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Abstracts

On Multilinear Oscillatory Integrals
Michael Christ

(joint work with Xiaochun Li, Terence Tao, Christoph Thiele)

Consider multilinear integral operators of the form

Tλ(f1, · · · , fn) =
∫

Rd

eiλP (y)
n∏

j=1

fj ◦ `j(y) η(y) dy

where P is a real-valued polynomial, λ ∈ R is a large parameter, η is a smooth
compactly supported cutoff function, and `j : Rd 7→ Rdj are surjective linear
transformations. Is

|Tλ({fj})| ≤ C|λ|−δ
∏
j

‖fj‖L∞

uniformly for all functions fj as |λ| → ∞?
The most fundamental example is the inequality∣∣ ∫∫

Rd×Rd

e−iλx·yf(x)g(y)η(x, y) dx dy
∣∣ ≤ C|λ|−d/2‖f‖2‖g‖2,

which implies the L2 boundedness of the Fourier transform. Here every point
x ∈ Rd interacts with every point y ∈ Rd. This talk, in contrast, is concerned with
generalizations where the integral is taken over a d-dimensional linear subspace of∏

j Rdj ; most n-tuples of points (x1, · · · , xn) ∈
∏

j Rdj do not interact.
In the linear/bilinear case n = 2 this problem has been studied intensively,

in particular by Stein and by Phong-Stein but also by many others. For bilinear
expressions

∫∫
Rd+d eiλP (x,y)f(x)g(y)η(x, y) dx dy with P polynomial, a power decay

bound holds if and only if P is not of the form p(x)+q(y). In the truly multilinear
case quite little is known. The focus here is on the basic question of whether there
is any decay at all.

From linear experience we expect the case of polynomial phases P to be funda-
mental. We’re putting the strongest norm on the functions fj not involving any
smoothness, and aren’t trying to quantify δ.

There is an obvious necessary condition: If P =
∑

j qj ◦ `j for some functions qj

then there’s no decay (take fj = e−iλqj to cancel out all the apparent oscillation).
Definition. P is nondegenerate relative to {`j} if P can not be represented as∑

j qj ◦ `j for any functions qj .
Question. Does power decay always hold for nondegenerate polynomial phase
functions P? This remains open, even for quadratic polynomials in three variables.
Lemma. (Suppose P homogeneous, to simplify statements.) The following are
equivalent:

(1) P 6=
∑

j qj ◦ `j for polynomials qj of degrees ≤ degree(P ).
(2) P 6=

∑
j hj ◦ `j for any distributions hj .
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(3) There exists a constant-coefficient homogeneous linear partial differential
operator L satisfying L(fj ◦ `j) ≡ 0 for all functions fj , for all j and
L(P ) 6= 0.

Warning: Nondegeneracy of P relative to {`j : 1 ≤ j ≤ n} imposes no bound
whatsoever on n in terms of the degree of P and the ambient dimension d.
Definition. P is simply nondegenerate if there exists L of the form L =

∏
j(vj ·∇)

which kills all functions fj ◦ `j , yet L(P ) does not vanish identically.
Theorem. If P is simply nondegenerate then it satisfies a power decay bound.
Proposition. When each dj = d−1, simple nondegeneracy is equivalent to nonde-
generacy. Consequently nondegeneracy is equivalent to the power decay property
in the codimension one case dj = d− 1.
Theorem. If each dj = 1 and if the number of functions n satisfies n < 2d then
any nondegenerate polynomial P satisfies a power decay bound (under an auxiliary
general position hypothesis on {`j}).

A more elementary question arises in several different ways in the discussion:
For what exponents pj ∈ [1,∞] does the multilinear expression make sense for all
fj ∈ Lpj ? Bennett, Carbery, and Tao analyzed the global version (for different
reasons) and obtained a nice characterization:
Theorem. Let `j : Rd 7→ Rdj be surjective linear transformations. Then

∫
Rd

∏
j |fj◦

`j | dy ≤ C
∏

j ‖fj‖Lpj if and only if
∑

j p−1
j dj = d and

∑
j p−1

j dim(`j(V )) ≥
dim(V ) for every subspace V ⊂ Rd.

I’ve given an alternative proof which also establishes the following generaliza-
tion:
Theorem. ∫

Rd∩{y:|`0(y)|≤1}

n∏
j=1

|fj ◦ `j(y)| dy ≤ C

n∏
j=1

‖fj‖Lpj

for all measurable fj if and only if every subspace V ⊂ Rd satisfies d− dim(V ) ≥∑
j p−1

j

(
dj − dim(`j(V ))

)
and furthermore

∑
j p−1

j dim(`j(V )) ≥ dim(V ) if V ⊂
kernel(`0).

The results stated above for multilinear oscillatory integrals fail to cover a well-
known example, and the techniques don’t yield optimal decay exponents δ. The
twisted convolution inequality is

∣∣ ∫∫
Cn×Cn eiλ=(z·w̄)f1(z)f2(w)f3(z − w) dz dw

∣∣ ≤
C|λ|−n/2

∏
j ‖fj‖2. This inequality is self-dual in sense that when it is rewritten

as a trilinear expression in the three Fourier transforms f̂j , precisely the same
expression is obtained, except for changes in various constants.

The last part of the talk is a preliminary report on joint work with Justin
Holmer. We’ve analyzed the inequality∣∣ ∫

Rd

eiλQ(y)
n∏

j=1

fj ◦ `j(y)η(y) dy
∣∣ ≤ C|λ|−δ0

∏
j

‖fj‖L2

where Q is a homogeneous quadratic polynomial, all dj = D, all norms on the
right-hand side are L2 norms, and δ0 = d

2 −
nD
4 is the largest exponent for which
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such an estimate isn’t ruled out by scaling considerations. Thus we’re trying
to characterize the maximally nondegenerate quadratic phase functions. We’ve
established a sufficient condition which we believe is also necessary. Unfortunately,
we don’t yet have a palatable formulation of our sufficient condition, so I discuss
only the method of proof without formulating the result.

Our analysis uses an FBI transform. Define F(f)(x, ξ) = 〈f, ϕ(x,ξ)〉 where
ϕ(x,ξ)(y) = eiy·ξe−|x−y|2/2. There are a Plancherel identity and inversion formula
analogous to those for the Fourier transform. Proving the desired multilinear L2

bound is equivalent to proving a global inequality without any large parameter, of
the form

∣∣ ∫
Rd eiQ

∏
j fj ◦ `j

∣∣ ≤ C
∏

j ‖fj‖L2 . Here there is a preferred unit scale.
With respect to the FBI transform there is no longer any self-duality.

Expressing each fj in terms of F(fj) yields
∫
⊕jT∗(RD)

a(x, ξ)
∏

j F(fj)(xj , ξj) dx dξ

where (x, ξ) = (x1, ξ1, · · · , xn, ξn) ∈ (R2D)n and |a(x, ξ)| ≤ Ce−c distance((x,ξ),Σ)2

where the linear subspace Σ equals the set of all (x, ξ) for which there exists y ∈ Rd,
necessarily unique, such that `j(y) = xj for all j and∇Q(y)+

∑
j `∗j (ξj) = 0. More-

over a exhibits no useful cancellation or decay on Σ. Thus a good model for this
expression is

∫
Σ

∏
j F(fj)(xj , ξj) dσ where σ is Lebesgue measure on Σ. This is a

nonoscillatory multilinear integral operator of precisely the type discussed in the
middle portion of this talk.

Under certain hypotheses of general position on {`j}, the dimension of Σ is al-
ways half of the dimension of the ambient space ⊕jT

∗(Rdj ). Thus scaling consid-
erations are consistent with a bound

∣∣ ∫
Σ

∏
j Fj(xj , ξj) dσ

∣∣ ≤ C
∏

j ‖Fj‖L2(T∗(Rdj ),
and we have Fj = F(fj) ∈ L2 if fj ∈ L2 by the Plancherel identity for the FBI
transform.

Our preliminary theorem says that the original multilinear oscillatory integral
operator satisfies the strongest possible L2 decay estimate provided that Σ (that is,
Σ together with the collection of mappings πj |Σ where πj : ⊕iT

∗(Rdi) 7→ T ∗(Rdj )
is the canonical projection) satisfies the hypothesis of the theorem of Bennett,
Carbery, and Tao with all exponents pj = 2. Special cases include the inequality
for twisted convolution, and Plancherel’s inequality itself.
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