ≈ f∞. Also e = (e− e1) + (e1− e2) + · · ·+ e∞ and

f = (f−f0)+(f1−f2)+· · ·+f∞ are sums of mutually orthogonal projections.
But for each even i, u∗(ei−ei+1)u = fi+1−fi+2 so ei−ei+1 ≈ fi+1−fi+2, and
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v∗(fi − fi+1)v = ei+1 − ei+2 so one may add up, in the strong topology, all
the relevant partial isometries to obtain an equivalence between e and f .

Note that if we had been dealing with vN(Γ) this argument would have
been unnecessary as we could have used the trace:

tr(v∗v) ≤ tr(e) = tr(uu∗) = tr(u∗u) ≤ tr(f) = tr(vv∗) = tr(v∗v)

so that tr(e − v∗v) = 0 which implies e = v∗v. However in general it is
certainly possible to get a projection equivalent to a proper subprojection of
itself. Just take the unilateral shift on B(`2(N)) which exhibits an equivalence
between 1 and the projection onto the orthogonal complement of the first
basis vector. This is analogous to the notion of an infinite set—one which is
in bijection with a proper subset of itself.

Definition 6.1.3. A projection p in a von Neumann algebra M is called
infinite if p ≈ q for some q < p, p 6= q. Otherwise p is called finite. A von
Neumann algebra is called finite if its identity is finite, and it is called purely
infinite if it has no finite projections other than 0. A factor is called infinite
if its identity is infinite.

We will show that purely infinite von Neumann algebras exist though it
will not be easy.

Remark 6.1.4. If dimH =∞ then B(H) is infinite.

Remark 6.1.5. A factor with a trace like vN(Γ) is finite.

Remark 6.1.6. Every projection in a finite von Neumann algebra is finite.
Or, more strongly, if p ≤ q and q is finite then p is finite.

For if p ≈ p′, p′ < p, p 6= p′ then p+ (q − p) ≈ p′ + (q − p) 6= q.

Remark 6.1.7. IfM is any von Neumann algebra, 1 is an infinite projection
in M ⊗ B(H) if dimH =∞.

Theorem 6.1.8. If M is a factor and p, q are projections in M , either p � q
or q � p.

Proof. Consider the family of partial isometries u with uu∗ ≤ p, u∗u ≤ q.
This set is partially ordered by u ≤ v if u∗u ≤ v∗v and v = u on the initial
domain u∗uH of u. This partially ordered set satisfies the requirements for
Zorn’s lemma so let u be a maximal element in it. If u∗u = q or uu∗ = p we
are done so suppose q − u∗u and p − uu∗ are both non-zero. Then by 4.1.1
there is a v 6= 0 with v∗v ≤ q − u∗u and vv∗ ≤ p − uu∗. But then u + v is
larger than u which was supposed maximal.
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Exercise 6.1.9. Show that two equivalent projections p and q in a finite
factor M are unitarily equivalent, i.e. there is a unitary u ∈M with upu∗ =
q.

We see that the equivalence classes of projections in a factor form a totally
ordered set. It is known that, on a separable Hilbert space, the possible
isomorphism types for this set are:

1) {0, 1, 2, ..., n} where n =∞ is allowed. “type In”
2) [0, 1] “type II1”
3) [0,∞] “type II∞”
4) {0,∞} “type III”

Strictly speaking this is nonsense as type III is the same as type I1 and
II1 is the same as II∞. We mean not only the order type but whether 1 is
infinite or not.

Observe that the type II1 case certainly exists. We saw that vN(F2) has
projections of any trace between 0 and 1. By the previous theorem it is clear
that the trace gives an isomorphism between the ordered set of equivalence
classes of projections and the unit interval. We will proceed to prove a
statement generalising this considerably.

Definition 6.1.10. A type II1 factor is an infinite dimensional factor M on
H admitting a non-zero linear function tr : M → C satisfying

(i) tr(ab) = tr(ba)

(ii) tr(a∗a) ≥ 0

(iii) tr is ultraweakly continuous.

The trace is said to be normalised if tr(1) = 1.

Definition 6.1.11. In general a linear functional φ on a *-algebra A is called
positive if φ(a∗a) ≥ 0 (and φ(a∗) = φ(a) though this is redundant if A is a
C∗-algebra), and faithful if φ(a∗a) = 0 ⇒ a = 0. A positive φ is called a
state if 1 ∈ A and φ(1) = 1. A linear functional φ is called tracial (or a
trace) if φ(ab) = φ(ba).

It is our job now to show that a II1 factor has a unique ultraweakly
continuous tracial state, which is faithful. First a preliminary result on ideals.

Theorem 6.1.12. Let M be an ultraweakly closed left ideal in a von Neu-
mann algebra M . Then there is a unique projection e ∈ M such that
M = Me. IfM is 2-sided, e is in Z(M).

Proof. M ∩M∗ is an ultraweakly closed *-subalgebra so it has a largest
projection e. Since e ∈ M, Me ⊆ M. On the other hand if x ∈ M let

37



x = u|x| be its polar decomposition. Since u∗x = |x|, |x| ∈ M∩M∗. Hence
|x|e = |x| and x = u|x| = u|x|e ∈Me. SoM = Me.

Uniqueness follows easily since f = xe⇒ f ≤ e.
Moreover ifM is 2-sided, for any unitary u ∈ M , uM =M = uMu∗ =

Me = Mueu∗ so ueu∗ = e by uniqueness. Hence e ∈ Z(M).

Corollary 6.1.13. An ultraweakly continuous positive non-zero trace Tr on
a II1 factor is faithful.

Proof. LetM = {x ∈M : Tr(x∗x) = 0}. Then since x∗a∗ax ≤ ||a||2x∗x,M
is a left ideal and since Tr(ab) = Tr(ba),M is a 2-sided ideal. Moreover by
the Cauchy Schwarz inequality Tr(x∗x) = 0 iff Tr(xy) = 0 ∀y ∈ M . Thus
M is ultraweakly closed, being the intersection of the kernels of ultraweakly
continuous functionals. Thus M = Me for some central projection. And e
must be zero since M is a factor.

Corollary 6.1.14. If M is a type II1 factor on H and p ∈M is a non-zero
projection, pMp is a type II1 factor on pH.

Proof. This is clear—a trace on M restricts to a trace on pMp which is
non-zero by faithfulness and all the other properties are immediate. Since a
minimal projection in pMp would be minimal in M , pMp is infinite dimen-
sional.

The uniqueness of tr will follow easily once we have gathered some facts
about projections in a II1 factor.

Theorem 6.1.15. There are non-zero projections in a type II1 factor of
arbitrarily small trace.

Proof. Let d = inf{tr(p) : p ∈ M, p2 = p∗ = p 6= 0}. Suppose d > 0. Let
p be a projection with tr(p) − d < d. Then p is not minimal since we have
seen that M is not isomorphic to B(H). So there is a non-zero projection
q < p. But then we have tr(p− q) = tr(p)− tr(q) ≤ tr(p)− d < d. This is a
contradiction. So d = 0.

Theorem 6.1.16. Let M be a type II1 factor with an ultraweakly continuous
positive non-zero trace tr. Then {tr(p) : p ∈M, p2 = p∗ = p} = [0, tr(1)].

Proof. For r ∈ [0, tr(1)] consider S = {p : p a projection in M and tr(p) ≤
r}. Then S is a partially ordered set and if pα is a chain in S, p =

∨
α pα ∈M

and p is in the strong closure of the pα so p is in S. So by Zorn, S has a
maximal element, say q. If tr(q) were less than r, then by 6.1.8, q ≺ p. So
choose q′ ∼= q, q′ < p. Applying 6.1.14 to p−q′ we find a projection strictly
between q′ and p.
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Corollary 6.1.17. The map tr gives an isomorphism between the totally
ordered set of equivalence classes of projections on a type II1 factor and the
interval [0, tr(1)].

Proof. By 6.1.16 it suffices to show that the equivalence class of a projection
is determined by its trace. This is immediate from 6.1.8.

Exercise 6.1.18. Let M be a type II1 factor. Then for each n ∈ N there is
a subfactor N ⊆M with N ∼= Mn(C).

Corollary 6.1.19. Any two non-zero ultraweakly continuous normalised traces
on a type II1 factor are equal.

Proof. By the elementary facts it suffices to prove that two such traces Tr
and tr agree on projections. We may assume one of them, say tr, is positive.
By the previous exercise, 6.1.17, and the uniqueness of the trace on a matrix
algebra, tr and Tr are equal on projections for which tr is rational. Given
a projection for which tr(p) is irrational build an increasing sequence ei of
subprojections as follows:

Suppose we have already constructed ei with tr(ei) = Tr(ei) and tr(p)−
tr(ei) < 1/i. Then (p− ei)M(p− ei) is a type II1 factor so tr and Tr agree
on projections in it whose tr is arbitrarily close to tr(p − ei). So choose in
it a projection ei+1 between ei and p, on which tr and Tr agree and with
tr(p)− tr(ei+1) < 1

i+1
. Then tr and Tr agree on

∨
i ei which is equal to p by

the faithfulness of tr.

We shall see that a positive trace on a type II1 factor is norm-continuous
and a self-adjoint operator is actually a norm-limit of linear combinations
of its spectral projections so in fact an apparently weaker property than
ultraweak continuity is all we used in the previous corollary—namely that
the trace of the supremum of an increasing net of projections is the supremum
of the traces.

Corollary 6.1.20. Let M be a von Neumann algebra with a positive ultra-
weakly continuous faithful normalised trace tr. Then M is a type II1 factor
iff Tr = tr for all ultraweakly continuous normalised traces Tr.

Proof. We just have to show that Z(M) is trivial. But if it were not, choose
by faithfulness a projection p ∈ Z(M) with 0 < tr(p) < 1. Define Tr(x) =
( 1
tr(p)

)tr(xp). Then Tr is an ultraweakly continuous normalized trace different
from tr on 1− p.

Exercise 6.1.21. Let a be a non-zero positive self adjoint operator. Show
that there is a bounded piecewise smooth function f : R+ → R+ such that
af(a) is a non-zero projection.
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Exercise 6.1.22. A type II1 factor is algebraically simple. (Hint—use the
previous exercise to show that a 2-sided ideal contains a projection, then add
projections to obtain the identity.)

6.2 The GNS construction

Thus uniqueness of the trace implies factoriality. This suggests another in-
teresting way to construct a type II1 factor. If A = M2(C), A is embedded
in A⊗A as diagonal matrices: a ↪→ a⊗ 1. Iterate this procedure to form an
increasing sequence An of *-algebras with A1 = A and An+1 = An ⊗ A, and
consider the *-algebra A∞ = ∪nAn which could also be called ⊗∞alg,n=1An. If
we normalise the matrix trace on all matrix algebras so that tr(1) = 1 then
tr(a ⊗ 1) = tr(a) so that tr defines a positive faithful normalised trace on
A∞. Elements of A∞ can be thought of as linear combinations of tensors
of the form a1 ⊗ a2 ⊗ a3 ⊗ · · · ⊗ 1 ⊗ 1 ⊗ 1 ⊗ · · · , on which the trace is just
the product of the traces of the ai’s. We now turn A∞ into a von Neumann
algebra.

Define an inner product on A∞ by 〈x, y〉 = tr(y∗x). Then A∞ is a pre-
Hilbert space and let H be its completion. Note that Mn(C) is a von Neu-
mann algebra so tr(y∗x∗xy) ≤ ||x||2tr(y∗y). This means that the operator
Lx on A∞, Lx(y) = xy, satisfies ||Lx(ξ)|| ≤ ||x|| · ||ξ|| (where ||x|| is the
operator norm of the matrix x and ||ξ|| is the Hilbert space norm of ξ) and
so extends uniquely to a bounded operator also written Lx on H. One checks
that (Lx)

∗ = Lx∗ so x→ Lx defines a faithful (=injective) representation of
the *-algebra A∞ on H . LetM be the von Neumann algebra on H generated
by the Lx and identify A∞ with a subalgebra of M .

The trace on A∞ is defined by tr(a) = 〈aξ, ξ〉 where ξ is the element
1 ∈ A∞ considered as a vector in H. So tr extends to a trace on M which is
ultraweakly continuous, positive and normalised. It is also unique with these
properties by the uniqueness of the trace on the ultraweakly dense subalgebra
A∞ of M . If we can show that tr is faithful on M then it follows that M is a
type II1 factor. It is important to note that this does not follow simply from
the faithfulness of tr on A. In fact it is true but we need to do something to
prove it.

When we showed that Lx was bounded, the same calculation, with tr(ab) =
tr(ba), would have shown that Rx, right multiplication by x, is also bounded.
Associativity shows that Lx and Ry commute on A∞, hence on H. Thus M
commutes with Ry for each y ∈ A∞. Now we can show faithfulness: if
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tr(x∗x) = 0 for x ∈M then for each a ∈ A∞ we have

||x(a)||2 = ||xRa(ξ)||2 = ||Rax(ξ)||2 ≤ ||Ra||2||xξ||2 = ||Ra||2tr(x∗x) = 0.

Since A∞ is dense, this means x = 0. So tr is faithful on M which is thus a
type II1 factor.

Exercise 6.2.1. Let Fn be the Fibonacci numbers. Show that there is a
unique (up to you to figure out in what sense) unital embedding of MFn(C)⊕
MFn+1(C) inside MFn+1(C) ⊕MFn+2(C) for n ≥ 3. Thus one may form the
*-algebra

F∞ = ∪∞n=1MFn(C)⊕MFn+1(C).

Show that there is a unique C∗-norm and unique positive trace on F∞ so we
may repeat the procedure above to obtain another type II1 factor.

Many points are raised by this example. The easiest to deal with are
the properties of the vector ξ which played a prominent role. We used both
Mξ = H and M ′ξ = H.

Definition 6.2.2. LetM be a von Neumann algebra on H. A vector ξ ∈ H is
called cyclic forM ifMξ = H and separating forM if (xξ = 0)⇒ (x = 0)
for all x ∈M .

Proposition 6.2.3. With notation as above, ξ is cyclic for M iff ξ is sepa-
rating for M ′.

Proof. (⇒) Exercise—in fact done in the discussion of A∞ above.

(⇐) Let p be the projection onto the closure of Mξ. Then p ∈ M ′. But
(1− p)ξ = 0 so p = 1.

The construction of M from A∞ is a special case of what is known
as the GNS construction (Gelfand-Naimark-Segal). Given a positive lin-
ear functional φ satisfying φ(a∗) = φ(a) on a *-algebra A we let Nφ be
{x ∈ A : φ(x∗x) = 0}. We also define a sesquilinear form 〈, 〉φ on A by
〈x, y〉φ = φ(y∗x). This form is positive semidefinite but this is enough for the
Cauchy-Schwartz inequality to hold so that N is the same as {x : 〈x, y〉φ =
0 ∀y ∈ A} so that N is a subspace and 〈, 〉φ defines a pre-Hilbert space
structure on the quotient A/N . Under favourable circumstances, left mul-
tiplication by x, Lx defines a bounded linear operator on it. Favourable
circumstances are provided by C∗-algebras.

Exercise 6.2.4. If φ is a linear functional on a C∗-algebra satisfying φ(a∗a) ≥
0 show that φ(a∗) = φ(a). Moreover if A is unital show that φ is norm-
continuous and in fact ||φ|| = φ(1).
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Remark 6.2.5. It is a standard elementary fact in C∗-algebras that one may
always adjoin an identity to a C∗-algebra.

Proposition 6.2.6. If A is a unital C∗-algebra and φ : A→ C is a positive
linear functional then

φ(y∗x∗xy) ≤ ||x||2φ(y∗y)

Proof. Let φ̃(a) = φ(y∗ay). Then φ̃ is positive so by the exercise φ̃(x∗x) ≤
||x||2φ̃(1).

It follows immediately that, given a positive linear functional φ on a unital
C∗-algebra, each x ∈ A determines a bounded linear operator πφ(x) on the
Hilbert space Hφ of the GNS construction via left multiplication: πφ(x)(y) =
xy. Moreover ||πφ(x)|| ≤ ||x|| and πφ(x∗) = πφ(x)∗ since 〈πφ(x)y, z〉 =
φ(z∗xy) = 〈y, πφ(x∗)z〉. Note that φ(x) = 〈πφ(x)1, 1〉.

To sum up we have the following:

Definition 6.2.7. If A is a C∗-algebra and φ is a positive linear functional
on A, the Hilbert space of the GNS construction is written Hφ and the rep-
resentation πφ by left multiplication is called the GNS representation.

Proposition 6.2.8. If A is a C∗-algebra on H and ξ ∈ H, define ωξ(a) =
〈aξ, ξ〉. Then ωξ is a positive linear functional and a 7→ aξ defines a unitary
u : Hωξ → Aξ such that uπωξ(a)u∗ = a.

Proof. Obvious.

If A is actually a von Neumann algebra, πφ(A) will not in general be one
on Hφ. This difficulty will be resolved in the next section.
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Chapter 7

Normality, complete additivity.

7.1 Normal states.
In quantum mechanics if ξ is a unit vector in a Hilbert space it defines a
"state" φ. In particular this means that if an observable is given by the
self-adjoint operator a then the average value of repeated observations of the
system in the state φ is 〈aξ, ξ〉. For this reason one calls a positive linear
functional φ a ”state" on a unital C∗-algebra provided φ(1) = 1.

Definition 7.1.1. If A is a C∗-algebra on H and φ is a state on A we say φ is
a vector state if there is a unit vector ξ ∈ H with φ = ωξ, i.e. φ(a) = 〈aξ, ξ〉
for all a ∈ A.

Not all states are vector states but our goal in this chapter is to show
that on von Neumann algebras there is a natural class of states which are
automatically vector states provided one amplifies the Hilbert space.

Definition 7.1.2. (i) If M is a von Neumann algebra a positive linear func-
tional φ is called completely additive if

φ(
∨
α

pα) =
∑
α

φ(pα)

whenever pα is a family of mutally orthogonal projections.
(ii) A positive linear map Φ : A → B between von Neumann algebras is

called normal if
Φ(
∨
α

aα) =
∨
α

Φ(aα)

for any increasing net (aα) of self-adjoint operators in A.

Our goal in this chapter is to show the following:
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Theorem 7.1.3. If φ is state on a von Neumann algebra M on H the fol-
lowing are equivalent:
(1) φ is normal.
(2) φ is completely additive
(3) φ is a vector state on H⊗ `2(N)
(4) φ is ultraweakly continuous.

The only implication that is not obvious from what we have done is
(2) =⇒ (3). To prove it we will put together some results. The first couple
actually establish (4) =⇒ (3) by 5.1.2.

Lemma 7.1.4. Let A be a C∗-algebra on H containing 1. If ψ is a positive
linear functional on A and ξ ∈ H is a vector with ψ ≤ ωξ (i.e. ωξ − ψ is
positive), then there is a s ∈ A′ with ψ = ωsξ.

Proof. Define a sesquilinear form (, ) on Aξ by (aξ, bξ) = ψ(b∗a). Cauchy-
Schwarz and ψ ≤ φξ give that |(aξ, bξ)| ≤ ||aξ||||bξ|| so (, ) is well-defined
and there is a bounded positive operator t on Aξ with 〈aξ, tbξ〉 = ψ(b∗a).
But 〈aξ, tbcξ〉 = ψ(c∗b∗a) = 〈b∗aξ, tcξ〉 = 〈aξ, btcξ〉 so that t ∈ A′ on Aξ. If
p = pAξ, tp is a positive operator in A′ and if s =

√
t, ψ(a) = 〈aξ, tξ〉 =

〈asξ, sξ〉 = ωξ(a).

.

Corollary 7.1.5. If ξ and η are vectors such that ω(a) = 〈aξ, η〉 is positive
(on a C∗-algebra A on H) then there is a vector ν with ω = ων.

Proof. For a ≥ 0,

〈aξ, η〉 = 1/4(〈a(ξ + η), ξ + η〉 − 〈a(ξ − η), ξ − η〉)

≤ 1/4ωξ+η(a).

Now we begin to show that complete additivity means that two states
cannot disagree too erratically.

Lemma 7.1.6. Let φ1 and φ2 be completely additive. Suppose p ∈ M is a
projection and φ1(p) < φ2(p) . Then there is a projection q ≤ p, for which
φ1(x) < φ2(x) ∀x ≥ 0 with qxq = x.

Proof. Choose a maximal family of mutually orthogonal “bad" projections
eα ≤ p for which φ1(eα) ≥ φ2(eα). By complete additivity

∨
α eα is bad so let

q = p −
∨
α eα. By maximality φ1(f) < φ2(f) for all projections f ≤ q and

since α is norm continuous, by the spectral theorem φ1(x) < φ2(x) ∀x ≥ 0
with qxq = x.
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Next we get vector state behaviour for φ on some small projection.
Lemma 7.1.7. There exists p > 0 and ξ ∈ H for which

φ(x) = 〈xξ, ξ〉 ∀x ∈ pMp

Proof. Choose ξ ∈ H with φ(1) = 1 < 〈ξ, ξ〉. Then by the previous lemma
there is a p > 0 for which φ(x) ≤ 〈xξ, ξ〉 ∀x ∈ pMp. By 7.1.4 we are
done.

Now we put together all the little parts and prove that (3) =⇒ (4) in
7.1.3. So let φ be a completely additive state on a von Neumann algebra M
acting on H. Let pα be a maximal family of pairwise orthogonal projections
admitting a vector ξα ∈ pαH with φ(x) = 〈xξα, ξα〉 on pαMpα. Then by
the previous lemma

∨
α pα = 1. And obviously ||ξα||2 = φ(pα). Since φ(pα)

can only be non-zero for countably many α we can assume the set of α’s is
countable.

By Cauchy-Schwarz, for any x ∈M ,

|φ(xpα)| ≤ φ(pαx
∗xpα)1/2φ(pα)1/2 = ||xξα||φ(pα)1/2.

So the linear functional xξα 7→ φ(xpα) is well-defined and bounded on
Mξα which means there is a vector ηα, ||ηα||2 = φ(pα), with

φ(xpα) = 〈xξα, ηα〉.
Moreover, also by Cauchy-Schwarz, |φ(x) −

∑
α∈F φ(xpα)| can be made

arbitrarily small by choosing the finite set F sufficiently large since φ is
completely additive. We conclude that there exist ξα, ηα, each of norm ≤
φ(α)1/2 with

φ(x) =
∑
α

〈xξα, ηα〉

which is the same as saying that φ(x) = 〈(x⊗1)ξ, η〉 for some ξ, η ∈ `2(N,H).
By corollary 7.1.5 we have proved theorem 7.1.3.
Corollary 7.1.8. If φ is a normal state on the von Neumann algebraM then
the GNS representation πφ is ultraweakly continuous onto a von Neumann
algebra on Hφ.
Proof. We saw in the last theorem that φ(x) = 〈x ⊗ 1(ν), ν〉 on H ⊗ `2(N).
The map x 7→ x ⊗ 1 is ultraweakly continuous. By 6.2.8 we have that πφ
is ultraweakly continuous since the reduction to M ⊗ 1(ν) is ultraweakly
continuous. So the kernel of πφ is an ultraweakly closed 2-sided ideal, hence
of the formMe for some e in the centre ofM . It follows that πφ is injective on
M(1−e) and since the norm of an operator x is determined by the spectrum
of x∗x, the unit ball of the image of M is the image of the unit ball which is
weakly compact so by 5.2.2 we are done.
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7.2 Isomorphisms are spatial.
Recall that an isomorphism Φ : M → N between von Neumann algebras
on Hilbert spaces H and K respectively is called spatial if there is a unitary
u : H → K such that Φ(x) = uxu∗ for all x ∈ M . Though the title of this
section is not literally true, it becomes true on amplification as a result of
theorem 7.1.3:

Theorem 7.2.1. Given an isomorphism Φ : M → N between von Neumann
algebras on Hilbert spaces H and K respectively, there is a Hilbert space W
and a unitary u : H⊗W → K⊗W with Φ(x)⊗1 = u(x⊗1)u∗ for all x ∈M .

Proof. If ξ ∈ H defines the vector state φ on M ,then since normality (or
complete additivity) is defined by algebra, the state φ ◦ Φ−1 is also a vector
state on K⊗ `2(N) given by the vector η. This means that there is a unitary
from the closure of Mξ to the closure of Nη intertwining the actions of
x and Φ(x) ⊗ 1. One may exhaust H in this way to obtain an isometry
u : H → ⊕αK ⊗ `2(N) intertwining the actions of M . For a big enough W ,
⊕αK ⊗ `2(N) is K ⊗ W and tensoring again by W we get an intertwining
isometry u : H⊗W → K⊗W . Now consider the action of M on
(H⊗W)⊕(K⊗W) defined in terms of matrices by

(
x⊗1 0

0 Φ(x)⊗1

)
. To say that

u intertwines the actions is precisely the same as saying that ( 0 0
u 0 ) is in M ′.

So ( 1 0
0 0 ) � ( 0 0

0 1 ) in M ′. Applying this to Φ−1 as well we see by theorem 6.1.2
that these two projections are equivalent in M ′. But any partial isometry
witnessing their equivalence has the form ( 0 0

w 0 ) with w a unitary between H
and K intertwining the actions. (Note that we never assumed that M was
more than a unital *-algebra on (H⊗W)⊕ (K ⊗W)).

7.3 Exercises on two projections.
Let p and q be projections onto closed subspaces H and K of the Hilbert
space U respectively. Let M = {p, q}′′.

Exercise 7.3.1. Show that U = (H∩K)⊕(H⊥∩K⊥)⊕(H∩K⊥)⊕(H⊥∩K)⊕W
for some W and this decomposition is invariant under p and q.

Exercise 7.3.2. Show that, on W, p and q are in “general position”, i.e.
p ∧ q = 0, p ∨ q = 1, (1− p) ∧ q = 0 and (1− p) ∨ q = 1.

Exercise 7.3.3. Show that if a ∈ B(H), 0 ≤ a ≤ 1,
(

a
√
a(1−a)√

a(1−a) 1−a

)
is a

projection on H⊕H. When is it in general position with ( 1 0
0 0 )?

46



Exercise 7.3.4. Let a = (p − q)2 and A = {a}′′. Show that a ∈ Z(M) and
that {a0 +a1p+a2q+a3pq+a4qp : ai ∈ A} is a *-algebra (which is necessarily
weakly dense in M).

Exercise 7.3.5. Show that pMp is abelian, generated by pqp.

>From now on suppose p and q are in general position.

Exercise 7.3.6. Show that p ∼= q in M . (Hint: consider the polar decompo-
sition of pq.)

Exercise 7.3.7. Show there is a 2×2 system of matrix units (eij) ∈M with
p = e11.

Exercise 7.3.8. Show that M is spatially isomorphic to B ⊗ M2(C) for
some abelian von Neumann algebra B generated by b, 0 ≤ b ≤ 1, with p

corresponding to ( 1 0
0 0 ) and q corresponding to

(
b
√
b(1−b)√

b(1−b) 1−b

)
Now drop the hypothesis that p and q are in general position.

Exercise 7.3.9. Show that p ∨ q − p ∼= q − p ∧ q in M

Alternative approach using group representations.

Exercise 7.3.10. Show that (Z/2Z)∗(Z/2Z) ∼= Zo(Z/2Z) (infinite dihedral
group).

Exercise 7.3.11. Classify all unitary representations of Zo(Z/2Z). (Hint—
use the spectral theorem for unitaries.)

Exercise 7.3.12. Observe that 2p− 1 and 2q − 1 are self-adjoint unitaries.

Exercise 7.3.13. Obtain the structure of 7.3.8 using the last 3 exercises.
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Chapter 8

The Predual

An ultraweakly continuous linear functional φ on a von Neumann algebra M
is norm continuous so defines an element of M∗. Our goal in this chapter is
to show that the set of all such φ is a closed subspace M∗ of M∗ and that
the duality between M∗ and M makes M equal to the Banach space dual of
M∗. We will first establish this in the special case M = B(H).

8.1 Trace class and Hilbert Schmidt operators.

The material in this section is standard so we will only prove results as it
suits us, otherwise referring any unproved assertions to Reed and Simon.

Lemma 8.1.1. If a ∈ B(H) is positive and (ξi) and (ηi) are two orthonormal
bases of H, then ∑

i

〈aξi, ξi〉 =
∑
i

〈aηi, ηi〉

(where ∞ is a possible value for the sum).

Proof. We have ∑
i

〈aξi, ξi〉 =
∑
i

||
√
aξi||2

=
∑
i

(
∑
j

|〈
√
aξi, ηj〉|2)

=
∑
j

(
∑
i

|〈
√
aηj, ξi〉|2)

=
∑
j

||
√
aηj||2
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=
∑
j

〈aηj, ηj〉

where every number is positive so the order of the sum is immaterial.

The number
∑

i〈aξi, ξi〉 of the previous theorem is called the trace of a,
written Trace(a).

Definition 8.1.2. An element a ∈ B(H) is said to be of trace class if
Trace(|a|) is finite.

If a is trace class and (ξi) is an orthonormal basis, the sum∑
i

〈aξi, ξi〉

converges absolutely and is called the trace, Trace(a), of a.

Theorem 8.1.3. The trace class operators on H form a self-adjoint ideal
of compact operators, I1, in B(H). The function |a|1 defined by |a|1 =
Trace(|a|) defines a norm on I1 for which it is complete. Moreover ||a|| ≤
|a|1.

Proof. The only thing not proved in Reed and Simon is completeness. For
this observe that if an is a Cauchy sequence in | − |1, it is Cauchy in || − || so
what we have to do is show that the norm limit of a | − |1-Cauchy sequence
(an) is trace class and that the sequence tends to that limit in | − |1. So
suppose ε > 0 is given. Then for m and n large enough

∞∑
i=1

〈|an − am|ξi, ξi〉 < ε.

So for any N ,
N∑
i=1

〈|an − am|ξi, ξi〉 < ε.

Now if bn tends in norm to b, then |bn| tends in norm to |b| (obviously
b∗nbn → b∗b, and approximate the square root function by polynomials on an
interval) so for each fixed i,

lim
n→∞

|an − am|ξi = |a− am|ξi.

So
∑N

i=1〈|a− am|ξi, ξi〉 < ε and letting N tend to ∞ we see that a ∈ I1 since
I1 is a vector space, and also that an → a in | − |1.
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The trace is independent of the orthonormal basis and if a is trace class
and b ∈ B(H), Tr(ab) = Tr(ba).

We see that each h ∈ I1 determines a linear functional φh on B(H) by
φh(x) = Trace(xh).

Definition 8.1.4. The trace-class matrix as above is called the density matrix
for the state φh.

Proposition 8.1.5. Each φh is ultraweakly continuous and its norm as an
element of B(H)∗ is |h|1.

Proof. Since h is compact, choose an orthonormal basis (ξi) of eigenvectors
of |h| with eigenvalues λi and let h = u|h| be the polar decomposition. Then

φh(x) =
∞∑
i=1

〈xu|h|ξi, ξi〉

so ultraweak continuity is apparent, and

φh(x) ≤
∞∑
i=1

||x|| || |h|ξi||

= ||x||
∞∑
i=1

λi

= ||x|| |h|1.

Moreover evaluating φh on u∗ gives ||φh|| = |h|1.

If H and K are Hilbert spaces, a bounded operator x : H → K is called
Hilbert-Schmidt if x∗x is trace class, i.e.

∑∞
i=1 ||xξi||2 < ∞ for some (hence

any) orthonormal basis (ξi) of H. The set of all Hilbert-Schmidt operators
from H to K is written `2(H,K) and if x is Hilbert-Schmidt, so is x∗, and x
is compact.

Theorem 8.1.6. If a ∈ B(H), b ∈ B(K) and x ∈ `2(H,K) then bxa ∈
`2(H,K). If x ∈ `2(H,K) and y ∈ `2(K,H) then yx is trace class. With the
inner product 〈x, y〉 = Trace(y∗x), `2(H,K) is a Hilbert space in which the
finite rank operators are dense.

Proof. See Reed and Simon.
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Exercise 8.1.7. Prove all the assertions made above about trace-class and
Hilbert-Schmidt operators.

Exercise 8.1.8. If H and K are Hilbert spaces construct a natural map from
K ⊗H∗ to `2(H,K) and show that it is unitary.

Let |x|2 be the Hilbert space norm on Hilbert-Schmidt operators.

Lemma 8.1.9. If x ∈ `2(H,K) and y ∈ `2(K,H) then Trace(xy) = Trace(yx).

Proof. First note that the result is true if we suppose that |x| is trace class.
For then let x = u|x| be the polar decomposition, choose an orthonormal
basis (ξi) of the final domain of u and extend it to an orthonormal basis of
K. Also extend (u∗ξi) to an orthonormal basis of H by vectors in ker(|x|).
Then

Trace(xy) =
∑
i

〈u|x|yξi, ξi〉

=
∑
i

〈|x|yuu∗ξi, u∗ξi〉

= Trace(|x|(yu))

= Trace((yu)|x|)

= Trace(yx.)

Now suppose only that x is Hilbert-Schmidt. Let ε > 0 be given and choose
x′ of finite rank with |x− x′|2 < ε. Then

|Trace(xy)− Trace(yx)| = |Trace((x− x′)y)− Trace(y(x− x′))|

which by Cauchy-Schwartz is ≤ 2ε|y|2.

Corollary 8.1.10. If ω is an ultraweakly continuous linear functional on
B(H), there is a trace class h so that ω = φh.

Proof. By 5.1.2 there are (ξi) and (ηi) in `2(N,H) so that ω(x) =
∑

i〈xξi, ηi〉.
Then if we define a and b from `2(N) to H by a(f) =

∑
i f(i)ξi and b(f) =∑

i f(i)ηi, a and b are Hilbert Schmidt and ω(x) = Trace(b∗xa) which is
Trace(xab∗) by the previous result.

Putting everything together so far, we have identified the image of the
Banach space I1 under the map h 7→ φh with the closed subspace of B(H)∗

consisting of ultraweakly continuous linear functionals. To close the loop we
only need to show that the Banach space dual of I1 is B(H).
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Theorem 8.1.11. If α : I1 → C is linear and bounded for | − |1, there is an
x ∈ B(H) so that α(a) = φa(x), and ||α|| = ||x||.

Proof. This is rather routine. Two vectors ξ and η define an element x of I1

by x(v) = 〈v, ξ〉η so one may define a sesquilinear form onH by (ξ, η) = α(x).
Boundedness of x follows from that of α so there is an appropriate x ∈ B(H).
To show that the norm of x as an element of the dual of I1 is actually ||x||,
suppose ||x|| = 1 and choose a unit vector ξ with ||xξ|| almost equal to 1.
Then Tr(hx) is almost 1 if h is the partial isometry which sends v ∈ H to
〈v, xξ〉 ξ

||xξ|| .

Exercise 8.1.12. Fill in the missing details in the previous proof.

Now we pass to von Neumann algebras though in fact these results work
for any ultraweakly closed subspace of B(H).

Theorem 8.1.13. If V is an ultraweakly closed subspace of B(H) then V =
V ⊥⊥ in the sense that if φ(x) = 0 for every ultraweakly continuous φ for
which φ(V ) = 0 then x ∈ V .

Proof. This is a simple application of the Hahn-Banach theorem—if x /∈ V
construct an ultraweakly continuous functional which is zero on V and non-
zero on x.

‘

Exercise 8.1.14. Exhibit a non-zero trace class operator on `2(Γ) which is
orthogonal to vN(Γ).

Theorem 8.1.15. If V is an ultraweakly closed subspace of B(H) then it
is canonically the dual Banach space of V∗ which is defined as the space
of ultraweakly continuous linear functionals on V . Moreover the ultraweak
topology on V is the weak-* topology on V as the dual of V∗.

Proof. If B is a Banach space with dual B∗ and V is a weak-* closed subspace
of B∗ then V is the dual of B/V ⊥ (surjectivity of the natural map from V to
the dual of V/B⊥ is a result of the previous theorem), so V is a dual space.
So we just have to identify the Banach space B/V ⊥ with the space of weak-*
continuous (as elements of B∗∗) linear functionals on V . This is a simple
exercise. Putting B = I1 we are done.

Exercise 8.1.16. If V is an ultraweakly closed subspace of B(H), show that
V∗ is a separable Banach space if H is a separable Hilbert space.

53



8.2 A technical lemma.
Let us prove a lemma which shows what the techniques developed so far can
be good for. It will be crucial in our treatment of Tomita-Takesaki theory.
It is a “Radon-Nikodym” type theorem inspired by one due to Sakai([]).find reference

Lemma 8.2.1. Let λ ∈ R+ be given and let φ be a faithful ultraweakly
continuous state on a von Neumann algebra M . Let ψ ∈ M∗ be such that
|ψ(y∗x)| ≤

√
φ(x∗x)

√
φ(y∗y). Then there is an a ∈M1/2 (elements of norm

≤ 1/2) so that
ψ(x) = λφ(ax) + λ−1φ(xa).

Proof. For a ∈M let θa(x) = φ(λax+ λ−1xa). Then the map α : M →M∗,
α(a) = θa, is continuous for the topologies of duality between M and M∗.
But we know that this topology on M is the ultraweak topology so that
α(M1) is a compact convex set. By contradiction suppose that ψ is not in
α(M).

Then by Hahn-Banach there is an h ∈ M with <(ψ(h)) > D where
D = supa∈M1/2

<(θa(h)). But if h = u|h| = |h∗|u is the polar decomposition
of h, we have

θu∗/2(h) = 1/2(λφ(|h|) + λ−1φ(|h∗|))

so that
2D ≥ λφ(|h|) +

1

λ
φ(|h∗|) ≥ 2

√
φ(|h|)

√
φ(|h∗|).

But also D < |ψ(h)| = |ψ(u|h|1/2|h|1/2)| ≤
√
φ(|h|)

√
φ(u|h|u∗), a contradic-

tion.
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Chapter 9

Standard form of a II1 factor and
II∞ factors.

9.1 Standard form.

In this section M will be a von Neumann algebra with an ultraweakly con-
tinuous faithful normalized trace tr and L2(M, tr) will be abbreviated to
L2(M).

In section 6.2 we learned how to construct a von Neumann algebra from a
C∗-algebra and a positive linear functional on it. If we apply this construction
to L∞(X,µ) (when µ(X) <∞) with trace given by

∫
fdµ, the Hilbert space

would be L2(X, dµ). For this reason, if M is a type II1 factor we write
L2(M, tr) for the GNS Hilbert space obtained from the trace. In fact one
can define Lp spaces for 1 ≤ p ≤ ∞ using the Lp norm ||x||p = tr(|x|p)1/p.
A noncommutative version of the Holder inequality shows that || − ||p is a
norm and Lp(M) is the completion. We set L∞(M) = M and we shall see
that L1(M) is the predual M∗.

Let us fix on the notation Ω for the vector in L2(M) which is the identity
of M .

Proposition 9.1.1. If M is a type II1 factor the || − ||-unit ball of M is a
complete metric space for || − ||2 and the topology defined by || − ||2 on the
unit ball is the same as the strong (and ultrastrong and *-strong) topology.

Proof. If xn is Cauchy in || − ||2 then for each a ∈ M , xna is also since
||xna||2 ≤ ||a|| ||xn||2. So we can define x on the dense subspace MΩ of
L2(M) by x(aΩ) = limn→∞xnaΩ. Since ||x|| ≤ 1, we have ||xξ|| ≤ ||ξ|| for
ξ ∈MΩ so x extends to a bounded operator on L2(M) which is obviously in
M , and xΩ = x = limn→∞ xn in || − ||2.
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The strong topology is obviously no stronger than || − ||2 since the sin-
gle seminorm a 7→ ||aΩ|| defines the || − ||2 topology. Moreover ||xaΩ|| ≤
||x||2||a|| shows that || − ||2 controls the strong topology on the unit ball.

Finally note that in the statement of the theorem it does not matter what
representation of M is used to define the strong topology on the unit ball as
the ultrastrong topology does not change under the manipulations that we
used to get the GNS construction from a II1 factor on an arbitrary Hilbert
space.

The action of M on L2(M, tr) is called the standard form of M . Note
that vN(Γ) on `2(Γ) is already in standard form. (We see that we could have
obtained our first example of a II1 factor by applying the GNS construction
to the group algebra CΓ with the trace tr(

∑
γ cγuγ) = cid.)

We now want to determine the commutant M ′ when M is in standard
form.

Definition 9.1.2. Let J : L2(M) → L2(M) be the antilinear unitary in-
volution which is the extension to L2(M) of the map x 7→ x∗ from M to
M .

Lemma 9.1.3. For x, a in M , and ξ, η in L2(M)

(i) 〈Jξ, Jη〉 = 〈η, ξ〉
(ii) JxJ(aΩ) = ax∗Ω

Proof. (i) If ξ = aΩ and η = bΩ, 〈Jξ, Jη〉 = tr(ba∗) = 〈η, ξ〉.
(ii) JxJ(aΩ) = J(xa∗Ω) = ax∗Ω.

Corollary 9.1.4. For M on L2(M), JMJ ⊆M ′.

Proof. Left and right multiplication commute.

Lemma 9.1.5. For M on L2(M), if x ∈M ′, JxΩ = x∗Ω.

Proof. Take a ∈M , then

〈JxΩ, aΩ〉 = 〈JaΩ, xΩ〉

= 〈a∗Ω, xΩ〉
= 〈Ω, xaΩ〉

= 〈x∗Ω, aΩ〉.
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Theorem 9.1.6. For M on L2(M), JMJ = M ′.

Proof. If we can show that x 7→ 〈xΩ,Ω〉 is a trace on M ′ we are done since
by the above results L2(M) can be canonically identified with L2(M ′) so that
the two J maps coincide. (Note that Ω is cyclic and separating for M hence
also for M ′.) So we would have JM ′J ⊆M .
But for x, y ∈M ′,

〈xyΩ,Ω〉 = 〈yΩ, x∗Ω〉

= 〈yΩ, JxΩ〉

= 〈xΩ, JyΩ〉

= 〈xΩ, y∗Ω〉

= 〈yxΩ,Ω〉.

We see that the commutant of the left regular representation of Γ on
`2(Γ) is the von Neumann algebra generated by the right regular representa-
tion since JuγJεγ′ = εγ′γ−1 . And more generally the commutant of the left
action of M on L2(M) is the ∗-algebra of right multiplication operators. In
particular the commutant of a type II1 factor M on L2(M) is also a type
II1 factor. This is not the case for M on an arbitrary Hilbert space. For in-
stance we could consider M ⊗ 1 on L2(M)⊗H for some infinite dimensional
H. Then the commutant of M ⊗ 1 would be JMJ ⊗B(H)—infinite matrices
over JMJ .

Definition 9.1.7. A II∞ factor is a factor of the form M ⊗B(H) with M a
type II1 factor and dimH =∞.

Proposition 9.1.8. Let M be an infinite factor with a projection p ∈M so
that pMp is a type II1 factor. Then M is a II∞ factor.

Proof. Choose a maximal family {pα} of mutually orthogonal projections in
M with pα ∼= p ∀α. If it were the case that 1 −

∑
α pα � p then we could

contradict the maximality of the family {pα}. So write 1 = q +
∑

α pα with
q � p. Since M is infinite the set of indices {α} is infinite so we may choose
a bijection with itself minus α0 and write 1 = q+

∑
α pα � pα0 +

∑
α 6=α0

pα �
1. We conclude that

∑
α pα is equivalent to 1 so we may suppose it equal

to 1. We may then construct a system of matrix units by using partial
isometries implementing the equivalences between the pα to obtain the result
from exercise 4.3.3.
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Note that we used implicitly in the above proof the fact that the supre-
mum of finitely many finite projections is finite. This will be covered in a
series of exercises on projections.make a reference to section

7.3, if appropriate?!

It could conceivably happen that, given a II∞ factorM , the type II1 factor
of the form pMp depends on p (obviously only up to equivalence). We now
introduce the trace on a II∞ factor which will make this issue more clear.

If M is a type II1 factor, define the map tr from (M ⊗ B(H))+ (the set
of positive elements of M ⊗ B(H)), to [0,∞] by

tr((xij)) =
∞∑
i=1

tr(xii)

where we have chosen a basis of the infinite dimensional Hilbert space H to
identify M ⊗ B(H) with certain matrices over M .

Theorem 9.1.9. Let M be as above.
(i) tr(λx) = λtr(x) for λ ≥ 0.
(ii) tr(x+ y) = tr(x) + tr(y).
(iii) If (aα) is an increasing net of positive operators with

∨
α aα = a then

tr(
∨
α aα) = limα tr(aα).

(iv) tr(x∗x) = tr(xx∗) ∀x ∈M ⊗ B(H).
(v) tr(uxu∗) = tr(x) for any unitary u ∈ M ⊗ B(H) and any x ≥ 0 in
M ⊗ B(H).
(vi) If p is a projection in M ⊗ B(H) then p is finite iff tr(p) <∞.
(vii) If p and q are projections with p finite then p � q iff tr(p) ≤ tr(q).
(viii) p(M ⊗ B(H))p is a type II1 factor for any finite projection p.

Proof. The first two assertions are immediate. For (iii), note that the diago-
nal entries of positive matrices are ordered as the matrices, and all numbers
are positive in the sums. (iv) Is obvious using matrix multiplication. (v)
follows from (iv) via uxu∗ = (u

√
x)(
√
xu∗). For (vi), if tr(p) < ∞ but p is

infinite, there is a proper subprojection of p having the same trace as p. The
difference would be a projection of trace zero which is clearly impossible. If
tr(p) = ∞ then if q is a projection of finite trace, q � p and if q ≤ p then
tr(p − q) = ∞ so one may construct an infinite sequence of mutually or-
thogonal equivalent projections less than p. Using a bijection with a proper
subsequence, p dominates an infinite projection so is infinite itself. (vii) fol-
lows easily as in the case of a type II1 factor. For (viii) simply observe that
tr(p) < ∞ means that p � q for some q whose matrix is zero except for
finitely many 1’s on the diagonal. And obviously qMq is a type II1 factor for
such a q.
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Corollary 9.1.10. Let M be a II∞ factor on a separable Hilbert space and
tr be the trace supplied by a decomposition II1 ⊗ B(H). Then tr defines an
isomorphism of the totally ordered set of equivalence classes of projections in
M to the interval [0,∞].

Proof. Given the previous theorem, we only have to prove that any infinite
projection is equivalent to the identity. But if p is infinite choose u with
uu∗ = p and u∗u strictly less than p. Then (u∗)nun are a strictly decreasing
sequence of equivalent projections so we may write p as an orthogonal sum
p = p∞+

∑∞
i=1 pi with all the pi equivalent for i ≥ 1. Now write the identity as

a countable orthogonal sum of projections all � p1 (using the decomposition
II1 ⊗ B(H) if necessary). We see that 1 ≤ p.

Unlike the II1 case, or for that matter the B(H) case, the trace cannot be
normalised (by tr(1) = 1 in the type II1 factor case or the trace of a minimal
projection being 1 in the B(H) case). This allows for the possibility of an
automorphism α of M with tr(α(x)) = λtr(x) for x ≥ 0 and λ > 0, λ 6= 1.

Exercise 9.1.11. Show that the trace on a II∞ factor is unique with prop-
erties (i) to (vi), up to a scalar.

Exercise 9.1.12. If α : M → N is a *-homomorphism from a type II1 factor
onto another, then α is an isomorphism, strongly continuous on the unit ball.
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Chapter 10

The Coupling Constant

We want to compare actions of a given II1 factor on (separable) Hilbert
spaces. We will show that they are parameterized by a single number in
[0,∞].

Definition 10.0.13. If M is a type II1 factor, by M-module we will mean a
Hilbert spaceH together with an ultraweakly continuous unital *-homomorphism
from M to a type II1 factor acting on H. Thus M acts on H and we will
write that action simply as xξ for x ∈M and ξ in H.

In fact the ultraweak continuity condition is superfluous. The identity
map makes the Hilbert space on which M is defined into an M -module.
Given M on H and another Hilbert space K, x 7→ x⊗ id makes H⊗K into
an M -module. The GNS representation makes L2(M) into an M -module.
(The notion ofM−M bimodule is defined similarly as two commuting actions
of M on some Hilbert space, L2(M) being the first example.) There is an
obvious notion of direct sum of M -modules. We will compare a given M -
module H with L2(M) by forming the direct sum of it H and infinitely many
copies of L2(M).

10.1 Definition of dimM H
Theorem 10.1.1. Let M be a type II1 factor and H a separable M-module.
Then there is an isometry u : H → L2(M)⊗ `2(N) such that ux = (x⊗ 1)u
(i.e. u is M-linear).

Proof. Form the M -module K = H⊗L2(M)⊗ `2(N). Let p = id⊕ 0 ∈ B(K)
be the projection ontoH and q = 0⊕id be the projection onto L2(M)⊗`2(N).
Both p and q are inM ′ (on K) which is a II∞ factor since q is clearly infinite in

61



M ′ and if e is a rank one projection in B(`2(N)) then (0⊕(1⊗e))M(0⊕(1⊗e))
is a type II1 factor, being the commutant of M on L2(M).

Since q is an infinite projection inM ′, by 9.1.10 there is a partial isometry
in M ′ with u∗u = p and uu∗ ≤ q. Using the obvious matrix notation for
operators on K, let u be represented by

( a bc d ) .

Then calculating u∗u = p and uu∗ ≤ q gives b∗b+d∗d = 0 and aa∗+bb∗ = 0
so that

u = ( 0 0
w 0 )

for some isometry w : H → L2(M)⊗ `2(N).
Moreover the fact that u commutes with M̃ is equivalent to wx = (x⊗ 1)w
∀x ∈M .

Corollary 10.1.2. The commutant of a type II1 factor is either a type II1
factor or a type II∞ factor.

Proof. We leave the proof as an exercise.

Proposition 10.1.3. If u : H → L2(M) ⊗ `2(N) is an M-linear isometry
then uu∗ ∈M ′ on L2(M)⊗ `2(N) and tr(uu∗) is independent of u.

Proof. If v were another M -linear isometry then uu∗ = uv∗vu∗ so by 9.1.9
tr(uu∗) = tr((vu∗)(uv∗)) = tr(vv∗).

Observe that if M were replaced by C in the above construction the
number tr(uu∗) would be the dimension of H.

Definition 10.1.4. For a type II1 factor (or the n×n matrices) and an M-
module H, the number tr(u∗u) defined by the two previous results is called
dimM H, or the coupling constant or the M -dimension of H.

Simply by reducing by projections in (M ⊗ 1)′ one obtains Hilbert spaces
whose M -dimension is any number in [0,∞].

Trivial examples
(i) dimM L2(M) = 1.
(ii) dimM(L2(M)⊗ `2(N)) =∞
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10.2 Elementary properties of dimM H
Theorem 10.2.1. With notation as above,

(i) dimM(H) <∞ iff M ′ is a type II1 factor.
(ii) dimM(H) = dimM(K) iff M on H and M on K are unitarily equivalent
(= spatially isomorphic).
(iii) If Hi are (countably many) M-modules,

dimM(⊕iHi) =
∑
i

dimM Hi.

(iv) dimM(L2(M)q) = tr(q) for any projection q ∈M .
(v) If p is a projection in M , dimpMp(pH) = trM(p)−1 dimM(H).

For the next two properties we supposeM ′ is finite, hence a type II1 factor
with trace trM ′.

(vi) If p is a projection in M ′, dimMp(pH) = trM ′(p) dimM H.
(vii) (dimM H)(dimM ′H) = 1.

Proof. Using an M -linear isometry u we see that M on H is unitarily equiv-
alent to M on uu∗L2(M)⊗ `2(N). This makes (i) and (ii) obvious.

To see (iii), choose M -linear isometries ui from Hi to L2(M)⊗ `2(N) and
compose them with isometries so that their ranges are all orthogonal. Adding
we get an M -linear isometry u with uu∗ =

∑
uiu
∗
i . Taking the trace we are

done.

For (iv), choose a unit vector ξ ∈ `2(N) and define u(v) = v ⊗ ξ. Then
uu∗ is JqJ ⊗ e where e is a rank one projection.

(v) Let us first prove the relation in the case H = L2(M)q where q is a
projection in M with q ≤ p.

Then pxpΩ 7→ p(xΩ)p is a unitary from L2(pMp) to pL2(M)p which inter-
twines the left an right actions of pMp. Hence pMp on pL2(M)q is unitarily
equivalent to pMp on L2(pMp)q. So by (iv), dimpMp(pH) = trpMp(q) =
trM(p)−1trM(q) = trM(p)−1 dimM H.

Now if H is arbitrary, it is of the form e(L2(M)⊗`2(N)) for e ∈ (M⊗1)′/
But e is the orthogonal sum of projections all equivalent to ones as in (iv)
with q ≤ p.

(vi) We may suppose H = e(L2(M)⊗`2(N)) soM ′ = e(JMJ⊗B(`2(N))e
and p defines the isometry in the definition of dimM(pH). But p is a projec-
tion less than e in a II∞ factor so by uniqueness of the trace, dimM(pH) =
tr(M⊗1)′(p) = tr(M⊗1)′(p)/tr(M⊗1)′(e) dimM(H) = trM ′(p) dimM(H).
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(vii) Observe that, on L2(M), dimM(H) dimM ′(H) = 1 so by (v) and
(vi) the result is true for M -modules of the form L2(M)p. Also if one forms
K = ⊕ki=1H then dimM⊗1(K) = k dimH and dim(M⊗1)′ K = k−1 dimM ′ by
(v). But any H can be obtained from L2(M) as ⊕ki=1L

2(M)p for suitable k
and p.

Example 10.2.2. If Γ0 < Γ are icc groups, vN(Γ0) acts on `2(Γ). And if γ ∈
Γ the unitary ρ(γ) of the right regular representation gives a vN(Γ0)-linear
unitary between `2(Γ0) and `2(Γ0γ

−1). Hence by the coset decomposition,
dimvN(Γ0)(`

2(Γ)) = [Γ : Γ0].

This inspires the following definition: If N ⊆M are II1 factors, the index
[M : N ] of N in M is the real number dimN L

2(M).

Exercise 10.2.3. Show that [M : N ] = 1 implies N = M .

Example 10.2.4. (Due to Atiyah and Schmidt.)
Discrete series representations of locally compact groups.
Reduction by a finite projection in the commutant of a type II1 factor

occurs in the representation theory of locally compact groups. If a discrete
series representation is restricted to an icc lattice it generates a type II1
factor. The coupling constant is given by the ratio of the “formal dimension”
and the covolume of the lattice.

We illustrate in the case of PSL(2,R) which is the group of transforma-

tions of the upper half plane H = {z ∈ C : Im(z) > 0}, z 7→ az + b

cz + d
defined

by invertible real 2×2 matrices ( a bc d ). It is well known that there is a funda-
mental domain D for the action of the subgroup Γ = PSL(2,Z) illustrated
below:

DO FIGURE
The set D and all its translates under PSL(2,Z) cover H and are disjoint

apart from boundaries which are of Lebesgue measure 0. Thus if µ is an
invariant measure equivalent to Lebesgue measure, L2(H, dµ) gives a unitary
representation of Γ which is unitarily equivalent to the left regular repre-
sentation tensored with the identity on L2(D, dµ), making L2(H, dµ) into a
vN(Γ)-module whose vN(Γ) dimension is infinite.

The measure
dxdy

y2
is Γ-invariant but we want to vary this procedure

slightly. For each n ∈ N consider
dxdy

y2−n . This measure is not invariant but

we can make the action of PSL(2,R) unitary on L2(H,
dxdy

y2−n ) by the formula

( a bc d ) f(z) =
1

(cz + d)n
f(
az + b

cz + d
)
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(with perhaps an inverse matrix...—exercise as usual). This changes noth-
ing as far as how the representation looks to PSL(2,Z) so we obtain (unitarily

equivalent) vN(Γ)-modules Hn = L2(H,
dxdy

y2−n ) for each n.

The commutant of vN(Γ) on Hn is a II∞ factor. But as is well known,
holomorphic functions form a closed subspace of L2 functions which is mani-
festly invariant under PSL2(R). The ensuing unitary representation is known
to be irreducible and in the discrete series of PSL2(R). It can be shown to be
a finite projection in Γ′. Thus we have a concrete example of a vN(Γ)-module
with finite vN(Γ)-dimension or coupling constant.

In general, if G is a locally compact group with Haar measure dg, the
discrete series representations are precisely those irreducible unitary repre-
sentations π that are direct summands of the left regular representation on
L2(G, dg). So if Γ is a discrete subgroup with a fundamental domain D so
that G is covered by the γ(D) which are disjoint up to measure zero sets,
we may apply the same analysis as above to obtain a vN(Γ) module. The
obvious question is to calculate its coupling constant. This turns out to be
quite simple because of a key property of discrete series representations.

See [ref robert] for the proof that ifH is a Hilbert space affording a discrete
series representation π of G, then the functions g 7→ 〈πgξ, η〉, the so-called
coefficients of π are in L2(G, dg). We may then imitate the usual procedure
for finite or compact groups embedding H in L2(G, dg). And the usual Schur
orthogonality of the coefficients of a representation yields a number dπ such
that

dπ

∫
G

〈πgξ, η〉〈η′, πgξ′〉dg = 〈ξ, ξ′〉〈η′, η〉.

If G is compact and Haar measure is normalized so that G has measure 1, dπ
is the dimension of the vector space H. In general dπ depends on the choice
of Haar measure but obviously the product of dπ with the covolume

∫
D
dg

does not. The coefficients give an explicit embedding of H in L2(G, dg) and
a straightforward calculation of the trace of the projection onto the image of
H in vN(Γ)′ yields immediately the formula

dimvN(Γ)(H) = dπ covolume(Γ).

The detailed calculation from this point of view can be found in [1] pp. 142-
148.

Example 10.2.5. Consider the subfactor N ⊆ N ⊗Mn(C) (diagonal em-
bedding). Each matrix unit eij gives an N -linear isometry of L2(N) onto
a subspace of L2(N ⊗ Mn(C)) which is an orthogonal direct sum of these
equivalent subspaces. Hence [N ⊗Mn(C) : N ] = n2.
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Proposition 10.2.6. If M is a type II1 factor on H then

(a) M has a separating vector if dimM(H) ≥ 1.

(b) M has a cyclic vector if dimM(H) ≤ 1.

Proof. Both assertions follow immediately by comparing H to L2(M)p or a
direct sum of copies of it.

In fact both conditions in the last proposition are iff. For that one needs
to control arbitrary vectors in L2(M). In fact the original definition of the
coupling constant by Murray and von Neumann was as follows. Let M on H
be a type II1 factor whose commutant is a type II1 factor. Choose any nonzero
vector ξ ∈ H and let p and q be projections onto the closures of Mξ and
M ′ξ respectively. Then p ∈ M ′ and q ∈ M and using the normalised traces

the coupling constant was defined as the ratio
trM(q)

tr′M(p)
, the hard part being

to show that this ratio is independent of ξ. Assuming this last statement
it is trivial to identify the Murray-von Neumann coupling constant with our
dimM(H) but at this stage we have nothing to offer in the way of a simplified
proof of why this number does not depend on ξ.

Example 10.2.7. (due to M. Rieffel) If (X,µ) is a measure space and Γ is
a countable group acting by measure preserving transformations on (X,µ)
so that Γ acts by unitaries uγ on L2(X,µ) in the obvious way. We say that
a measurable subset D ⊆ X is a fundamental domain for Γ if X = ∪γγ(D)
and µ(Dγ(D)) = 0 for all γ ∈ Γ, γ 6= id. (One may clearly suppose the
γ(D) are disjoint by removing a set of measure zero.) In this situation the
abelian von Neumann algebra L∞(X)Γ of Γ-invariant L∞ functions may be
identified with the space L∞(D).

Now suppose Γ and Λ are two groups acting on X as above with funda-
mental domains D and E respectively. We may consider the von Neumann
algebra MΓ,Λ on L2(X,µ) defined as {{uγ : γ ∈ Γ} ∪ L∞(X)Λ}′′.
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Chapter 11

The Crossed Product
construction.

Perhaps the most useful way of producing von Neumann algebras from others
is the crossed product. We begin by defining a very general notion about
which there is not a lot to say, but then examine it carefully in special cases.

11.1 Group actions.
Let M be a von Neumann algebra and G a group. An action of G on M
is a homomorphism g 7→ αg from G to the automorphism group AutM of
M (where automorphisms may be assumed ultraweakly continuous if neces-
sary). The algebra of fixed points for the action is denoted MG and is a von
Neumann algebra. A special case of some importance is when the action is a
unitary group representation g 7→ ug with ugMu∗g = M ∀g ∈ G. In that case
setting αg(x) = ugxu

∗
g defines an action of G on M (and M ′). We say that

the action α is implemented by the unitary representation ug. If the ug are
actually in M , we say that the action is inner as an inner automorphism of
M is by definition one of the form Adu(x) = uxu∗ for u a unitary in M . An
automorphism is called outer if it is not inner.

Actions are not always implementable though the notion depends on the
Hilbert space on which M acts.

Exercise 11.1.1. If (X,µ) is a measure space and T is a bijection of X
which preserves the measure class of µ (i.e. µ(A) = 0 ⇔ µ(T−1(A)) = 0.)
show how T defines an automorphism αT of L∞(X,µ). Show further that
this automorphism is implemented by a unitary u on L2(X,µ).

A bijection T as above is called ergodic if T (A) = A for a measurable
subset A ⊆ X implies either µ(A) = 0 or µ(X \ A) = 0.
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Proposition 11.1.2. With notation as above T is ergodic iff the only fixed
points for αT are constant functions.

Proof. (⇒) Let f ∈ L∞ and αT (f) = f . After throwing away a null set we
may assume that f(x) = f(T (x)) for all x ∈ X. Then for every ε > 0, by
the definition of the essential supremum, µ({x : ||f || − |f(x)| < ε} 6= 0. But
this set is invariant under T so it is equal to X up to a set of measure 0.
Letting ε tend to 0 we see that µ({x : |f(x)| 6= ||f ||}) = 0. So we may assume
f(x) = eig(x) for some measurable g taking values in [0, 2π). Repeating the
argument for g gives f constant almost everywhere.

(⇐) If A is a measurable invariant set then its characteristic function is
fixed by α in L∞ iff A is invariant.

Exercise 11.1.3. Let σx = ( 0 1
1 0 ), σy = ( 0 −i

i 0 ) and σz = ( 1 0
0 −1 ) be the Pauli

spin matrices. Show that Adux, Aduy and Aduz define an action of the
group Z/2Z⊕ Z/2Z on the two by two matrices which is not implementable
for M2(C) on C2.

Exercise 11.1.4. Show that any group action is implementable for a type
II1 factor in standard form and more generally any automorphism group pre-
serving a faithful normal state is implementable in the GNS representation.

Exercise 11.1.5. Show that every automorphism of B(H) is inner.

Exercise 11.1.6. Show that the automorphism of vN(F2) coming from the
group automorphism which exchanges the 2 generators is outer.

If G is a topological group there are many possible notions of continuity.
The most useful is that of pointwise *-strong convergence, i.e. we assume that
the map g 7→ α(g)(x) is *-strong continuous for any x ∈M . Typically many
other notions of continuity will be equivalent to that and even a measurability
assumption can be enough to ensure this continuity.

We will always assume pointwise *-strong continuity when referring to an
action of a topological group.

Exercise 11.1.7. Is the action by translation of R on L∞(R) pointwise norm
continuous? pointwise strongly continuous? pointwise *-strong continuous?

Actions of a given group on von Neumann algebras are easy to construct
but actions of a group on a given von Neumann algebra may be hard to come
by.

Definition 11.1.8. An action of G on M is said to be ergodic if MG = Cid.
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Exercise 11.1.9. Show that if G acts preserving µ on (X,µ) then the re-
sulting action of G on L∞(X,µ) is ergodic iff the only measurable subsets
A ⊆ X which satisfy µ(g(A)∆A) = 0 ∀g ∈ G satisfy either µ(A) = 0 or
µ(X \ A) = 0.

(Here A∆B means A \B ∪B \ A.)

The following question is an intriguing open problem:

Does SU(3) have any ergodic action on a type II1 factor?

It is shown in [] that SU(2) has no such action and it is shown in [] that
if a compact group acts ergodically on a von Neumann algebra then that von
Neumann algebra has a faithful normal trace.

11.2 The crossed product
Suppose α is an action of the locally compact group G with Haar measure
dg on the von Neumann algebra M with Hilbert space H. Form the Hilbert
space K = L2(G,H) = L2(G) ⊗ H and let G act on K by ug = λg ⊗ 1, λ
being the left regular representation. Further, let M act on K by

(x̃f)(g) = αg−1(f(g))

.

Exercise 11.2.1. Show that x 7→ x̃ is an ultraweakly continuous *-isomorphism
of M onto a von Neumann subalgebra of B(K).

Exercise 11.2.2. Show that ugx̃u∗g = α̃g(x).

Note that this gives another way of making a group action implementable,
at least when it is locally compact.

Definition 11.2.3. If M , H, G and α are as above, the crossed product
M oα G is the von Neumann algebra on K generated by {ug : g ∈ G} and
{x̃ : x ∈M}.

>From now on we will drop the ˜ and identify M with M̃ . Note that
finite linear combinations

∑
g xgug form a dense *-subalgebra of M oα G.

Moreover the ug are linearly independent overM in the sense that
∑

g xgug =
0⇒ xg = 0 for each g in the sum. This dense subalgebra could be called the
algebraic crossed product.

There is a well-developed theory ofMoαG when G is compact or abelian,
but we shall be mostly interested in the case where G is discrete as then we
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may replay the matrix element game that we played for vN(Γ) to gain control
of weak limits of elements in the algebraic crossed product. (In fact of course
vN(Γ) is the special case of the crossed product when M = C and the action
is trivial.) Indeed we see immediately as in 3.3.4 that if G is discrete, any
element ofMoαG defines a function g 7→ xg so that the sum

∑
g xgug stands

for a certain matrix of operators on K = H⊗ `2(G). Moreover any matrix of
this form which defines a bounded operator onK is inMoαG. This is because
the sum converges pointwise at least on the dense set of functions of finite
support from G to H. In the case where the crossed product is a II1 factor
we know that the commutant consists of right multiplication by elements of
M oα G so a weakly dense subalgebra of (M oα G)′ preserves this dense
subspace of vectors and on that subspace

∑
g xgug and right multiplication

by ug and x ∈M commute. We will return to the general case later on.
Moreover the formulae

(
∑

xgug)
∗ =

∑
αg(xg−1)ug

and
(
∑

xgug)(
∑

ygug) =
∑
g

{
∑
h

xhαh(yh−1g)}ug

are justified by matrix multiplication.

We shall now provide some sufficient conditions for M oα G to be a
factor—always assuming G is discrete.

Definition 11.2.4. An action α of G on M is called outer if the only g in
G for which αg is inner is the identity.

Proposition 11.2.5. If G is a discrete group and α is an outer action of G
on the factor M then M oα G is a factor.

Proof. If x =
∑
xgug ∈ Z(M) then equating coefficients in the expression

that x commutes with M gives us yxg = xgαg(y) ∀y ∈ M ,g ∈ G. By the
next lemma this implies xg = 0 for any g 6= 1. Thus x ∈ M and since M is
a factor we are done.

Lemma 11.2.6. Let α ∈ AutM for a factor M . Suppose there is an x ∈M ,
x 6= 0, with

yx = xα(y) ∀ y ∈M.

Then α is inner.

Proof. If x were unitary this would be obvious. So take the adjoint of the
relation to obtain x∗y = α(y)x∗ ∀y ∈ M . Thus yxx∗ = xα(y)x∗ = xx∗y
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and xx∗ ∈ Z(M). Similarly x∗x ∈ Z(M). But xx∗ and x∗x always have
the same spectrum so since M is a factor both xx∗ and x∗x are equal to the
same positive number λ. Dividing by

√
λ converts x into a unitary and we

are done.

These two results prompt the following definition.

Definition 11.2.7. An automorphism α of a von Neumann algebra M is
called free if

yx = xα(y) ∀ y ∈M ⇒ x = 0.

An action α is called free if αg is free for every g 6= id.

The argument of proposition 11.2.5 shows in fact that if α is a free action
on a von Neumann algebra M then Z(MoαG) ⊆M , in fact that M ′∩M oα

G ⊆M .

Theorem 11.2.8. If α is a free ergodic action of G on a von Neumann
algebra M , then M oα G is a factor.

Proof. This follows immediately from the preceding remark.

To understand the meaning of freeness for automorphisms of the form
αT we need to make a hypothesis on (X,µ) as otherwise one could envisage
a T which is non-trivial on X but for which αT is the identity. So we will
suppose from now on that (X,µ) is countably separated. This means there
is a sequence Bn of measurable sets with µ(Bn) > 0 for which, if x 6= y, there
is an n with x ∈ Bn but y /∈ Bn. Obviously Rn is countably separated.

Exercise 11.2.9. Show that αT = id means that Tx = x almost everywhere.

Hint-look at the proof of the next result.

Proposition 11.2.10. If T is a transformation of (X,µ) then αT is free iff
µ({x : T (x) = x}) = 0.

Proof. (⇒)If A is any measurable set on which T = id then χAf = αT (f)χA
for all f ∈ L∞.

(⇐) First throw away any fixed points of T . Then suppose f1αT (f2) =
f2f1 ∀ f2 ∈ L∞. Let A be the support of f1. Then since T has no fixed
points, A = ∪n(A ∩ Bn \ T−1(Bn)). If f1 were non-zero in L∞, we could
thus choose an n for which µ(A ∩ Bn \ T−1(Bn)) > 0. Set f2 = χBn . Then
for any x ∈ A ∩ Bn \ T−1(Bn) we have f1(x)f2(x) 6= 0 but f1(x)f2(Tx) =
f1(x)χBn(Tx) = 0 since x /∈ T−1(Bn). Thus f1αT (f2) 6= f2f1 in L∞. So the
measure of A must be zero.
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We conclude that if Γ is a countable group acting freely and ergodically
on a measure space (X,µ), preserving the class of µ, then the crossed product
L∞(X,µ) o Γ is a factor.

Note that if Γ is abelian, ergodic implies free.

Exercise 11.2.11. Show that freeness of the action actually proves that
L∞(X,µ) is maximal abelian in the crossed product.

The crossed product M o Γ when M is abelian and Γ is discrete is called
the group measure space construction. Here are several examples.

Example 11.2.12. X = Z, Γ = Z acting by translation, µ = counting
measure.

The action is free and ergodic and L∞(X,µ) o Γ = B(`2(Z)).

Example 11.2.13. The irrational rotation algebra-von Neumann algebra
version.

(X,µ) = (T1, dθ), Γ = Z generated by the transformation T where T (z) =
eiαz and α/2π is irrational.

Exercise 11.2.14. Use Fourier series to show that this T is ergodic.

Example 11.2.15. Let H be a finite abelian group and Γ =
⊕

n∈NH be
the countable group of sequences (hn) with hn eventually the identity. Put
X = G =

∏
n∈NH (the set of all sequences) with the product topology.

Then G is a compact group so has a Haar measure µ. Γ acts on X by left
translation. The action is clearly free and ergodic as we shall now argue.

There is a particularly von Neumann algebraic way to view this example
without even constructing the space (X,µ) !

Let A = L∞(H) = CĤ be the group algebra of the dual group Ĥ, with its
usual trace. As in section 6.2, form the algebraic tensor product ⊗alg,n∈NA
with product trace tr. Then perform the GNS construction with respect to
tr to obtain an abelian von Neumann algebra. It may be identified with
L∞(G, µ) so the Hilbert space H of the GNS construction is L2(X,µ). But it
is clear that an orthornormal basis of H is given by finite sequences (χn) of
elements of Ĥ which define elements χ1⊗χ2⊗· · ·⊗1⊗1⊗1 · · · in ⊗alg,n∈NA.
The point is that these basis vectors are eigenvectors for the action of Γ on
L2(X,µ):

(hn)(χ1 ⊗ χ2 ⊗ · · · ⊗ 1 · · · ) = (
∏
n

χn(hn)) χ1 ⊗ χ2 ⊗ · · · ⊗ 1 · · · .

Ergodicity follows easily since the only basis element which is fixed by all the
(hn) is the one with all χn equal to 1.
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Exercise 11.2.16. Show that if H = Z/2Z in this example then the sub-
algebra of the crossed product generated by ⊗alg,n∈NA and Γ is the algebraic
infinite tensor product of M2(C).

Both of the last two examples are special cases of a more general one:
X is a compact group with its Haar measure and Γ is a countable dense
subgroup acting (freely) by left translation. The Peter Weyl theorem shows
that this action is ergodic.

Example 11.2.17. Bernoulli shift.

If Γ is any infinite group and A = Z/2Z we may form the tensor product
indexed by Γ of a copy of A for each γ ∈ Γ. The von Neumann algebra thus
obtained is once again the L∞ space of the infinite product measure space,
this time with the set indexing the product being Γ. As in the previous
example we can obtain a basis of L2 indexed by functions from Γ to the set
{0, 1} which are almost always 0. These functions are the same as finite
subsets of Γ and the action of Γ on the Hilbert space is by permuting the
basis in the obvious way. Ergodicity follows from the fact that the orbit of
any non-empty subset is infinite.

One could also chose another trace than the usual one and modify the
orthonormal basis of A accordingly. The measures are the obvious ones unless
specified.

We give a few more examples of free ergodic actions without supplying
proofs of ergodicity.

Example 11.2.18. SL(2,Z) acts on T2 = R2/Z2 via the linear action on
R2.

Example 11.2.19. PSL(2,Z) acts on R ∪ {∞} by linear fractional trans-
formations.

Example 11.2.20. SL(2,Z) acts on R2 by linear transformations.

Example 11.2.21. Q acts on R by translation.
There are two fairly easy ways to see that this action is ergodic. The first

is to reduce it to a dense subgroup of a compact group by observing that an
L∞ function on R which is invariant under translation by Z defines an L∞
function on the quotient T. Then use Fourier series.

The second way is a direct attack which should generalise to show that bullshit

translation by any countable dense subgroup of a locally compact group is
ergodic. If f ∈ L∞(R) is invariant under Q, set things up so that there are
sets A and B both of nonzero measure, so that g(A) ∩ g(B) = ∅. Cover A

73



and B with intervals of the same width with rational endpoints. Some of
these must intersect A and B in non-nul sets. But all these intervals are all
translates of each other so g cannot be invariant up to sets of measure zero.

Example 11.2.22. The “ax+ b” group Q o Q∗ acts on R

Example 11.2.23. Same as example 11.2.13 with H = Z/2Z but using a
normalised trace on CH which is different from the usual one. Such a trace is
specified by its values on the minimal projections of CH which we could call
p and 1− p for 0 < p < 1. The product measure is not absolutely continous
with respect to Haar measure, and it is not preserved by group translation
so this example is perhaps most easily approached by the von Neumann
algebra construction where one can implement the action of

⊕
n∈N Z/2Z by

unitaries. These unitaries come from ones on L2(H) which exchange two
points of unequal weight so they must be correctly scaled.

Exercise 11.2.24. Work out the details of example 11.2.23

In the examples we see four different kinds of free ergodic actions:
Type I : Γ acts transitively.11.2.12
Type II1 : Γ preserves a finite measure. 11.2.13,11.2.15,11.2.17,11.2.18
Type II∞ : Γ preserves an infinite measure.11.2.20,11.2.21
Type III : Γ preserves no measure equivalent to µ.11.2.19,11.2.22,11.2.23

11.3 The type of the crossed product.
We adopt the notations and conventions of the previous section. The map
Em : M oαΓ→M which assigns aid to the element

∑
γ∈Γ is destined to play

a big role in the theory. It is called the conditional expectation onto M and
obviously satisfies the following contitions:

(i) E2
M = EM .

(ii) EM(x)∗ = EM(x∗), EM(1) = 1, EM(x∗x) = 0iffx = 0.
(iii) EM(x∗x) ≥ EM(x∗)EM(x), ||E(x)|| ≤ ||x||.
(iv) EM(axb) = aEM(x)b for a, b ∈M .
(v) EM is ultraweakly continuous.

So EM is a projection of norm one in the Banach space sense. The
condition (iv) says that EM is an M −M -bimodule map.

Theorem 11.3.1. If Γ acts non-transitively, freely and ergodically, preserv-
ing the finite measure µ then L∞(X,µ) o Γ is a II1 factor. If Γ preserves the
infinite σ-finite measure µ then L∞(X,µ) o Γ is a II∞ factor unless Γ acts
transitively in which case L∞(X,µ) o Γ is type I.
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Proof. (i) It is clearer to prove a more general statement (in the case where
Γ preserves µ and µ(X) = 1). So suppose Γ preserves the faithful positive
ultraweakly continuous trace tr on the von Neumann algebra A and that its
action is free and ergodic. Then we claim M = A o Γ is a type II1 factor
(or a finite dimensional factor). By previous results we need only show that
it has an ultraweakly continous positive trace. So define Tr = tr ◦ EA on
M . Ultraweak continuity and positivity are obvious so by continuity and
linearity it suffices to prove Tr(auγbuη) = Tr(buηauγ). For either side of
the equation to be non-zero means η = γ−1 amd then the left hand side is
tr(aαγ(b)) = tr(α−1

γ (aαγ(b))) = tr(bα−1(a)) which is equal to Tr(buηauγ).
(ii) If µ is infinite and Γ does not act transitively then there are no

atoms hence there are subsets Y of X of arbitrary positive measure. Let
Y have finite non-zero measure and let ξ be the function ξ(γ) = δγ,id χY .
Then 〈auγξ, ξ〉 = ωξ(auγ) = δid,γ

∫
Y
a(x)dµ(x). One easily checks that

ωξ((pauγp)(pbuηp)) = ωξ((pbuηp)(pauγp)) so by 3.4.6 ωξ defines a positive
ultraweakly continuous trace on p(A o Γ)p which is a type II1 factor. But
A o Γ is not itself a type II1 factor since A contains an infinite family of
equivalent mutually orthogonal projections. By 9.1.8 we are done.

(iii) If Γ acts transitively then (X,µ) = (Γ, counting measure) and the
characteristic function of a set with one element is a minimal projection in
L∞(X,µ) o Γ.

Exercise 11.3.2. If Γ acts ergodically on (X,µ) preserving the σ-finite mea-
sure µ then any other invariant equivalent measure is proportional to µ.

We now want to show that there are factors that are neither of type I nor
type II. Suppose thatM = L∞(X,µ)oΓ is a type I or II factor. Then it has
a trace tr : M+ → [0,∞]. We would like to define an invariant measure on X,
absolutely continous with respect to µ, by reversing the procedure of theorem
11.3.1 and defining the measure σ(A) to be tr(ξA) (ξA ∈ L∞(X,µ) ⊆ M).
Invariance of the measure σ is no problem. The snag is that tr(χA) could be
infinite for every non-null set A. We will show that this is not the case. To
this end the concept of lower semicontinuity will be useful.

Definition 11.3.3. If X is a topological space we say that f : X → R is
lower semicontinous if for every x ∈ X and ε > 0 there is an open set U ⊆ X
such that f(u) > f(x)− ε for all u ∈ U .

Exercise 11.3.4. Prove that if f is lower semicontinous then
(a)f−1((−∞, K])) is closed for every K ∈ R.
(b)f attains its minimum on any compact subset of X.
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Exercise 11.3.5. If H is a Hilbert space and ξ ∈ H, the function a 7→ ||aξ||
from B(H) to R is weakly lower semicontinuous.

Exercise 11.3.6. If fα are lower semicontinous then ∨αfα is lower semi-
continous if it exists.

Lemma 11.3.7. Let M be a type I or II factor and tr : M+ → [0,∞] be
Trace in type I, as in 9.1.9 in type II∞ and the trace in type II1. Then for
each K ≥ 0, M1,K = {x : tr(x∗x) ≤ K} is weakly compact.

Proof. Clear in the II1 case. In a decomposition M ∼= N ⊗ B(`2(N)) on H
with N a type II1 factor or C we may assume by 10.2.6 that there is a vector
ξ ∈ e11H with ωξ a trace on e11Me11. So if ξi = ei1ξ we have, up to a scalar,
that

tr(x) =
∞∑
i=1

〈xξi, ξi〉.

By the previous exercises and weak compactness of the unit ball, we are
done.

Proposition 11.3.8. With notation as above, for x ∈M1,K let W (x) be the
weak closure of the convex set of finite sums {

∑
i λiuixu

∗
i :
∑

i λi = 1, λi >
0, ui unitary in L∞(X,µ)}. Then W (x) ⊆ M1,K and if φ(y) = tr(y∗y) for
y ∈ W (x) then φ attains its minimum at a unique point E(x) of W (x).

Proof. Note first that {z ∈ M : tr(z∗z) < ∞} is a vector space on which
||z|| = tr(z∗z) defines a prehilbert space structure. (Since (a + b)∗(a + b) ≤
2(a∗a+b∗b) as operators, and the parallelogram identity passes to the poten-
tially infinite sum defining tr.) Moreover W (x) is a weakly compact subset
of M so by lower semicontinuity φ attains its minimum at a point which is
unique by two dimensional Euclidean geometry as in 2.1.2.

Proposition 11.3.9. Suppose thatM = L∞(X,µ)oΓ is a type I or II factor
for a free ergodic action of Γ on L∞(X,µ). Let tr be as above and p be a
projection in M with tr(p) <∞. Then

E(p) = EL∞(X,µ)(p)

and 0 < tr(E(p)2) ≤ tr(p).

Proof. Let E = EL∞(X,µ). By the uniqueness of E(p) it commutes with every
unitary in L∞ so it is in L∞ by 11.2.11. On the other hand E(y) = E(p)
for all y ∈ W (p) by the bimodule linearity of the conditional expectation
and its ultraweak continuity. So E(E(p)) = E(p) = E(p). But φ(E(p) ≤
φ(p) = tr(p)∞. Finally E(p) = E(p2) which is a positive non-zero self-
adjoint operator and hence has non-zero trace.
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Theorem 11.3.10. Let Γ act freely and ergodically on the countably sepa-
rated σ-finite measure space (X,µ) so that there is no σ-finite Γ-invariant
measure on X absolutely continuous with respect to µ. Then L∞(X,µ) o Γ
is a factor not of type I or II.

Proof. If the crossed product were of type I or II, define the measure ρ on
X by ρ(A) = tr(χA). By the previous result ρ(A) would have to be finite
and non-zero for some A since the L∞ functionf = E(p)2 must dominate a
multiple of χA for some A (e.g. let A be those x with f(x) sufficiently close
to ||f ||). But then by ergodicity X = ∪γ∈Γγ(A) (up to null sets) so that ρ
is σ-finite. It is automatically absolutely continuous wrt µ. Invariance of ρ
under Γ follows from tr(uγxu

−1
γ ) = tr(x) for x ≥ 0.

Definition 11.3.11. A factor not of type I or II is called a type III factor.

Example 11.2.22 provides a type III factor since the subgroup Q acts
ergodically so the only possible invariant measure is a multiple of dx by
exercise 11.3.2 and this is not invariant under multiplication!

Note that the above technique works in somewhat greater generality than
actions of groups on measure spaces.

Exercise 11.3.12. Adapt the proofs of the results just obtained to show that
M oα Z is a type III factor if the action α is generated by a single automor-
phism of the II∞ factor scaling the trace by a factor λ 6= 1.
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Chapter 12

Unbounded Operators and
Spectral Theory

There are many naturally arising examples of unbounded operators, some
of the most fundamental being multiplication by x and differentiation, the
position and momentum operators of quantum mechanics. Our immediate
motivation for studying unbounded operators here is to facilitate the study
of arbitrary von Neumann algebras acting on GNS Hilbert spaces. Here we
establish the necessary preliminaries on unbounded operators. The material
closely follows Reed and Simon [2].

12.1 Unbounded Operators
Definition 12.1.1. An operator T on a Hilbert space H consists of a linear
subspace D(T ), the domain of T , and a linear map from D(T ) to H.
Example 12.1.2.

(i) Mx, multiplication by x on L2(R).

D(Mx) =

{
f ∈ L2(R) :

∫
R
x2|f(x)|2dx <∞

}
.

(ii) T = d
dx

on L2([0, 1]). D(T ) = C1[0, 1].

In order to do some analysis we want to restrict our attention a little so
as not to consider completely arbitrary linear maps.

Definition 12.1.3. Let T be an operator on H. The graph of T is

Γ(T ) = {(ξ, T ξ) : ξ ∈ D(T )} ⊂ H ⊕H.

T is closed if Γ(T ) is closed in H⊕H.
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Remark 12.1.4. Note that if T is closed and D(T ) = H then T is bounded
by the Closed Graph Theorem.

Lemma 12.1.5. A linear subspace Γ ⊂ H ⊕ H is the graph of an operator
iff (0, η) ∈ Γ implies η = 0.

Proof. Straightforward.

Many operators are not closed, but can be extended to a closed operator.

Definition 12.1.6. Let S, T be operators on H. T is an extension of S,
denoted S ⊂ T , if Γ(S) ⊂ Γ(T ). Equivalently D(S) ⊂ D(T ) and T |D(S) = S.

Definition 12.1.7. An operator T is preclosed (or closable) if it has a closed
extension.

Lemma 12.1.8. Suppose T is preclosed. Then T has a smallest closed ex-
tension T . Γ(T ) = Γ(T ).

Proof. Take a closed extension A of T . Γ(A) is closed and contains Γ(T ) so
Γ(T ) ⊂ Γ(A). Γ(T ) is the graph of an operator (call it T ) because:

(0, η) ∈ Γ(T ) ⊂ Γ(A)⇒ η = A(0) = 0.

T is the smallest closed extension because for all closed extensions A, Γ(T ) =
Γ(T ) ⊂ Γ(A).

Definition 12.1.9. T is called the closure of T .

Remark 12.1.10. We thus obtain two equivalent definitions of a preclosed
operator:

(i) (0, η) ∈ Γ(T )⇒ η = 0.

(ii) (ξn ∈ D(T ), ξn → 0 and Tξn converges) ⇒ Tξn → 0.

Exercise 12.1.11.

(i) Define S on L2(R) by D(S) = C∞0 (R) (infinitely differentiable functions
with compact support), Sf = f ′. Show that S is preclosed.

(ii) Define T from L2(R) to C by D(T ) = L1(R) ∩ L2(R), T (f) =
∫

R f .
Show that T is not preclosed.

Definition 12.1.12. Suppose T is a closed operator. A core for T is a linear
subspace D0 ⊂ D(T ) such that T |D0 = T .
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We can perform basic arithmetic operations with (unbounded) operators
as follows: S+T is the operator with domain D(S+T ) = D(S)∩D(T ) and
(S + T )ξ = Sξ + Tξ. ST is the operator with domain D(ST ) = {ξ ∈ D(T ) :
Tξ ∈ D(S)} and (ST )ξ = S(Tξ). Of particular importance is the adjoint.

Definition 12.1.13. Let T be a densely defined operator on H. Let

D(T ∗) = {η ∈ H : ∃σ ∈ H such that 〈Tξ, η〉 = 〈ξ, σ〉∀ξ ∈ D(T )}
= {η ∈ H : ∃C > 0 such that |〈Tξ, η〉| ≤ C||ξ|| ∀ξ ∈ D(T )}.

For ξ ∈ D(T ∗) note that the element σ is unique (by the density of D(T ))
and define T ∗ξ = η.

Remark 12.1.14. Note that if S ⊂ T then T ∗ ⊂ S∗.

Exercise 12.1.15. Give an example to show that the domain of the adjoint
need not be dense. [In fact it can be {0}].
Proposition 12.1.16. Let T be a densely defined operator. Then

1. T ∗ is closed.

2. D(T ∗) is dense iff T is preclosed. In that case T = T ∗∗.

3. If T is preclosed then (T )∗ = T ∗.

Proof. Note that (η, σ) ∈ Γ(T ∗) iff < Tξ, η >=< ξ, σ > for all ξ ∈ D(T )
iff < (−Tξ, ξ), (η, σ) >= 0. Hence

Γ(T ∗) = {(−Tξ, ξ) : ξ ∈ D(T )}⊥ = (uΓ(T ))⊥ = uΓ(T )⊥,

where u : H⊕H → H⊕H is the unitary operator u(ξ, η) = (−η, ξ). Now:
1. Orthogonal complements are closed, hence Γ(T ∗) is closed.

2. Γ(T ) = (Γ(T )⊥)⊥ = u∗Γ(T ∗)⊥, so

(0, ξ) ∈ Γ(T ) ⇔ (−ξ, 0) ∈ Γ(T ∗)⊥

⇔ 0 =< (−ξ, 0), (η, T ∗η) >= − < ξ, η > for all η ∈ D(T ∗)

⇔ ξ ∈ D(T ∗)⊥.

Hence T is preclosed iff D(T ∗)⊥ = {0} iff D(T ∗) is dense.
In that case Γ(T ∗∗) = uΓ(T ∗)⊥ = u2Γ(T )⊥⊥ = −Γ(T ) = Γ(T ), so
T ∗∗ = T .

3. T ∗ = T ∗ = T ∗∗∗ = (T )∗.

Definition 12.1.17. An operator T is symmetric if T ⊂ T ∗. Equivalently
< Tξ, η >=< ξ, Tη > for all ξ, η ∈ D(T ). T is self-adjoint if T = T ∗. A
self-adjoint operator T is positive if < Tξ, ξ >≥ 0 for all ξ ∈ D(T ).

81



12.2 Spectral Theory for Unbounded Opera-
tors

Definition 12.2.1. Let T be a closed operator on H. The resolvent of T is

ρ(T ) = {λ|λ1− T : D(T )→ H is a bijection}.

The spectrum of T is σ(T ) = C\ρ(T ).

Remark 12.2.2. Note that if λ1 − T : D(T ) → H is a bijection then
(λ1− T )−1 is bounded by the Closed Graph Theorem.

Exercise 12.2.3. The spectrum is highly dependent on the domain. Let
AC[0, 1] denote the set of absolutely continuous functions on [0, 1]. Let T1 =
d

dx
, T2 = d

dx
, with

D(T1) = {f ∈ AC[0, 1] : f ′ ∈ L2([0, 1])}
D(T2) = {f ∈ AC[0, 1] : f ′ ∈ L2([0, 1]), f(0) = 0}.

Show that T1 and T2 are closed. Show that σ(T1) = C while σ(T2) = ∅.

Proposition 12.2.4. Let (X,µ) be a finite measure space and F a measure-
able, real-valued, a.e. finite function on X. Let D(Mf ) = {g ∈ L2(X,µ) :
fg ∈ L2(X,µ)} and let Mfg = fg. Then Mf is self-adjoint and σ(Mf ) =
ess.range(f) = {λ ∈ C : µ({x : |λ− f(x)| < ε}) > 0 ∀ε > 0}.

Exercise 12.2.5. Prove Prop 12.2.4.

Theorem 12.2.6 (Spectral Theorem - Multiplier Form). Let A be a self-
adfoint operator on H with dense domain. Then there exists a finite measure
space (X,µ), a real-valued a.e. finite function f on X and a unitary operator
u : H → L2(X,µ) such that uAu∗ = Mf

Proof. See [2].

Remark 12.2.7 (Borel Functional Calculus). Note that the Spectral Theo-
rem allows us to define a Borel functional calculus for self adjoint operators.
Given a Borel function h on the spectrum of A, define h(A) = u∗Mh◦fu.

12.3 Polar Decomposition
Theorem 12.3.1. Let A : H → K be a closed, densely defined operator.
Then:
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(i) A∗A and AA∗ are positive self-adjoint operators (hence (A∗A)1/2 and
(AA∗)1/2 exist).

(ii) There exists a partial isometry with initial space Range(A∗A)1/2 and
final space Range(A) and

A = v(A∗A)1/2.

(iii) If A = uB for some positive B and partial isometry v with initial space
Range(B) then u = v and B = (A∗A)1/2.

(iv) In addition A = (AA∗)1/2v.

Proof. (i) Since Γ(A) is closed, it is a Hilbert space. Let P : Γ(A)→ H be
projection onto the first component. Since A is an operator Ker(P ) =
{0} and hence Range(P ∗) is dense in Γ(A) (so PP ∗H is a core for A).
Let ξ ∈ H, P ∗ξ = (η, Aη). Then, for all σ ∈ D(A),

< ξ, σ >=< P ∗ξ, (σ,Aσ) >=< η, σ > + < Aη,Aσ >

⇒ < ξ − η, σ >=< Aη,Aσ >

⇒ Aη ∈ D(A∗) and A∗Aη = ξ − η.

Thus D(A∗A) ⊃ PP ∗H which is a core for A. In addition Range(A∗A+
1) = H.
It is easy to see that A∗A is symmetric, so A∗A + 1 ⊂ (A∗A + 1)∗.
Let ξ ∈ D((A∗A + 1)∗). Since Range(A∗A + 1) = H there exists
ξ̃ ∈ D(A∗A + 1) with (A∗A + 1)∗ξ = (A∗A + 1)ξ̃(= (A∗A + 1)∗ξ̃).
Ker((A∗A + 1)∗) = {0} because Range(A∗A + 1) = H, and hence
ξ = ξ̃ ∈ D(A∗A+1). Thus (A∗A+1)∗ = A∗A+1 and so (A∗A)∗ = A∗A.

Finally, for ξ ∈ D(A∗A), < A∗Aξ, ξ >=< Aξ,Aξ >≥ 0 so A∗A is
positive, i.e. σ(A∗A) ⊂ [0,∞) (just use the Spectral Theorem).

(ii) As we noted above, D(A∗A) is a core for A. D(A∗A) is also a core for
|A| = (A∗A)1/2 (use spectral theory). Thus AD(A∗A) = RangeA and
|A|D(A∗A) = Range|A|. Note that for ξ ∈ D(A∗A),

|||A|ξ||2 =< A∗Aξ, ξ >=< Aξ,Aξ >= ||Aξ||2,

so that the map v : |A|ξ 7→ Aξ, ξ ∈ D(A∗A), extends to a partial
isometry with initial space |A|D(A∗A) = Range|A| and final space
AD(A∗A) = RangeA.
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For ξ ∈ D(|A|) take ξn ∈ D(A∗A) with (ξn, |A|ξn) → (ξ, |A|ξ). Then
Aξn = v|A|ξn → v|A|ξ and, as A is closed, ξ ∈ D(A) and Aξ = v|A|ξ.
For ξ ∈ D(A) take ξn ∈ D(A∗A) with (ξn, Aξn)→ (ξ, Aξ). Then

|A|ξn = v∗v|A|ξn = v∗Aξn → v∗Aξ.

Since |A| is closed, ξ ∈ D(|A|).
Hence D(A) = D(|A|) and A = v|A|.

(iii) If A = uB then A∗ = B∗u∗ = Bu∗. A∗A = Bu∗uB = B2 since u∗u is
projection onto Range(B). By uniqueness of the positive square root
of a positive operator (Exercise 12.3.3), (A∗A)1/2 = B. Thus the initial
space of u is Range(|A|) and u|A| = A = v|A| so u = v.

(iv)A = v(A∗A)1/2 soA∗ = (A∗A)1/2v∗ and henceAA∗ = v(A∗A)1/2(A∗A)1/2v∗ =
v(A∗A)v∗ (Exercise 12.3.3). Thus v implements the unitary equivalence
of AA∗|Range(A) and A∗A|Range(A∗). Hence (AA∗)1/2 = v(A∗A)1/2v∗ and
then A = v(A∗A)1/2 = (AA∗)1/2v.

Remark 12.3.2. Note that it was very important in (i) to establish that
D(A∗A) contained a core for A and hence was dense. It was not clear a
priori that D(A∗A) contained any elements other than 0.

Exercise 12.3.3. (i) Let T be a positive operator. Show that T 1/2T 1/2 = T .

(ii) Show that a positive operator has a unique positive square-root.

12.4 Unbounded operators affiliated with a von
Neumann algebra.

If M is a von Neumann algebra on H, an element a ∈ B(H) is in M iff
au = ua for every unitary in M ′. This inspires the following.

Definition 12.4.1. If T : D(T ) → H is a linear operator on the Hilbert
space H and M is a von Neumann algebra on H we say that T is affiliated
with M , written TηM if, for any unitary u ∈M ′,

uD(T ) = D(T ) and

uTξ = Tuξ ∀ξ ∈ D(T ).
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Lemma 12.4.2. If T is preclosed with closure T then TηM if TηM .

Proof. It is clear that TηM iff uΓ(T ) = Γ(T ) for all unitaries in M ′. But
this property passes to the closure of the graph.

Lemma 12.4.3. If T is a closed operator affiliated with M then

1. The projection onto Γ(T ) is a 2× 2 matrix of operators in M .

2. If T = u|T | is the polar decomposition of T then u ∈M and f(|T |) ∈M
for any bounded Borel function of |T |.

Proof. 1. is obvious from the characterisation of affiliation given in the
proof of the previous lemma.

2. follows from uniqueness of the polar decomposition and the bicommutant
theorem.
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Chapter 13

Tomita-Takesaki theory.

In chapter 9 we showed that the GNS construction on M using a faithful
normal trace produces a perfectly symmetric Hilbert space Htr with respect
to M and its commutant. This is because the map J , which is the extension
to Htr of the * operation on M , is an isometry. So x 7→ JxJ is the extension
to Htr of right multiplication by x∗. Unfortunately if we use a (normal)
non-tracial state φ the * operation is no longer an isometry and there is
no reason to expect either it or right multiplication by elements of M to
have bounded extensions to Hφ. But as we shall see, the * operation is
actually preclosed in the sense of unbounded operators and if S = J∆1/2

is the polar decomposition of its closure S, we will show that JMJ = M ′.
Quite remarkably, the operator ∆1/2 will satisfy ∆itM∆−it = M so that
a state actually gives rise to a dynamics – a one parameter automorphism
group of M (and M ′).

We will prove these results using a method of van Daele for which we
have followed some notes of Haagerup ([],[]). But before getting started on
this difficult theory it is essential to do some elementary calculations to see
how it all works out in the 2× 2 matrices.

Exercise 13.0.4. Let M be M2(C). Show that any state φ on M is of the
form φ(x) = Trace(hx) for some positive h of trace 1. And that φ is faithful
iff h is invertible. Thus with respect to the right basis,

φ(x) = Trace(x

(
1

1+λ
0

0 λ
1+λ

)
)

for some λ, 0 ≤ λ ≤ 1.

Exercise 13.0.5. With notation as in the previous exercise, suppose φ is
faithful and let S be the * operation on the GNS Hilbert space Hφ. Calculate
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the polar decomposition S = J∆1/2 and show that SMS = JMJ = M ′.
Show that ∆zM∆−z = M for z ∈ C so that σφz (x) = ∆zx∆−z = M defines a
representation of C as automorphisms of M which are ∗-automorphisms iff
z ∈ iR.

Exercise 13.0.6. Generalize the above to the n×n matrices and in fact any
finite dimensional von Neumann algebra.

13.1 S,F and their graphs.
Throughout this section M will be a von Neumann algebra on H and Ω ∈ H
a cyclic and separating vector for M and hence M ′. (The same data as a
faithful normal state.) Let S0 and F0 be the conjugate linear operators with
domains MΩ and M ′Ω defined by S0(xΩ) = x∗Ω and F0(xΩ) = x∗Ω for
x ∈M and M ′ respectively.

Lemma 13.1.1. In the sense of unbounded operators F0 ⊆ S∗0 and S0 ⊆ F ∗0
so that S0 and F0 have densely defined adjoints and hence are preclosed.

Proof. To show S∗0(a′Ω) is defined if 〈S0(aΩ), a′Ω〉 extends to a bounded
conjugate linear map on all of H. But 〈S0(aΩ), a′Ω〉 = 〈(a′)∗Ω, aΩ〉 which
is bounded as a function of aΩ by Cauchy-Schwartz. Hence a′Ω is in the
domain of S∗0 and S∗0(a′Ω) = (a′)∗Ω = F0(a′Ω). Interchanging S0 and F0 we
get the other inclusion.

Definition 13.1.2. Let S and F be the closures of S0 and F0 respectively.
Let S = J∆1/2 be the polar decomposition of S.

Observe that S0 = S−1
0 so S is injective and S2 = 1 in the sense of

unbounded operators. Thus ∆1/2 has zero kernel, J2 = 1 and J∆1/2J =
∆−1/2. The same goes for F and its polar decomposition, but we shall now
see that F = S∗.

Theorem 13.1.3. (Takesaki,[].) S∗ = F , F ∗ = S and the graph of S is the
set of all (cΩ, c∗Ω) where c is a closed densely defined operator affiliated with
M and Ω ∈ D(c) ∩D(c∗).

Proof. Let (ξ, F ∗ξ) be in the graph of F ∗. By the definition of F we know
that 〈ξ, (a′)∗Ω〉 = 〈a′Ω, F ∗ξ〉. Now define operators a and b with domain
M ′Ω by ax′Ω = x′ξ and bx′Ω = x′F ∗ξ. Then a and b are closable for if x′
and y′ are in M ′ we have

〈a(x′Ω), y′Ω〉 = 〈x′ξ, y′Ω〉 = 〈ξ, (x′)∗y′Ω〉
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= 〈(y′)∗x′Ω, F ∗ξ〉 = 〈x′Ω, y′F ∗ξ〉 = 〈x′Ω, b(y′Ω)〉

so that as before a ⊆ b∗ and b ⊆ a∗.
Let c be the closure of a. Then cΩ = aΩ = ξ and c∗ = a∗ ⊇ b so

c∗Ω = F ∗ξ. Now by construction the domain of a is invariant under the
unitary group of M ′ and on it a commutes with the unitaries in M ′. This
means that c is affiliated withM . At this stage we have shown that the graph
of F ∗ consists of all (cΩ, c∗Ω) where c is a closed densely defined operator
affiliated with M and Ω ∈ D(c) ∩D(c∗).

We now want to show that the graph of F ∗ is contained in the graph of S.
This is not hard. Let c be as above and c =

√
c∗c be its polar decomposition.

Then if fn(t) = t for 0 ≤ t ≤ n and fn(t) = 0 for t > n we have that
fn(
√
c∗c) →

√
c∗c on any vector in the domain of c, and since c is affiliated

with M , fn(
√
c∗c) ∈M so that ufn(

√
c∗c)Ω is in the domain of S and tends

to ξ. Moreover fn(
√
c∗c)u∗Ω tends to c∗Ω = F ∗ξ so (ξ, F ∗ξ) is in the graph

of S.
Thus F ∗ ⊆ S and we have already observed that S ⊆ F ∗. Hence S = F ∗

and S∗ = F .

Corollary 13.1.4. The polar decomposition of F is J∆−1/2.

We now prove a crucial result connecting M and M ′.

Lemma 13.1.5. Let λ ∈ R+ be given. Then for a′ ∈ M ′ there is an a ∈ M
with aΩ in the domain of F and a′Ω = (λS + λ−1F )aΩ.

Proof. Assuming ||a′|| ≤ 1 we may apply theorem 8.2.1 to the ψ defined by
ψ(x) = 〈xΩ, a′Ω〉 and φ(x) = 〈xΩ,Ω〉 to obtain the existence of an a ∈ M
with

〈xΩ, a′Ω〉 = λ〈axΩ,Ω〉+ λ−1〈xaΩ,Ω〉

= λ〈xΩ, a∗Ω〉+ λ−1〈aΩ, x∗Ω〉.

Provided aΩ is in the domain of F this equation reads a′Ω = (λS+λ−1F )aΩ.
On the other hand rearranging the equation gives

〈aΩ, x∗Ω〉 = λ〈xΩ, a′Ω− λa∗Ω〉

so by Cauchy Schwartz aΩ is in the domain of F = S∗.

Corollary 13.1.6. For each ξ ∈ D(∆1/2) ∩ D(∆−1/2) there is a sequence
an ∈M with anΩ→ ξ, ∆1/2anΩ→ ∆1/2ξ and ∆−1/2anΩ→ ∆−1/2ξ.
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Proof. Set η = (S + F )ξ and choose a sequence a′n ∈ M ′ with a′n → η. By
the previous lemma there are an ∈ M with (S + F )anΩ = a′nΩ. But S +
F = J(∆1/2 + ∆−1/2) has bounded inverse (in the usual sense of unbounded
operators) so put ξn = (S + F )−1(a′nΩ). So anΩ = (S + F )−1a′nΩ → ξ.
Moreover

∆1/2anΩ = ∆1/2(∆1/2 + ∆−1/2)−1Ja′nΩ

and ∆1/2(∆1/2 + ∆−1/2)−1 is bounded by spectral theory. So ∆1/2anΩ →
∆1/2(S + F )−1(S + F )ξ = ∆1/2ξ. In the same way ∆−1/2anΩ→ ∆−1/2ξ.

We put everything together with a lemma linking M and M ′ on a dense
subspace to which many functions of ∆ can be applied.

Lemma 13.1.7. If ξ and η are in D(S) ∩ D(F ), a′, λ and a as in 13.1.5,
then

λ〈SaSξ, η〉+ λ−1〈FaFξ, η〉 = 〈a′ξ, η〉.

Proof. By moving one S and F to the other side of the inner products, we
see by the previous lemma that we may assume ξ and η are xΩ and yΩ
respectively, both in D(F ), for x and y inM . But onMΩ, SaS acts by right
multiplication by a∗ so 〈SaSξ, η〉 = 〈xa∗Ω, yΩ〉 = 〈SaΩ, x∗yΩ〉. On the other
hand, systematically using F ∗ = S we obtain 〈FaFxΩ, yΩ〉 = 〈y∗xΩ, aΩ〉 =
〈Sx∗yΩ, aΩ〉 = 〈FaΩ, x∗yΩ〉. Combining these two we see

λ〈SaSξ, η〉+ λ−1〈FaFξ, η〉 = 〈(λSa+ λ−1Fa)Ω, x∗yΩ〉.

But by 13.1.5 this is 〈a′Ω, x∗yΩ〉 = 〈a′ξ, η〉.

13.2 Proof of the main theorem.

We begin with an easy exercise in contour integration.

Exercise 13.2.1. Let S be the strip {z ∈ C : −1/2 ≤ <(z) ≤ 1/2}. Suppose
f is continuous and bounded on S and analytic on the interior of S. Then

f(0) =

∫ ∞
−∞

f(1/2 + it) + f(−1/2 + it)

2 coshπt
dt

Hint: Integrate
f(z)

sinπz
around rectangular contours in S tending to the

boundary of S.
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Proposition 13.2.2. With notation as in the previous section

a =

∫ ∞
−∞

λ2it ∆itJa′J∆−it

2 coshπt
dt

Proof. Since J∆1/2J = ∆−1/2 we have J(D(S) ∩ D(T )) = D(S) ∩ D(T ) so
after a little rearrangement the formula of 13.1.7 reads

〈Ja′Jξ, η〉 = λ〈a∆−1/2ξ,∆1/2η〉+ λ−1〈a∆1/2ξ,∆−1/2η〉.

Now let H0 be the dense subspace of all vectors in H which is the union of
all ξ[a,b](∆ for 0 < a < b <∞. Certainly H0 ⊆ D(S)∩D(F ), H0 is invariant
under J and ∆z for z ∈ C, and moreover for ξ ∈ H0, z 7→ ∆zξ is an entire
function of z.

For ξ, η ∈ H0 define the analytic function

f(z) = λ2z〈a∆−zξ,∆zη〉.

Then f is bounded in the strip S of the previous lemma and f(0) = 〈aξ, η〉.
Also f(1/2 + it) = 〈∆it∆1/2ξ, η〉 so that

f(1/2 + it) + f(−1/2 + it) = λ2it〈∆itJa′J∆−itξ, η〉.

So by the previous lemma we are done.

Theorem 13.2.3. Let M be a von Neumann algebra on H and Ω a cyclic
and separating vector for M . Suppose S is the closure of xΩ 7→ x∗Ω on MΩ.
Let ∆ = S∗S, and J be the antiunitary of the polar decomposition S = J∆1/2.
Then

(i) JMJ = M ′

(ii) ∆itM∆−it = M ∀t ∈ R
Proof. If a′ ∈M ′ we know that∫ ∞

−∞
λ2it ∆itJa′J∆−it

2 coshπt
dt ∈M.

Conjugating by a unitary u ∈ M ′ and writing λ = e
iθ
2 we see that the

Fourier transforms of the strongly continuous rapidly decreasing functions
∆itJa′J∆−it

2 coshπt
and u

∆itJa′J∆−it

2 coshπt
u∗ are equal. Hence ∆itJa′J∆−it ∈ M for

all real t since it commutes with every unitary u ∈M ′. (Take inner products
with vectors if you are not happy with Fourier transforms of operator valued
functions.)

Putting t = 0 we see JM ′J ⊆ M and by symmetry JMJ ⊆ M ′. Hence
JMJ = M ′ and we are done.

91



Definition 13.2.4. The operator J of the previous result is called the mod-
ular conjugation and the strongly continuous one-parameter group of auto-
morphisms of M defined by σφt (x) = ∆itx∆−it is called the modular auto-
morphism group defined by φ.

13.3 Examples.
Example 13.3.1. ITPFI

The acronym ITPFI stands for “infinite tensor product of finite type I”.
These von Neumann algebras are formed by taking the *-algebra A∞ as the

union A∞ of tensor products Am =
m⊗
k=1

Mnk(C), the inclusion of Am in Am+1

being diagonal. The state φ on A∞ is then the tensor product of states on
each Mnk . One may then perform the GNS construction with cyclic and
separating vector Ω given by 1 ∈ A∞, to obtain the von Neumann algebra

M =
∞⊗
k=1

Mnk(C) as the weak closure of A∞ acting on Hφ. The case where

all the nk are equal to 2 and all the states are the same is called the “Powers
factor” and the product state the “Powers state” as it was R.Powers who first
showed that they give a continuum of non-isomorphic type III factors.

A slight snag here is that we do not know that Ω defines a faithful state
on M . But if we proceed anyway to construct what have to be J and ∆ we
will soon see that the state is indeed faithful, i.e. Ω is cyclic for M ′Ω.

Recall from exercise 13.0.6 that, forMn(C), and φh(x) = trace(xh) where
h is the diagonal matrix (density matrix) with hii = µi,

∑
µi = 1, µi > 0,

then Jn(eij) =
√

µj
µi
eji and ∆n(eij) = µi

µj
eij (where dependence on h has been

suppressed).

To diagonalise the modular operators on Hφ completely it is most con-
vincing to choose an orthonormal basis di of the diagonal matrices, with
d1 = 1. Then a basis for the Hilbert space Hφ is formed by tensors ⊗∞k=1vkΩ
where vk = 1 for large k, and is otherwise a di or an eij with i 6= j.

We can guess that J is, on each basis vector, the tensor product of the J ’s
coming from the matrix algebras. Defining it as such it is clearly an isometry
on A∞Ω and thus extends to all of Hφ. But then, for any x ∈ A∞, JxJ is in
M ′ by the finite dimensional calculation! But the linear span of these JxJΩ
is dense so Ω is cyclic for M ′ and hence separating for M . We are hence in
a position to apply Tomita-Takesaki theory. Each of the basis elements is in
MΩ so S(⊗∞k=1vkΩ) = ⊗∞k=1wkΩ where wk is vk if vk is diagonal, and eji if
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vk = eij. So JS is diagonal and hence essentially self-adjoint. We conclude
that

J(xΩ) = Jm(x)Ω and ∆(xΩ) = ∆m(x)Ω for x ∈ Am,

and

σφt =
∞⊗
k=1

σφhk .

Example 13.3.2. Group-measure-space construction.

Let Γ be a discrete group acting on the finite measure space (X,µ) pre-
serving the class of the finite measure µ. The Hilbert space of the crossed
product L∞(X,µ) is L2(X,µ)⊗ `2(Γ) and as we saw in chapter 11 the vector
1⊗ εid is a cylic and separating vector Ω for M = L∞(X,µ) o Γ.

Since the class of µ is preserved by the γ ∈ Γ the Radon Nikodym theorem
guarantees positive L1 functions hγ so that φ(hγαγ(y)) = φ(x) where φ(y) =∫
X
ydµ. We know that, if x ∈ L∞(X,µ) then S(uγx) = x∗uγ−1 . In general

we will not be able to completely diagonalise ∆ but the same argument as
in the previous example gives that the domain of ∆ is

{f : Γ→ L2(X,µ) :
∑
γ

∫
X

|hγ(x)f(x)|2dµ(x) <∞}

on which
(∆f)(γ) = hγf(γ),

and
(Jf)(γ) = h−1/2

γ f(γ).

We can now finally answer the question as to which sums
∑

γ xγuγ define
elements of M = L∞(X,µ) o Γ.

Theorem 13.3.3. With notation as above, if the function γ 7→ xγ ∈ L∞(X,µ)
is such that

∑
γ xγuγ, interpreted as a matrix of operators as in section 11.2,

defines a bounded operator, then that operator is in M = L∞(X,µ) o Γ.

Proof. By 13.2.3 it suffices to show that
∑

γ xγuγ commutes with JxuγJ for
all x ∈ L∞(X,µ) and γ ∈ Γ. And for this it suffices to check that the
commutation holds on functions of the form f ⊗ εγ for f ∈ L2. This is just
a routine computation.

Exercise 13.3.4. Show that example 13.3.1 is in fact a special case of this
group-measure-space example in which L∞(X,µ) is provided by the tensor
products of the diagonal elements and the group Γ is a restricted infinite
Cartesian product of cyclic groups, constructed from the non-diagonal eij’s.
Conclude by the method of 11.2.15 that ITPFI algbras are factors.
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This example brings to light a significant inadequacy of our treatment of
Tomita-Takesaki theory. We would like to treat the case where the measure
of the space is infinite. Although of course we could choose an equivalent
finite measure, this choice may not be natural. To do this we would have
to consider the theory of “weights” which are to states as the trace on a II∞
factor is to the trace on a type II1 factor. We need the same notion in order
to understand the origin of the term “modular” used above as coming from
the modular function on a non-unimodular locally compact group. But a
serious treatment of weights would take many pages so we simply refer the
reader to Takesaki’s book [3].

Example 13.3.5. Hecke algebras à la Bost-Connes.
If G is a finite group let ug and vg be the unitaries of the left and right

regular representations respectively. If H is a subgroup, the projection pH =
1
|H|
∑

h∈H vh projects from `2(G) onto functions that are right translation
invariant under H, i.e. functions on the quotient space G/H. Thus the so-
called “quasi-regular” representation of G on G/H is a direct summand of
the left regular representation and we have from EP7 of chapter 3.4 that the
commutant of the action of G on `2(G/H) is pHρ(G)pH where ρ(G) is the
algebra generated by the right regular representation (of course isomorphic
to C). This commutant is spanned by the pHvgpH which, thought of as
functions on G, are multiples of the characteristic functions of the double
cosets HgH which form the double coset space H\G/H. The subalgebra
of ρ(G) spanned by these double cosets is the space of H − H bi-invariant
functions and we see it is the commutant of G on `2(G/H). It is known as
the Hecke algebra for the pair (G,H) and has a considerable role to play
in the representation theory of finite groups. A famous example is the case
where G is the general linear group over a finite field and H is the group of
upper triangular matrices. The coset space is then the so-called “flag variety”
and the Hecke algebra in this case leads to a lot of beautiful mathemtatics.
See Bourbaki [].

Nothing could better indicate how differently things work for infinite dis-
crete groups than how the Hecke algebra works. Far from being direct sum-
mands, the quasiregular representations can be totally different from the left
regular representations and can even generate type III factors! These Hecke
algebras give nice examples where the modular operators can be calculated
explicitly.

Definition 13.3.6. A subgroup H of the discrete group G is called almost
normal if either of the two equivalent conditions below is satisfied.

(a) gHg−1 ∩H is of finite index in H for all g ∈ G.

94



(b) Each double coset of H is a finite union of left cosets of H (i.e. the
orbits of H on G/H are all finite).

IfH is almost normal in G one may construct operators in the commutant
of the quasiregular representation of G on `2(G/H) as follows:

Given an element x of G/H let εx be the characteristic function of x.
These functions form an orthonormal basis of `2(G/H). Moreover each vector
εx is cyclic for the action of G hence separating for the commutant. If D is
a double coset of H define TD by the matrix

(TD)x,y =

{
1 if y−1x = D;
0 otherwise.

check this typesetting

Clearly TD is bounded since H is almost normal and it obviously com-
mutes with the action of G. From the definition we have

T ∗D = TD−1 .

It is also easy to check that

TDTE =
∑
F

nFD,ETF

where the structure constants are defined by

nFD,E =

{
#(E/H) if F ⊆ ED;
0 otherwise.

x

check typesetting here

We will call the von Neumann algebra generated by the TD’s the Hecke-
von Neumann algebra of the pair H ⊆ G and write it HvN(G,H). The
vector state φ defined on HvN(G,H) by εH is faithful and normal, and
〈TDεH , TD′εH〉 = 0 unless D = D′ so that the TD’s are orthogonal. It is thus
easy to calculate the operators for the modular theory on Hφ (note that this
is not `2(G/H)). We guess as usual that J(TDΩ) = (constant)TD−1Ω and
by counting cosets in double cosets (or sizes of orbits of H on G/H) we find
that the constant has to be (#(D/H))1/2(#(H\D))−1/2. Thus as before JS
is diagonal on the basis TDΩ of Hφ so essentially self-adjoint and

∆(TDΩ) =
#(H\D)

#(D/H)
TDΩ

with the obvious domain. Thus

σφt (TD) =

(
#(H\D)

#(D/H)

)it

TD.
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Examples of almost normal subgroups are not hard to find. The classical
example of Hecke himself is the case where G = SL(2,Q) and H = SL(2,Z).
In this case the Hecke algebra is abelian. Bost and Connes in [4] examined
the case of the ax+b group over the rationals with the subgroup being integer
translations. They showed that HvN(G,H) in this case is a type III factor
and made a connection with prime numbers.

13.4 The KMS condition.

In the examples of the previous section the operators of the modular group
were easy to calculate explicitly, including the domain of ∆. One can imagine
that this is not always so. If we are particularly interested in the modular
group σφt it would be useful to be able to guess it and show that the guess is
right without bothering about the domain of ∆. The KMS (Kubo-Martin-
Schwinger) condition from quantum statistical mechanics allows us to do just
that. The modular group came from the non-trace-like property of a state
and the KMS condition allows us to correct for that. Let us do a formal
calculation assuming that the modular group can be extended to complex
numbers (remember that Ω is fixed by S, J and ∆):

φ(xy) = 〈yΩ, x∗Ω〉
= 〈yΩ, J∆−1/2∆x∆−1Ω〉
= 〈∆x∆−1Ω, SyΩ〉
= 〈y∆x∆−1Ω,Ω〉.

We conclude that
φ(xy) = φ(yσφi (x)).

Thus the trace is commutative provide we operate by the modular group.

Exercise 13.4.1. If M is finite dimensional and φ is a faithful state, show
that φ ◦ σφt = φ and that for each x and y in M there is an entire function
F (z) with, for t ∈ R,

F (t) = φ(σφt (x)y) and
F (t+ i) = φ(yαt(x)).

If M is infinite dimensional we would not expect the function F (z) of the
previous exercise to be entire.
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Definition 13.4.2. Let αt be a strongly continuous one parameter automor-
phism group of a von Neumann algebra M , and φ be a faithful normal state
on M . We say that α satisfies the KMS condition for φ if φ ◦ αt = φ and ,
for each x and y in M , there is a function F , continuous and bounded on
the strip {z : 0 ≤ =m(z) ≤ 1}, analytic on the interior of the strip and such
that for t ∈ R,

F (t) = φ(σφt (x)y) and
F (t+ i) = φ(yαt(x)).

Theorem 13.4.3. If φ is a faithful normal state on a von Neumann algebra
M then σφt is the unique one parameter automorphism group satisfying the
KMS condition for φ.

This chapter has been heavily technical so we defer the proof, which is by
approximation on dense subspaces of the domain of ∆ to which the previous
calculations can be applied, to an appendix. We content ourselves here with
an interesting corollary, identifying a part or M on which φ behaves as a
trace.

Corollary 13.4.4. For a ∈M the following are equivalent:

1. φ(ax) = φ(xa) for all x ∈M .

2. σφt (a) = a for all t ∈ R.

Proof. (1 ⇒ 2) Observe that for x ∈ M , 〈x∗Ω, aΩ〉 = 〈Ω, xaΩ〉 = 〈Ω, axΩ〉
(by 1). So 〈SxΩ, aΩ〉 = 〈a∗Ω, xΩ〉 so that aΩ ∈ D(S∗) and S∗(aΩ) = Ω∗. So
∆(aΩ) = aΩ, ∆itaΩ = aΩ and finally σφt (a) = a for all t ∈ R.

(2⇒ 1) φ(σφt (x)a) = φ(σφt (xa)) = φ(xa) so that F (t) is constant. Use the
Schwarz reflection principle to create a holomorphic function, constant on R,
in the union of the strip with its complex conjugate. Thus F is constant on
the strip and φ(xa) = φ(ax).

Definition 13.4.5. The von Neumann subalgebra of M defined by either of
the conditions of the previous corollary is called the centraliser of the state
φ.
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Chapter 14

Connes’ theory of type III factors.

14.1 The Connes unitary cocycle Radon-Nikodym
theorem.

This result will allow us to extract information from the modular group of a
state which is independent of the state.

Theorem 14.1.1. Let φ and ψ be faithful normal states on a von Neumann
algebra M . Then there is a strongly continous map t → ut from R to the
unitary group of M so that

σφt = Adutσψt ∀ t ∈ R.

Morevoer ut satisfies the cocycle condition utσψt (us) = ut+s.

Proof. We define the faithful normal state Φ on M ⊗M2(C) by Φ((x)ij) =
1
2
(φ(x11) +ψ(x22)). The projection p = ( 1 0

0 0 ) is fixed by σΦ by 13.4.4. So σΦ

defines a one parameter automorphism group of pM⊗M2(C)p which satisfies
the KMS condition for φ. Hence σΦ

t (x ⊗ e11) = σφt (x) ⊗ e11. Similarly
σΦ
t (x ⊗ e22) = σψt (x) ⊗ e22. Let Vt = σΦ

t (1 ⊗ e21). Then VtV
∗
t = ( 0 0

0 1 )
and V ∗t Vt = ( 1 0

0 0 ). Hence Vt = ( 0 0
vt 0 ) for some unitary vt ∈ M . Routine

computations give the rest.

Corollary 14.1.2. If M is a factor and σφt is outer for any φ and t then M
is of type III.

Proof. By the previous result it suffices to exhibit a single faithful normal
state on a type II factor with inner modular group. In the II1 case use the
trace and in the II∞ case choose a faithful normal state φ on B(H) and use
tr⊗φ, using the KMS condition (if necessary) to very that the modular group
for the tensor product is the tensor product of the modular groups.
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Corollary 14.1.3. The subgroup of all t ∈ R for which σφt is inner is inde-
pendent of the faithful normal state φ.

Definition 14.1.4. The subgroup of the previous corollary, which is an in-
variant of M , is called T (M).

We shall now calculate T (M) for the Powers factor Rλ where this refers
to the ITPFI factor with all nk = 2 and all states having the same density

matrix h =

(
1

1+λ
0

0 λ
1+λ

)
.

Theorem 14.1.5.
T (Rλ) =

2π

log λ
Z

.

Proof. By the formula for the modular group σφ2π
log λ

= id so 2π
log λ

Z ⊆ T (Rλ).
For the other direction it suffices to show that an automorphism α of the
form

α = ⊗∞k=1Adu

is outer whenever the unitary u is not a scalar.
For this first define uk = ⊗k1u and observe that if α = Adv then (uk ⊗

1)−1v = id on the matrix algebra Ak = ⊗k1M2(C). By exercise 4.3.3 this
means that v = uk ⊗ w. Now it is clear from our basis that we can choose
⊗pj=1xi ⊗ 1Ω with non-zero inner procuct with vΩ. But then fixing p and
letting k tend to infinity we see that

〈(⊗pj=1xi ⊗ 1)Ω, vΩ〉 =

p∏
j=1

〈xi, u〉〈1, u〉k−p〈1, w〉.

The left hand side does not depend on k and |〈1, w〉| ≤ 1 so we must have
|〈1, u〉| = 1 which means that u is a scalar multiple of 1 by the Cauchy-
Schwarz inequality.

We conclude that the Powers factors Rλ are type III factors, mutually
non-isomorphic for different values of λ.

14.2 Type IIIλ.
The spectrum of the modular operator ∆ is easy to calculate for an ITPFI
factor. It is simply the closure of the set of all ratios µi

µj
as µ varies over

all the density matrices defining the product state. Apart from being closed
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under the inverse operation this set of non-negative real numbers has no
particular structure and can be altered easily by making changes in finitely
many density matrices which of course do not change the factor.

Definition 14.2.1. If M is a von Neumann algebra the invariant S(M)
is the intersection over all faithful normal states φ of the spectra of their
corresponding modular operators ∆φ.

Theorem 14.2.2. A factor M is of type III iff 0 ∈ S(M).

Theorem 14.2.3. (Connes-van Daele) S(M) \ {0} is a closed subgroup of
the positive real numbers.

There are only three kinds of closed subgroups of R+.

Definition 14.2.4. A factor M is called type IIIλ for 0 ≤ λ ≤ 1 if

λ = 0 : S(M) = {0} ∪ {1}
0 < λ < 1 : S(M) = {0} ∪ {λn : n ∈ Z}

λ = 1 : S(M) = {0} ∪ R+

Theorem 14.2.5. The Powers factor Rλ is of type IIIλ.

In his thesis, Connes showed that every type IIIλ factor for 0 < λ < 1 is Connes thesis

canonically isomorphic to the crossed product of a type II∞ factor with an
action of Z whose generator scales the trace by λ.

IfA is a locally compact abelian group with an action α on a von Neumann
algebra M , there is an action α̂ of the Pontryagin dual Â on the crossed
product M oα A satisfying

α̂a(x) = x for x ∈M
α̂â(ua) = â(a)ua if ua are the unitaries defining the crossed product.

The existence of the so-called “dual action” α̂ is trivial proved since it is
implemented by the obvious unitary representation of Â on L2(A).

Exercise 14.2.6. If A is finite consider the projection p =
∑

a ua ∈M oA.
Show that pMoAp = MAp and thus show that (MoαA)oα̂ Â is isomorphic
to M ⊗M|A|(C).
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Observe that the crossed product of a von Neumann algebra M on H by
the modular group σφ does not depend, up to isomorphism, on the faithful
normal state φ. This follows from theorem 14.1.1 by defining the unitary V
on L2(R,H) by

V f(t) = utf(t)

where ψ is another faithful normal state with unitary one-cocycle ut. Conju-
gating the operators that generate MoσφR by V one obtains the generators
of M oσψ R.

Theorem 14.2.7. The crossed product of M by the modular group admits a
trace satisfying the properties of 9.1.9

Definition 14.2.8. The action of R̂ on Z(M oσφ R) is called the “flow of
weights” of M .

Theorem 14.2.9. (Takesaki duality) The crossed product

(M oσφ R) ocσφ R̂

is isomorphic to the tensor product M ⊗ B(H) for H = L2(R).

Thus if M is a factor the flow of weights is ergodic.

Theorem 14.2.10. If M is a factor of type IIIλ the flow of weights is

III1: The trivial flow on a one point set if M is III1.

IIIλ: The transitive flow on the circle with period 2π
λ
if M is of type IIIλ,

0 < λ < 1.

III0: Ergodic non-transitive if M is of type III0.

Moreover any ergodic non-transitive flow arises as the flow of weights for
some type III0 factor.
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Chapter 15

Hyperfiniteness

Definition 15.0.11. A von Neumann algebraM on a separable Hilbert space
is called hyperfinite if there is an increasing sequence An of finite dimensional
*-subalgebras of M which generates M as a von Neumann algebra.

15.1 The hyperfinite type II1 factor R
The first main result about hyperfiniteness was proved by Murray and von
Neumann in []. We will use R to denote the hyperfinite II1 factor whose
uniqueness they proved.

Theorem 15.1.1. Up to abstract isomorphism there is a unique hyperfinite
II1 factor.

Sketch of proof. One works with the norm ||x||2 = tr(x∗x)1/2 on M . It is
not hard to show that a von Neumann subalgebra N of M is strongly dense
inM iff it is dense in ||−||2. Given a subalgebra A ofM and a subset S ⊆M
one says

S ⊆ A

ε

if for each x ∈ S there is a y ∈ A with ||x− y||2 < ε.

The hyperfiniteness condition then implies:

For every finite subset S ⊆ M and every ε > 0 there is a finite dimen-
sional *-subalgebra A of M with

S ⊆ A.

ε
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The next step is to show that the A in the preceeding condition can be
chosen to be the 2n× 2n matrices for some (possibly very large) n. This part
uses what might be described as “II1 factor technique”. One begins with A
and approximates all its minimal projections {ei} by ones whose traces are
numbers of the form k/2n. The matrix units of A can be changed a little bit
in || − ||2 so that, together with matrix units conecting projections of trace
1/2n less than the ei, they generate a 2n×2n matrix algebra containing, up to
ε, the matix units of A. Perturbation of the matrix units will involve results
of the form:

If u ∈ M satisfies ||(uu∗)2 − uu∗||2 < ε then there is a partial isometry
v ∈M with ||v − u||2 < F (ε)
(for some nice function f with f(0) = 0).

or:

If p and q are projections with ||pq||2 < ε then there is a projection q′ with
pq′ = 0 and ||q − q′|| < F (ε).

or:

If fij are “almost n× n matrix units”, i.e.

(a) ||fij − fji||2 < ε

(b) ||fijfkl − δj,kfil||2 < ε

(c) ||1−
∑n

i=1 fii||2 < ε

then there are n×n matrix units eij with ||eij−fij|| < F (ε) where F depends
only on n and F (0) = 0.

Such results are proved by a skilful use of the polar decomposition and
spectral theorem.

Thus one shows that in a hyperfinite type II1 factor one has:

Property * : For every finite subset S ⊆M and every ε > 0 there is a
2n × 2n matrix subalgebra of M with

S ⊆ A.

ε

One may now proceed to prove the theorem by choosing a || − ||2-dense
sequence xk in M and inductively constructing an increasing sequence of
2nk × 2nk matrix algebras Ak with the property that

For each k = 1, 2, 3, ..., {x1, x2, ..., xk} ⊆ Ak .

1/k
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The union of the Ak’s is clearly dense in || − ||2. This is enough to prove
the theorem since the Ak’s can be used to give an isomorphism of M with
the type II1 factor ⊗∞M2(C) constructed in section 6.2.

To construct Ak+1 from Ak one needs to arrange for the new algebra
to contain the one already constructed. So to the elements x1, x2, ..., xk+1,
add matrix units eij for Ak+1. Now use property * to obtain a B almost
containing the xi and the matrix units, with ε small enough to control sums
over the matrix units eij. In B we know there are approximate matrix units
close to the eij so by a technical lemma, exact matrix units fij close to the
eij. Now choose a unitary close to the identity which conjugates the fij to
the eij and use this unitary to conjugate B to a superalgebra of Ak. This
superalgebra is Ak+1 and it contains the xi up to epsilon since u is close to
the identity.

This completes the sketch of the proof. The technique involved is con-
sidered standard in von Neumann algebras and the details can be found in
. dixmier

Corollary 15.1.2. If S∞ is the group of finitely supported permutations of
a countably infinite set then vN(S∞) ∼= ⊗∞M2(C).

Proof. The subgroups of S∞ permuting an increasing sequence of finite sets
show that vN(S∞) is hyperfinite.

It is surprising at first sight that the type II1 factor L∞(X,µ)oZ obtained
from an ergodic measure-preserving transformation T is hyperfinite. This can
be shown by Rokhlin’s tower theorem which asserts that, for each n ∈ N and
each ε > 0 there is a measurable subset A ⊆ X with

(1) T i(A) ∩ T j(A) = ∅ for 1 ≤ i < j ≤ n, and

(2) µ(X \ ∪ni=0T
i(A)) < ε.

The unitary u1 of the crossed product and the characteristic function of A
can be combined, with a little perturbation to get the identity, to get a n×n
matrix algebra. Careful application of the tower theorem will allow one to
get any element of L∞(X,µ), and u1, in this matrix algebra up to some ε.
This was first proved by Henry Dye in who went on to prove that in fact all Dye

groups of polynomial growth give hyperfinite II1 factors in this way.
The ultimate result in this direction is the celebrated “Injective factors”

theorem of Connes who showed that hyperfiniteness for a von Neumann al-
gebraM on H is equivalent to “injectivity” which means there is a projection
in the Banach space sense of norm one from B(H) onto M . This theorem,
whose proof is a great, great tour de force, has a raft of corollaries, many of
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which were open questions. Let us just mention the fact that it follows easily
that any subfactor of R which is infinite dimensional is in fact isomorphic to
R. It also implies that vN(Γ), as well as L∞(X,µ) o Γ is hyperfinite as soon
as Γ is amenable.

15.2 The type III case.
The complete classification of injective(=hyperfinite) factors is a triumph
of 20th. century mathematics. Connes showed in that there is only oneConnes actions

trace-scaling automorphism of R⊗B(H) for each scaling factor λ 6= 1 up to
conjugacy. Together with this shows that for each λ with 0 < λ < 1 there isConnes Injective factors

a unique injective factor of type IIIλ.

Using results of Krieger in , his thesis and , Connes showed that hyperfi-krieger

injective nite type III0 factors are classified by their flow of weights (up to conjugacy of
flows, not orbit equivalence). This means that there is a rather large number
of III0 factors but their classification is in the realm of ergodic theory rather
than von Neumann algebras.

The remaining case of injective type III1 factors was solved by Haagerup
in . There is just one such factor and a hyperfinite factor is “generically” ofuffeIIIone

type III1.
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Chapter 16

Central Sequences.

16.1 Generalities.
Definition 16.1.1. If M is a type II1 factor, a central sequence in M is a
norm bounded sequence (xn) with limn→∞ ||[xn, a]||2 = 0. A central sequence
is said to be trivial if limn→∞ ||xn − tr(xn)id||2 = 0. M is said to have
property Γ if there is a central

The collection of all central sequences is clearly a C∗-subalgebra of `∞(N,M).
If ω is a free ultrafilter on N, the subalgebra Iω of `∞(N,M) consisting of
sequences with limn→ω ||xn||2 = 0 is a 2-sided ideal of `∞(N,M). Note also
that M is embedded in `∞(N,M) as constant sequences.

Definition 16.1.2. With notation as above, the ultraproduct ofM along ω is
the quotient of `∞(N,M) by Iω. It is written Mω. The algebra of (ω-)central
sequences is the centraliser Mω = M ′ ∩Mω of M in `∞(N,M).

By compactness, the trace on M defines a trace on Mω by

tr((xn)) = lim
n→ω

tr(xn)

and by definition it is faithful on Mω.

Exercise 16.1.3. Show that the unit ball (in the C∗ norm) ofMω is complete
in || − ||2 so that Mω and Mω are von Neumann algebras.

16.2 Central sequences in R

All models for R exhibit central sequences in abundance. The most obvious
situation is that of ⊗∞M2(C). Fixing x ∈M2(C) we can define the sequence
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xn = 1⊗ 1⊗ 1...x⊗ 1⊗ 1... with the x in the nth slot in the tensor product.
For large enough n, xn will commute with any element in the algebraic tensor
product so by the obvious (in the II1 case!) inequality ||[xn, a]|| ≤ 2||xn|| ||a||2
we see that (xn) is central and clearly non-trivial if x is not a scalar. Just as
clearly the central sequence algebra is non-commutative as we only need to
choose x and y that do not commute and construct the sequences (xn) and
(yn) as above. In fact it is not hard to show that Rω is a factor.

Theorem 16.2.1. The central sequence algebra Rω is a type II1 factor.

Proof. If (xn) represents an element X ∈ Rω,finish proof!

16.3 Type II1 factors without property Γ.

Theorem 16.3.1. Let Γ be an icc group possessing a subset ∆ not containing
the identity and three elements α, β and γ such that

(a)Γ = {1} ∪∆ ∪ α∆α−1

(b)∆, β∆β−1 and γ∆γ−1 are mutually disjoint.

then for x ∈ vN(Γ),

||x− tr(x)id||2 ≤ 14 max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.

Proof. Write x as
∑

ν∈Γ xνuν . We will frequently use the formula

||[x, uρ]||22 = ||uρ−1xuρ − x||2 =
∑
ν∈Γ

|xν − xρνρ−1|2.

By replacing x by x − tr(x)id it suffices to prove the result if tr(x) = 0
and we may suppose ||x||2 = 1 so that for such an x we must show 1 ≤
14 max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.

We first make a simple estimate. If Λ is any subset of Γ and ρ ∈ Γ then

|
∑
ν∈Λ

|xν |2 −
∑
ν∈Λ

|xρνρ−1|2| =
∑
ν∈Λ

(|xν |+ |xρνρ−1|)||xν | − |xρνρ−1||

≤
∑
ν∈Λ

(|xν |+ |xρνρ−1|)(|xν − xρνρ−1|)

≤ 2||x||2(
∑
ν∈Λ

|xν − xρνρ−1|2)1/2
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so that if ρ ∈ {α, β, γ} we have

|
∑
ν∈Λ

|xν |2 −
∑
ν∈Λ

|xρνρ−1 |2| ≤ 2ε

where ε = max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.
Let us now first overestimate ||x||2 = 1:

1 ≤
∑
ν∈∆

|xν |2 +
∑
ν∈∆

|xανα−1|2

≤ 2
∑
ν∈∆

|xν |2 + 2ε.

Now underestimate it:

1 ≥
∑
ν∈∆

|xν |2 +
∑
ν∈∆

|xβνβ−1|2 +
∑
ν∈∆

|xγνγ−1|2

≥ 3
∑
ν∈∆

|xν |2 − 4ε.

Let y =
∑

ν∈∆ |xν |2 and eliminate y from the inequalities 1 ≤ 2y+ 2ε and
1 ≥ 3y − 4ε to obtain

ε ≥ 1/14

as desired.

It is easy to come up with groups having subsets as in the previous the-
orem. For instance if G = F2, free on generators g and h, let ∆ be the set
of all reduced words ending in a non-zero power of g. Let α = g, β = h and
γ = h−1. The same works for more than two generators. We conclude:

Theorem 16.3.2. The type II1 factor vN(Fn) for n ≥ does not have property
Γ.
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Chapter 17

Bimodules and property T
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Chapter 18

Fermions and Bosons:CAR and
CCR

According to physics lore, the states of a quantum system are given by (the
one-dimensional subspaces of) a Hilbert space H and if two systems have
state spaces H and K, the joint system has state space H ⊗ K. Fermions
are particles such that "the wave function of several fermions is antisymmet-
ric" which means that it is the antisymmetric tensor product ΛnH which
describes n identical fermions. Bosons are particles whose wave functions
are symmetric so it is the symmetric tensor power SnH which describes n
identical bosons. In order to treat families with an unlimited number of
fermions and Bosons we need the fermionic and bosonic Fock spaces (which
are Hilbert space direct sums):

F(H) = ⊕∞n=0ΛnH

and
S(H) = ⊕∞n=0S

nH.

The passage from H to F(H) or S(H) is known as “second quantisation’.
We will not attempt to explain the physics above but will define properly

these two Fock spaces and how they give rise to interesting von Neumann
algebras related to physics.

Both these Fock spaces are subspaces of the "full Fock space" or tensor
algebra

T (H) = ⊕∞n=0 ⊗n H

T (H) is related to quantum physics also though so far in a less funda-
mental way through the large N behaviour of random N ×N matrices and
Voiculescu’s free probability.
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18.1 The Fock spaces.

18.1.1 Full Fock space

Definition 18.1.2. If H is a Hilbert space the full Fock space T (H) is the
Hilbert space direct sum ⊕∞n=0 ⊗n H. By definition ⊗0H is one dimensional,
spanned by the "vacuum" vector Ω.

For each n and f ∈ H the operator `(f) : ⊗nH → ⊗n+1H given by

`(f)(ξ1 ⊗ ξ2 · · · ξn) = f ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn

is clearly bounded by ||f || so extends to an operator we will call `(f) on all
of full Fock space.

Exercise 18.1.3. (i) Show that `(f)∗(ξ1⊗ξ2⊗· · ·⊗ξn) = 〈ξ1, f〉ξ2⊗ξ3 · · · ξn
and `(f)∗(ξ) = 〈ξ, f〉Ω for ξ ∈ ⊗1H. (ii) Show that

`(f)∗`(g) = 〈g, f〉

18.1.4 Fermionic Fock space.

Given a Hilbert spaceH, the nth. exterior or antisymmetric power ofH is the
Hilbert space ΛnH = p(⊗nH) where p is the antisymmetrisation projection

p(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) =
1

n!

∑
σ∈Sn

(−1)σξσ(1) ⊗ ξσ(1) ⊗ ξσ(2) · · · ⊗ ξσ(n)

Definition 18.1.5. The fermionic Fock space of H is the Hilbert space direct
sum

F(H) = ⊕∞n=0ΛnH

.

Given ξ1, ..ξn ∈ H we set

ξ1 ∧ ξ2 ∧ · · · ∧ ξn =
√
n! p(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn)

Exercise 18.1.6. Show that 〈ξ1 ∧ ξ2 ∧ · · · ∧ ξn, η1 ∧ η2 ∧ · · · ∧ ηn〉 is the
determinant of the matrix whose (i, j) entry is 〈ξi, ηj〉.

Obviously if σ ∈ Sn,

ξσ(1) ∧ ξσ(1) ∧ ξσ(2) · · · ∧ ξσ(n) = (−1)σξ1 ∧ ξ2 ∧ · · · ∧ ξn.
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Exercise 18.1.7. For f ∈ H define A(f) : ⊗nH → Λn+1H by

A(f)(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) =
1√
n!
f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn,

show that A(f)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) = f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn.

Exercise 18.1.8. The previous exercise shows that for each f ∈ H there is
a bounded linear map from ΛnH to Λn+1H defined by:

a(f)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) = f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn.

Show that

a(f)∗(ξ1 ∧ ξ2 ∧ · · · ∧ ξn+1) =
n+1∑
i=1

(−1)i+1ξ1 ∧ · · · ξ̂i · · · ∧ ξn+1

We have sloppily left out the n on our operators a(f). But we can put
them all together to form the densely defined operators a(f) and a(f)∗ on
F(H) whose domain is the algebraic direct sum of the ΛnH.

Exercise 18.1.9. Show that these densely defined operators satisfy the CAR
relations.

Exercise 18.1.10. Show that ||a(f)ξ|| ≤ ||ξ|| for ξ in the domain of a(f) so
a(f) an a(f)∗ extend to bounded operators on F(H) which are one another’s
adjoints and satisfy the CAR relations.

18.2 CAR algebra, CCR algebra and the (ex-
tended) Cuntz algebra.

18.2.1 CAR algebra

Definition 18.2.2. If H is a complex Hilbert space the CAR (canonical
anticommuation relations) algebra CAR(H) is the unital *-algebra with gen-
erators a(f) for each f ∈ H subject to the following relations:
(i) The map f 7→ a(f) is linear.
(ii) a(f)a(g) + a(g)a(f) = 0 ∀f, g ∈ H.
(iii) a(f)a(g)∗ + a(g)∗a(f) = 〈f, g〉 ∀f, g ∈ H.

(the identity is implicit on the right hand side of (iii))
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It is clearly going to be useful to define the anticommutator of two oper-
ators as

{a, b} = ab+ ba.

Exercise 18.2.3. Show that if dimH = 1, CAR(H) is isomorphic toM2(C).
Show further that if dimH = n <∞, CAR(H) ∼= M2n(C).

This exercise immediately implies that there is a unique C∗-norm on
CAR(H) so it is neither here nor there to consider it a C∗-algebra.

Exercise 18.2.4. Show that ||a(f)|| = ||f ||.

Exercise 18.2.5. A unitary u on H obviously defines an automorphism αu
of CAR(H) (sometimes called a Bogoliubov automorphism) by functorially
extending αu(a(f)) = a(uf). In particular choosing u = −1 makes CAR(H)
into a Z/2Z-graded algebra. Define a notion of graded product A ⊗Z/2Z B
for Z/2Z-graded algebras A and B. Show that if V and W are orthogonal
Hilbert subspaces of H then CAR(V ⊕W ) ∼= CAR(V )⊗Z/2Z CAR(W ).

18.2.6 CCR algebra

18.2.7 Cuntz algebra

Definition 18.2.8. Given the Hilbert space H, let the extended Cuntz alge-
bra C(H) be the unital ∗-algebra with generators `f for each f ∈ H subject
to the following relations:
(i) The map f 7→ `(f) is linear.
(ii) `(f)∗`(g) = 〈g, f〉 ∀f, g ∈ H.

Exercise 18.2.9. If ξ1, ξ2, ..., ξn are orthogonal unit vectors then `(ξi) are
isometries with orthogonal ranges, and the projection

n∑
i=1

`(ξi)`(ξi)
∗

depends only on the space spanned by ξ1, ξ2, ...., ξn.

18.3 Quasi-free states

18.4 Complex structure
One way to obtain the existence of the quasi-free state φP for a projection
P is to change the complex structure on H.
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Definition 18.4.1. If K is a real Hilbert space, a complex structure on K is
an orthogonal transformation J with J2 = −1.

Lemma 18.4.2. A real Hilbert space K with inner product (, ) and a complex
structure J can be made into a complex Hilbert space by defining the action
of C as (x+ iy)ξ = xξ + yJξ and the inner product

〈ξ, η〉 = (ξ, η)− i(Jξ, η)

Proof. The vector space structure is routine as is sesquilinearity of 〈, 〉. But
〈ξ, ξ〉 = (ξ, ξ)− i(Jξ, xi) and (Jξ, xi) = −(ξ, Jξ) = −(Jξ, xi) which is there-
fore zero. Hence <,> is positive definite and defines the same norm as (, )
so completeness is unchanged.

Definition 18.4.3. The Clifford algebra of a real Hilbert space kh is the
(complex) *-algebra generated by c(f) subject to:
(i) The map f 7→ c(f) is real linear.
(ii) c(f) = c(f) ∗ ∀f ∈ K.
(iii) {c(f), c(g)} = 2(f, g) ∀f, g ∈ H.

(clearly c(f)2 = (f, f) is equivalent to (iii)).

Proposition 18.4.4. If kh is a real Hilbert space with complex structure J ,
defining a(f) = c(f) + ic(Jf) defines a representation of the CAR algebra of
the complex Hilbert space in the Clifford algebra of K.
Proof.

Proposition 18.4.5. If H is a complex Hilbert space, sending c(f) to a(f)+
a(f)∗ defines an isomorphism of the Clifford algebra of the real Hilbert space
defined by the real part of 〈, 〉 with CAR(H)

Given a complex Hilbert space H and a projection p ∈ B(H) we can
change the complex structure simply by changing the sign of i on pB(H)⊥

thus: consider H as a real Hilbert space with (ξ, η) = Re(〈ξ, η〉) and define
and J by J = ip− i(1− p) (which is actually C-linear). Call HJ the Hilbert
space with the new complex structure. Then by the previous proposition
a(f) defines an isomorphism of CAR(HJ) with CAR(H) and hence a repre-
sentation of CAR(HJ) every time we have one of CAR(H), in particular the
Fock representation.

The question thus becomes: what does HJ look like? If H is a Hilbert
space let H be the dual Hilbert space of H and ξ 7→ ξ be the canonical
antilinear map from H to its dual.

Proposition 18.4.6. Let q = (1 − p). Then the map ξ 7→ pξ ⊕ qξ is a
C-linear isomorphism from H to HJ .
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Chapter 19

Subfactors
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Chapter 20

Free probability
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Appendix A

Proof of the KMS condition.

Theorem A.0.7. Let φ be a faithful normal state on a von Neumann algebra
M . Then the modular group σφt is the unique one parameter automorphism
group of M which satisfies the KMS condition for φ.

Proof. Perform the GNS construction with canonical cyclic and separating
vector Ω and modular operators S = J∆1/2. Recall that f(∆)Ω = Ω for any
function of ∆ with f(1) = 1. In particular φ(σφt (x) = 〈(∆itx∆−itΩ,Ω〉 so σφt
preserves φ.

Now let us check the rest of the KMS condition. We have

φ(σφt (x)y) = 〈∆−ityΩ, x∗Ω〉

and

φ(yσφt (x)) = 〈yσφt (x)Ω,Ω〉
= 〈J∆1/2σφt (x∗)Ω, J∆1/2yΩ〉
= 〈∆1/2yΩ,∆1/2∆itx∗Ω〉
= 〈∆1/2−ityΩ,∆1/2x∗Ω〉

So let ξ = yΩ, η = x∗Ω and let pn be the spectral projection for ∆ for
the interval [1/n, n] so that pn tends strongly to 1 and ∆±1 are bounded on
pnHφ. The functions

Fn(z) = 〈∆−izpnξ, η〉

are then entire and

|Fn(t)− φ(σφt (x)y)| = |〈∆−it(1− pn)ξ, η〉| ≤ ||(1− pn)ξ|| ||η||
|Fn(t+ i)− φ(yσφt (x))| = |〈∆1/2−it(1− pn)ξ,∆1/2η〉| ≤ ||(1− pn)∆1/2ξ|| ||∆1/2η||.
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Hence the Fn are bounded and continuous on the strip {z : 0 < =mz < 1}
and converge uniformly on its boundary. By the Phragmen-Lindelof theorem
we are done.

Now let us prove uniqueness of the modular group with the KMS condi-
tion.

Let αt be another continous one-parameter automorphism group satisfy-
ing KMS for φ. The fact that αt preserves φ means we can define a strongly
continous one-parameter unitary group t 7→ ut by utxΩ = αt(x)Ω. By Stone’s
theorem it is of the form t 7→ Dit for some non-singular positive self-adjoint
operator A. The goal is to prove that D = ∆. As a first step we construct a
dense set of analytic vectors in MΩ by Fourier transform. Let A be the set
of all operators of the form ∫ ∞

−∞
f̂(t)αt(x)dx

for all C∞ functions f of compact support on R. The integral converges
strongly so

f(log(D))xΩ =

∫ ∞
−∞

f̂(t)Dit(xΩ)dx

is in AΩ. Thus the spectral projections of D are in the strong closure of A
and AΩ is dense. Moreover z 7→ DzxΩ is analytic for x ∈ A since xΩ is
in the spectral subspace of A for a bounded interval. Also AΩ is invariant
under Dz by the functional calculus. To compare with φ define, for x and y
in A, the entire function

F1(z) = 〈D−izyΩ, x∗Ω〉.
Let F be the function, analytic inside the strip and continuous and bounded
on it, guaranteed for x and y by the KMS condition. Then if we define G(z)
for −1 ≤ =mz ≤ 1 by

G(z) =


F (z)− F1(z) if =mz ≥ 0;

F (z)− F1(z) if =mz ≤ 0.

Since F and F1 agree on the real line G is analytic for −1 < =mz < 1, hencecheck typesetting

equal to 0, and since both F and F1 are continous on the strip, φ(yσt(x)) =
F (t+ i) = F1(t+ i) = 〈D1−ityΩ, x∗Ω〉. In particular putting t = 0 we get

〈DyΩ, x∗Ω〉 = φ(yx)

= 〈xΩ, y∗Ω〉
= 〈J∆1/2x∗Ω, J∆1/2yΩ〉
= 〈∆1/2yΩ,∆1/2x∗Ω〉
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So ∆1/2yΩ is in the domain of ∆1/2 and ∆yΩ = DyΩ.

Thus D and ∆ agree on AΩ. But multiplication by the function ez + 1 is
a linear isomorphism of C∞c so by functional calculus (D+1)AΩ = AΩ which
is thus dense. Since D + 1 is invertible by spectral theory, any (ξ, (D + 1)ξ)
in the graph of D+1 can be approximated by (AnΩ, (D+1)AnΩ). Thus D is
essentially self-adjoint on AΩ, and both ∆ and D are self-adjoint extensions
of the restriction of D to this domain. Thus D = ∆.
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