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INTRODUCTION

The bilinear Hilbert transform is the operator

(1) BH(f1, f2)(x) =

∫
R
f1(x− t)f2(x+ t) t−1dt

where x, t ∈ R and fj ∈ Lpj(R). If t−1 were an integrable function then this integral

would become absolutely convergent, for almost every x for appropriate exponents

pj. The question of the finiteness of the conditional integral, and of inequalities in

Lp norms, was an open problem from roughly the mid-1960’s to the late 1990’s, when

Michael Lacey and Christoph Thiele showed in a series of breakthrough papers that BH

is well-defined and bounded on appropriate Lp spaces. This operator is prototypical for

a class of multilinear operators with modulation symmetry, and their work has been

followed by significant further developments too numerous to cite in the space available.

In this expository article I discuss the background and origins of the problem, outline

the main lines of the analysis, and indicate the connection with the almost everywhere
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convergence of Fourier integrals. This article is not intended as an exhaustive survey,

but merely as an introduction to the main ideas of the original articles [19],[20],[21].

1. HISTORICAL BACKGROUND

1.1. Singular integrals

The most fundamental example of a Calderón-Zygmund singular integral operator is

the Hilbert transform Hf(x) = π−1
∫

R f(x − t) t−1 dt for x ∈ R. The integral fails to

converge absolutely in general, and is defined as the limit as ε→ 0 of the integral over

|t| > ε.

H plays a fundamental role in the theory of convergence of the Fourier transform,

as well as in one-dimensional complex analysis. It satisfies Ĥf(ξ) = i sgn(ξ)f̂(ξ) for all

ξ 6= 0, where sgn(ξ) = ±1 according to whether ξ > 0 or < 0. Thus P = 1
2
(I − iH),

where I is the identity, is the projection operator onto positive frequencies: P̂ f(ξ) =

f̂(ξ)χξ>0. The “partial sum” operators P̂Nf(ξ) = f̂(ξ)χ|ξ|≤N can be synthesized out of

P together with shifts of the Fourier variable, in such a way that uniform boundedness

of PN on Lp is equivalent to boundedness of H on Lp. This is the basis of the classical

theorem of M. Riesz on Lp norm convergence of Fourier series.

Somewhat more general CZ operators can be expressed as Fourier multiplier operators

(2) T̂ f(ξ) = m(ξ)f̂(ξ) where m(rξ) ≡ m(ξ) for all r > 0

and m ∈ C∞(Rd \ {0}). General Fourier multipliers T̂ f(ξ) = m(ξ)f̂(ξ) with m ∈ L∞

preserve Lp(R) only for p = 2; there is no characterization of Lp functions in terms of

the absolute values of their Fourier coefficients for p 6= 2.

The most general Calderón-Zygmund operators in Rd lack convolution structure,

taking the form
∫

Rd K(x, y)f(y) dy where

(3) |K(x, y)| ≤ C|x− y|−d and |∇x,yK| ≤ C|x− y|−d−1;

again I slur over the issue of interpretation of this typically absolutely divergent integral.

Roughly speaking, (3) says that the portions of f, g microlocalized in phase space near

(x, ξ) and (x′, ξ′) respectively interact quite weakly unless |ξ| + |ξ′| ≤ C|x − x′|−1.

According to the uncertainty principle, any stronger restriction of this general type is

meaningless. A basic theorem [2] states that if such an operator is bounded on L2, then

it is also bounded on Lp for all p ∈ (1,∞).

The basic symmetries of this theory are translation and dilation; if K(x, y) is a

Calderón-Zygmund kernel then so are K(x − z, y − z) and rdK(rx, ry), uniformly for

all r > 0 and z ∈ Rd. The individual operators need not exhibit these symmetries, but

the class as a whole does.

A third basic symmetry, with respect to modulation, is totally lacking in this theory.

Multiplying K(x, y) by ei(ax+by) for any nonzero (a, b) ∈ R2 destroys the bound on ∇K.

This lack of symmetry is perhaps even more apparent in (2), in the convolution case
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K(x − y), where ξ = 0 plays a privileged role. Of course, such a modulation does not

affect Lp estimates, but as we will see, the bilinear Hilbert transform can be regarded as

an infinite sum of modulated Calderón-Zygmund operators with different modulating

frequencies, in such a way that boundedness of the sum cannot easily be inferred by

summing bounds for the individual summands.

1.2. Calderón’s commutator

Calderón had an abiding interest in partial differential equations with nonsmooth

coefficients and on nonsmooth domains. He had employed algebras of singular integral

operators in studying PDE, for instance in his work on uniqueness in the Cauchy prob-

lem [3]. Thus he was naturally led to investigate compositions of operators such as the

canonical example H, the operator MA of multiplication by a function A having limited

smoothness, and d
dx

. He showed in 1965 [4] that the commutator [H,MA] is smoothing,

in the sense that CA = d
dx
◦ [H,MA] is bounded on L2(R1), whenever A is Lipschitz

continuous, that is, whenever a = dA/dx ∈ L∞. Formally

(4) CAf(x) =

∫
R
f(y)

A(x)− A(y)

(x− y)2
dy,

which satisfies the Calderón-Zygmund assumptions (3) when a = dA
dx

belongs to L∞.

These operators possess translation and dilation invariance as a family, even though

individually they lack it.

Since the commutator operator is not translation-invariant, Plancherel’s theorem can

not be invoked directly to establish its L2 boundedness. A key realization of Calderón

was that it could profitably be regarded as a bilinear operator, and that the full force

of Fourier analysis and complex variables methods should be brought to bear on a.

An intriguing alternative expression is obtained by writing A(x) − A(y) = (x −
y)

∫ 1

0
a(sx+ (1− s)y) ds to obtain a decomposition CA(f) =

∫ 1

0
Cs(f, a) ds where

(5) Cs(f, a)(x) =

∫
R
f(x− t)a(x+ st)t−1 dt.

Thus bounds for Cs from L2 × L∞ to L2 would imply corresponding bounds for the

commutator operator. The special case C1 is traditionally called the bilinear Hilbert

transform, but all the operators Cs for s 6= 0,−1 have essentially the same intrinsic

qualities and stature. Calderón asked(1). whether these operators do map L2 × L∞ to

L2. The problem became notorious, but was not resolved until the work of Lacey and

Thiele [19],[20] in the late 1990s.

Thought of as linear operators acting on f , Cs have nonsmooth kernels K(x, y) =

(x−y)−1a(xs+(1−s)y) which satisfy no gradient estimate. Viewed as bilinear operators,

they are singular in the sense that Cs(f, a)(x) depends on a(y1)f(y2) only for (y1, y2) in

a one-dimensional subset of R2.

(1)The question is widely attributed to Calderón, though I know of no reference.



962–04

It is remarkable that these building blocks Cs not only retain translation and dilation

symmetry, but gain new modulation symmetries: defining Mηf(x) = eixηf(x),

(6) Cs(Msηf,Mηa) ≡M(1+s)ηCs(f, a).

These are partial symmetries; there is no relation for Cs(Mηf,Mη̃a) unless sη = η̃.

In terms of the Fourier transform the operator is written

(7) Cs(f, a)(x) = c

∫∫
eix(ξ1+ξ2) sgn(sξ2 − ξ1)f̂(ξ1)â(ξ2) dξ1 dξ2

for a certain constant c, and the modulation symmetry is reflected in the invariance of

the Fourier multiplier sgn(sξ2− ξ1) under ξ 7→ ξ+(sη, η). This multiplier is nonsmooth

along an entire line, rather than merely at the origin.

It is (perhaps) a general principle that more symmetric operators are more difficult

to analyze; a featureless wall presents no cracks which can naturally be enlarged into

gaps. A fundamental point to look for in the discussion below is how the symmetry is

broken; see §5.

1.3. Carleson’s maximal operator

Carleson [6] proved in 1966 that for any periodic function f ∈ L2 of one real variable,

the partial sums of the Fourier series converge to f almost everywhere. The essentially

equivalent statement for the real line is that (2π)−1
∫
|ξ|≤N

f̂(ξ)eixξ dξ converges to f(x)

as N →∞, for almost every x ∈ R. The main ingredient is an estimate for Carleson’s

maximal operator C?f(x) = supN<∞
∣∣ ∫

|ξ|≤N
f̂(ξ)eixξ dξ

∣∣, which is essentially the same

as

(8) C∗f(x) = sup
N∈R

∣∣ ∫
R
f(x− t)eiNtt−1 dt

∣∣.
Carleson proved that C∗ maps L2 to weak L2, that is, |{x : C∗f(x) > λ}| ≤ Cλ−2‖f‖2

L2

uniformly for all λ > 0 and f ∈ L2. Almost everywhere convergence follows immediately

from this inequality since it holds trivially for functions whose Fourier transforms have

compact support.

It is equivalent to establish bounds for the linear operators
∫

R f(x − t)eiN(x)t t−1 dt

which are uniform over all measurable real-valued selection functions N . Once again

these operators enjoy forms of translation, dilation, and modulation invariance. For

instance, L(Mηf)(x) = MηL′f(x), where L′ is obtained from L by replacing the

function N(x) by N(x)− η.

Fefferman [15] later gave a second proof of Carleson’s theorem. Lacey and Thiele

used elements of both of these analyses to prove(2)

Theorem 1.1. — Let p1, p2, q ∈ (1,∞] satisfy q−1 = p−1
1 + p−1

2 , and assume that no

more than one of these exponents is infinite. Then there exists C < ∞ such that

‖BH(f1, f2)‖Lq ≤ C‖f1‖Lp1‖f2‖Lp2 for all Schwartz class functions.

(2)Their theorem actually applies for all q > 2
3 .
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1.4. Two roads diverge

Calderón proved the bound he sought for the commutator operator without under-

standing the bilinear Hilbert transform, and went on to analyze [5] the Cauchy integral

associated to Lipschitz curves with small Lipschitz constant by an extension of those

ideas. Further developments have included a vast literature on elliptic boundary prob-

lems on Lipschitz domains, analytic capacity in one complex variable [25], the work of

Coifman-Meyer-Mcintosh [12] on the Cauchy integral, and the T (1) theorem of David

and Journé [13]. A theory of multilinear Calderón-Zygmund singular operators was

developed [9][10], which however does not include Cs; it encompasses operators which

have a Fourier representation like (7) with sgn(sξ2 − ξ1) replaced by functions smooth

away from ξ = 0 and satisfying m(rξ) ≡ m(ξ) for r > 0. These operators lack modula-

tion invariance, and are less singular. Some of that theory provides essential building

blocks for the analysis outlined here.

2. LOCALIZED FOURIER COEFFICIENTS

2.1. A frame with a preferred scale

Let ψ : R1 → C be an infinitely differentiable function supported in (0, 2) such that∑
n∈Z ψ(t − n) ≡ 1 for all t ∈ R. Then the set of all functions {ψk,n = eiktψ(t − n) :

k, n ∈ Z} is a frame for L2(R1); for any f ∈ L2,

(9) f = c
∑
k,n

ψk,n〈f, ψk,n〉

for a certain constant c whose precise value is of no consequence for the type of in-

equality in question here. The inverse Fourier transform of ψ is a Schwartz function,

and multiplying it by (2π)−1/2 yields a function ϕ such that {ϕk,n(x) = einxϕ(x − k)}
is likewise a frame for L2. It is good intuition to think of ϕk,n(x) as being essentially

c0e
inxe−|x−k|2 , although this is not quite correct because these functions lack compactly

supported Fourier transforms.

One thinks of 〈f, ϕk,n〉 as being localized Fourier coefficients. Such a frame is quite

different from celebrated wavelet bases. The lesser difference is that {ϕk,n} is not an

orthonormal system; there is some oversampling here. The significant difference is

that whereas a wavelet basis treats all scales equally, this frame prefers one scale.

An advantage of this frame, not shared by wavelet-type bases, is its invariance under

modulation by integral frequencies.

The rank one operator f 7→ 〈f, ϕk,n〉ϕk,n heuristically represents the orthogonal pro-

jection of L2(R) onto the subspace consisting of all functions g such that g is supported

in I = [k, k + 1] and ĝ is supported in ω = [n, n + 1], although this is not exactly

true. The entire phase space R × R is tiled by these sets I × ω, and corresponding to

this geometric decomposition is the analytic decomposition of the identity operator as

a sum of projections.
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2.2. Scaled frames and tiles in phase space

Other frames can be constructed by scaling: For each integer r we form {2−r/2ϕk,n(2−rx) :

k, n ∈ Z}, which is likewise a frame. This corresponds to tiling R2 by rectangles I × ω

where I has length 2r and ω has length 2−r.

A dyadic interval is a closed bounded subinterval of R1 of the form [k2n, (k + 1)2n]

for arbitrary integers k, n. The set of all dyadic intervals enjoys an often useful combi-

natorial property: If two such intervals do overlap, then one is contained in the other.

Definition 2.1. — A tile is a subset of the phase space R2 of the form I × ω, where

I, ω are arbitrary dyadic intervals satisfying |I| · |ω| = 1.

In contrast to dyadic intervals, no tile is properly contained in another. Tiles and dyadic

intervals are said to be nonoverlapping if their interiors are disjoint.(3)

Figure 1. Two tilings of phase space. According to the uncertainty principle,
no significant refinement of either tiling is meaningful.

2.3. Decomposition of the bilinear Hilbert transform by scales

The bilinear Hilbert transform has no preferred scale; with respect to the operators

Dλf(x) = f(λx), there is the dilation symmetry BH(Dλf,Dλg) = Dλ(BH(f, g)). Thus

none of our frames is well adapted to the operator.

Let η : R → C be a smooth function supported(4) in (8, 32) such that
∑

r∈Z η(2
rξ) ≡ 1

for all ξ > 0. BH is thus decomposed as
∑

r∈ZBHr where

(10) BHr(f1, f2)(x) = c

∫
R2

eix(ξ1+ξ2) sgn(ξ1 − ξ2)η(2
r(ξ1 − ξ2))f̂1(ξ1)f̂2(ξ2) dξ1 dξ2,

plus a second, very similar, infinite sum obtained by replacing η(s) by η(−s).
There is an alternative expression

(11) BHr(f1, f2)(x) =

∫
R
f1(x+ t)f2(x− t)2−rh(2−rt) dt

(3)I will sometimes abuse language and notation by saying that intervals are disjoint when they merely
do not overlap.
(4)The precise numbers 8, 32 are of no significance; one could replace these by any A,B such that
B > 2A and A > 0 is sufficiently large.
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for a certain Schwartz function h. An immediate consequence of Hölder’s inequality is

that BHr maps Lp1 ×Lp2 to Lq whenever p1, p2, q are ≥ 1 and satisfy q−1 = p−1
1 + p−1

2 .

and the scaling symmetry ensures that the operator norm is independent of r. The sole

issue is the summation over r.

BHr clearly has a preferred spatial scale, 2r, and retains the modulation invariance of

BH. For each r ∈ Z, BHr will be analyzed in terms of the frame described above with

the same parameter r. Thus one works simultaneously with infinitely many frames, one

for each scale.

2.4. Phase space decomposition of the bilinear Hilbert transform

For each r ∈ Z denote by Pr the set of all phase space tiles P = I × ω of dimensions

2r × 2−r. Consider the trilinear form Hr(f1, f2, f3) = 〈f3, BHr(f,f2)〉 for an arbitrary

test function f3. Then 〈BH(f1, f2), f3〉 =
∑∞

r=−∞Hr(f1, f2, f3).

Decompose each fk =
∑

P k∈Pr
〈fk, φP k〉φP k to obtain

Hr(f1, f2, f3) =
∑

P=(P 1,P 2,P 3)∈P3
r

βP

3∏
k=1

〈fk, φP k〉

for certain coefficients βP independent of {fk}. Upper bounds for the “interaction

amplitudes” βP are required, and elementary estimates combined with the information

that η is supported in (8, 32) give:

Lemma 2.2. — Let P = (P 1, P 2, P 3) where each P k = Ik × ωk is a phase space tile of

dimensions 2r × 2−r. Then for any finite exponent N ,

(12) |βP | ≤ CN2−r/2
(

max
k,l∈{1,2,3}

(1 + 2−r distance (Ik, Il))
)−N

and

(13) βP ≡ 0

unless the centerpoints ck of the frequency space intervals ωk satisfy c2−c1 ∈ [2 ·2−r, 38 ·
2−r] and c3 − 2c1 ∈ [10 · 2−r, 70 · 2−r].

This is a reflection of a fundamental characteristic of the bilinear Hilbert transform:

BH(eiξ1·, eiξ2·)(x) = πi sgn(ξ1 − ξ2)e
iξ3x where ξ3 = ξ1 + ξ2 .

The numbers 2, 38, 10, 70 are insignificant artifacts of certain nearly arbitrary choices.

What is important is the following consequence, which will be a source of orthogonality

in the analysis.

Fact 2.3. — Let P,Q ∈ ∪rP3
r and suppose that βP , βQ are both nonzero. Suppose that

for some index k ∈ {1, 2, 3}, ωP k , ωQk overlap, and that |ωP k | < |ωQk |. Then for each

i 6= k, ωP i is disjoint from ωQi, and they are separated by a distance comparable to

|ωQi|.
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2.5. Nuisance technicalities involving tiles

If I, J are dyadic intervals, then either one is contained in the other, or they do not

overlap. This makes dyadic intervals well suited to stopping time arguments, in which

one begins with such an interval, subjects it to a test, and if it fails, subdivides it into

halves and subjects the two halves separately to (rescaled versions of) the same test,

repeating indefinitely.

On the other hand, the set of all dyadic intervals has no reasonable translation

invariance. Consider the interval [0, 1], which for any integer N ≥ 1 is contained in

the larger dyadic interval [0, 2N ]. These larger intervals have the unnatural feature that

they extend only to the right of [0, 1], never to the left; their union is only half of the real

axis. Thus analysis based on these intervals is likely to disregard interactions between

the two halves of the real axis. This defect is essentially reprised at every dyadic point

j2n, j, n ∈ Z.

This difficulty arises commonly and has been sidestepped in various ways by various

authors; see [6], [16], [24]. It is also helpful to thin out the sum by partitioning the set

of all dyadic intervals into finitely many subfamilies, so that for any two intervals I, J

belonging to any common subfamily, if I ⊂ J and I 6= J then |J | ≥ 2K |I| where K

is a large constant. This leads to a decomposition into finitely many suboperators, all

having the same structure.

In this exposé I will systematically slur over these technicalities, which are of no

intrinsic interest. I do not pretend to give a full proof, only a conceptually accurate

outline. Statements made below are correct, but under the proviso that these techni-

calities have been dealt with.

3. ALMOST-ORTHOGONALITY

3.1. Introduction

The space L2 plays a special role in the classical singular integral operator theory,

partly because methods relying on Hilbert space structure are available. In particular,

Plancherel’s theorem can be applied to easily establish L2 estimates for translation-

invariant operators; but it is not directly applicable to the commutator operator or its

more degenerate relatives.

A rather flexible almost-orthogonality principle was introduced by Knapp and Stein

[18], who were motivated by problems in the representation theory of semisimple groups

to establish L2 bounds for singular integral operators invariant with respect to certain

(nilpotent) Lie group structures. They showed that if an abstract operator T is decom-

posed as a sum of bounded operators Tj such that ‖TiT
∗
j ‖, ‖T ∗i Tj‖ ≤ ci−j for all i, j ∈ Z,

then ‖T‖ ≤
∑

j c
1/2
j . A trivial case is when the summands have pairwise orthogonal

ranges, and likewise for their adjoints.
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A satisfying explanation of the L2 boundedness of Calderón-Zygmund operators was

finally obtained by David and Journé, who showed that any such (bounded) operator

can be decomposed as a sum of three parts, one of which has a natural almost-orthogonal

decomposition in the sense of Knapp and Stein. The other two parts have a different

structure, related to the concepts of Carleson measures and paraproducts [10]. It is

remarkable that on this level the ultimate understanding of the fundamental L2 estimate

rests on the theory surrounding BMO, which is one limit of Lp as p→∞.

3.2. Orthogonality via phase space disjointness

If two functions f, g have disjoint supports, then of course 〈f, g〉 = 0. The same

goes if f̂ , ĝ have disjoint supports. If P,Q are nonoverlapping tiles, then either ωP and

ωQ are nonoverlapping, or IP and IQ are. In the former case, 〈φP , φQ〉 = 0, but in

the latter case the two supports can’t be disjoint (both functions are real analytic).

Nonetheless, since φP (x) decays rapidly as x moves away from IP , 〈φP , φQ〉 is relatively

small if IP , IQ are far apart. Therefore one hopes to retain some form of orthogonality.

The following lemma(5) is analogous to Bessel’s inequality for Fourier coefficients, but

is slightly weakened by the necessity of a supplementary hypothesis(6) (14).

Lemma 3.1. — Let S be any set of pairwise nonoverlapping tiles. Let f ∈ L2 and

λ > 0. Suppose that for every P ∈ S,

(14) λ|IP |1/2 ≤ |〈f, φP 〉| ≤ 2λ|IP |1/2.

Then
∑

P∈S |〈f, φP 〉|2 ≤ C‖f‖2
L2.

The constant C is independent of f, λ,S. An equivalent statement of the conclusion is∑
P∈S |IP | ≤ Cλ−2‖f‖2

L2 ;
∑

P |IP | is a weighted count of the number of tiles satisfying

(14). For a complete proof of this fundamental fact see §8.

A localized variant is often useful: Suppose that there is given an interval J such

that IP ⊂ J for all P ∈ S. Then under hypothesis (14),

(15)
∑
P∈S

|〈f, φP 〉|2 ≤ CM

∫
R
|f(x)|2

(
1 +

distance (x, J)

|J |

)−M

dx

for any finite M . This is natural, since |φP (x)| decays rapidly as x moves away from J .

(5)The original proofs of Lacey and Thiele [19],[20] were more complicated than the one outlined here,
in large part because they had only a weaker version of Lemma 3.1 at their disposal. Lemma 3.1, in a
slightly more sophisticated form, is in their paper [21].
(6)Without a supplementary hypothesis of some kind, Lemma 3.1 is false.
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4. TREES, TOWERS, AND MULTITREES

The set of all tiles is endowed with a partial ordering.

Definition 4.1. — P ≤ Q if and only if IP ⊂ IQ and ωP ⊃ ωQ. Also P < Q means

that P ≤ Q and P 6= Q.

Definition 4.2. — A multitile P is an ordered 3-tuple of tiles (P 1, P 2, P 3) such that

IP i = IP j for all indices i, j, and the centers of the associated frequency intervals ωP j

satisfy the constraints listed following (13).

This common interval IP k is denoted by IP . To any multitile are associated three

functions φP k , k ∈ {1, 2, 3}. For any single P , the associated three rectangles IP × ωk
P

all share the same dimensions.

4.1. Model operator

A simplified model for the sum that represents the bilinear Hilbert transform is

(16) Hmodel(f1, f2, f3) =
∑

P

|IP |−1/2

3∏
k=1

∣∣〈fk, φP k〉
∣∣

where the sum ranges over all multitiles, or some large collection of multitiles. These

terms are normalized so that |IP |−1/2
∏

k

∣∣〈fk, φP k〉
∣∣ ≤ C

∏
k ‖fk‖Lpk whenever

∑
k p

−1
k =

1, with C independent of P . The theorem asserts that this sum of infinitely many

uniformly bounded operators is bounded.

The condition (12) that βP is small whenever IP k , IP i are far apart has been simplified

in this model to the condition that βP = 0 whenever IP k 6= IP i . Only this model will be

discussed further; but see [19] for an explanation of how the bilinear Hilbert transform

can actually be realized as a limit of averages of such model operators.

One should regard each factor 〈fk, φP k〉 as expressing one irreducible bit of informa-

tion, and each term in the sum as being likewise irreducible. This minimality would be

lost if a single frame for L2(R) were used.

4.2. Trees, towers, and multitrees

The analysis proceeds by decomposing the full sum (16) over all multitiles into sums

over various subfamilies enjoying additional structure.

Definition 4.3. — A tower is a nonempty finite set T of tiles such that there exists

a tile top(T ) ∈ T , called the top of T , such that every P ∈ T satisfies P ≤ top(T ),

that is, IP ⊂ Itop(T ) and ωP ⊃ ωtop(T ).

Definition 4.4. — A tree T is a finite set of tiles with an element top(t) ∈ T , such

that for any P 6= Q ∈ T : (i) IP ⊂ Itop(T ), (ii) P,Q do not overlap, (iii) if |IP | 6= |IQ|
then ωP ∩ ωQ = ∅. Moreover, (iv) there exists ξ0 ∈ R such that distance (ωP , ξ0) ∼ |ωP |
for all P ∈ T .
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Figure 2. A tree. The x axis is horizontal; the ξ axis is vertical. Towers are
similar, except that there exists some horizontal line which crosses every
rectangle.

Figure 3. All intervals IP associated to tiles P ∈ T , where T is either a tree
or a tower. These intervals are contained in R, but each is displaced vertically
for purposes of illustration. Itop(T ) is the topmost interval. The corresponding
frequency space intervals ωP have lengths inversely proportional to |IP |. These
form a nested set if T is a tower, whereas any two of different lengths are
nonoverlapping if T is a tree.

Definition 4.5. — Let k ∈ {1, 2, 3}. A finite set T of multitiles is said to be a k-tower

if T k = {P k : P ∈ T} is a tower. A multitree is a set of multitiles which is a k-tower

for some index k.

A k-tower has a unique topmost element top(T ), such that top(T )k is the top of the

tower T k.

4.3. One origin of orthogonality

Plancherel’s and Parseval’s theorems and Bessel’s inequality lie at the heart of many

more sophisticated arguments in classical Fourier analysis. Here a fundamental role is

played by inequalities based on orthogonality, reflecting the principle that φP , φQ are

nearly orthogonal when the subsets P,Q of phase space do not overlap. We now discuss

one property of the set of all multitiles, which leads to families of nonoverlapping tiles

in the analysis of multilinear singular integrals.

Towers T are sets of tiles which totally lack useful almost-orthogonality, since ωP ∩
ωQ 6= ∅ for any P,Q ∈ T . In the case where 0 ∈ ωtop(T ), the rank one opera-

tors f 7→ 〈f, φQ〉φQ for Q ∈ T is are closely analogous to averaging operators f 7→



962–12

(|IQ|−1
∫

IQ
f) · χIQ

(and more generally to frequency-modulated generalizations f 7→
eixξ0(|IQ|−1

∫
IQ
e−ixξ0f) · χIQ

(x) for ξ0 ∈ ωtop(T )). A tower could include a large fam-

ily of Q such that |IQ| → 0 and IQ approaches some point x0. For almost all such

x0, |IQ|−1
∫

IQ
f → f(x0) by Lebesgue’s differentiation theorem. Thus for a tower, no

upper bound may be available for the coefficients |IQ|−1/2〈f, φQ〉 beyond their uniform

boundedness.

However, in the context of multitiles, there is substantial compensation for this lack

of orthogonality.

Fact 4.6. — If a family T of multitiles is an i-tower for some i ∈ {1, 2, 3} then

{P j : P ∈ T} is a tree for any j 6= i in {1, 2, 3}.

This crucial consequence of Fact 2.3 partly explains the terminology “multitree”.

Expressions (
∑

Q∈T |〈f, φQ〉|2)1/2, where T is a tree, are closely analogous to classical

Littlewood-Paley expressions and are central to the analysis. An important part of this

analogy is the next bound.

Lemma 4.7. — Uniformly for all trees T and all functions f ,

(17)
∑
P∈T

|〈f, φP 〉|2 ≤ Cmin
(
‖f‖2

L2 , |Itop(T )| ‖f‖2
L∞

)
.

These inequalities lend Fact 4.6 great significance. The second conclusion is a localized

version of the first.

The basic principle underlying Lemma 4.7 is that since the tiles P ∈ T form a nearly

disjoint family of subsets of phase space, {φP : P ∈ T} is an almost-orthogonal family of

functions. The lemma is not quite a consequence of Lemma 3.1 on almost-orthogonality

via nonoverlapping tiles, but follows easily from a direct examination of the magnitudes

of matrix coefficients 〈φP , φQ〉 for P,Q ∈ T .

4.4. Energy and mass of multitrees

The j-energy Ej(T ) and j-mass Mj(T ) of a multitree T are defined for j ∈ {1, 2, 3}
to be

Ej(T ) = |Itop(T )|−1/2(
∑
P∈T

|〈fj, φP j〉|2)1/2(18)

Mj(T ) = sup
P∈T

|IP |−1/2|〈fj, φP j〉|.(19)

The individual terms are normalized so that |IP |−1/2|〈fj, φP j〉| ≤ CMfj(x) for x ∈ IP ,

and if {P j : P ∈ T} is a tree then Ej(T ) ≤ C‖fj‖L∞ (by Lemma 4.7).

If i, j, k are the three elements of {1, 2, 3} in any order then

(20) |HT (f1, f2, f3)| ≤ Ej(T )Ek(T )Mi(T )|Itop(T )|.
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(20) is a direct consequence of definitions via Cauchy-Schwarz, and should be regarded

as a manifesto of intent rather than as a genuine estimate. Proposition 7.2 below

provides alternative upper bounds for HT , not subsumed in the mass-energy bound.

5. ORGANIZING THE TOTAL SUM INTO SUBSUMS

The stage has been set for a discussion, in this section and the next, of the heart

of the proof: a sorting algorithm, a counting problem, and a counting estimate based

on phase space orthogonality. To any finite set S of multitiles and any three functions

fj : R1 → C is associated the operator expression

(21) HS(f1, f2, f3) =
∑
P∈S

|IP |−1/2

3∏
j=1

∣∣〈fj, φP j〉
∣∣.

We will partition the set of all multitiles into subsets having special structure, derive a

reasonable bound for the contribution of each subset, and sum those bounds.

5.1. The sorting algorithm’s output

In the proof we examine the sum HS of contributions of an arbitrary finite set of

multitiles S. The sorting procedure detailed below partitions the collection S into

multitrees. It constructs families Fn,i,j of multitrees, indexed by n ∈ Z and i, j ∈
{1, 2, 3}, with the following main properties:

(i) S is the disjoint union, over all n and all ordered pairs (i, j), of all T ∈ Fn,i,j.

(ii) Each T ∈ Fn,i,j is an i-tower.

(iii) For any T ∈ Fn,i,j,

(22) |HT (f1, f2, f3)| ≤ C23n|Itop(T )|.

(iv) If j = i then

(23) |Itop(T )| ≤ 2−2n|〈fi, φtop(T )i〉|2.

(v) If j 6= i then

(24) |Itop(T )| ≤ 2−2n
∑
P∈T

|〈fj, φP j〉|2.

(vi) Each T ∈ Fn,i,j enjoys certain maximality properties.



962–14

5.2. The sorting algorithm

The algorithm seeks out the enemy in the form of subsums corresponding to i-towers;

such subsums are potentially unfavorable because of the lack of orthogonality discussed

above. We proceed to construct families Fn,i,j of multitrees T ⊂ S, for all n ∈ Z and all

(i, j) ∈ {1, 2, 3}2. The construction proceeds by descending induction on n. Begin with

a very large positive n. Order the 9 ordered pairs of indices (i, j) ∈ {1, 2, 3} arbitrarily.

Fix a small constant c0 > 0. For the first pair (i, j), if i = j then consider all i-towers

T ⊂ S such that

(i) |IP |−1/2|〈fi, φP i〉| ≥ c02
n for every P ∈ T

(ii) T is maximal with respect to set inclusion. That is, there exists no i-tower T ′ ⊂ S

properly containing T which satisfies (i).

If there exists a nonempty i-tower T ⊂ S satisfying (i), then there also exists one

satisfying both criteria. Choose any one, T , put it into Fn,i,j, and delete all tiles P ∈ T
from S. Repeat the procedure with this reduced set S for the same pair (i, j) until

no multitrees satisfying (i) remain. Then move on to the next pair (i, j). Observe

how modulation symmetry is broken; the decomposition depends on the the localized

Fourier coefficients 〈fi, φP i〉 of fi.

If j 6= i then do the same, retaining (ii) but replacing (i) by

(i)∗ Ej(T ) ≥ 2n

and imposing a supplementary condition (iii)∗ whose role will not be visible in this

exposé.(7)

Continue with a given index n until all 9 pairs (i, j) have been fully examined, and

no multitrees satisfying the criteria remain. Then replace n by n − 1, and repeat the

selection again, with n replaced by n−1 in criteria (i) and (i)∗. Continue by descending

induction on n until only tiles satisfying 〈fk, φP k〉 = 0 for all k ∈ {1, 2, 3} remain. Those

contribute nothing to the operator, and may be discarded.

Given a finite set S, there exists n0 so large that (i), (i)∗ cannot possibly hold with

factors of 2n0 . The induction begins with such an n0.

(23) and (24) follow directly from (i), (i)∗. Moreover Mk(T ) ≤ c02
n+1 and Ek(T ) ≤

2n+1 for all k ∈ {1, 2, 3}, because all tiles of T were available throughout the selection

of Fn,i,k, yet T was not selected. Therefore T did not satisfy the selection critera (i),

(i)∗ at stage n+ 1. (22) follows by Cauchy-Schwarz.

This purely formal discussion applies to any expression
∑

P∈S |IP |−1/2
∏3

k=1 |ak(P )|;
the actual meaning of the coeffients ak = 〈fk, φP k〉 has not yet been exploited.

(7)Criterion (iii)∗: If i < j, then a candidate i-tower T is not selected if there is some other candidate
multitree T ′ such that ωi

T lies strictly to the left of ωi
T ′ . (An interval [a, b] is said to lie strictly to the

left of [c, d] if b ≤ c.) The same goes if i > j, with “left” replaced by “right”. The reader is urged to
disregard this point for the present. Likewise the smallness of the constant c0 in (i) plays a role which
will not be apparent at the level of detail of this exposé.
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6. COUNTING MULTITREES

The total sum is the sum of the contributions of all T , and we have a bound(8) of

23n|Itop(t)| for each T , so it would suffice to have a suitable bound for

the weighted count
∑

T

|Itop(T )| of the number of multitrees

in each family Fn,i,j. Here an estimate with genuine content must finally be established.

Since an upper bound for
∑

T |Itop(T )| is required, it is advantageous to place as many

tiles as possible into each multitree, consistent with the selection criteria (i), (i)∗. This

motivates the maximality criterion (ii).

6.1. A small reduction

For each j ∈ {1, 2, 3} let Ej ⊂ R be an arbitrary measurable set with |Ej| <∞. Let

fj be any function which is ≡ 0 on R \Ej, and |fj(x)| ≤ 1 for all x ∈ Ej. The theorem

is a consequence of the following inequality via a simple interpolation argument.(9)

Proposition 6.1. — There exists C <∞ such that for any finite set S of multitiles,

sets Ej, and functions fj,

(25)
∑
P∈S

|IP |−1/2

3∏
k=1

|〈fk, φP k〉| ≤ C
3∏

k=1

|Ek|1/pk

for any exponents pk ∈ (1,∞) satisfying
∑

k p
−1
k = 1.

6.2. Counting multitrees

Here is the crux of the entire analysis.

Lemma 6.2 (Counting multitrees). — For any n ∈ Z and i, j ∈ {1, 2, 3}, for any mea-

surable sets E1, E2, E3, the multitrees selected by the sorting algorithm satisfy

(26)
∑

T∈Fn,i,j

|Itop(T )| ≤ C2−2n|Ej|.

We’ll discuss only the case j = i in detail; see §7.1 for a brief discussion of the

case j 6= i. The proof combines structural information built into the sorting algorithm

with almost-orthogonality of the rank one operators f 7→ 〈f, φP k〉φP k associated to

collections of nonoverlapping (scalar) tiles P . This structural information is:

Fact 6.3. — The tiles {top(T )i : T ∈ Fn,i,i} do not overlap.

(8)An important alternative bound is also available; see Proposition 7.2.
(9)Any function can be decomposed as f =

∑∞
m=−∞ 2mfm where the sets fm have pairwise disjoint

supports and satisfy ‖fm‖L∞ ≤ 1. Interpolation amounts to making this substitution for fk for each
k ∈ {1, 2, 3} to produce an infinite sum of expressions of the type controlled by (25), and summing the
resulting bounds.
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Proof. — If not, there exist two distinct i-towers T, T ′ ∈ Fn,i,i satisfying top(T )i <

top(T ′)i. If T ′ was chosen before T , we reach a contradiction because T ′ ∪ {top(T )}
is an i-tower which properly contains T ′, contradicting the maximality criterion (ii) for

T ′. If T was chosen before T ′ then (ii) is again contradicted, since T ∪ {top(T ′)} is an

i-tower (whose top is top(T ′)), which properly contains T .

By the sorting algorithm, |Itop(T )| ≤ 2−2n|〈fi, φtop(T )i〉|2 ≤ 4|Itop(T )| for all T ∈ Fn,i,i,

uniformly in n, i and in {fk}, {Ek}. Since these tiles top(T )i are nonoverlapping and

|fi| ≤ χEi
, the almost-orthogonality lemma gives∑

T∈Fn,i,i

|Itop(T )| ≤ C2−2n
∑

T∈Fn,i,i

|〈fi, φtop(T )i〉|2 ≤ C2−2n‖fi‖2
L2 ≤ C2−2n|Ei|,

establishing Lemma 6.2.

6.3. Summation with respect to n

By the bound of Lemma 4.7 in terms of ‖f‖L∞ , the selection criteria (i), (i)∗ for

parameters (n, i, j) cannot be satisfied unless n does not exceed a certain finite n0,

independent of the functions fk and sets Ek. Therefore Fn,i,j is empty for all larger n.

Thus

(27)
∑

n

∑
i,j

∑
T∈Fn,i,j

HT (f1, f2, f3) ≤ C
∑
n≤n0

23n2−2n

3∑
k=1

|Ek| ≤ C
3∑

k=1

|Ek|.

In the case where all three sets Ej have comparable measures, this is the bound of

Proposition 6.1. Although it remains to treat the general case, this suffices to exhibit

essential elements of the analysis:(10) localized Fourier decomposition, the connection

between phase space disjointness and orthogonality, sorting of tiles into towers, the

relation between towers and trees, the key role of the weighted count of all resulting

multitrees, and the role of orthogonality in establishing that count.

7. REFINEMENT

In this more technical section we briefly discuss two steps omitted above. The first

is the counting of multitrees of type (n, i, j) for j 6= i. The second is the refinement of

the above argument to replace the crude bound
∑3

k=1 |Ek| by
∏3

k=1 |Ek|1/pk .

(10)It also fully proves a nontrivial result, an L1 inequality for BH(f1, f2) for arbitrary L∞ functions
fj supported on sets of boundedly finite measures.
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7.1. Counting multitrees of type (n, i, j) with j 6= i

The total “number”
∑

T∈Fn,i,j
|Itop(T )| of multitrees in Fn,i,j is likewise ≤ C2−2n|Ej|.

The proof relies on the following variant of the almost-orthogonality Lemma 3.1. A

collection F of trees is said to be strongly disjoint if for any T 6= T ′ ∈ F , any P ∈ T

and any Q ∈ T ′, if ωQ ⊃ ωP then not only must IQ ∩ IP = ∅, but furthermore

IQ ∩ Itop(T ) = ∅.

Lemma 7.1. — Let f ∈ L2 and λ > 0 be arbitrary. Let F be a finite collection of

strongly disjoint trees satisfying λ ≤ energy (T ) ≤ 2λ for every T ∈ F . Then

(28)
∑
T∈F

|Itop(T )| ≤ Cλ−2‖f‖2
L2 .

There is a localization in the same spirit as (15).

With this lemma in hand, the reasoning for the case j 6= i is parallel to that for j = i,

though a bit more complicated. It is almost but not quite true that {T j : T ∈ Fn,i,j},
where T j = {P j : P ∈ T}, is a strongly disjoint family of trees for any fixed n, i, j with

j 6= i. See [19] for details.

7.2. Classical trilinear bound

So far, the analysis has relied entirely on L2 estimates, but genuine Lp inequalities for

linear operators do come into play. Lp estimates are available because expressions HT

associated to multitrees T are subsumed(11) by the theory of singular integral operators,

as developed by Coifman and Meyer [9],[10]. If fk ∈ L∞ then such a sum can be

rewritten (with {1, 2, 3} = {i, j, k}) as 〈T fi, fj〉 where T is a classical singular integral

operator, associated to a kernel K which satisfies (3) with a constant C proportional

to ‖fk‖L∞ .

Let Ej be measurable sets satisfying |Ej| < ∞, and let fj be measurable functions

supported on Ej satisfying |fj(x)| ≤ 1 for almost every x ∈ Ej and fj(x) = 0 for x /∈ Ej.

Proposition 7.2. — Let T be any multitree. For all 3-tuples of exponents pk ∈ (1,∞]

satisfying the scaling relation
∑

k p
−1
k = 1 with at most one exponent equal to ∞,

(29)
∑
P∈T

|IP |−1/2

3∏
k=1

|〈fk, φP k〉| ≤ C
3∏

k=1

|Ek|1/pk .

The constant C depends on the exponents but not on the sets, functions, tower, or

index l. This is of course a very particular case of Proposition 6.1.

As is often the case in this subject, a localized version is also available: |Ek| can be

replaced by
∫

Ek
(1 +

distance (x,Itop(T ))

|Itop(T )|
)−2 dx.

(11)More exactly, these expressions are modulated singular integral operators; the associated kernels K

are multiplied by factors ei(x−y)ξ for some arbitrary ξ.
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7.3. An alternative bound

Consider for simplicity only the case j = i. If {i, l,m} = {1, 2, 3} then using (29) in

place of the mass-energy bound for each multitree leads to an alternative bound

(30)
∑

T∈Fn,i,i

HT (f1, f2, f3) ≤ Cε2
−(1+ε)n|Em|1−2ε|El|ε|Ei|ε

for arbitrarily small ε > 0.

To prove this write {1, 2, 3} = {i, l,m}. Application of the almost-orthogonality

lemma as above shows that uniformly for all dyadic intervals J ,

(31)
∑

T∈Fn,i,i:Itop(T )⊂J

|Itop(T )| ≤ C2−2n

∫
Ei

(
1 +

distance (x, J)

|J |
)−2

dx ≤ C2−2n|J |.

The John-Nirenberg lemma says that this “self-similar” inequality implies a stronger

version of itself, to the effect that
∑

T∈Fn,i,i
χItop(T )

is nearly a bounded function:

(32)

∫
J

( ∑
T∈Fn,i,i

χItop(T )

)r ≤ Cr2
−2nr|J |

uniformly for all dyadic intervals J , for any finite exponent r.

Write {1, 2, 3} = {i, l,m}. Concerning the contributions of fm, fl, classical Calderón-

Zygmund theory almost gives

(33)
∑
P∈T

|〈fm, φP m〉| |〈fl, φP l〉| ≤ C|El ∩ Itop(T )|1/pl|Em ∩ Itop(T )|1/pm

for any exponents in (1,∞) satisfying p−1
l + p−1

m = 1; in particular, pm can be taken to

be arbitrarily close to 1. This inequality is merely almost true; |Ej∩Itop(T )| must be re-

placed by
∫

Ej
(1+ distance (x,I)

|I| )−2 dx, where I = Itop(T ). This sort of routine complication

is controlled satisfactorily by the Hardy-Littlewood maximal function.

Consider all intervals J which are maximal among the collection {Itop(T ) : T ∈ Fn,i,i}
with respect to set inclusion. Combining (33) with (32) and Hölder’s inequality for each

interval J , summing over J , and finally exploiting the inclusions J ⊂ {x : M(χEi
)(x) ≥

c22n} leads to (30). Details are left to the experts.

(30) is unfavorable for n near −∞, but the bound 2n|Ei| is still favorable for all

sufficiently negative n. To conclude the argument, modify the selection algorithm by

replacing the thresholds 2n in criteria (i), (i)∗ by 2naj where aj > 0 are parameters.

Adjusting these appropriately, depending on the relative sizes of |Ei|, |Em|, |El|, makes

the minimum of our two bounds favorable in all cases, and permits summation of the

infinite series over n.
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8. PROOF OF THE ALMOST-ORTHOGONALITY LEMMA

I have emphasized the leading role played by L2 arguments based on almost-

orthogonality. The required almost-orthogonality lemma has a relatively simple proof.

First, a preliminary fact: Define hP (x) = |IP |−1(1 + distance (x,IP )
|IP |

)−2. These functions

belong to L1(R) uniformly in P . If |IQ| ≤ |IP | then

|〈φP , φQ〉| ≤ C|IP |1/2|IQ|−1/2

∫
IQ

hP .

hP (x) decays rapidly as x moves away from P , on a scale comparable to |IP |.

Proof of Lemma 3.1. — Set βP = 〈f, φP 〉 and X2 =
∑

P∈F |βP |2. Then

X2 =
∑

P

〈f, φP 〉〈φP , f〉 =
〈 ∑

P

βPφP , f
〉
≤ ‖f‖L2‖

∑
P

βPφP‖L2 .

Now

‖
∑

P

βPφP‖2
L2 ≤ 2

∑
P

∑
Q:ωP⊂ωQ

|βPβQ〈φP , φQ〉|

because 〈φP , φQ〉 = 0 unless ωP , ωQ overlap, and dyadic intervals cannot overlap unless

one contains the other. Thus

‖
∑

P

βPφP‖2
L2 ≤ 8λ2

∑
P

|IP |1/2
∑

Q:ωP⊂ωQ

|IQ|1/2|〈φP , φQ〉|

≤ Cλ2
∑

P

|IP |
∑

Q:ωP⊂ωQ

∫
IQ

hP ≤ Cλ2
∑

P

|IP |
∫

R
hP ≤ C

∑
P

|βP |2

since the collection of all intervals IQ such that Q ∈ F and ωP ⊂ ωQ is nonoverlapping

by hypothesis. Thus X4 ≤ C‖f‖2
L2X2.

9. CARLESON’S MAXIMAL OPERATOR, ACCORDING TO LACEY

AND THIELE

Here I give only a brief outline of a rather condensed treatment [21], in order to

exhibit the parallel between the analyses of the bilinear Hilbert transform and Carleson’s

maximal operator.

Expression in terms of localized Fourier coefficients. For any dyadic interval

ω, denote by ω[ and ω] the left and right halves of ω, respectively. Likewise to any tile

P = I × ω are associated the two semitiles P [ = I × ω[ and P ] = I × ω].

Let functions φP be as above, with the single change that φ̂P is supported in ω[
P .

The linearized Carleson operator
∫

R e
iN(x)tf(x− t) t−1dt is modeled by sums

(34) C∗∗(f)(x) =
∑

P

〈f, φP 〉φP (x)χ(x, P )
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where χ(x, P ) = 1 if N(x) lies in ω]
P , and = 0 otherwise. In fact, this operator can be

realized as a limit of averages of such models. The goal is an inequality |〈C∗∗(f), χE〉| ≤
C‖f‖L2|E|1/2 for all measurable sets E.

Towers. A tower T is a set of tiles for which there exists some tile top(T ) such

that for every P ∈ T , P ≤ top(T ); in this discussion top(T ) is not required to be an

element of T . ]-towers and [-towers are defined in the same way, with the requirements

P ] ≤ top(T )] and P [ ≤ top(T )[, respectively.

There are two fundamental sources of orthogonality. Firstly, if T is a [-tower, then for

any P,Q ∈ T satisfying |IP | 6= |IQ|, the intervals ω]
P , ω

]
Q do not overlap.(12) Therefore

the sets {x ∈ E : N(x) ∈ ω]
P} and {x ∈ E : N(x) ∈ ω]

Q} are disjoint. Secondly, any

]-tower T is a [-tree: whenever P,Q ∈ T satisfy |IP | 6= |IQ|, ω[
P and ω[

Q do not overlap.

Therefore 〈φP , φQ〉 = 0.

The energy of a tower T is

(35) E(T ) = sup
T ′⊂T

|Itop(T ′)|−1/2
( ∑

P∈T ′

|〈f, φP 〉|2
)1/2

,

where the supremum is taken over all ]-towers T ′ ⊂ T . The mass of a tower is

(36) M(T ) = sup
P∈T

sup
Q≥P

|IQ|−1

∫
{x∈E:N(x)∈ωQ}

(1 + |IQ|−1 distance (x, IQ))−2 dx.

Classical mass-energy bound for a single tower. In the analysis of the bilinear

Hilbert transform, the contribution of a single multitree was estimated by a trivial

mass-energy bound. While there is a mass-energy bound here, it is not trivial. For any

tower,

(37)
∑
P∈T

|〈f, φP 〉| · |〈φP , χN(x)∈ω]
P
χE〉| ≤ CE(T )M(T )|Itop(T )|.

There is also a very simple alternative bound M(T ) ≤ C < ∞, uniformly for all sets

E, because χE ∈ L∞ with norm 1.

(37) is roughly on the level of Proposition 7.2, and is proved as follows. Any ]-tower

is a [-tree, and the associated sum is essentially a (frequency-modulated generalization

of a) truncated singular integral operator

(38)

∫
|x−y|≥ε(x)

K(x, y)f(y) dy

for some function ε(x) and Calderón-Zygmund kernel K. Such truncations are basic

objects in the classical theory. On the other hand, any [-tower enjoys the first form of

orthogonality described above, and this leads quite easily to the upper bound (37) for

its contribution.

Sorting algorithm. As in the analysis of BH, a selection algorithm partitions any

finite set of tiles by selecting certain collections Fn,\ of towers, for each integer n and

(12)This is correct under the usual proviso that technicalities concerning dyadic intervals have been
appropriately dealt with.
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index \ ∈ {[, ]}. For Fn,[ the main selection criterion is that M(T ) ≥ 22n, while for

Fn,] it is that E(T ) ≥ 2n. In both cases T is required to be maximal, and for Fn,] there

is an analogue of criterion (iii)∗.

Counting the towers. The key point is again an upper bound for the weighted

number of trees in Fn,\.

Lemma 9.1. — Uniformly for all functions f and all measurable sets E ⊂ R satisfying

‖f‖L2 ≤ 1 and |E| ≤ 1,

(39)
∑

T∈Fn,]∪Fn,[

|Itop(T )| ≤ C2−2n.

For Fn,[, (39) is essentially a bound for the Hardy-Littlewood maximal function of χE.

The proof for Fn,] is essentially the same as that of the counting bound for Fn,i,j with

i 6= j in the bilinear Hilbert transform analysis; the primary ingredient is the almost-

orthogonality lemma for strongly disjoint trees, Lemma 7.1. The strong disjointness of

the collection Fn,] of trees is a consequence of the selection algorithm.

In this argument there is no a priori upper bound on n, but summation over all n ∈ Z
yields the desired uniform upper bound anyway (the alternative boundM(T ) ≤ C <∞
is used for n ≥ 0).

10. OPEN PROBLEMS

Higher-degree multilinear operators. The bilinear Hilbert transform can be gen-

eralized to

(40) T (f1, · · · , fm)(x) =

∫
R

m∏
k=1

fk(x− αkt) t
−1 dt

where the αj are pairwise distinct and nonzero. The analysis outlined above fails to

apply to this operator for m ≥ 3, and it is an open problem whether this formal

expression has any meaning for functions in appropriate spaces; scaling dictates that

the natural estimate would be ‖T (f1, f2, f3)‖Lq ≤ C
∏
‖fk‖Lpk where q−1 =

∑
k p

−1
k . In

fact, for m ≥ 4, when this operator is expanded in terms of localized Fourier coefficients,

the resulting sum actually fails to converge absolutely. See [22] and the references cited

there for some positive results in this direction.

I mention in passing that for nonsingular expressions T (f1, . . . , fm)(x) =
∫ 1

−1

∏m
k=1 fk(x−

αkt) dt, with no singular factor t−1, there are interesting questions (for m ≥ 3) [7]

which make contact with work of Bourgain [1] and of Katz-Tao [17] on a problem in

additive number theory related to the Kakeya problem.

Scattering for one-dimensional Dirac operators. Associated to any potential

V : R → C is the Dirac operator DV =

(
−i d

dx
V̄

V i d
dx

)
. If V has compact support then

for each λ ∈ R there exist unique scattering coefficients a(λ), b(λ) for which there exists
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a solution u =

(
u1

u2

)
of the generalized eigenfunction equation DV u = λu taking the

form u(x) ≡
(
eiλx

0

)
as x→ −∞ and u(x) ≡

(
a(λ)eiλx

b(λ)e−iλx

)
as x→ +∞.

For potentials V ∈ L1(R), it is elementary that there still exist solutions with these

asymptotics, for every λ. For V ∈ Lp for 1 < p < 2, this continues to hold for Lebesgue-

almost every λ. However, there are indications [14] that the natural class of potentials

is V ∈ L2.

For any x, u(x) can be written in the form u(x) =

(
a(x, λ)eiλx

b(x, λ)e−iλx

)
where b(λ) =

limx→+∞ b(x, λ) and likewise for a. The mapping V →
(
a(x, λ)

b(x, λ)

)
is fully nonlinear. A

Taylor-type expansion about V = 0 gives the linearized expression

(41) b(x, λ) = i

∫ x

−∞
e2iλyV (y) dy plus higher-order terms.

The question is whether limx→+∞ b(x, λ) exists for almost every λ, for every V ∈ L2(R).

By writing V = f̂ we see that the linearization of this problem about V = 0 is simply

a restatement of Carleson’s theorem. Thus the almost everywhere existence of these

scattering coefficients, for general V ∈ L2, is a nonlinear extension of the problem of

almost everywhere convergence of Fourier integrals.

For 1 < p < 2, this was proved [8] using an expansion of the mapping V 7→ b(x, λ)

as an infinite sum of multilinear expressions acting on V . However, Muscalu, Tao, and

Thiele [23] have shown that even the first nonlinear expression in this series diverges

for general V ∈ L2, and the problem remains open despite an interesting positive result

of those authors concerning a related model problem.

There is an almost identical problem for one-dimensional Schrödinger operators, with

the added complication that a WKB-type phase correction must be incorporated [8].

Epilogue. There is a great more to be said, both about subsequent developments

to which other authors have made important contributions, and about other types of

multilinear operators which appear in contemporary analysis. Space-time inequalities

prevent this author from discussing those matters here. I particularly regret having

had to give short shrift to other authors’ contributions in order to discuss the themes

chosen in the space allotted.
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Vol. 2003/2004. Astérisque No. 299 (2005), Exp. No. 936, ix, 301–328.

Michael CHRIST

Department of Mathematics
University of California
Berkeley, CA 94720-3840 – U.S.A.
E-mail : mchrist@math.berkeley.edu


