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Abstract. A slightly modified variant of the cubic periodic one-dimensional non-
linear Schrödinger equation is shown to be well-posed, in a relatively weak sense,
in certain function spaces wider than L2. Solutions are constructed as sums of
infinite series of multilinear operators applied to initial data, and these multilinear
operators are analyzed directly.

1. Introduction

1.1. The NLS Cauchy problem. The Cauchy problem for the one-dimensional
periodic cubic nonlinear Schrödinger equation is

(NLS)

{
iut + uxx + ω|u|2u = 0

u(0, x) = u0(x)

where x ∈ T = R/2πZ, t ∈ R, and the parameter ω equals ±1. Bourgain [2] has
shown this problem to be wellposed in the Sobolev space Hs for all s ≥ 0, in the
sense of uniformly continuous dependence on the initial datum. In H0 it is wellposed
globally in time, and as is typical in this subject, the uniqueness aspect of wellposed-
ness is formulated in a certain auxiliary space more restricted than C0([0, T ], Hs(T)),
in which existence is also established. For s < 0 it is illposed in the sense of uni-
formly continuous dependence [3], and is illposed in stronger senses [5] as well. The
objectives of this paper are twofold: to establish the existence of solutions for wider
classes of initial data than H0, and to develop an alternative method of solution.

The spaces of initial data considered here are the spaces FLs,p for s ≥ 0 and
p ∈ [1,∞], defined as follows:

Definition 1.1. FLs,p(T) = {f ∈ D′(T) : 〈·〉sf̂(·) ∈ `p}.

Here D′(T) is the usual space of distributions, and FLs,p is equipped with the

norm ‖f‖FLs,p = ‖f̂‖`s,p(Z) =
( ∑

n∈Z〈n〉ps|f̂(n)|p
)1/p

. We write FLp = FL0,p, and are
mainly interested in these spaces since, for p > 2, they are larger function spaces than
the borderline Sobolev space H0 in which (NLS) is already known to be wellposed.

1.2. Motivations. At least four considerations motivate analysis of the Cauchy
problem in these particular function spaces. The first is the desire for existence
theorems for initial data in function spaces which scale like the Sobolev spaces Hs,
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for negative s. FLp scales like Hs(p) where s(p) = −1
2

+ 1
p
↓ −1

2
as p ↑ ∞, thus

spanning the gap between the optimal exponent s = 0 for Sobolev space wellposed-
ness, and the scaling exponent −1

2
. Moreover, FLp is invariant under the Galilean

symmetries of the equation.
Some existence results are already known in spaces scaling like Hs for certain

negative exponents, for the nonperiodic one-dimensional setting. Vargas and Vega
[12] proved existence of solutions for arbitrary initial data in certain such spaces, for
a certain range of strictly negative exponents. In particular, for the local in time
existence theory, their spaces contain FLp for all p < 3, and scale like FLp for a
still larger though bounded range of p. Grünrock [7] has proved wellposedness for
the cubic nonlinear Schrödinger equation in the real line analogues of FLs,p, and for
other PDE in these function spaces, as well.

A second motivation is the work of Kappeler and Topalov [9],[10], who showed
via an inverse scattering analysis that the periodic KdV and mKdV equations are
wellposed for wider ranges of Sobolev spaces Hs than had previously been known. It
is reasonable to seek a corresponding improvement for (NLS). We obtain here such
an improvement, but with FLp with p > 2 substituted for Hs with s < 0.

Thirdly, Christ and Erdoǧan, in unpublished work, have investigated the conserved
quantities in the inverse scattering theory relevant to (NLS), and have found that
for any distribution in FLp(T) with small norm, the sequence of gap lengths for the
associated Dirac operator belongs to `p and has comparable norm.1 Thus FLp for
2 < p < ∞ may be a natural setting for the Dirac operator inverse scattering theory
relevant to the periodic cubic nonlinear Schrödinger equation.

For p = 2, the existing proof [2] of wellposedness via a contraction mapping ar-
gument implies that the mapping from initial datum to solution has a convergent
power series expansion; that is, certain multilinear operators are well-defined and
satisfy appropriate inequalities. Our fourth motivation is the hope of understanding
more about the structure of these operators.

1.3. Modified equation. In order for the Cauchy problem to make any sense in FLp

for p > 2 it seems to be essential to modify the differential equation. We consider

(NLS∗)

{
iut + uxx + ω

(
|u|2 − 2µ(|u|2))u = 0

u(0, x) = u0(x)

where

(1.1) µ(|f |2) = (2π)−1

∫
T
|f(x)|2 dx

equals the mean value of the absolute value squared of f . In (NLS∗), µ(|u|2) is
shorthand for µ(|u(t, ·)|2) = ‖u(t, ·)‖2

L2 , which is independent of t for all sufficiently
smooth solutions; modifying the equation in this way merely introduces a unimodular

1Having slightly better than bounded Fourier coefficients seems to be a minimal condition for the
applicability of this machinery, since the eigenvalues for the free periodic Dirac system are equally
spaced, and gap lengths for perturbations are to leading order proportional to absolute values of
Fourier coefficients of the perturbing potential.
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scalar factor e2iµt, where µ = µ(|u0|2). For parameters p, s such that FLs,p is not
embedded in H0, µ(|u0|2) is not defined for typical u0 ∈ FLs,p, but of course the
same goes for the function |u0(x)|2, and we will nonetheless prove that the equation
makes reasonable sense for such initial data.

The coefficient 2 in front of µ(|u|2) is the unique one for which solutions depend
continuously on initial data in FLp for p > 2.

1.4. Conclusions. Our main result is as follows. Recall that there exists a unique
mapping u0 7→ Su0(t, x), defined for u0 ∈ C∞, which for all sufficiently large s
extends to a uniformly continuous mapping from Hs(T) to C0([0,∞), Hs(T)) ∩
C1([0,∞), Hs−2(T)), such that Su0 is a solution of the modified Cauchy problem
(NLS∗). C∞(T) is of course a dense subset of FLs,p for any p ∈ [1,∞).

Theorem 1.1. For any p ∈ [1,∞), any s ≥ 0, and any R < ∞, there exists τ > 0
for which the solution mapping S extends by continuity to a uniformly continuous
mapping from the ball centered at 0 of radius R in FLs,p(T) to C0([0, τ ],FLs,p(T)).

For the unmodified equation this has the following obvious consequence. Denote
by H0

c = H0
c (T) the set of all f ∈ H0 such that ‖f‖L2 = c. Denote by S ′u0 the

usual solution [2] of the unmodified Cauchy problem (NLS) with initial datum u0,
for u0 ∈ H0.

Corollary 1.2. Let p ∈ [1,∞) and s ≥ 0. For any R < ∞ there exists τ > 0
such that for any finite constant c > 0, the mapping H0

c 3 u0 7→ S ′u0 is uniformly
continuous as a mapping from H0

c intersected with the ball centered at 0 of radius R
in FLs,p, equipped with the FLs,p norm, to C0([0, τ ],FLs,p(T)).

The unpublished result of the author and Erdoǧan says that for smooth initial
data, if ‖u0‖FLp is sufficiently small then ‖u(t)‖FLp remains bounded uniformly for
all t ∈ [0,∞). This result in combination with Theorem 1.1 would yield global
wellposedness for sufficiently small initial data.

The following result concerns the discrepancy between the nonlinear evolution
(NLS∗) and the corresponding linear Cauchy problem

(1.2)

{
ivt + vxx = 0

v(0, x) = u0(x).

Proposition 1.3. Let R < ∞ and p ∈ [1,∞). Let q > p/3 also satisfy q ≥ 1.
Then there exist τ, ε > 0 and C < ∞ such that for any initial datum u0 satisfying
‖u0‖FLp ≤ R, the solutions u = Su0 of (NLS∗) and v of (1.2) satisfy

(1.3) ‖u(t, ·)− v(t, ·)‖FLq ≤ Ctε for all t ∈ [0, τ ].

Here u the solution defined by approximating u0 by elements of C∞ and passing to
the limit. Thus for p > 1 the linear evolution approximates the nonlinear evolution,
modulo correction terms which are smoother in the FLq scale.

Our next result indicates that the function u(t, x) defined by the limiting procedure
of Theorem 1.1 is a solution of the differential equation in a more natural sense than
merely being a limit of smooth solutions. Define Fourier truncation operators TN ,
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acting on FLs,p(T), by T̂Nf(n) = 0 for all |n| > N , and = f̂(n) whenever |n| ≤ N . TN

acts also on functions v(t, x) by acting on v(t, ·) for each time t separately. We denote
by S(u0) the limiting function whose existence, for nonsmooth u0, is established by
Theorem 1.1.

Proposition 1.4. Let p ∈ [1,∞), s ≥ 0, and u0 ∈ FLs,p. Write u = S(u0). Then
for any R < ∞ there exists τ > 0 such that whenever ‖u0‖FLs,p ≤ R, Nu(t, x) =
(|u|2 − 2µ(|u|2))u exists in the sense that

(1.4) lim
N→∞

N (TNu)(t, x) exists in the sense of distributions in C0([0, τ ],D′(T)).

Moreover if N (u) is interpreted as this limit, then u = S(u0) satisfies (NLS∗) in the
sense of distributions in (0, τ)× T.

More generally, the same holds for any sequence of Fourier multipliers of the form

T̂νf(n) = mν(n)f̂(n) where each sequence mν is finitely supported, supν ‖mν‖`∞ <
∞, and mν(n) → 1 as ν → ∞ for each n ∈ Z; the limit is of course independent
of the sequence (mν). Making sense of the nonlinearity via this limiting procedure
is connected with general theories of multiplication of distributions [1],[6], but the
existence here of the limit over all sequences (mν) gives u stronger claim to the title
of solution than in the general theory.

Unlike the fixed point method, our proof yields no uniqueness statement corre-
sponding to these existence results. For any p > 2, solutions of the Cauchy problem
in the class C0([0, τ ],FLp), in the sense of Proposition 1.4, are in fact not unique [4].

1.5. Method. Define the partial Fourier transform

(1.5) û(t, n) = (2π)−1

∫
T
e−inxu(t, x) dx.

Our approach is to regard the partial differential equation as an infinite coupled
nonlinear system of ordinary differential equations for these Fourier coefficients, to
express the solution as a power series in the initial datum

(1.6) û(t, n) =
∞∑

k=0

Âk(t)(û0, · · · , û0)

where each Âk(t) is a bounded multilinear operator2 from a product of k copies of

FLs,p to FLs,p, to show that the individual terms Âk(t)(û0, · · · , û0) are well-defined,
and to show that the formal series converges absolutely in C0(R,FLs,p) to a solution
in the sense of (1.4). The case s ≥ 0 follows from a very small modification of
the analysis for s = 0, so we discuss primarily s = 0, indicating the necessary
modifications for s > 0 at the end of the paper.

The analysis is rather elementary, much of the paper being devoted to setting up
the definitions and notation required to describe the operators Âk(t). A single number
theoretic fact enters the discussion: the number of factorizations of an integer n as

2Throughout the discussion we allow multilinear operators to be either conjugate linear or linear
in each of their arguments, independently.
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a product of two integer factors is O(nδ), for all δ > 0; this same fact was used by
Bourgain [2].

The author is grateful to J. Bourgain, C. Kenig, H. Koch, and D. Tataru for invita-
tions to conferences which stimulated this work, and to Betsy Stovall for proofreading
a draft of the manuscript.

2. A system of coupled ordinary differential equations

2.1. General discussion. Define

(2.1) σ(j, k, l, n) = n2 − j2 + k2 − l2.

It factors as

(2.2) σ(j, k, l, n) = 2(n− j)(n− l) = 2(k − l)(k − j) provided that j − k + l = n.

Written in terms of Fourier coefficients ûn(t) = û(t, n), the equation iut + uxx +
ω
(
|u|2 − 2µ(|u|2)

)
u = 0 becomes

(2.3) i
dûn

dt
− n2ûn + ω

∑
j−k+l=n

ûjûkûl − 2ω
∑
m

|ûm|2ûn = 0.

Here the first summation is taken over all (j, k, l) ∈ Z3 satisfying the indicated
identity, and the second over all m ∈ Z. Substituting

(2.4) an(t) = ein2tû(t, n),

(2.3) becomes

(2.5)
dan

dt
= iω

∗∑
j−k+l=n

aj ākale
iσ(j,k,l,n)t − iω|an|2an

where the notation
∑∗

j−k+l=n means that the sum is taken over all (j, k, l) ∈ Z3 for
which neither j = n nor l = n. This notational convention will be used throughout the
discussion. The effect of the term −2ωµ(|u|2)u in the modified differential equation
(NLS∗) is to cancel out a term 2iω(

∑
m |am|2)an, which would otherwise appear on

the right-hand side of (2.5).
Reformulated as an integral equation, (2.5) becomes

(2.6)

an(t) = an(0) + iω

∗∑
j−k+l=n

∫ t

0

aj(s)āk(s)al(s)e
iσ(j,k,l,n)s ds− iω

∫ t

0

|an(s)|2an(s) ds.

However, in deriving (2.6) from (2.5), we have interchanged the integral over [0, t]
with the summation over j, k, l without any justification.
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In terms of Fourier coefficients, (2.6) is restated as

(2.7) û(t, n) = û0(n)− in2

∫ t

0

û(s, n) ds

+ iω
∗∑

j−k+l=n

∫ t

0

û(s, j)û(s, k)û(s, l) ds− iω

∫ t

0

|û(s, n)|2û(s, n) ds.

Substituting for aj(s), ak(s), al(s) in the right-hand side of (2.6) by means of (2.6)
itself yields

an(t) = an(0) + iω
∗∑

j−k+l=n

aj(0)āk(0)āl(0)

∫ t

0

eiσ(j,k,l,n)s ds− iω|an(0)|2an(0)

∫ t

0

1 ds

(2.8)

+ additional terms

= an(0)
(
1− iωt|an(0)|2

)
+ 1

2
ω

∗∑
j−k+l=n

aj(0)āk(0)al(0)

(n− j)(n− l)
(ei(n2−j2+k2−l2)t − 1)

+ additional terms.

These additional terms involve the functions am, not only the initial data am(0).
The right-hand side of the integral equation (2.6) can then be substituted for each
function an, replacing it by an(0) but producing still more complex additional terms.
Repeating this process indefinitely produces an infinite series, whose convergence cer-
tainly requires justification. Each substitution by means of (2.6) results in multilinear
expressions of increased complexity in terms of functions an(t) and initial data an(0).

We recognize 1−iωt|an(0)|2 as a Taylor polynomial for exp(−i|an(0)|2t), but for our
purposes it will not be necessary to exploit this by recombining terms. In particular,
we will not exploit the coefficient i which makes this exponential unimodular.

2.2. A sample term. One of the very simplest additional terms arises when (2.6)
is substituted into itself twice:

(2.9) (iω)4

∗∑
j1−j2+j3=n

∗∑
m1

1−m1
2+m1

3=j1

∗∑
m2

1−m2
2+m2

3=j2

∗∑
m3

1−m3
2+m3

3=j3∫
0≤r1,r2,r3≤s≤t

am1
1
(r1)ām1

2
(r1)am1

3
(r1)ām2

1
(r2)am2

2
(r2)ām2

3
(r2)am3

1
(r3)ām3

2
(r3)am3

3
(r3)

eiσ(j1,j2,j3,n)seiσ(m1
1,m1

2,m1
3,j1)r1e−iσ(m2

1,m2
2,m2

3,j2)r2eiσ(m3
1,m3

2,m3
3,j3)r3 dr1 dr2 dr2 ds.

Substituting once more via (2.6) for each function an(rj) in (2.9) yields a main term

(2.10) (iω)4

∗∑
(mi

k)1≤i,k≤3

I(t, (mi
k)1≤i,k≤3)

3∏
i,j=1

a∗mi
j
(0),

which arises when an(rj) is replaced by an(0), plus higher-degree terms. Here the
superscript ∗ indicates that the sum is taken over only certain (mi

k)1≤i,k≤3 ∈ Z9,
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where a∗
mi

j
(0) = ami

j
(0) if i + j is even and = ami

j
(0) if i + j is odd, and where

(2.11) I(t, (mi
k)1≤i,k≤3) =

∫
0≤r1,r2,r3≤s≤t

eiφ(s,r1,r2,r3,{mi
j :1≤i,j≤3}) dr1 dr2 dr2 ds,

with

(2.12) φ(s, r1, r2, r3, (m
i
j)1≤i,j≤3) = σ(j1, j2, j3, n)s +

3∑
i=1

(−1)i+1σ(mi
1, m

i
2, m

i
3, ji)ri;

and j1, j2, j3, n are defined as functions of (mi
j) by the equations governing the sums in

(2.9). Continuing in this way yields formally an infinite expansion for the sequence
(an(t))n∈Z in terms of multilinear expressions in the initial datum (an(0)). This
expansion is doubly infinite; the single (and relatively simple) term (2.10) is for
instance an infinite sum over most elements of an eight-dimensional free Z-module
for each n.

The discussion up to this point has been purely formal, with no justification of
convergence. In the next section we will describe the terms in this expansion system-
atically. The main work will be to show that each multilinear operator is well-defined
on `p initial data, and then that the resulting fully nonlinear infinite series is conver-
gent.

3. Trees and operators indexed by trees

3.1. Trees. On a formal level a(t) = (an(t))n∈Z equals an infinite sum

(3.1)
∞∑

k=1

Ak(t)(a(0), a(0), a(0), · · · )

where each Ak(t) is a sum of finitely many multilinear operators, each of degree k.
Throughout the paper, by a multilinear operator we mean one which with respect
to each argument is either linear or conjugate linear; for instance, (f, g) 7→ fḡ is
considered to be multilinear. We now describe a class of trees which will be used
both to name, and to analyze, these multilinear operators.

In a partially ordered set with partial order ≤, w is said to be a child of v if w ≤ v,
w 6= v, and if w ≤ u ≤ v implies that either u = w, or u = v.

The word “tree” in this paper will always refer to a special subclass of what are
usually called trees, equipped with additional structure.

Definition 3.1. A tree T is a finite partially ordered set with the following properties:

(1) Whenever v1, v2, v3, v4 ∈ T and v4 ≤ v2 ≤ v1 and v4 ≤ v3 ≤ v1, then either
v2 ≤ v3 or v3 ≤ v2.

(2) There exists a unique element r ∈ T satisfying v ≤ r for all v ∈ T .
(3) T equals the disjoint union of two subsets T 0, T∞, where each element of T∞

has zero children, and each element of T 0 has three children.
(4) For each v ∈ T there is given a number in {±1}, denoted ±v.
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(5) There is given a partition of the set of all nonterminal nodes of T into two
disjoint classes, called simple nodes and ordinary nodes.

Terminal nodes are neither simple nor ordinary. The distinction between ordinary
and simple nodes will encode the distinction between the two types of nonlinear terms
on the right-hand side of (2.6).

Definition 3.2. Elements of T are called nodes. A terminal node is one with zero
children. The maximal element of T is called its root node, and will usually be
denoted by r. T∞ denotes the set of all terminal nodes of T , while T 0 = T \ T∞

denotes the set of all nonterminal nodes. The three children of any v ∈ T 0 are denoted
by (v, 1), (v, 2), (v, 3).

For any u ∈ T , Tu = {v ∈ T : v ≤ u} is a tree, with root node u. The number |T |
of nodes of a tree is of the form 1 + 3k for some nonnegative integer k.

(3.2) |T∞| = 1 + 2k and |T 0| = k

so that T, T∞, T 0 have uniformly comparable cardinalities, except in the trivial case
k = 0 where T = {r}.

Given a tree T , we will work with the auxiliary space ZT ; the latter symbol T
denotes the set all nodes of the tree with the same name. Elements of ZT will be
denoted by j = (jv)v∈T ∈ ZT with each coordinate jv ∈ Z.

Definition 3.3. Let T be any tree. A function σw : ZT → Z is defined by

(3.3) σw(j) =

{
0 if w is terminal,

j2
w − j2

(w,1) + j2
(w,2) − j2

(w,3) if w is nonterminal.

σv(j) depends only on the four coordinates jv, j(v,1), j(v,2), j(v,3) of j.

Definition 3.4. An ornamented tree is a tree T , together with a coefficient εv,i ∈
{−1, 0, 1} for each nonterminal node v ∈ T 0, and for each i ∈ {1, 2, 3}.

Definition 3.5. Let T be an ornamented tree. The function ρ : ZT → Z is defined
recursively by

(3.4) ρv(j) = 0 if v ∈ T∞

and

(3.5) ρv(j) = σ(j(v,1), j(v,2), j(v,3), jv) +
3∑

i=1

εv,iρ(v,i)(j) if v ∈ T 0.

Whenever all children of v are terminal, ρv(j) = σv(j). But if T has many elements,
then for typical v ∈ T 0, ρv will be a quadratic polynomial in many variables, which
will admit no factorization like that enjoyed by σv. ρv(j) depends only on {ju, εu,i :
u ≤ v}. To simplify notation and language, we will use the symbol T to denote the
ornamented tree, the underlying tree, and the underlying set.
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Definition 3.6. Let T be a tree. J (T ) ⊂ ZT denotes the set of all j = (jv)v∈T

satisfying the restrictions

jv = j(v,1) − j(v,2) + j(v,3) for every v ∈ T 0(3.6)

{jv, j(v,2)} ∩ {j(v,1), j(v,3)} = ∅ for every ordinary node v ∈ T 0(3.7)

jv = j(v,i) for all i ∈ {1, 2, 3} for every simple node v ∈ T 0.(3.8)

(3.6) implies that for any v ∈ T 0, jv can be expressed as a linear combination, with
coefficients in {±1}, of {jw : w ∈ T∞}.

Let δ, c0 > 0 be sufficiently small positive numbers, to be specified later. The
following key definition involves these quantities.

Definition 3.7. Let T be an ornamented tree. If j ∈ J (T ) and v ∈ T , we say that
the ordered pair (v, j) is nearly resonant if v is nonterminal and

(3.9) |ρv(j)| ≤ c0|σv(j)|1−δ.

(v, j) is said to be exceptional if v ∈ T 0 and ρv(j) = 0.

Whether (v, j) is nearly resonant depends on the values of ju for all u ≤ v.
Exceptional pairs (v, j) are of course nearly resonant. If v ∈ T 0 is an ordinary node

all three of whose children of v are terminal, then (v, j) cannot be exceptional, for
ρv(j) = σ(j(v,1), j(v,2), j(v,3), jv) = 2(jv − j(v,1))(jv − j(v,3)) cannot vanish, by (3.7). But
if v has at least one nonterminal child, then nothing prevents ρv(j) from vanishing,
and if v is a simple node all of whose children are terminal, then any pair (v, j) is
certainly exceptional.

3.2. Multilinear operators associated to trees.

Definition 3.8. Let T be any tree, and let t be any real number. If T is not the
trivial tree {r} with only element, then the associated interaction amplitudes are

(3.10) IT (t, j) =

∫
R(T,t)

∏
u∈T 0

e±uiωσu(j)tu dtu

where R(T, t) ⊂ [0, t]T
0

is defined to be

(3.11) R(T, t) = {(tu)u∈T 0 : 0 ≤ tu ≤ tu′ ≤ t whenever u, u′ ∈ T 0 satisfy u ≤ u′}.
When T = {r} has a single element, J (T ) = Z, and IT (t, j) is defined to be 1 for all
t, j.

The following upper bounds for the interaction amplitudes IT (t, j) are the only
information concerning them that will be used in the analysis.

Lemma 3.1. Let T be any tree, and let j ∈ J (T ). Then for all t ∈ [0, 1],

|IT (t, j)| ≤ t|T
0|(3.12)

and

|IT (t, j)| ≤ 2|T |
∑
(εu,i)

∏
w∈T 0

〈ρw(j)〉−1.(3.13)



10 MICHAEL CHRIST

The notation 〈x〉 means (1+ |x|2)1/2. The sum in (3.13) is taken over all of the 3|T
0|

possible choices of εu,i ∈ {0, 1,−1}; these choices in turn determine the functions ρw.
Lemma 3.1 will be proved in §5.

Definition 3.9. Let T be any tree, and let t ∈ R. The tree operator ST (t) associated
to T, t is the multilinear operator that maps the |T∞| sequences (xv)v∈T∞ of complex
numbers to the sequence of complex numbers

(3.14) ST (t)
(
(xv)v∈T∞

)
(n) =

∑
j∈J (T ):jr=n

IT (t, j)
∏

w∈T∞

xw(jw)

indexed by n ∈ Z.

ST (t) takes as input |T∞| complex sequences, each belonging to a Banach space
`p(Z), and outputs a single complex sequence, which will be shown to belong to some
`q(Z).

When T is the trivial tree {r} having only one element, ST (t) is the identity
operator for every time t, mapping any sequence (xn(0))n∈Z to itself. This corresponds
to the linear Schrödinger evolution; it is independent of t because we are dealing with
twisted Fourier coefficients (2.4).

4. Formalities

With all these definitions and notations in place, we can finally formulate the
conclusion of the discussion in §2.

Proposition 4.1. The recursive procedure indicated in §2 yields a formal expansion

(4.1) a(t) =
∞∑

k=1

Ak(t)(a
?
T,1(0), a

?
T,2(0), · · · ),

where each Ak(t) is a multilinear operator of the form

(4.2) Ak(t) =
∑

|T |=3k+1

cT ST (t),

each sequence a?
T,n(0) equals either a(0) or ā(0), the scalars cT ∈ C satisfy |cT | ≤

C1+|T |, and for each index k, the sum in (4.2) is taken over a finite collection of
O(Ck) ornamented trees T of the indicated cardinalities.

This asserts that the outcome of the repeated substitution of (2.6) into itself, as
described in §2, is accurately encoded in the definitions in §3. This proposition and
the following result will be proved later in the paper.

Proposition 4.2. There exists a finite positive constant c0 such that whenever a(0) ∈
`1, the multiply infinite series

∑
k Ak(t)(a

?(0), · · · ) converges absolutely to a function
in C0([0, τ ], `1) provided that τ‖a(0)‖`1 ≤ c0.

Conversely, if u ∈ C0([0, τ ], `1) then for such τ , the sequence an(t) = ein2tû(t, n)
equals the sum of this series, for t ∈ [0, τ ].
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By the first statement we mean that
∑

j∈J (T ) |IT (t, j)|
∏

w∈T∞ |a(0)(jw)| converges

absolutely for each ornamented tree T , and that if its sum is denoted by S∗
T (a(0), a(0), · · · )(t)

then the resulting series
∑∞

k=1

∑
|T |=3k+1 cT S∗

T (a(0), a(0), · · · )(t) likewise converges.
The operators ST and coefficients cT were defined so that the following holds

automatically.

Lemma 4.3. There exists c > 0 with the following property. Let û0 be any numer-
ical sequence and define a(0)(n) = û0(n). Suppose that the infinite series defining
S∗

T (a?(0), a?(0), · · · )(t) converges absolutely and uniformly for all t ∈ [0, τ ] and that
its sum is O(c|T |), uniformly for every ornamented tree T . Define a(t) to be the se-
quence

∑∞
k=1 Ak(t)(a

?(0), a?(0), · · · ). Then a satisfies the integral equation (2.6) for

t ∈ [0, τ ]. Moreover, the function u(t, x) defined by û(t, n) = e−in2ta(t, n) is a solution
of the modified Cauchy problem (NLS∗) in the corresponding sense (2.7).

The main estimate in our analysis is as follows.

Proposition 4.4. Let p ∈ (1,∞). Then for any exponent q > p
|T∞| satisfying also

q ≥ 1, there exist ε > 0 and C < ∞ such that for all trees T and all sequences
xv ∈ `1,

(4.3) ‖ST (t)
(
(xv)v∈T∞

)
‖`q ≤ (Ctε)|T

∞|
∏

v∈T∞

‖xv‖`p .

Proposition 4.4 and Lemma 4.3 will be proved in subsequent sections. Together,
they give:

Corollary 4.5. Let p ∈ [1,∞). For any R < ∞ there exists τ > 0 such that
the solution mapping u0 7→ u(t, ·) for the modified Cauchy problem (NLS∗), initially
defined for all sufficiently smooth u0, extends by uniform continuity to a real analytic
mapping from {u0 ∈ FLp : ‖u0‖FLp ≤ R} to C0([0, τ ],FLp(T)).

We emphasize that analytic dependence on t is not asserted; solutions are Hölder
continuous with respect to time.

5. Bound for the interaction amplitudes IT (t, j)

Proof of Lemma 3.1. Let j ∈ ZT be given; it will remain constant throughout the
proof. The first bound of the lemma holds simply because |IT (t, j)| ≤ |R(T, t)|.
The proof of the second bound (3.13) proceeds recursively in steps. In each step
we integrate with respect to tv for certain nodes v in the integral defining R(T, t),
holding certain other coordinates tw fixed. Once integration has been performed with
respect to some coordinate, that coordinate is of course removed from later steps.

In step 1, we hold tv fixed whenever at least one child of v is not terminal. We also
fix tv for every simple node v having only terminal children. The former coordinates
tv, and underlying nodes v, are said to be temporarily fixed; the latter coordinates
and nodes are said to be permanently fixed. We integrate with respect to all nonfixed
coordinates tw.

When |T | = 1 there is nothing to prove. Otherwise there must always exist at
least one node, all of whose children are terminal. If there exists such a node which
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is also ordinary, then at least one coordinate tv is not fixed. The subset, or slice,
of R(T, t) defined by setting each of the fixed coordinates equal to some constant
is either empty, or takes the product form ×u not fixed[0, tu∗ ], where u∗ denotes the
parent of u. The integrand is likewise a product, of simple exponentials. Integrating
over this slice with respect to all of the nonfixed coordinates thus yields∏

w

e±wiσwtw
∏
u

∫ tu∗

0

e±uiσutu dtu,

where the first product is taken over all fixed w ∈ T 0, and the second over all
remaining nonfixed u ∈ T 0.

None of the quantities σu can vanish in step 1, since an ordinary node having
only terminal children can never be exceptional, by (3.7). Therefore the preceding
expression equals ∏

w

e±wiσwtw
∏
u

(±uiσu)
−1

(
e±uiσutu∗ − 1

)
.

This may be expanded as a sum of 2N terms, where N is the number of nonfixed
nodes in T 0. Each of these terms has the form

(5.1) ±
∏
w

e±wiσwtw
∏
u

(iσu)
−1e±(u∗)εuiσutu∗

for some numbers εu ∈ {0, 1,−1}.
The other possibility in step 1 is that |T | > 1, but every nonterminal node that

has only terminal children is simple. In that case all coordinates tv are fixed at step
1, no integration is performed, and we move on to step 2.

Any node v that is permanently fixed at any step of the construction remains fixed
through all subsequent steps; we never integrate with respect to tv. On the other
hand, once we’ve integrated with respect to some tw, then the node w is also removed
from further consideration.

We now carry out step 2. The set T1 of all nodes temporarily fixed during step 1
is itself a tree. There is an associated subset RT1 of {(tw : w ∈ T1)}, defined by the
inequalities 0 ≤ tw ≤ tw′ ≤ t whenever w ≤ w′, and also by tu ≤ tw if u ≤ w and u
was permanently fixed in step 1. To each node w ∈ T1 is associated a modified phase

σ
(2)
w , defined to be σw +

∑
i ε(w,i)σ(w,i), where the sum is taken over all i ∈ {1, 2, 3}

such that we integrated with respect to t(w,i) in the first step. Thus the product of
exponentials in (5.1) can be rewritten as

(5.2)
∏
w

e±wiσwtw
∏
u

e±(u∗)εuiσutu∗ =
∏
v∈T1

e±viσ
(2)
v tv ,

which takes the same general form as the original integrand.
A node w is permanently fixed at step 2 if it was permanently fixed at step 1, or

if w is terminal in T1 and satisfies σ
(2)
w = 0. A node w ∈ T1 is temporarily fixed at

step 2 if w is not terminal in T1. We now integrate
∏

w∈T1
e±iσ

(2)
w (tw) with respect to

tu for all u ∈ T1 that are neither temporarily nor permanently fixed at step 2. As in
step 1, this integral has a product structure ×u[tu,∗, tu∗ ] where the product is taken
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over all nodes u not fixed at this step, u∗ is the parent of u, and the lower limit tu,∗
is either zero, or equals tw for some child w of u which has been permanently fixed.
Now 2N2 terms are obtained after integration, where N2 is the number of variables
with respect to which we integrate.

In step 3 we consider the tree T2 consisting of all w ∈ T1 that were temporarily
fixed in step 2. Associated to T2 is a set RT2 , and associated to each node v ∈ T2 is a

modified phase σ
(3)
w = σ

(2)
w +

∑
i ε(w,i)σ

(2)
(w,i), the sum being taken over all i ∈ {1, 2, 3}

such that (w, i) was not fixed in step 2. A node v ∈ T2 is then permanently fixed if

it is terminal in T2 and σ
(3)
v = 0. v ∈ T2 is temporarily fixed if it is not terminal in

T2. We then integrate with respect to tv for all v ∈ T2 that are neither temporarily
nor permanently fixed.

This procedure terminates after finitely many steps, when for each node v ∈ T 0,
either v has become permanently fixed, or we have integrated with respect to tv. This
yields a sum of at most 2|T

0| terms. Each term arises from some particular choice of
the parameters εu,i, and is expressed as an integral with respect to tv for all nodes
v ∈ T 0 that were permanently fixed at some step; the vector (tv) indexed by all such
v varies over a subset of [0, t]M where M is the number of such v. At step n, each

integration with respect to some tu yields a factor of (σ
(n)
u )−1, multiplied by some

unimodular factor; σ
(n)
u is nonzero, since u would otherwise have been permanently

fixed.
Thus for each term we obtain an upper bound of

∏
u |ρu(j)|−1, where the product

is taken over all nonexceptional nodes u; this bound must still be integrated with
respect to all tw where w ranges over all the exceptional nodes. Each such coordinate
tw is restricted to [0, t]. Thus we obtain a total bound

(5.3) |I(t, j)| ≤
∑
(εu,i)

tM
∗∏

w∈T 0

|ρw(j)|−1

where for each (εu,i), M = M((εu,i)) is the number of exceptional nodes encountered
in this procedure, that is, the number of permanently fixed nodes, and where for each
(εu,i),

∏∗
w∈T 0 denotes the product over all nodes w ∈ T 0 that are nonexceptional with

respect to the parameters (εu,i) and j. Since t ∈ [0, 1], the stated result follows. �

6. A simple `1 bound

This section is devoted to a preliminary bound for simplified multilinear operators.
For any tree T and any sequences yv ∈ `1, define

(6.1) S̃T

(
(yv)v∈T∞

)
(n) =

??∑
j:jr=n

∏
u∈T∞

yu(ju).

The notation
∑??

j:jr=n indicates that the sum is taken over all indices j ∈ ZT satisfying

(3.6) as well as jr = n; the restrictions (3.7) and (3.8) are not imposed here. S̃T as
the same general structure as ST , except that the important interaction amplitudes
IT (t, j) have been omitted.
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Lemma 6.1. For any tree T and any sequences {(yv) : v ∈ T∞}

(6.2) ‖S̃T

(
(yv)v∈T∞

)
‖`1 ≤

∏
w∈T∞

‖yw‖`1 ,

with equality when all yv(jv) are nonnegative.

Proof. There exists a nonnegative integer k for which |T | = 3k + 1, |T∞| = 2k + 1,
and |T 0| = k. Consider the set B ⊂ T whose elements are the root node r together
with all (v, i) such that v ∈ T 0 and i ∈ {1, 3}. Thus |B| = 1 + 2k = |T∞|. Define

(6.3) kv,i = jv − j(v,i) for v ∈ T 0 and i ∈ {1, 3}.

Consider the Z-linear mapping L from ZT∞ to ZB defined so that L(j) has coordinates
jr and all kv,i. The definition of kv,i makes sense for i = 2, but that quantity is
redundant; kv,1 − kv,2 + kv,3 ≡ 0.

jv and j(v,i) are well-defined linear functionals of j ∈ ZT∞ , because given the quan-
tities jw for all w ∈ T∞, jv can be recovered for all other v ∈ T via the relations
(3.6), by ascending induction on v. We claim that L is invertible. Indeed, from the
quantities jr and all jv − j(v,i) with v ∈ T 0 and i ∈ {1, 3}, ju can be recovered for all
u ∈ T by descending induction on u, using again (3.6) at each stage. For instance,
at the initial step, j(r,i) = jr + kr,i for i = 1, 3, and then j(r,2) can be recovered via
(3.6). Thus L is injective, hence invertible.

By descending induction on nodes it follows in the same way from (3.6) that j =
(jw)w∈T∞ satisfies a certain linear relation of the form

(6.4) jr =
∑

w∈T∞

±wjw

where each coefficient ±w equals ±1. By the conclusion of the preceding paragraph,
(jw)w∈T∞ is subject to no other relation; the sum defining S̃T

(
(yw)w∈T∞

)
(jr) is taken

over all j satisfying this relation. Therefore
∑

jr
S̃T (jr) equals the summation over

all w ∈ T∞ and all jw ∈ Z, without restriction, of
∏

w∈T∞ yw(jw). The lemma
follows. �

Corollary 6.2. For any tree, the sum defining ST

(
(yv)v∈T∞

)
(n) converges absolutely

for all n ∈ Z whenever all yv ∈ `1, and the resulting sequence satisfies

(6.5) ‖ST

(
(yv)v∈T∞

)
‖`1 ≤

∏
v∈T∞

‖yv‖`1 .

Proof. This is a direct consequence of the preceding lemma together with the simple
bound |IT (t, j)| ≤ t|T

0| of Lemma 3.1. �

Estimates in `p for p > 1 are less simple; there is no bound for S̃T in terms of the
quantities ‖yw‖`p for p > 1. The additional factors 〈ρu〉−1 in the second interaction
amplitude bound (3.13), reflecting the dispersive character of the partial differential
equation, are essential for estimates in terms of weaker `p norms.
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Proof of Propositions 4.1 and 4.2. The first conclusion of Proposition 4.2 follows di-
rectly from the preceding corollary. To establish Proposition 4.1, let y = yn(t) =
y(t, n) ∈ C0([0, τ ], `1) be any sequence-valued solution of the integral equation

(6.6) y(t, n) = y(0, n)− iω

∫ t

0

|y(s, n)|2y(s, n) ds

+ iω
∗∑

j−k+l=n

∫ t

0

y(s, j)ȳ(s, k)y(s, l)eiσ(j,k,l,n)s ds.

Consider any tree T , and let each node v ∈ T∞ be designated as either finished or
unfinished. Consider the associated function

(6.7)

∫
R(T,t)

∑
j∈J (T )

∏
v∈T 0

e±viσvtv
∏

u∈T∞

yu(tu, ju) dtu

for 0 ≤ t ≤ τ , with tr ≡ t, where for each u ∈ T∞, yu(t, ·) is identically equal to one
of y(t, ·), ȳ(t, ·) of u is unfinished, and to one of y(0, ·), ȳ(0, ·) if u is finished. The
simplest such expression, associated to the tree T = {r} having only one element, is
any constant sequence yr(0, jr).

For each unfinished node u, substitute the right-hand side of (6.6) or its complex
conjugate, as appropriate, for yu(tu, ju) in (6.7). The C0(`1) hypothesis guarantees
that an absolutely convergent integral and sum are produced. Thus we may inter-
change the outer integral with the sums. What results is a finite linear combination
of expressions of the same character as (6.7), associated to trees T ]. At most 3|T

∞|

such expressions are obtained, and each is multiplied by a unimodular numerical
coefficient.

Each nonterminal node of T is a nonterminal node of T ], and each finished node
of T∞ remains a terminal node of T ]. When the first term on the right in (6.6)
is substituted for yu(tu, ju) then the unfinished node u becomes a finished terminal
node. When the second or third terms on the right are substituted, new unfinished
terminal nodes are added to create T ], in which u is a nonterminal simple node or
a ordinary node, respectively. Each child of u in T ] is a terminal node of T ], and is
(consequently) unfinished.

When T = {r}, we have simply y(t). Repeatedly subsituting as above produces
an infinite sum of expressions as described in Proposition 4.1. Thus the proof of that
result is complete.

To prove that any solution y in C0([0, τ ], `1) must agree with the sum of our power
series for sufficiently small τ , regard y as being the function associated as above to
T = {r} and apply the substitution procedure a large finite number of times, N .
If M is given and N is chosen sufficiently large in terms of N , then what results is
an expression for y as a sum of some terms of the power series, including all terms
associated to trees of orders ≤ M , together with certain error terms. There are at
most CN error terms, and each is O(τ cN) in C0(`1) norm, where the constants depend
on the C0(`1) norm of y. Therefore these expressions converge, as N → ∞, to the
sum of the power series in C0([0, τ ], `1) norm provided that τ is sufficiently small
relative to the C0(`1) norm of y. �
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7. Tree sum majorants

In this section we introduce majorizing operators which are the essence of the
problem, and decompose them into sub-operators.

7.1. Majorant operators associated to ornamented trees.

Definition 7.1. Let T be an ornamented tree. The tree sum majorant associated to
T is the multilinear operator

(7.1) ST

(
(yw)w∈T∞

)
(n) =

∑
j∈J (T ):jr=n

∏
u∈T 0

〈ρu(j)〉−1
∏

w∈T∞

yw(jw).

ST is initially defined when all yw ∈ `1, in order to ensure absolute convergence of
the sum.

Lemma 7.1. Let p ∈ [1,∞) and suppose that q > |T∞|−1p and q ≥ 1. Then there
exists C < ∞ such that for all ornamented trees,

(7.2) ‖ST

(
(xv)v∈T∞

)
‖`q ≤ C |T |

∏
v∈T∞

‖xv‖`p

for all sequences xv ∈ `1.

Assuming this for the present, we show how it implies Proposition 4.4.

Proof of Proposition 4.4. Let T be any tree. We already have

(7.3) ‖ST (t)
(
(xv)v∈T∞

)
‖`1 ≤ t|T

0|
∏

v∈T∞

‖xv‖`1

for all sequences xv ∈ `1 by Lemma 6.1 together with the first bound for the interac-
tion amplitudes IT (t, j) provided by Lemma 3.1.

On the other hand, to T are associated at most 3|T | ornamented trees T̃ , de-
fined by specifying coefficients εv,i. According to the second conclusion (3.13) of

Lemma 3.1, ‖ST (t)
(
(xv)v∈T∞

)
‖`q is majorized by C |T | times the sum over these T̃ of

‖ST̃

(
(xv)v∈T∞

)
‖`q . This bound holds uniformly in t, provided that t is restricted to

a bounded interval. Thus (7.2) implies that

(7.4) ‖ST (t)
(
(xv)v∈T∞

)
‖`q ≤ C |T |

∏
v∈T∞

‖xv‖`p

under the indicated assumptions on p, q. Interpolating this with the bound for p =
q = 1 yields

(7.5) ‖ST (t)
(
(xv)v∈T∞

)
‖`q ≤ (Ctε)|T |

∏
v∈T∞

‖xv‖`p

for some ε > 0. �
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7.2. Marked ornamented trees, and associated operators. The analysis of ST

will rely on several further decompositions.

Definition 7.2. A marked ornamented tree (T, T ′) is an ornamented tree T together
with a subset T ′ ⊂ T 0, the set of marked nodes, and the collection

(7.6) J (T, T ′) = {j ∈ J (T ) : {v ∈ T : (v, j) is nearly resonant} = T ′}.

Definition 7.3. Let (T, T ′) be a marked ornamented tree. The associated tree sum
majorant is the multilinear operator

(7.7) S(T,T ′)

(
(yw)w∈T∞

)
(n) =

∑
j∈J (T,T ′):jr=n

∏
u∈T 0

〈ρu(j)〉−1
∏

w∈T∞

yw(jw).

Now for any ornamented tree T ,

(7.8) ST =
∑

T ′⊂T 0

S(T,T ′),

the sum being taken over all subsets T ′ ⊂ T 0. The total number of such subsets is
2|T

0| ≤ 2|T | ≤ 23|T∞|/2 = C |T∞|. Therefore in order to establish the bound stated in
Lemma 7.1 for the operator ST associated to an ornamented tree T , it suffices to
prove that same bound for S(T,T ′), for all subsets T ′ ⊂ T 0.

7.3. A further decomposition. Let (T, T ′) be any marked ornamented tree, which
will remain fixed for the remainder of the analysis. To avoid having to write absolute
value signs, we assume that yv are all sequences of nonnegative real numbers.

We seek an upper bound for the associated tree sum operator S(T,T ′). The factors
〈ρv〉−1 in the definition of S(T,T ′) are favorable when |ρv| is large; nearly resonant
pairs are those for which |ρv(j)| is relatively small, and hence these require special
attention.

Denote by Γ = (γu)u∈T ′ any element of ZT ′ . Let

(7.9) J (T, T ′, Γ) = {j ∈ J (T, T ′) : ρu(j) = γu for all u ∈ T ′}.

T ′ is the set of all nearly resonant nodes, so by its definition we have

(7.10) |γu| = |ρu(j)| ≤ c0|σu(j)|1−δ ∀u ∈ T ′.

This leads to a further decomposition and majorization

(7.11) S(T,T ′)

(
(yv)v∈T∞

)
(n) =

∑
Γ∈ZT ′

∑
j∈J (T,T ′,Γ):jr=n

∏
u∈T 0

〈ρu(j)〉−1
∏

w∈T∞

yw(jw)

≤ C |T |
∑
N

∏
v∈T ′

2−Nv
∑
M

∏
u∈T 0\T ′

2−(1−δ)Mu
∑

Γ

∑
j∈J (T,T ′,Γ):jr=n

∏
w∈T∞

yw(jw)

where N = (Nv)v∈T ′ and M = (Mu)u∈T 0\T ′ . The notation in the last line means that
the first two sums are taken over all nonnegative integers Nv, Mu as v ranges over T ′

and u over T 0 \ T ′; the third sum is taken over all Γ = (γu)u∈T ′ such that

(7.12) 〈γv〉 ∈ [2Nv , 21+Nv) for all v ∈ T ′;
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and the sum with respect to j is taken over all j ∈ J (T, T ′, Γ) satisfying jr = n
together with the additional restrictions

|σu(j(u,1), j(u,2), j(u,3), ju)| ∼ 2Mu for all u ∈ T 0 \ T ′(7.13)

ρv(j) = γv for all v ∈ T ′.(7.14)

Thus there is an upper bound 2Nv ≤ Cc0|σv(j)|1−δ for all v ∈ T ′.

7.4. Rarity of near resonances. Let δ1 be a small constant, to be chosen later.
Recall that for any positive integer n, there are at most Cδ1n

δ1 pairs (n′, n′′) of integers
for which n can be factored as n = n′n′′. This fact was exploited by Bourgain [2] in
his proof of H0 wellposedness.

The key to the control of near resonances is a strong limitation on the number
of j satisfying (7.14), for any fixed Γ. Given v ∈ T ′ any parameter γv, and any
j ∈ J (T, T ′, Γ), the equation (7.14) can be written as

σv(j) = γv −
3∑

i=1

εv,iρ(v,i)(j),

and ρ(v,i)(j) depends only on {jw − j(w,i) : w < v, i ∈ {1, 2, 3}}. Since the quantity σv

on the left-hand side of this rewritten equation can be factored as 2(jv − j(v,1))(jv −
j(v,3)), we conclude that for any {jw − j(w,l) : w < v, l ∈ {1, 2, 3}} and any γv there

are at most Cδ1|γv −
∑3

i=1 εv,iρ(v,i)(j)|δ1 ordered pairs
(
jv − j(v,1), jv − j(v,3)

)
satisfying

(7.14).
For any nearly resonant node v ∈ T ′, |γv| is small relative to

∑3
i=1 |ρ(v,i)(j)|1−δ,

provided that the constant c0 is chosen to be sufficiently small in the definition of a
nearly resonant node. Therefore we can choose for each N,M a family F = FN,M of
vector-valued functions F = (fv,i : v ∈ T ′, i ∈ {1, 3}) such that for any Γ satisfying
(7.12) and any j ∈ J (T, T ′, Γ), there exists F ∈ FN,M such that for each v ∈ T ′ and
each i ∈ {1, 3},

(7.15) kv,i = fv,i(γv, (kw,i : w < v))

where ku,i = ju − j(u,i).
The number of such functions is strongly restricted:

(7.16) |FN,M| ≤ C
|T ′|
δ1

∏
v∈T ′

2δ1 maxi K(v,i)

where Ku = Nu for u ∈ T ′ and Ku = Mu for u ∈ T 0 \ T ′, and the maximum is taken
over i ∈ {1, 3}. Powers of 2δ1N(v,i) are undesirable; we will show in Lemma 8.2 below
that the product on the right-hand side of (7.16) satisfies a better bound in which N
does not appear.

7.5. A final decomposition. For M,N as above, we set |M| =
∑

u∈T 0\T ′ Mu and

|N| =
∑

v∈T ′ Nv.
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Definition 7.4. To any M,N, Γ and any function F ∈ FN,M is associated the
multilinear operator

(7.17) ST,T ′,N,M,Γ,F

(
(yw)w∈T∞

)
(n) =

∑
j∈J (T,T ′,Γ):jr=n

∏
w∈T∞

yw(jw)

where the sum in (7.17) is taken over all j ∈ J (T, T ′, Γ) satisfying jr = n, (7.13),
(7.14), and the additional restriction (7.15).

The multilinear operators ST,T ′,N,M,Γ,F are our basic building blocks. We have
shown so far that for all nonnegative sequences yw and all n ∈ Z,

(7.18) |S(T,T ′)

(
(yw)w∈T∞

)
(n)|

≤ C |T |
∑
N,M

2−|N|2−(1−δ)|M|
∑

Γ

∑
F∈FN,M

|ST,T ′,N,M,Γ,F

(
(yw)w∈T∞

)
(n)|

where the second summation in (7.17) is taken over all Γ = (γu)u∈T ′ satisfying both
(7.12) and (7.10). The factor of 2−(1−δ)|M| arises because for each u ∈ T 0 \ T ′, we
have by virtue of Lemma 3.1 a factor of 〈ρu(j)〉−1, and this factor is ≤ C2−(1−δ)Mu

because u is not nearly resonant.

8. Bounds for the most basic multilinear operators

Lemma 8.1. Let p ∈ [1,∞) and δ1 > 0. Then for every exponent q ≥ max(1, p/|T∞|),
there exists C < ∞ such that for every T, T ′,N,M, Γ, F and for every sequence yv,

(8.1) ‖ST,T ′,N,M,Γ,F

(
(yv)v∈T∞

)
‖`q ≤ C |T |2(1+δ1)|M|

∏
v∈T∞

‖yv‖`p .

This involves no positive power of 2|N|, and thus improves on (7.16).

Proof. As was shown in the proof of Lemma 6.1, each quantity jv in the summation
defining ST,T ′,N,M,Γ,F

(
(yw)w∈T∞

)
(jr) can be expressed as a function, depending on Γ

and on F , of jr together with all kw,i = jw− j(w,i), where w varies over the set T 0 and
i varies over {1, 3}. The equation (7.15) can then be used by descending induction
on T to eliminate kw,i for all w ∈ T ′ so long as F, Γ are given. More precisely, jv

equals jr + gv, where gv is some function of all kw,i with w ∈ T 0 \ T ′ and i ∈ {1, 3}.∏
v∈T∞ yv(jv) can thus be rewritten as

∏
v∈T∞ yv(jr + gv). If every kw,i is held

fixed, then as a function of jr, this product belongs to `q for q = p/|T∞| with bound∏
v∈T∞ ‖yv‖`p , by Hölder’s inequality.
The total number of terms in the sum defining ST,T ′,N,M,Γ,F is the total possible

number of vectors (kw,i) where w ranges over T 0 \ T ′ and i over {1, 3}. The number
of such pairs for a given w is ≤ Cδ12

(1+δ1)Mw , since |2kw,1kw,3| = |σw(j)| ≤ 2Mw+1.

Thus in all there are at most C
|T |
δ1

2(1+δ1)|M| terms. Minkowski’s inequality thus gives
the stated bound. �

A difficulty now appears. For each v ∈ T ′ we have a compensating factor of
〈ρv(j〉−1 = 〈γv(j)〉−1 ∼ 2−Nv , but no upper bound whatsoever is available for the
ratio of maxi |ρ(v,i)(j)|δ1 to 〈γv(j)〉. Thus for any particular v ∈ T ′, the factor lost
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through the nonuniqueness of F need not be counterbalanced by the favorable factor
ρ−1

v . Nonetheless, the product of all these favorable factors does compensate for the
product of all those factors lost, as will now be shown.

Lemma 8.2. For any ε > 0 there exists Cε < ∞ such that uniformly for all
T, T ′,N,M,

(8.2) |FN,M| ≤ C |T |
ε 2ε|M|.

Proof. Let j ∈ J (T, T ′, Γ) satisfy ρv(j) = γv for all v ∈ T ′ but be otherwise arbitrary.
Throughout this argument, j will remain fixed, and ρv will be written as shorthand
for ρv(j).

If the constant c0 in the definition (3.9) of a nearly resonant node is chosen to
be sufficiently small, then any nearly resonant node u has a child (u, i) such that
|ρu| ≤ 1

2
|ρ(u,i)|1−δ. Consider any chain v = uh ≥ uh−1 ≥ · · · ≥ u1 of nodes such that

uk+1 is the parent of uk for each 1 ≤ k < h (uk is called the (k − 1)-th generation
ancestor of u1), uk is nearly resonant for all k > 1, u1 is either not nearly resonant
or is terminal, and |ρuk

| ≤ 1
2
|ρuk−1

|1−δ. Then

(8.3) |ρuk
| ≤ |ρu1|(1−δ)k−1

;

hence

(8.4) 2Kuk = 2Nuk ≤ C2(1−δ)k−1Mu1 .

If u1 is terminal then ρu1 = 0 by definition, whence the inequality |ρuk
| ≤ ρu1|(1−δ)k−1

forces ρuk
= 0 for all uk, as well. This means that 2maxi K(uk,i) ∼ 1. In particular, this

holds for uk = v, so the factor 2maxi K(v,i) will be harmless in our estimates. We say
that a node v is negligible if there exists such a chain, with v = uh for some h ≥ 1.

Recall that |FN,M| ≤ C
|T |
δ1

∏
v∈T ′ 2

maxi K(v,i)δ1 . For each nonnegligible nearly reso-
nant node v, choose one such chain with uh = v, thus uniquely specifying h and u1

as functions of v; we then write (u1, h) = A(v). Any node has at most one h-th
generation ancestor; therefore given both u1 and h, there can be at most one v such
that (u1, h) = A(v). Consequently

(8.5)
∏

v∈T ′ nonnegligible

2maxi K(v,i)δ1 ≤
∏

w∈T 0\T ′

∞∏
h=1

2(1−δ)h−1δ1Mw =
∏

w∈T 0\T ′
2Mwδ1/δ,

since each factor 2maxi K(v,i)δ1 in the first product is majorized by 2(1−δ)h−1δ1Mw in
the second product, where (w, h) = A(v). Forming the product with respect to h
for each fixed v yields the desired inequality, since the series

∑∞
h=0(1 − δ)h−1δ1 is

convergent. The exponent 1− δ < 1 in the definition (3.9) of a nearly resonant node
was introduced solely for this purpose. If negligible nodes are also allowed in the
product on the left-hand side of (8.5), then they contribute a factor bounded by C |T |,
so the conclusion remains valid for the full product.

The desired bound now follows by choosing δ1 so that δ1/δ = ε. �
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Conclusion of proof of Lemma 7.1. As already noted, it suffices to establish (7.2)
with ST replaced by S(T,T ′). Combining the preceding two lemmas gives

(8.6)
∑

F∈FN,M

‖ST,T ′,N,M,Γ,F

(
(yv)v∈T∞

)
‖`q ≤ C |T |

ε 2(1+ε)|M|
∏

v∈T∞

‖yv‖`p

for arbitrarily small ε > 0, provided q ≥ max(1, p
|T∞|). Since |Γ| ≤ C |T |2|N|,

(8.7)
∑

Γ

∑
F∈FN,M

‖ST,T ′,N,M,Γ,F

(
(yv)v∈T∞

)
‖`q ≤ C |T |

ε 2|N|2(1+ε)|M|
∏

v∈T∞

‖yv‖`p .

On the other hand, Lemma 6.1 gives

(8.8)
∑

Γ

∑
F∈FN,M

‖ST,T ′,N,M,Γ,F

(
(yv)v∈T∞

)
‖`1 ≤ C |T |

∏
v∈T∞

‖yv‖`1 .

Thus if q > p
|T∞| and q ≥ 1, we may interpolate to find that there exists η > 0

depending on q − p
|T∞| but not on δ such that

(8.9)
∑

Γ

∑
F∈FN,M

‖ST,T ′,N,M,Γ,F

(
(yv)v∈T∞

)
‖`q ≤ C |T |

η 2(1−η)|N|+(1−η)|M|
∏

v∈T∞

‖yv‖`p .

Taking into account the factors 2−|N|2−(1−δ)|M| in (7.18), and summing over N,M as
well as over all subsets T ′ ⊂ T 0, completes the proof of Lemma 7.1. �

9. Loose ends

We may reinterpret the sum of our power series (4.1),(4.2) as a function via the

relation û(t, n) = ein2tan(t) with a(0) defined by û0(n) = an(0), and will do so
consistently without further comment, abusing notation mildly by writing u(t, x) =
S(t)u0(x).

Lemma 9.1. Let p ∈ [1,∞). For any R > 0 there exists τ > 0 such that for any
u0 ∈ FLp with norm ≤ R, the element u(t, x) ∈ C0([0, τ ],FLp) defined by (4.1),(4.2)
is a limit, in C0([0, τ ],FLp) norm, of smooth solutions of (NLS∗).

Proof. All of our estimates apply also in the spaces FLs,p defined by the condition

that (〈n〉sf̂(n))n∈Z ∈ `p, provided that 1 ≤ p < ∞ and s > 0. This follows from
the proof given for s = 0 above, for the effect of working in FLs,p is to introduce

a factor of
∏

v∈T 0
〈jv〉sQ3

i=1〈j(v,i)〉s
in the definition of the tree operator. The relation

jv = j(v,1) − j(v,2) + j(v,3) ensures that maxi |j(v,i)| ≥ 1
3
|jv|, whence 〈jv〉sQ3

i=1〈j(v,i)〉s
. 1, so

the estimates for s = 0 apply directly to all s > 0.
More generally, if FLs,p is equipped with the norm

‖f‖FLs,p
ε

= ‖(1 + |ε · |2s)1/2f̂(·)‖`p

then all estimates hold uniformly in ε ∈ [0, 1] and s ≥ 0. This follows from the same
reasoning.

Fix a sufficiently large positive exponent s. Given any initial datum u0 satisfying
‖u0‖FLp ≤ R with the additional property that û0(n) = 0 whenever |n| exceeds some
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large quantity N , we may choose ε > 0 so that ‖u0‖FLs,p
ε

≤ 2R. This ε depends
on N , but not on R. Thus the infinite series converges absolutely and uniformly in

C0([0, τ ], H
s−1

2
+

1
p ) if p ≥ 2 and in C0([0, τ ], Hs) if p ≤ 2, where τ depends only on R,

not on s. By Lemma 4.3, the series sums to a solution of (NLS∗) in the sense (2.7); but
since the sum is very smooth as a function of x (that is, its Fourier coefficients decay
rapidly) this implies that it is a solution in the classical sense. Given an arbitrary u0

satisfying ‖u0‖FLp ≤ R, we can thus approximate it by such special initial data to
conclude that S(t)u0 is indeed a limit, in C0([0, τ ],FLp), of smooth solutions. �

Proof of Proposition 1.4. Let u0 ∈ FLp be given, let u(t, x) = S(t)(u0) ∈ C0([0, τ ],FLp).
We aim to prove that the nonlinear expression |u|2u has an intrinsic meaning as the
limit as N → ∞ of |TNu|2TNu in the sense of distributions in (0, τ) × T. Forming
TNS(t)(u0) is of course not the same thing as forming S(t)(TNu0).

Define an(t) = ein2tû(t, n). Denote also by TN the operator that maps a sequence-
valued function (bn(t)) to (TNbn(t)) where TNbn = bn if |n| ≤ N , and = 0 otherwise.
It suffices to prove that

(9.1)

∫ t

0

∗∑
j−k+l=n

TNaj(s)TNak(s)TNal(s)e
iσ(j,k,l,n)s ds−

∫ t

0

|TNan(s)|2TNan(s) ds

converges in `p norm as N →∞, uniformly for all t ∈ [0, τ ], to

∗∑
j−k+l=n

∫ t

0

aj(s)ak(s)al(s)e
iσ(j,k,l,n)s ds−

∫ t

0

|an(s)|2an(s) ds.

Convergence in the distribution sense follows easily from this by expressing any suf-
ficiently smooth function of the time t as a superposition of characteristic functions
of intervals [0, t].

Now in the term
∫ t

0

∑∗
j−k+l=n TNaj(s)TNak(s)TNal(s)e

iσ(j,k,l,n)s ds, the integral may
be interchanged with the sum since the truncation operators restrict the summation to
finitely many terms. Expanding aj, ak, al out as infinite series of tree operators applied
to a(0), we obtain finally an infinite series of the general form

∑∞
k=1 Bk(t)(a(0), · · · , a(0))

where Bk(t) is a finite linear combination of O(Ck) tree sum operators, with coef-
ficients O(Ck), applied to a(0) just as before, with the sole change that the extra
restriction |j(r,i)| ≤ N for i ∈ {1, 2, 3} is placed on j in the summation defining ST

for each tree T .
Since we have shown that all bounds hold for the sums of the absolute values of

the terms in the tree sum, it follows immediately that this trilinear term converges
as N → ∞. Convergence for the other nonlinear term is of course trivial. Likewise
it is trivial that (TNu)t → ut and (TNu)xx → uxx, by linearity. �

This reasoning shows that the limit of each term equals the sum of a convergent
power series, taking values in C0([0, τ ],FLp), in u0.

Given R > 0, there exists τ > 0 for which we have shown that for any a(0) ∈ `p

satisfying ‖a(0)‖FLp ≤ R, our power series expansion defines a(t) ∈ C0([0, τ ], `p), as
an `p-valued analytic function of a(0). Moreover for any t ∈ [0, τ ], both cubic terms
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in the integral equation (2.6) are well-defined as limits obtained by replacing a(s) by
TNa(s), evaluating the resulting cubic expressions, and passing to the limit N →∞.

Lemma 9.2. Whenever ‖a(0)‖`p ≤ R, the function a(t) ∈ C0([0, τ ], `p) defined as
the sum of the power series expansion (4.1) satisfies the integral equation (2.7) when
the nonlinear terms in (2.6) are defined by the limiting procedure described in the
preceding paragraph.

Proof. This follows by combining Lemma 4.3 with the result just proved. �

Proof of Proposition 1.3. Let u0 ∈ FLp. If u = Su0, and if v is the solution of the
Cauchy problem (NLS∗) for the modified linear Schrödinger equation with initial
datum u0, then u0− v is expressed as

∑∞
k=1 Bk(t)(u0, · · · , u0) where the n-th Fourier

coefficient of the function Bk(t)(u0, · · · )(t) equals e−in2tAk(t)(a
?(0), · · · ) with an(0) =

û0(n). According to Proposition 4.4,

‖Ak(t)(a
?(0), · · · )‖`q = O(tkε‖a(0)‖k

`p)

whenever q > p
3

and q ≥ 1. Summation with respect to k yields the conclusion. �
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