HYPOELLIPTICITY OF THE KOHN LAPLACIAN
FOR THREE-DIMENSIONAL TUBULAR CR STRUCTURES

MICHAEL CHRIST

By a tubular three-dimensional CR structure we will mean a CR structure defined
in an open subset of R?, together with a coordinate system (z,y,t) € R?, together
with a Cauchy-Riemann operator of the form

(1) 0, = 0x + (0, — ¢/ (2)0)

where ¢ € C*°(R) is real-valued. Such CR structures may be realized as the bound-
aries of tube domains {z : Im 2y > ¢(Re 21)} in C*%. The Levi form may be identified
with the function ¢”(z). We always assume that ¢ is convex, so that the structure
is pseudoconvex. By J; we mean the adjoint of 9, with respect to L*(R?, dx dy dt);
thus 0f = —0, + (9, — ¢'(2)9;).

The purpose of this note is to characterize hypoellipticity of the Kohn Laplacian
9, 0; for this class of CR structures.

Main Theorem. For any C* pseudoconvez tubular three-dimensional CR structure,
the following four conditions are equivalent in any open set.

(o) 9, is C™ hypoelliptic, modulo its nullspace.

(B) The CR structure is not exponentially degenerate.

(v) The pair {0,,0;} satisfies a superlogarithmic estimate.

(8) There exists s > 0 such that 0, is H® hypoelliptic, modulo its nullspace.

The main new result here is the implication [exponential degeneracy] = [nonhy-
poellipticity]. The implication [not exponentially degenerate] = [hypoelliptic] is a
sharpening of the known sufficient condition zlog ¢"(z) — 0 as |z| — 0.

This work is part of a broader investigation of related problems, concerning both
hypoellipticity and global regularity in C*°, C¥, and Gevrey classes. See [3] and [15]
for speculation on some of these matters in a wider context. The essential novelty in
this paper is a characterization for a natural, though restricted, class of structures,
as opposed to isolated examples; tube domains have long served as prototypical
examples. The author had not anticipated obtaining such a characterization, because
the behavior of smooth functions vanishing to infinite order can be so wild.

For arbitrary smooth, pseudoconvex three-dimensional CR structures, a superlog-
arithmic estimate for {9, ,;} implies hypoellipticity [4], but the the converse is false
in general [5].

The notions appearing in this characterization are defined as follows.
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Definition 1. §, is C™ hypoelliptic modulo its nullspace in an open set U if for
any open subset V C U and every function u € L?(V) such that dfu € L?(V) and
9,0;u € C=(V), necessarily dfu € C®(V).

For any parameter s > 0, 9, is H® hypoelliptic modulo its nullspace in an open
set U if for any open subsets V € V C U and every function v € L?(V) such that
Ju € L2(V) and 9,07u € C®(V), necessarily dju € H*(V).

Here H® denotes the usual Sobolev space of functions having s derivatives in L?;
in the second part of the definition, V' may be taken to be a ball, and H*(V') is then
the space of all functions in L?(V') extendible to functions in H*(R?).

As is well known, C'*° hypoellipticity, modulo the nullspace, holds whenever the
structure is strictly pseudoconvex, or more generally of finite type, at every point of
U, so the only issue here is the possible appearance of singularities at points where ¢”
vanishes to infinite order. It is explained in [10, 11] why this notion of hypoellipticity
is natural.

A variant would be merely to require u, 9;u to belong to D'(V); our results apply
equally well to that variant, but we focus on the first formulation since it arises most
directly in complex analysis.

Definition 2. A collection of (complex) vector fields { X} is said to satisfy a super-
logarithmic estimate in an open set U C R? if for every relatively compact subset
V C U and every € > 0 there exists C. < oo such that for every function u € C!
supported in V,

@) / Qo | () de < €3 1X,uls + ol
7

where 4 denotes the Fourier transform of w.

An equivalent condition is that for each V' there exists a function w, satisfying
w(r)/logr — +o00 as r — 400, such that

®) LD P ds < © 3 1ullts + Clul

J

for all u € C! supported in V. This formulation explains the terminology “superlog-
arithmic”.

For a proof that the superlogarithmic estimate for the pair {d,, 9; } implies hypoel-
lipticity modulo the nullspace for arbitrary smooth, pseudoconvex three-dimensial CR
structures, see the proofs of Corollaries 3.2 and 3.3 of [4]. Hypoellipticity modulo the
nullspace is not explicitly discussed in that reference, but follows from the arguments
there together with a simple microlocalization as in [9, 10].

|I| denotes the length of an interval I C R. We denote the endpoints of a closed
interval by z4; thus I = [x_, z,].

Definition 3. Let J be an open subinterval of R'. A CR structure satisfying the
above conditions is said to be exponentially degenerate in J x R? if there exist § > 0
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and a sequence of intervals I, C R, all contained in some compact subset of J, such
that

(4) |I,] = 0asv— o0

and

(5) / ¢"(x)dr < eI
I,

For example, if ¢"(z) < exp(—c/|z|) as x — 0 for some ¢ > 0 then the structure
is exponentially degenerate; but the converse does not hold. Note that exponential
degeneracy is defined only for tubular CR structures, whereas the other two notions
appearing in the main theorem are defined in general.

For simplicity, we assume henceforth that ¢ is defined on all of R, and that ¢” has
a strictly positive lower bound outside some bounded interval. This can of course be
arranged by restricting and then extending a given ¢.

By separation of variables, everything reduces to an analysis of properties of certain
ordinary differential operators.

Definition 4. For n € C and 7 € R,
(6) Lyr= (=0 +1n—1¢(x)) o0+ (n—7¢(x))) .
Our first lemma is rather routine.

Lemma 1. The following conditions are equivalent.
o The pair {51),5{;} satisfies a superlogarithmic estimate.
e The lowest eigenvalue N(1,n)* of L, , satisfies A(7,n)/logT — o0 as T —
+00, uniformly in n € R.
o The CR structure is not exponentially degenerate.

Here \(7, n)? is defined to be the infimum of (£, , f, f) over all compactly supported
C? functions f satisfying || f||z2 = 1.

Proof. 1f the operators L, ; satisfy the stated lower bounds, then the superlogarithmic
estimate follows directly by application of a partial Fourier transform with respect
to the coordinates (y,t).

To show that exponential degeneracy implies failure of the eigenvalue estimate,
fix §,{1,} as in the definition of degeneracy. Set 7, = exp(a/|l,|), where o > 0 is
a constant to be specified below; thus |I,| = a/logT,. Fix g € C*°(R), supported
in (—1,1), not vanishing identically. Set f = g o ¢,, where ¢, is the unique linear
transformation mapping the left endpoint of I, to —1, and the right endpoint to +1.
Specify n, by

(7) [r.¢'(x-) —m] = =[n¢'(z4) —n.] .
Since 1, — 7,¢" vanishes at some point of I,
©) n-nd@l <5 [ &

I,

for every x € I,.
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Now dropping the subscripts v to simplify notation,
Coct £ =PI+ [ 7P - 76 do 7 [ |f0)P6"(a) da
R R
<o+ ijax\n —7¢'|* - || + CT/¢”
I

scm*+om#«/dv+cj/w.
I I

Hence by Cauchy-Schwarz,
O (Lack DINIP S U+ O [ )7 < Cllog) 2 + Crr 0
I

Choosing any a < 9, the last term is bounded by a negative power of 7, so all
together, the ratio is < C(log 7)~2, and the eigenvalue estimate fails.

Suppose next that the structure is not exponentially degenerate. To prove that the
estimate for {£, ;} does hold, let n,7 € R be given, with 7 large and positive. Let A
be a large parameter, and let I = {z : [n—7¢'(x)| < Alog7}. Thent [, ¢" = 2AlogT,
whence |I| < d/Alog 7. Now

(10) wwﬂﬁzAﬂ%%/’uP+ww.

R\J

By a Poincaré-type inequality, [; |f[* < CIIP[|f']|* + C [z, | so

(11) wwﬁﬁzAwﬁrAvmthQﬂVF—mmﬂ

Since |I| < §/AlogT, min(AlogT,|I|7!) > Amin(1,67')log7. Choosing A suffi-
ciently large completes the proof of the eigenvalue bound.

It remains to show that exponential degeneracy precludes the superlogarithmic
estimate. Fix an auxiliary function h € C*°(R), supported in a small neighborhood of
the origin. For each interval I, let ¢; be the center of I, and set hy(z) = h((x—cy)/|1]).
Consider functions wuy,,(z,y,t) = h(y)h(t)e™ ™ ¥h (x). For such functions u, the
superlogarithmic estimate is equivalent to

(12) 11](log(2 + 7 + [l + [11™))* < elldyull® + e Ful? + .11,
for arbitrarily small € > 0. We have

(13) 19y wll® + 105 ull® < U™ + Ol max [n — 7¢/ (),

so the superlogarithmic estimate becomes

(14) log(r + [nl) < €|I| ™" + emax |n — 7¢/ ()| + C,
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which is to hold uniformly in I, 7, 7. Fixing I, 7, there exists 1 such that max,c; |n —
7¢'(x)| = 7 [, #"; moreover, considering only intervals I of bounded length and lo-
cated in a fixed neighborhood of the origin, we have |n| < 7 and hence the superlog-
arithmic estimate becomes

(15) log7 < c(|I]"* + T/¢f') e
I

Suppose now that [, ¢" < exp(—d/|I|), and set 7 = 1/|I| [,¢". Then logT >
clog |I|7!, so the superlogarithmic estimate implies that clog |I|™! < elog|I|™! + C.
for arbitrarily small € > 0, a contradiction. U

We now begin the main step of the analysis, the proof that exponential degeneracy
implies nonhypoellipticity. To each bounded closed interval I = [z_, x| associate

(16) Or = 3(¢'(z-) + ¢/ (24)).

An equivalent characterization of 0 is that [¢/(z_) — 0] = —[¢/(x4) — 6;].
Lemma 2. For each I, there exists a unique interval I* = [z*, 2% ] such that I* D I,
|[I*| = 2|1|, and [¢/(x*) = 0;] = = [¢(2}) — 01].

Proof. Consider F(t) = ¢'(t) + ¢'(t + 2|I|) for x_ — |I| < t < z_. F is strictly
increasing, and F(x_ — |I|) = ¢'(x— — |I]) + ¢'(z4) < ¢'(z-) + ¢'(z4) < ¢ (z-) +
¢ (x4 +|I|) = F(x_), so there exists a unique ¢t € R with the desired property, and

t €z —|I|,z_]. Set I* = [t,t + 2|I|]. O
Definition 5. For any interval I C R,

f]* ¢//
(17) o= F

p(I) is bounded above, uniformly for all intervals, if and only if ¢” vanishes only
to finite order at any point; that is, if and only if the CR structure is of finite type.
Later, the key step of our analysis, Lemma 4, will exploit the unboundedness of p.
The purpose of the next lemma is to show that there exist intervals for which | ;9"
is small and p([) is large, simultaneously.

Lemma 3. Suppose the CR structure is exponentially degenerate. Then there exist
a positive constant § and a sequence of intervals I, C R such that |I,| — 0,

(15) o <o
Lo

and

(19) p(I,) — 00 as v — oo.

Proof. The hypothesis gives a sequence of intervals whose lengths tend to zero, satis-
fying the first inequality. All such intervals necessarily lie in a bounded region, since
¢" is bounded below outside a compact set. Consider any large constant A, let 0 < €
be a sufficiently small parameter to be chosen below, and consider the nonempty
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collection of all bounded closed intervals J C R such that [, ¢” < exp(—d/|J|) and
[J] < e

We argue by contradiction; suppose that for all such intervals J, p(J) < A. Then
for any such J, consider the tower defined by J,, 11 = J;, with Jy = J. Denote by N
the smallest integer such that p(Jy) > A.

To see that such an N exists and that |Jy| must itself be smaller than any preas-
signed quantity if € is chosen to be sufficiently small, suppose instead that |Jy| > 1.
Denote by M the unique integer such that 1 < |Jp/| < 2. Then

(20) Qb” < AM ¢// < AMe—é/\J\ < e—ClogAlog\J\e—d/lJl;

Im Jo
since |J| < e, the right-hand side can be made arbitrarily small by choosing e suffi-
ciently small. But since ¢” is uniformly bounded below outside a compact set and
Il > 1, [ Tar ¢" is bounded below by a strictly positive constant. Thus we have a
contradiction; hence N must exist.

The same reasoning shows that if € is sufficiently small, then |Jy| must be smaller
than any preassigned quantity «; just change the condition 1 < |Jy| < 2 to a <
|J M| < 2.

Now by the same reasoning,

(21) & < AN/ < =8/In] (e Clog ATF(I)~F(n )

JNn
where F(t) = log(1/t) — d/t. For any 6, F'(t) > 0 for all sufficiently small ¢; and
we have already ensured that |J| and |Jy| are as small as may be desired. Thus
[, 9" < e~%/UNI " Jy was chosen so that p(Jy) > A, and A is arbitrarily large. [

Definition 6.

(22) N(,T) = / e2((2=7(2)) 1.
R
The following lemma is the core of our analysis. We write
1
(23) Ty, = —F— .
7] [, ¢

Lemma 4. Suppose there exist a constant 0 and sequence of intervals {I,} such that
[, ¢" < exp(=0/|L]) for all v, |I,| — 0, and p(I,) — oo as v — oo. Then there
erist C < oo and a sequence {vy} — oo such that for each k there ezists ¢ € C,
satisfying |Cx| < 7, , such that

(24) N(Qf; Tl/k) = Oa
and
(25) | Im ¢;| < Clogm,,.

Here Im denotes the imaginary part.
We have recently [5] given an example of a cylindrically symmetric CR structure,
strictly pseudoconvex except on a single real curve transverse to the complex tangent
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spaces, for which hypoellipticity fails to hold. This was done by building in detail
a CR structure for which analogues of N (-,7,), for a sequence 7, — oo, are small
perturbations of an explicit function, which manifestly has zeroes. In the present
article we take a different route, showing that the existence of appropriate zeroes is
inevitable. It may well be possible to apply this technique to the cylindrically sym-
metric case, as well, to obtain a necessary and sufficient condition for hypoellipticity.

Before beginning the proof, we point out that unlike the real analytic case [2],
there is no scaling symmetry which reduces matters to the case 7 = 1 modulo small
perturbations. Perhaps paradoxically, the following argument actually exploits this
lack of symmetry.

Proof. To simplify notation we drop the subscript v for the first part of the proof. Let
I = [x_, x4] be one of the intervals I,. Set n = 76 where 6§ = §(I) was defined by the
relation (16). Let ¢ be the unique linear endomorphism of R satisfying ¢(£1) = z4.
Let s% = ¢7*(2%); then s* < —1 <41 <%, and s — s* =4.

Set v = minge(7é(x) — nz), and set

(26) Y= (r¢—nz—7)ol

Then v is nonnegative, smooth and convex, and assumes its minimum value 0 at
some point of [—1,1].
Crucial properties of v are:

(27) 0 <(£1) < 1.
(28) W' (s)| = 5p(1).

Indeed, the maximum over [—1, 1] of ¥ equals the maximum over I of 7¢(z) —nx — 1.
The derivative of the latter function is 7¢/ — 7, which vanishes at some point of I by
the intermediate value theorem, since the choice of n means that [T¢’ (x ) — 771’,} =
— [T¢’ (ry) — mu}. Hence since v was chosen to make the minimum value equal 0,
the maximum value is < [} |7¢/ —n| < |I|7 [, ¢" = 1, by the definition of 7.

The lower bounds for [¢)’(s% )| are obtained similarly. I* = [z*, 2% | was constructed
so that [7¢/(z*) — ] = —[7¢/ (%) — n]. Therefore

29) (el = B0t — ) = (e =) = 4 [ o= dmtr) [ 0"
Thus
(30) 5] = T [ "= ol
Now by writing ((s) = =5%= + |—Qs, we obtain
N +¢,7) = 1] / 2~ (+)] g
R

e / € o )+l g=208) g — | Tle=21eC@ ) g (),
R
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where

(31) M;(2) = /R e (s
and

(32) z=|I|¢ .

M depends on [ through .

A simple normal families argument demonstrates that for all sufficiently large v,
there exists a zero z € C of M, satisfying |z| < C, uniformly in v. Indeed, since —2 <
st < st <42, exp(—2¢,(s)) < exp(—p(1,)|s — 2|) for every |s| > 2. Since p(1,) —
00, and the functions exp(—21),) are everywhere < 1, it follows that on any compact
subset of C, all but finitely many of the functions M, (z) extend holomorphically, and
the collection of all of these extensions forms a normal family.> Moreover, there exists
a subsequence {vy} such that exp(—21,, ) converges weakly to a bounded function f
that is supported on [—2,2]. For any such subsequence, f(s) > e~2 for all |s| < 1,
since 0 < 9(s) < 1. The limiting holomorphic function is the Fourier transform
of f. Since f has compact support, |f(z)| < Cexp(C|z|) for some C < oo, for
all z € C. Consequently f must have (an infinite discrete set of) zeroes, since the
measure f(s)ds is not a Dirac mass. Fixing one zero of f, any holomorphic function
sufficiently close to f must have a nearby zero, so there exist a constant C' < oo,
a subsequence {vx}, and a sequence {z;} such that for each k, M;, has a zero
satisfying |z| < C.

Consequently N (n+¢,7) = 0 and | Im (n+¢)| = [ Im ()] = |[I|7} Im (2)| < C|I]71.
To conclude the proof, it suffices to show that

(33) |I,| > ¢/logT,.

Now the basic degeneracy condition [, ¢” < exp(—d/|I]), combined with the defini-
tion of 7, give |I| > —d/log [, ¢" = 6/log(7|I]) = d(logT —log(|1|7"))"" ~ 6/logT,
since the definition 7 = 1/[1| [, ¢" implies that 7 > |I|~" for all intervals I in a fixed
compact set, and since only such intervals are among the degenerate intervals I,,. [

Rather than constructing singular solutions, we will show that d, fails to be hy-
poelliptic by exhibiting functions that disprove certain a priori inequalities which
are a consequence of hypoellipticity. Those functions could alternatively be used as
building blocks in an infinite series whose sum is a singular solution.

If 9, is C* hypoelliptic modulo its nullspace, then for any open subset V, any
relatively compact subset V', and any «, there must exist M, C' < oo such that for
any u € C>(V),

(34) 19z,

Yt

5;“"00(‘//) < CHUHCO(V) + CH@;U”C'O(V) + C"ébégu"CM(v),

this is a consequence of the Baire category theorem. Restricting attention to functions
u(x,y,t) = exp(itt + iCy) f(z), where 7 € RT and ¢ € C and f satisfies L. f = 0,

1Tt is here that the unboundedness of the numbers p(1,) is exploited.
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setting d¢, = 0, — (¢ — 7¢/(x)), and taking V = {|z| + |y| + |[{| < €} and V' =
{lz| + |y| + |t| < €/2}, a consequence would be that for any € > 0,
(35) 7" s‘up/2 |de - f ()] < Ceetm©) |Sl|lp (If ()] + |de.r f()]),

z|<e z|<e

uniformly for all f, (,7; the crucial factor of 7 on the left arises from taking one
derivative of exp(irt). In the same way, H® hypoellipticity modulo the nullspace
would imply that for any €,¢ > 0,

(36) TN der fll 2 qej<ey < Ceer ™ Ol (1 1 e2gie<2ey + lde,r Fll L2gpej<2e) -

Lemma 5. Suppose there exist sequences of positive real numbers 1, — 400, and
complex numbers (,, such that N'(¢,,7,) = 0 for every v, |G,|/7, — 0, and [Im (| <
ClogT,. Then for any s > 0, 0, fails to be H® hypoelliptic, modulo its nullspace.

Proof. We will often drop the subscript v in order to simplify notation. Set ®(x) =
T,0(x) — (,x = T7¢(x) — (x and set

(37) £(2) = f(z) = €@ / 200 s

—0o0
Then L, f =0, and d¢ . f = e ®.
The convex function Re ® has a unique critical point zy, which tends to zero as
v — oo because |(,|/7, — 0. Moreover, for all but finitely many v,

(38) e 2z < Clle™ || r2gjaj<ery -

Indeed, define z, > xo so that Re ®(z;) = 1+Re ®(x(). Clearly 2, — 0 as v — oc.
Then Re ®(zy) > (zy — x9)”!, and convexity of Re ® and a simple comparison
imply that

(39) / 6_2Re P S ($+ _ l,0>6—2 Re @(.Z’Jr) S (l,+ _ 1,0)6—2 Re @(zo)‘
T+
On the other hand,
(40) / + 6_2Re P Z / + 6_26_2 Re ®(x0) Z 6_2(ZL’+ . xo)e—QRe <I>(x0)’
o z0

so for large v,

) [ Ty
(41) / 6—2Re¢’ S / e—2Re<I> S C/ e—QRe <I>'
€ T4 o

The same reasoning applies on (—oo, zg].
Thus (36) would imply that

(42) T |lde.r fllz2gai<ey < Coo T2 grat<ery + llder fllz2gai<ey)

uniformly as v — oo for all €,¢’ > 0. Choosing € < s, the second term on the right
becomes much less than the left-hand side for large v, so may be neglected. In order
to obtain a contradiction, it suffices to verify that || f||r2fjzj<er < CllderfllL2qjz)<e};
in fact there is a pointwise bound

(43) F(@)| < Clde f(a)]  for all .
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To prove (43), consider first the case where z < xy. Since —@ is increasing on
(_007 'IO)’

(44) |f(z)] < / e~ Re®() s |
Let J = J, = {s : |[Re ®(s)| < Re ®(z9) + 1} = [z_,z,]. Then by convexity,
|Re @'(z4) > |J|7", so 7| [ ¢"| => |J|~". The contribution of .J N (—00,z) to (44)
is < [J]em e ®@0) < O|J|e~Re @ if ¥ >z and is zero if z < z_.

Outside J, since Re @’ is monotonic, we have as in the proof of (38) that the
contribution of (—oo, z]\J is

(45) < C|Re ¥'(z)]] e R 2@ < | J]e= Re ®@),
Thus
(46) £(2)] < C|J||de~f ()]

for all z < x, uniformly in v. Since |J| — 0 as ¥ — oo, this is stronger than (43)
except for the restriction = > xg.

In the analysis of the case x > xy, the crucial condition N (¢, 7) = 0 finally comes
into play. The vanishing of N ((,7) means equivalently that f has the alternative
representation

(47) f(z) = —eq)(‘”)/ e72%0) s,

Hence for x > x, |f(x)] < [ exp(—®(s))ds, and the reasoning of the preceding
paragraph may be repeated to obtain the bound |f(z) < C|d¢ . f(z)|, uniformly in
x, V.

Combining the above steps, we conclude that for any positive s, (36) fails to hold,
and hence that 0, fails to be H® hypoelliptic, modulo its nullspace. 0]

Remark. It is natural to ask why Lemma 4 is needed. The simple counterexamples
used in the proof of Lemma 1 to demonstrate the failure of the superlogarithmic
estimate do not suffice to disprove hypoellipticity; they are not annihilated by 5&; 5{: ,
and the last term on the right-hand side of (34) turns out to be far larger than the
left-hand side, so that no contradiction is reached.

A second explanation is that the related operators —9? — (¢/(x)d;)?, in R?, are
hypoelliptic so long as ¢’ vanishes only at one point; see [6] and the later works
[4],[12], and for a more general analogue in the real analytic category see [7]. An
argument like that used above to disprove the superlogarithmic estimate would apply
equally to —0% — (¢/'(2)0;)2.

A third explanation is that if one runs the proof of Lemma 5 with ( =7 € R, then
| f(2)| has size roughly cexp(cer) for x = €, so the right-hand side of (35) is far larger
than the left-hand side, and no contradiction results.
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Remark. It is natural to ask about hypoellipticity for two closely related operators
of the sum of squares type. These are

L= 3 (#()).
L=, ¢®a.

We believe that hypoellipticity is equivalent to the superlogarithmic estimate for
both, under the supplementary hypothesis for L that ¢ is convex. L is potentially
easier to handle, since self-adjointness of the associated ordinary differential operators
—02 4 712¢/(x)? translates into the existence of a genuine lowest eigenvalue A(7)?, and
((7) can be chosen to be iA(7); an eigenfunction of —9? + 72¢/(z)? then gives a
solution of —9? +n%+ 72¢'(x)?. Convexity of ¢ is no longer a natural hypothesis, but
it is elementary to show that for any ¢, for large 7 € R™, this lowest eigenvalue has
order of magnitude

49 A7)~ inf  |I|7Y,
( ) ( ) I:f1|¢/|:7'71| ‘

(48)

where the infimum is taken over all bounded intervals I satisfying the stated equality.?
If A\(7)/logT — 00 as 7 — 400, then L satisfies a superlogarithmic estimate, hence
is C'* hypoelliptic [13],[4].

To show that L fails to be hypoelliptic when the superlogarithmic estimate fails to
hold, would require an analogue of Lemma 5; we have not carried out that part of
the analysis.

Remark. The second and more delicate cousin is L. We believe that for convex
¢, the same criterion should be necessary and sufficient for its hypoellipticity as for
51) 5{; . As in the analytic case [1], the appropriate analogue of A for these operators
is the Wronskian of two properly normalized solutions of the associated ordinary
differential equations, and everything should boil down to its having zeroes satisfying
| Im (¢)| < C'log 7. However, we have not carried out the analysis.

Remark. The main theorem is in accord with the general remarks in [3].

Remark. One could argue that this situation is parallel with that of constant-
coefficient differential operators in R", which are C'*° hypoelliptic if and only if
their (full) symbols have a sequence of zeros &, € C" with |,| — oo satisfying
| Im (&,)] < C'log|&,|; see Theorem 11.1.3 of [8]. Of course, in the constant-coefficient
setting, the formally weaker bound |Im (§,)| — oo is equivalent [8] to the formally
stronger bound |Im (&,)| > ¢|¢,|° for some § > 0, so there is a certain degree of
fudging here.

REFERENCES

[1] M. Christ, Certain sums of squares of vector fields fail to be analytic hypoelliptic, Comm. Partial
Differential Equations 16(1991), 1695-1707.

, Analytic hypoellipticity breaks down for weakly pseudoconvexr Reinhardt domains, In-

ternational Math. Res. Notices 1 (1991), 31-40.

2]

2Only in dimension one are such eigenvalue bounds so simply characterizable.



12 MICHAEL CHRIST

, Hypoellipticity: Geometrization and speculation, Progess in Mathematics, Vol. 188

(2000), pp. 91-109, Birkhduser, Basel.

, Hypoellipticity in the infinitely degenerate regime, to appear in ” Complex Analysis and
Geometry”, Ohio State Univ. Math. Res. Inst. Publ. 9, edited by J. McNeal, Walter de Gruyter
2001.

[6] -, Spiraling and nonhypoellipticity for CR structures degenerate along transverse real
curves, to appear in ”Complex Analysis and Geometry”, Ohio State Univ. Math. Res. Inst.
Publ. 9, edited by J. McNeal, Walter de Gruyter 2001.

[6] V.S. Fedii, On a criterion for hypoellipticity, Math. USSR Sb. 14 (1971), 15-45.

[7] V. V. Grusin, A certain class of elliptic pseudodifferential operators that are degenerate on a
submanifold, Mat. Sbornik 84 (1971), 163-195, = Math. USSR Sbornik 13 (1971), 155-185.

[8] L. Hormander, The Analysis of Linear Partial Differential Operators, II, Springer-Verlag,
Berlin, 1983.

[9] J. J. Kohn, Estimates for 0, on pseudo-convex CR manifolds, Proc. Sympos. Pure Math. 43
(1985), 207-217.

[10] , Microlocal analysis on three-dimensional CR manifolds. Geometry and complex vari-
ables (Bologna, 1988/1990), 229-238, Lecture Notes in Pure and Appl. Math., 132, Dekker,
New York, 1991.

[11] , The range of the tangential Cauchy-Riemann operator, Duke Math. J. 53 (1986), no.
2, 525-545.

[12] , Superlogarithmic estimates on pseudoconver domains and CR manifolds, preprint.

[13] Y. Morimoto, Hypoellipticity for infinitely degenerate elliptic operators, Osaka J. Math. 24
(1987), 13-35.

, A criterion for hypoellipticity of second order differential operators, Osaka J. Math. 24
(1987), 651-675.

[15] F. Treves, Symplectic geometry and analytic hypo-ellipticity, Proc. Symp. Pure Math. 65 (1999),
201-219.

[14]

MICHAEL CHRIST, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY,
CA 94720-3840, USA
E-mail address: mchrist@math.berkeley.edu



