
Mathematical Research Letters xxx, 10001–100NN (2008)

FINITE BOUNDS FOR HÖLDER-BRASCAMP-LIEB
MULTILINEAR INEQUALITIES

Jonathan Bennett, Anthony Carbery, Michael Christ,
and Terence Tao

Abstract. A criterion is established for the validity of multilinear inequalities of

a class considered by Brascamp and Lieb, generalizing well-known inequalties of

Rogers and Hölder, Young, and Loomis-Whitney.

1. Formulation

Consider multilinear functionals

(1.1) Λ(f1, f2, · · · , fm) =
∫

Rn

m∏
j=1

fj(`j(y)) dy

where each `j : Rn → Rnj is a surjective linear transformation, and fj : Rnj →
[0,+∞]. Let p1, · · · , pm ∈ [1,∞]. For which m-tuples of exponents and linear
transformations is

(1.2) sup
f1,··· ,fm

Λ(f1, f2, · · · , fm)∏
j ‖fj‖Lpj

<∞?

The supremum is taken over all m-tuples of nonnegative Lebesgue measurable
functions fj having positive, finite norms. If nj = n for every index j then (1.2)
is essentially a restatement of Hölder’s inequality.1 Other well-known particu-
lar cases include Young’s inequality for convolutions and the Loomis-Whitney
inequality2 [15].

In this paper we characterize finiteness of the supremum (1.2) in linear alge-
braic terms, and discuss certain variants and a generalization. The problem has
a long history, including the early work of Rogers [17] and Hölder [12]. In this
level of generality, the question was to our knowledge first posed by Brascamp
and Lieb [4]. A primitive version of the problem involving Cartesian product
rather than linear algebraic structure was posed and solved by Finner [10]; see
§7 below. In the case when the dimension nj of each target space equals one,
Barthe [1] characterized (1.2). Carlen, Lieb and Loss [7] gave an alternative
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1For a discussion of the history of Hölder’s inequality, including its discovery by Rogers

[17], see [16].
2Loomis and Whitney considered only the special case where each fj is the characteristic

function of a set.
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characterization, closely related to ours, and an alternative proof for that case.
[7] developed an inductive analysis closely related to that of Finner, whose ar-
gument in turn relied on a slicing and induction argument employed earlier by
Loomis and Whitney [15] and Calderón [6] to treat special cases. [7] also in-
troduced a version of the key concepts of critical and subcritical subspaces, a
higher-dimensional reformulation of which is essential in our work.

An alternative line of analysis exists. Although rearrangement inequalities
such as that of Brascamp, Lieb, and Luttinger [5] do not apply when the target
spaces have dimensions greater than one, Lieb [14] nonetheless showed that the
supremum in (1.2) equals the supremum over all m-tuples of Gaussian func-
tions,3 meaning those of the form fj = exp(−Qj(y, y)) for some positive definite
quadratic form Qj . See [7] and references cited there for more on this approach.
In a companion paper [3] we have given other proofs of our characterization of
(1.2), by using heat flow to continuously deform arbitrary functions fj to Gaus-
sians while increasing the ratio in (1.2). That approach extends work of Carlen,
Lieb, and Loss [7] via a method which they introduced.

We are indebted to a referee, whose careful reading and comments have im-
proved the exposition.

2. Results

Denote by dim (V ) the dimension of a vector space V , and by codimW (V )
the codimension of a subspace V ⊂ W in W . It is convenient to reformulate
the problem in a more invariant fashion. Let H,H1, . . . ,Hm be Hilbert spaces
of finite, positive dimensions. Each is equipped with a canonical Lebesgue mea-
sure, by choosing orthonormal bases, thus obtaining identifications with Rdim (H),
Rdim (Hj). Let `j : H → Hj be surjective linear mappings. Let fj : Hj → R be
nonnegative. Then Λ(f1, · · · , fm) equals

∫
H

∏m
j=1 fj ◦ `j(y) dy.

Theorem 2.1. For 1 ≤ j ≤ m let H,Hj be Hilbert spaces of finite, positive di-
mensions. For each index j let `j : H → Hj be surjective linear transformations,
and let pj ∈ [1,∞]. Then (1.2) holds if and only if

(2.1) dim (H) =
∑
j

p−1
j dim (Hj)

and

(2.2) dim (V ) ≤
∑
j

p−1
j dim (`j(V )) for every subspace V ⊂ H.

This equivalence is established by other methods in [3], Theorem 1.15.

3This situation should be contrasted with that of multilinear operators of the same general
form, mapping ⊗jLpj to Lq . When q ≥ 1, such multilinear operators are equivalent by duality

to multilinear forms Λ. This is not so for q < 1, and Gaussians are then quite far from being
extremal [8].
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Given that (2.1) holds, the hypothesis (2.2) can be equivalently restated as

(2.3) codimH(V ) ≥
∑
j

p−1
j codimHj

(`j(V )) for every subspace V ⊂ H;

any two of these three conditions (2.1), (2.2), (2.3) imply the third. As will
be seen through the discussion of variants below, (2.2) expresses a necessary
condition governing large-scale geometry (compare Theorem 2.5), while (2.3)
expresses a necessary condition governing small-scale geometry (compare Theo-
rem 2.2). See also the discussion of necessary conditions for Theorem 2.3.

In the rank one case, when each target space Hj is one-dimensional, a nec-
essary and sufficient condition for inequality (1.2) was first obtained by Barthe
[1]. Carlen, Lieb, and Loss [7] gave a different proof of the inequality for the
rank one case, and a different characterization which is closely related to ours.
Write `j(x) = 〈x, vj〉. It was shown in [7] that (1.2) is equivalent, in the rank one
case, to having

∑
j p
−1
j = dim (H) and

∑
j∈S p

−1
j ≤ dim (span ({vj : j ∈ S}))

for every subset S of {1, 2, · · · ,m}; a set of indices S was said to be subcritical
if this last inequality holds, and to be critical if it holds with equality. In the
higher-rank case, we have formulated these concepts as properties of subspaces
of H, rather than of subsets of {1, 2, · · · ,m}.

To elucidate the connection between the two formulations in the rank one
case, define WS = span {vj : j ∈ S}, and say that a set of indices S is maximal
if there is no larger set S̃ of indices satisfying WS̃ = WS . All sets of indices are
subcritical, if and only if all maximal sets of indices are subcritical. If j ∈ S then
codimHj (`j(W⊥S )) = 1; if j /∈ S and S is maximal then codimHj (`j(W⊥S )) = 0;
and codim(W⊥S ) = dim (span ({vj : j ∈ S})). Thus if S is maximal, then the
subcriticality of S is equivalent to

∑n
j=1 p

−1
j codimHj

(`j(W⊥S )) ≤ codim(W⊥S ).
As noted above, under the condition

∑n
j=1 p

−1
j = dim (H), this is equivalent

to our subcriticality condition dim (V ) ≤
∑
j p
−1
j dim (`j(V )) for the subspace

V = W⊥S .
The necessity of (2.1) follows from scaling: if fλj (xj) = gj(λxj) for each λ ∈

R+ then Λ({fλj }) is proportional to λ− dim (H), while
∏
j ‖fλj ‖pj is proportional

to
∏
j λ
− dim (Hj)/pj . That (2.2) is also necessary will be shown in §5 in the

course of the proof of the more general Theorem 2.3.

Remark 2.1. Λ can be alternatively expressed as a constant multiple of the
integral

∫
Σ

∏
j fj dσ, where Σ is a linear subspace of ⊕jHj and σ is Lebesgue

measure on Σ. More exactly, Σ is the range of the map H 3 x 7→ ⊕j`j(x).
Denote by πj the restriction to Σ of the natural projection πj : ⊕iHi → Hj .
Then condition (2.2) can be restated as

(2.4) dim (Σ̃) ≤
∑
j

p−1
j dim (πj(Σ̃)) for every linear subspace Σ̃ ⊂ Σ.
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A local variant is also natural. Consider

(2.5) Λloc(f1, · · · , fm) =
∫
{y∈H:|y|≤1}

∏
j

fj ◦ `j(y) dy.

Theorem 2.2. Let H,Hj , `j, and fj : Hj → [0,∞) be as in Theorem 2.1. Let
pj ∈ [1,∞] for 1 ≤ j ≤ m. A necessary and sufficient condition for there to
exist C <∞ such that

(2.6) Λloc(f1, · · · , fm) ≤ C
∏
j

‖f‖Lpj

for all nonnegative measurable functions fj is that every subspace V of H satisfies
(2.3): codimH(V ) ≥

∑
j p
−1
j codimHj

(`j(V )).

This is equivalent to Theorem 8.17 of [3], proved there by a different method.
Certain cases of Theorem 2.2 follow from Theorem 2.1; if there exist exponents

rj satisfying the hypotheses (2.1) and (2.2) of Theorem 2.1, such that rj ≤
pj for all j, then the conclusion of Theorem 2.2 follows directly from that of
Theorem 2.1 by Hölder’s inequality, since ‖fj‖Lrj ≤ C ′ ‖fj‖Lpj . But not all
cases of Theorem 2.2 are subsumed in Theorem 2.1 in this way. See Remark 7.1
for examples.

The next theorem, in which some but not necessarily all coordinates of y are
constrained to a bounded set, unifies Theorems 2.1 and 2.2.

Theorem 2.3. Let H,H0, · · · , Hm be finite-dimensional Hilbert spaces and as-
sume that dim (Hj) > 0 for all j ≥ 1. Let `j : H → Hj be linear transformations
for 0 ≤ j ≤ m, which are surjective for all j ≥ 1. Let pj ∈ [1,∞] for 1 ≤ j ≤ m.
Then there exists C <∞ such that

(2.7)
∫
{y∈H:|`0(y)|≤1}

m∏
j=1

fj ◦ `j(y) dy ≤ C
m∏
j=1

‖fj‖Lpj

for all nonnegative Lebesgue measurable functions fj if and only if

dim (V ) ≤
m∑
j=1

p−1
j dim (`j(V )) for all subspaces V ⊂ kernel (`0)(2.8)

and

codimH(V ) ≥
m∑
j=1

p−1
j codimHj (`j(V )) for all subspaces V ⊂ H.(2.9)

This subsumes Theorem 2.2, by taking H0 = H and `0 : H → H to be
the identity; (2.8) then only applies to {0}, for which it holds automatically,
so that the only hypothesis is then (2.9). On the other hand, Theorem 2.1
is the special case `0 ≡ 0 of Theorem 2.3. In that case kernel (`0) = H, so
(2.8) becomes (2.2). In addition, the case V = {0} of (2.9) yields the reverse
inequality dim (H) ≥

∑
j p
−1
j dim (Hj). Thus the hypotheses of Theorem 2.3
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imply those of Theorem 2.1 when `0 ≡ 0. The converse implication also holds,
as was pointed out in the discussion of Theorem 2.2.

Our next result is one of several possible discrete analogues. Recall [13] that
any finitely generated Abelian group G is isomorphic to Zr×H for some integer
r and some finite Abelian group H; r is uniquely determined and is called the
rank of G.

Theorem 2.4. Let G and {Gj : 1 ≤ j ≤ m} be finitely generated Abelian groups.
Let ϕj : G→ Gj be homomorphisms. Let pj ∈ [1,∞]. Then

(2.10) rank (H) ≤
∑
j

p−1
j rank (ϕj(H)) for every subgroup H of G

if and only if there exists C <∞ such that

(2.11)
∑
y∈G

m∏
j=1

(fj ◦ ϕj)(y) ≤ C
∏
j

‖fj‖`pj (Gj) for all fj : Gj → [0,∞).

Here the `pj norms are defined with respect to counting measure.
A special case arises when G is isomorphic to Zd, Gj is isomorphic to Zdj for

all j, and each ϕj is represented by a matrix with integer entries. The general
case of Theorem 2.4 can be deduced directly from this special case, using the
isomorphisms between e.g. G and Zd ×H for some finite group H, and the fact
that all `p norms are mutually equivalent on finite sets.

A related variant is as follows. In Rd, for each n ∈ Zd define Qn = {x ∈ Rd :
|x− n| ≤

√
d}. The space `p(L∞)(Rd) is the space of all f ∈ L∞(Rd) for which

(
∑
n∈Zd ‖f‖pL∞(Qn))

1/p is finite.

Theorem 2.5. Let m ≥ 1 be a positive integer, and for each j ∈ {1, 2, · · · ,m}
let `j : Rd → Rdj be a surjective linear transformation. Let pj ∈ [1,∞]. Then

(2.12) dim (V ) ≤
∑
j

p−1
j dim (`j(V )) for every subspace V ⊂ Rd

if and only if there exists C <∞ such that

(2.13)
∫

Rd

m∏
j=1

(fj ◦ `j)(y) dy ≤ C
∏
j

‖fj‖`pj (L∞)(Rdj )

for all measurable fj : Rdj → [0,∞).

A related result is Corollary 8.11 of [3].
Yet another variant of our results, based on Cartesian product rather than

linear algebraic or group theoretic structure, has been obtained earlier by Finner
[10]; see also [11] for a discussion of some special cases from another point of
view. Let {(Xi, µi)i∈I} be a finite collection of measure spaces, and let (X,µ) =∏
i∈I(Xi, µi) be their product. Let J be another finite index set. For each j ∈ J ,

let Sj be some nonempty subset of I. Let Yj =
∏
i∈Sj

Xi, equipped with the
associated product measure, and let πj : X → Yj be the natural projection map.
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Let fj : Yj → [0,∞] be measurable. To avoid trivialities, we assume throughout
the discussion that I, J are nonempty and that µ(X) is strictly positive. Define

(2.14) Λ(fj)j∈J =
∫
X

∏
j∈J

fj ◦ πj dµ.

Denote by | · | the cardinality of a finite set.
Let pj ∈ [1,∞] for each j ∈ J . Finner’s theorem then asserts that if

(2.15) 1 =
∑
j:i∈Sj

p−1
j for all i ∈ I

then

(2.16) Λ(fj)j∈J ≤
∏
j∈J
‖fj‖Lpj (Yj) .

A modest generalization of Finner’s theorem is discussed in §7.
The hypothesis (2.15) can be equivalently restated as

(2.17) |K| =
∑
j∈J

p−1
j |Sj ∩K| for every subset K ⊂ I,

or again as the conjunction of |I| =
∑
j∈J p

−1
j |Sj | and |K| ≤

∑
j∈J p

−1
j |Sj ∩K|

for every K ⊂ I. When each space Xi is some Euclidean space equipped with
Lebesgue measure, the hypotheses in this last form are precisely those of Theo-
rem 2.1, specialized to this limited class of linear mappings. The analogue of a
subspace is now a subset K ⊂ I, and the analogue of criticality is (2.17); thus
(2.16) holds if and only if every subset K is critical. This contrasts with the sit-
uations treated by Barthe [1], by Carlen, Lieb, and Loss [7], and in Theorem 2.1,
where generic subspaces will be subcritical even if critical subspaces exist.

A special case treated by Calderón [6] is as follows: Let 1 ≤ k < n. Let
x = (x1, · · · , xn) be coordinates for Rn. For each subset S ⊂ {1, 2, 3, · · · , n} of
cardinality k let RkS be a copy of Rk, with coordinates (xi)i∈S . Let πS : Rn → Rk
be the natural projections. Then for arbitrary nonnegative measurable functions,

(2.18)
∫

Rn

∏
S

fS(πS(x)) dx ≤
∏
S

‖fS‖Lp(Rk
S)

where p =
(
n−1
k−1

)
. A particular instance of Calderón’s theorem is the Loomis-

Whitney inequality

(2.19)
∫

Rn

n∏
j=1

fj ◦ πj(x) dx ≤
n∏
j=1

‖fj‖Ln−1 ,

where πj : Rn → Rn−1 is the mapping that forgets the j-th coordinate.
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Two quite distinct investigations motivated our interest in these problems.
One derives from work [2] of three of us on multilinear versions of the Kakeya-
Nikodym maximal functions. A second motivator was work [9] on multilinear op-
erators with additional oscillatory factors; see Proposition 3.1 and Corollary 3.2
below.

3. An application to oscillatory integrals

Proposition 3.1. Let m > 1. For 1 ≤ j ≤ m let `j : Rn → Rnj be surjec-
tive linear mappings. Let P : Rn → R be a polynomial. Let ϕ ∈ C1

0 (Rn) be
a compactly supported, continuously differentiable cutoff function. For λ ∈ R
and fj ∈ Lpj (Rnj ) define Λλ(f1, · · · , fm) =

∫
Rn e

iλP (x)
∏m
j=1 fj(`j(x))ϕ(x) dx.

Suppose that there exist δ > 0 and C < ∞ such that for all functions fj ∈ L∞
and all λ ∈ R

(3.1) |Λλ(f1, · · · , fm)| ≤ C|λ|−δ
m∏
j=1

‖fj‖L∞ .

Let (p1, · · · , pm) ∈ [1,∞]m, and suppose that for every proper subspace V ⊂ Rn,

(3.2) codimRn(V ) >
∑
j

p−1
j codimRnj (`j(V )).

Then there exist δ > 0 and C <∞, depending on (p1, · · · , pm), such that

(3.3) |Λλ(f1, · · · , fm)| ≤ C|λ|−δ
m∏
j=1

‖fj‖Lpj

for all parameters λ ∈ R and functions fj ∈ Lpj (Rnj ).

By Theorem 2.2, the condition that codimRn(V ) ≥
∑
j p
−1
j codimRnj (`j(V ))

for every subspace V ⊂ Rn guarantees that the integral defining Λλ(f1, · · · , fm)
converges absolutely for all functions fj ∈ Lpj , and is bounded by C

∏
j ‖fj‖Lpj .

The conclusion of Proposition 3.1 then follows directly from this inequality and
the hypothesis by complex interpolation.

A polynomial P is said [9] to be nondegenerate, relative to the collection {`j}
of mappings, if P cannot be expressed as P =

∑
j Pj ◦ `j for any collection of

polynomials Pj : Rnj → R.

Corollary 3.2. Let {`j}, P, ϕ be as in Proposition 3.1. Suppose that P is non-
degenerate relative to {`j}. Suppose that either (i) nj = 1 for all j, m < 2n, and
the family {`j} of mappings is in general position, or (ii) nj = n − 1 for all j.
Let (p1, · · · , pm) ∈ [1,∞]m and suppose that for every proper subspace V ⊂ Rn,
codimRn(V ) >

∑
j p
−1
j codimRnj (`j(V )). Then there exists δ > 0 such that for

any ϕ ∈ C1
0 there exists C <∞ such that for all functions fj ∈ Lpj (Rnj ),

|Λλ(f1, · · · , fm)| ≤ C|λ|−δ
m∏
j=1

‖fj‖Lpj .
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Here general position means that for any subset S ⊂ {1, 2, · · · ,m} of cardinality
|S| ≤ n, ∩j∈S kernel (`j) has dimension n− |S|.

By Theorems 2.1 and 2.2 of [9], the hypotheses imply (3.1). Proposition 3.1
then implies the Corollary.

4. Proof of sufficiency in Theorem 2.1

We begin with the proof of sufficiency of the hypotheses (2.1), (2.2) for the
finiteness of the supremum in (1.2). Necessity will be established in the next
section.

The next definition is made for the purposes of the discussion of Theorem 2.1;
alternative notions of criticality are appropriate for the other theorems.

Definition 4.1. Relative to a set of exponents {pj}, a subspace V ⊂ H is said
to be critical if

(4.1) dim (V ) =
∑
j

p−1
j dim (`j(V )),

to be supercritical if the right-hand side is less than dim (V ), and to be subcritical
if the right-hand side is greater than dim (V ).

In this language, the hypothesis (2.1) states that V = H is critical relative to
{pj}, while (2.2) states that no subspace of H is supercritical.

Proof of sufficiency in Theorem 2.1. The proof proceeds by induction on the di-
mension of H. When dim (H) = 1, necessarily dim (Hj) = 1 for all j. The
hypothesis of the theorem in this case is that

∑
j p
−1
j = 1, and the conclusion is

simply a restatement of Hölder’s inequality for functions in Lpj (R1).
Suppose now that dim (H) > 1. There are two cases. Case 1 arises when

there exists some proper nonzero critical subspace W ⊂ H. The analysis then
relies on a factorization procedure visible in the work of Calderón [6], Finner
[10], and Carlen, Lieb, and Loss [7]. Express H = W⊥ ⊕ W where W⊥ is
the orthocomplement of W , with coordinates y = (y′, y′′) ∈ W⊥ ⊕W ; we will
identify (y′, 0) with y′ and (0, y′′) with y′′. Define Uj ⊂ Hj to be

(4.2) Uj = `j(W ).

Define ˜̀
j = `j |W : W → Uj , which is surjective. For y′ ∈ W⊥ and xj ∈ Uj

define

(4.3) gj,y′(xj) = fj(xj + `j(y′)).

Then

(4.4) fj(`j(y′, y′′)) = fj(`j(y′) + ˜̀
j(y′′)) = gj,y′(˜̀

j(y′′)).
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Now

Λ(f1, · · · , fm) =
∫
W⊥

∫
W

∏
j

fj(`j(y′, y′′)) dy′′ dy′

=
∫
W⊥

∫
W

∏
j

gj,y′(˜̀
j(y′′)) dy′′ dy′,

so

(4.5) Λ(f1, · · · , fm) =
∫
W⊥

Λ̃(g1,y′ , · · · , gm,y′) dy′

where

(4.6) Λ̃(g1, · · · , gm) =
∫
W

∏
j

gj(˜̀
j(y′′)) dy′′.

We claim that

(4.7) Λ̃(g1, · · · , gm) ≤ C
∏
j

‖gj‖pj
.

Since W has dimension strictly less than dim (H), this follows from the induction
hypothesis provided that W is critical and no subspace V ⊂W is supercritical,
relative to the mappings ˜̀

j and exponents pj . But since ˜̀
j is the restriction of `j

to W , this condition is simply the specialization of the original hypothesis from
arbitrary subspaces of H to those subspaces contained in W , together with the
criticality of W hypothesized in Case 1. Thus
(4.8)

Λ(f1, · · · , fm) =
∫
W⊥

Λ̃(g1,y′ , · · · , gm,y′) dy′ ≤ C
∫
W⊥

∏
j

‖gj,y′‖Lpj (Uj) dy
′.

We will next show how this last integral is another instance of the original
problem, with H replaced by the lower-dimensional vector space W⊥. For zj ∈
U⊥j define

(4.9) Fj(zj) =
( ∫

Uj

fj(xj + zj)pj dxj
)1/pj

,

recalling that fj ≥ 0, with Fj(zj) = ess sup xj∈Uj
fj(xj + zj) if pj =∞. Thus4

(4.10) ‖Fj‖Lpj (U⊥j ) = ‖fj‖Lpj (Hj).

Denote by πU⊥j : Hj → U⊥j and πUj
: Hj → Uj the orthogonal projections.

Define Lj : W⊥ → U⊥j by

(4.11) Lj = πU⊥j ◦ `j .

4If Uj = {0} then the domain of Fj is Hj , and Fj ≡ fj . If Uj = Hj then the domain of Fj

is {0}, and ‖Fj‖pj is by definition Fj(0) = ‖fj‖pj .
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Decomposing `j(y′) = Lj(y′) + uj where uj = πUj (`j(y′)), and making the
change of variables x̃j = xj + uj in Uj , gives (if pj <∞)

(4.12) ‖gj,y′‖
pj

Lpj (Uj)
=
∫
Uj

|gj,y′(xj)|pj dxj =
∫
Uj

|fj(xj + `j(y′))|pj dxj

=
∫
Uj

|fj(xj+uj+Lj(y′))|pj dxj =
∫
Uj

|fj(x̃j+Lj(y′))|pj dx̃j = Fj(Lj(y′))pj .

Consequently we have shown thus far that

(4.13) Λ(f1, · · · , fm) ≤ C
∫
W⊥

∏
j

Fj ◦ Lj

where ‖Fj‖Lpj (U⊥j ) = ‖fj‖Lpj (Hj). Since `j : H → Hj is surjective, Hj is spanned
by `j(W ) = Uj together with `j(W⊥); thus the orthogonal projection of `j(W⊥)
onto U⊥j is all of U⊥j ; thus each Lj : W⊥ → U⊥j is surjective.

To complete the argument for Case 1 we need only show that

(4.14)
∫
W⊥

∏
j

Fj ◦ Lj ≤ C
∏
j

‖Fj‖Lpj (U⊥j ).

By induction on the ambient dimension, this follows from the next lemma, which
appears in [7] in the special case when dim (Hj) = 1 for all j. Although there
are no additional complications in the general case, we include a proof for the
sake of completeness.

Lemma 4.1. Fix an m-tuple (p1, · · · , pm) of exponents in [1,∞]. Suppose that
with respect to these exponents, H is critical with respect to these exponents, H
has no supercritical subspaces, and W ⊂ H is a nonzero proper critical subspace.
Define surjective linear transformations Lj = π`j(W )⊥ ◦ `j : W⊥ → `j(W )⊥.
Then for any subspace V ⊂W⊥, dim (V ) ≤

∑
j p
−1
j dim (Lj(V )).

Proof. Let V be any subspace of H contained in W⊥. Associate to V the
subspace V + W ⊂ H. Since V ⊂ W⊥, dim (V + W ) = dim (V ) + dim (W ).
Moreover, for any j,

(4.15) dim (`j(V +W )) = dim (Lj(V )) + dim (`j(W )),

since Lj = π`j(W )⊥ ◦ `j .
Therefore∑

j

p−1
j dim (Lj(V )) =

∑
j

p−1
j dim (`j(V +W ))−

∑
j

p−1
j dim (`j(W ))

=
∑
j

p−1
j dim (`j(V +W ))− dim (W )

≥ dim (V +W )− dim (W ) = dim (V ),

by the criticality of W and subcriticality of V +W . Thus V is not supercritical.
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When V = W⊥, one has V + W = H, whence
∑
j p
−1
j dim (`j(V + W )) =

dim (V +W ) since H is assumed to be critical. With this information the final
inequality of the preceding display becomes an equality, demonstrating that W⊥

is critical. �

The proof of Case 1 of Theorem 2.1 is complete. Turn next to Case 2, in which
every nonzero proper subspace of H is subcritical. ∞−1 is to be interpreted as
zero throughout the discussion.

Consider the set K of all m-tuples t = (t1, · · · , tm) ∈ [0, 1]m such that relative
to the exponents pj = t−1

j , H is critical and has no supercritical subspace. Thus
K equals the intersection of [0, 1]m with the hyperplane defined by the equation
dim (H) =

∑
j tj dim (Hj), and with all of the closed half-spaces defined by the

inequalities dim (V ) ≤
∑
j tj dim (`j(V )), as V ranges over all subspaces of H.

Therefore K is comvex and compact.
While the number of such subspaces V is infinite, the number of m + 1-

tuples (dim (V ),dim (`1(V )), · · · ,dim (`m(V ))) is finite. The set of all distinct
inequalities induced by subspaces ofH is in one-to-one corresondence with the set
of all such m+ 1-tuples. Thus K is the intersection of [0, 1]m with a hyperplane
and with finitely many closed half-spaces. ThereforeK has finitely many extreme
points. Since K is compact and convex, K consequently equals the convex hull
of its extreme points.

We will show that for any extreme point t of K, there exists a finite constant
C such that Λ(f1, · · · , fm) ≤ C

∏
j ‖fj‖L1/tj for all nonnegative measurable

functions fj . Granting such inequalities, let {t(i)}i be the set of all extreme
points of K, and let Ci be constants for which the corresponding inequalities
hold. Any t = (t1, · · · , tm) ∈ K can be expressed as t =

∑
i λit

(i) for some
scalars λi ∈ [0, 1] satisfying

∑
i λi = 1. Write t(i) = (t(i)1 , · · · , t(i)m ). A direct

application of complex interpolation shows that

Λ(f1, · · · , fm) ≤
∏
i

Cλi
i

∏
j

‖fj‖λi

L1/tj
= C

∏
j

‖fj‖L1/tj

for all nonnegative measurable functions fj , where C =
∏
i C

λi
i .

At an arbitrary extreme point t of K, at least one of the inequalities defining
K must become an equality. Therefore some nonzero proper subspace of H must
be critical relative to t, or ti ∈ {0, 1} for at least one index i.

Consider the set K̃ of all t ∈ [0,∞)m for which dim (H) =
∑
j tj dim (Hj) and

dim (V ) ≤
∑
j tj dim (`j(V )) for all subspaces V of H. Thus K = K̃ ∩ [0, 1]m ⊂

K̃. We claim that K̃ = K. Indeed, for any t ∈ K̃, the homogeneity and
subcriticality conditions imply that codimH(V ) ≥

∑
j tj codimHj

(`j(V )) for all
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subspaces V ⊂ H. Consider any index i and let V be the nullspace of `i. Then

(4.16) dim (Hi) = codimH(V ) ≥
∑
j

tj codimHj
(`j(V ))

≥ ti codimHi
{0} = ti dim (Hi).

Therefore ti ≤ 1 for all i, so t ∈ K. Thus K̃ ⊂ K, as claimed.
Since K̃ = K, if t is any extreme point of K, then either equality must

hold in at least one of the inequalities defining K̃, or the number m of indices
j must be 1 (so that the hypothesis dim (H) =

∑
j p
−1
j dim (Hj) specifies the

single exponent p−1
1 , reducing K to a single point). Thus some nonzero proper

subspace of H must be critical relative to t, or at least one coordinate ti must
equal 0, or m = 1. In the first subcase we are in Case 1, which has already been
treated above. For the case m = 1, see the second paragraph below.

In the second subcase, we may proceed by induction on m, for an inequality
Λ(f1, · · · , fm) ≤ C ‖fi‖L∞

∏
j 6=i ‖fj‖Lpj is equivalent to

(4.17) Λ(f1, · · · , fi−1, 1, fi+1, · · · , fm) ≤ C
∏
j 6=i

‖fj‖Lpj .

The hypotheses of Theorem 2.1 are inherited by this multilinear operator of one
lower degree, acting on {fj : j 6= i}, whence the desired inequality follows by
induction.

This induction is founded by the subcase in which m = 1. In this case the
hypothesis dim (H) =

∑
j p
−1
j dim (Hj) becomes dim (H) = p−1

1 dim (H1). Since
`1 : H → H1 is assumed to be surjective, dim (H1) ≤ dim (H), so this forces
both p1 = 1 and dim (H1) = dim (H). Since `1 : H → H1 is surjective, it must
be invertible. Therefore Λ(f1) =

∫
H
f1 ◦ `1 = c

∫
H1
f1 = c‖f1‖L1 for some finite

constant c, which certainly implies the desired inequality Λ(f1) ≤ C‖f1‖L1 . �

Remark 4.1. When dim (Hj) = 1 for all j, every extreme point (p−1
1 , · · · , p−1

m )
of K has each p−1

j ∈ {0, 1} [1],[7]. This is not the case in general; in the Loomis-
Whitney inequality (2.19) for Rn, K consists of a single point, with pj = n− 1
for all j.

5. Proof of Theorem 2.3

Consider
∫
{y∈H:|`0(y)|≤1}

∏m
j=1 fj ◦ `j dy where the linear transformation `0

has domain H and range H0, with dim (H0) possibly equal to zero. Thus some
components of y are constrained to a bounded set, while the rest are free. Set

(5.1) V = kernel (`0);

the component of y lying in V is completely unconstrained, while the component
in V⊥ is constrained to a bounded set.
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Proof of necessity of (2.8) and (2.9). For any subspace V ⊂ H define Vbig =
V ∩ V and Vsmall = V 	 Vbig = V ∩ (Vbig)⊥, so that V = Vsmall ⊕ Vbig. Denote
by πV the orthogonal projection of either H or some Hj onto a subspace V .

Let r ≤ 1 ≤ R be arbitrary. Define fj = fj(xj) to be the characteristic
function of the set Sj of all xj ∈ Hj such that

|π`j(Vbig)(xj)| ≤ R, |π`j(V )∩(`j(Vbig))⊥(xj)| ≤ 1, and |π(`j(V ))⊥(xj)| ≤ r.
Let c0 > 0 be a small constant independent of r,R, and define S ⊂ H to be the
set of all y such that |πV ⊥(y)| ≤ c0r, |πVsmall(y)| ≤ c0, and |πVbig(y)| ≤ c0R.

Fix a constant C < ∞ such that |`j(y)| ≤ C|y| for all y, j. Provided that
c0 < 1/3C, y ∈ S ⇒ fj(`j(y)) = 1 for all indices j. Indeed, for any y ∈ S ∩ V ⊥,
|`j(y)| ≤ C|y| ≤ Cc0r < r/3, so `j(y) ∈ 1

3Sj . If on the other hand y ∈ S∩Vsmall,
then |`j(y)| ≤ C|y| ≤ Cc0 <

1
3 , so since `j(y) ∈ `j(V ), `j(y) ∈ 1

3Sj . Finally
if y ∈ S ∩ Vbig then |`j(y)| ≤ Cc0R, which implies that `j(y) ∈ 1

3Sj since
`j(y) ∈ `j(Vbig). Any y ∈ S admits an orthogonal decomposition y = u+ v + w
where u ∈ S ∩ V ⊥, v ∈ S ∩ Vsmall, and w ∈ S ∩ Vbig. These components satisfy
|u| ≤ c0r, |v| ≤ c0, and |w| ≤ c0R, by definition of S. `j(y) is thus a sum of
three terms in 1

3Sj , so `j(y) ∈ Sj .
Moreover y ∈ S ⇒ |`0(y)| ≤ 1. Therefore

(5.2) Λ̃loc({fj}) ≥ |S| ∼ Rdim (Vbig) · rcodimH(V )

while

(5.3) ‖fj‖pj ∼ Rp
−1
j dim (`j(Vbig))rp

−1
j codimHj

(`j(V )).

Suppose that the ratio Λ̃loc

(
{fj}

)
/
∏
j ‖fj‖pj

is bounded uniformly as a function
of r,R. By letting R→∞ while r remains fixed, we conclude that

dim (Vbig) ≤
∑
j

p−1
j dim (`j(Vbig)).

Letting r → 0 with R fixed gives

codimH(V ) ≥
∑
j

p−1
j codimHj (`j(V )).

�

The following lemma will be used in the proof of Theorem 2.3.

Lemma 5.1. Suppose that codimH(V ) ≥
∑
j p
−1
j codimHj (`j(V )) for every

subspace V ⊂ H, and that W ⊂ H is a subspace satisfying codimH(W ) =∑
j p
−1
j codimHj (`j(W )). Then for any subspace V ⊂W ,

codimW (V ) ≥
∑
j

p−1
j codim`j(W )(`j(V )).

Likewise for any subspace V ⊂W⊥,

codimW⊥(V ) ≥
∑
j

p−1
j codim`j(W )⊥(Lj(V )).
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Proof. For the first conclusion,

(5.4) codimW (V ) = dim (W )− dim (V ) = codimH(V )− codimH(W )

≥
∑
j

p−1
j codimHj

(`j(V ))−
∑
j

p−1
j codimHj

(`j(W ))

=
∑
j

p−1
j (dim (`j(W ))− dim (`j(V ))) =

∑
j

p−1
j codim`j(W )(`j(V )).

For the second conclusion,

codimW⊥(V ) = dim (H)− dim (W )− dim (V )

= codimH(V +W )

≥
∑
j

p−1
j codimHj (V +W )

=
∑
j

p−1
j

(
dim (Hj)− dim (`j(W ))− dim (Lj(V ))

)
=
∑
j

p−1
j

(
dim (Lj(W⊥))− dim (Lj(V ))

)
.

=
∑
j

p−1
j codimLj(W⊥)(Lj(V )).

(5.5)

The identity dim (Hj) = dim (`j(W )) + dim (Lj(W⊥)) used to obtain the final
line is (4.15) specialized to V = W⊥. �

Proof of sufficiency in Theorem 2.3. The proof follows the inductive scheme of
the proof of Theorem 2.1. To simplify notation set tj = p−1

j ∈ [0, 1]. Case 1
now breaks down into two subcases. Case 1A arises when there exists a nonzero
proper subspace W of H that is contained in V and is critical in the sense of
(2.8), that is,5

∑
j tj dim (`j(W )) = dim (W ).

With coordinates (y′, y′′) for W⊥⊕W , `0 is independent of y′′, and for every
subspace V ⊂ W ,

∑
j tj dim (`j(V )) ≥ dim (V ) by (2.8). Thus the collection

of mappings {`j |W } satisfies the hypothesis of Theorem 2.1, whence
∫
W

∏
j fj ◦

`j(y′, y′′) dy′′ ≤ C
∏
j Fj(y

′) where ‖Fj‖Lpj (W⊥) ≤ C‖fj‖Lpj (Hj).
It remains to bound

∫
W⊥

χB ◦ `0(y′, 0)
∏
j Fj ◦ Lj(y′) dy′, where B denotes

the characteristic function of a ball of finite radius. Theorem 2.3 can be invoked
by induction on the ambient dimension, provided that (2.8) and (2.9) hold for
the data W⊥,V ∩W⊥, {U⊥j , Lj , pj}. We will write (2.8)H , (2.8)W , and (2.8)W⊥
to distinguish between this hypothesis for the three different data that arise in
the discussion; likewise for (2.9).

(2.9)W is the condition that codimW⊥(V ) ≥
∑
j tj codimLj(W⊥)(Lj(V )) for

every subspace V ⊂ W⊥, which is the second conclusion of Lemma 5.1. (2.8)W

5All summations with respect to j are taken over 1 ≤ j ≤ m.
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is the condition

(5.6) dim (V ) ≤
∑
j

tj dim (Lj(V )) for all subspaces V ⊂ V ∩W⊥.

Since V,W are both contained in V so is V + W , so
∑
j tj dim (`j(V + W )) ≥

dim (V +W ) = dim (V )+dim (W ) by (2.8)H . This together with the previously
established identity dim (`j(V +W )) = dim (`j(W )) + dim (Lj(V )) and the crit-
icality condition

∑
j tj dim (`j(W )) = dim (W ) yields (5.6). Thus Case 1A is

treated by applying Theorem 2.1 for W and the induction hypothesis for W⊥.
Case 1B arises when there exists a nonzero proper subspace W ⊂ H that is

critical in the sense of (2.9), that is, codimH(W ) =
∑
j tj codimHj

(`j(W )). The
analysis follows the same inductive scheme. Lemma 5.1 guarantees that (2.9)W
holds, while (2.8)W is simply the specialization of (2.8)H to subspaces V ⊂W ∩
V. Thus Theorem 2.3 may be applied by induction to W, {`j(W )}, {`j |W }, {pj}.

This reduces matters to
∫
W⊥∩{|L0(y′)|≤1}

∏
j Fj ◦ Lj dy′, where the nullspace

Ṽ of L0 is the set of all y′ ∈ W⊥ for which there exists y′′ ∈ W such that
`0(y′, y′′) = 0; thus the subspace V ⊂ H is now replaced by πW⊥V ⊂W⊥.

Now it is natural to expect to use (2.8)H to establish (2.8)W⊥ , but the latter
pertains to certain subspaces not contained in V, about which the former says
nothing. Luckily the inequality in (5.6) holds for arbitrary subspaces V ⊂W⊥,
not merely those contained in πW⊥V. Indeed,∑

j

tj dim (Lj(V )) =
∑
j

tj dim (`j(V +W ))−
∑
j

tj dim (`j(W ))

=
∑
j

tj codimHj
(`j(W ))−

∑
j

tj codimHj
(`j(V +W ))

= codimH(W )−
∑
j

tj codimHj (`j(V +W ))

≥ codimH(W )− codimH(V +W )

= dim (V ).

The assumption that W is critical in the sense that equality holds in (2.9)H
implies (2.9)⊥W , by the second conclusion of Lemma 5.1. Thus by induction on
the dimension, Theorem 2.3 may be applied to the integral over W⊥, concluding
the proof for Case 1B.

Case 2 arises when no subspace W is critical in either sense. Consider the
set K ⊂ [0, 1]m of all (t1, · · · , tm) such that

∑
j tj dim (`j(V )) ≥ dim (V ) for all

subspaces V ⊂ V = kernel (`0), and codimH(V ) ≥
∑
j tj codimHj

(`j(V )) for all
subspaces V ⊂ H. As in the proof of Theorem 2.1, K is a compact convex set
with finitely many extreme points, and consequently equals the convex hull of the
set of all of those extreme points. It suffices to prove that

∫
H
χB ◦ `0

∏
j≥1 fj ◦

`j ≤ C
∏
j ‖fj‖qj

for every extreme point (t1, · · · , tm) of K, where qj = t−1
j .

Consider such an extreme point. If there exists a nonzero proper subspace
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V ⊂ V that is critical in the sense that
∑
j tj dim (`j(V )) = dim (V ), or a

nonzero proper subspace V ⊂ H that is critical in the sense that codimH(V ) =∑
j tj codimHj

(`j(V )), then Case 1A or Case 1B apply.
There are other cases in which equality might hold in (2.8) or (2.9), besides

those subsumed under Case 1. If equality holds for V = {0} in (2.9) with p−1
j =

tj , then dim (H) =
∑
j tj dim (Hj), which is the first hypothesis of Theorem 2.1.

In conjunction with (2.9) this implies that (2.8) holds for every subspace V ⊂ H,
which is the second hypothesis of Theorem 2.1. Therefore the conclusion (2.7)
of Theorem 2.3 holds without the restriction |`0(y)| ≤ 1 in the integral, by
Theorem 2.1.

If on the other hand H = V = kernel (`0) and equality holds for V = H in
(2.8) with p−1

j = tj , then dim (H) =
∑
j tj dim (Hj), so Theorem 2.1 applies

once more.
Therefore matters reduce to the case where equality holds in (2.8) for no

subspace of V except V = {0}, and where furthermore equality holds in (2.9)
for no subspace of H except for V = H itself. Equality always holds in both of
those cases, so they play no part in defining K.
t satisfies codimH(V ) ≥

∑
j tj codimHj

(V )) for every subspace V ⊂ H.
Therefore as in Case 2 of the proof of Theorem 2.1, every remaining extreme
point (t1, · · · , tm) of K must have ti = 0 for at least one index i.

By induction on m, it therefore suffices to treat the case m = 1, with p1 =∞.
By (2.8) applied to V = kernel (`0), dim (kernel (`0)) ≤ 0 dim (H1) = 0, so `1
has no kernel. Therefore the restriction |`0(y)| ≤ 1 constrains y to a bounded
region, whence

∫
|`0(y)|≤1

f1 ◦ `1(y) dy ≤ C‖f1‖L∞ for some finite constant C. �

6. Proof of Theorem 2.4

This proof contains no significant new elements. We denote the identity
element of a group by 0. × will denote the Abelian direct product, that is,
the Cartesian product of two Abelian groups, equipped with the Abelian group
structure associated naturally to its factors. A subgroup H of G is said to be
of finite index if the quotient group G/H is finite. If H,H ′ are subgroups of G,
then H +H ′ denotes the subgroup of G generated by H ∪H ′.

A very few properties of finitely generated Abelian groups will be used in the
proof. See for instance [13] pp. 76-80, especially Theorem 2.6. Let G be any
finitely generated Abelian group. G is isomorphic to Zr ×H for some integer r
and some finite Abelian group H for a unique nonnegative integer r, called the
rank of G. H is uniquely determined up to isomorphism, and is isomorphic to the
subgroup of G consisting of all elements of finite order, which is called the torsion
subgroup of G. Thus G is finite if and only if rank (G) = 0. Any subgroup H of G
is finitely generated, and satisfies rank (H) ≤ rank (G). If H1, H2 are subgroups
of G, and if H1∩H2 = {0}, then rank (H1+H2) = rank (H1)+rank (H2). For any
homomorphism ϕ, rank (ϕ(G)) ≤ rank (G). Any subgroup H is of course normal,
so G/H is also a finitely generated Abelian group; however, in contrast to the
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theory of vector spaces, G is not in general isomorphic to the direct product of
H × (G/H). However, the following weaker property does hold, and will serve
as a substitute in our analysis: If π : G → G/H denotes the natural projection
then for any subgroup H ′ of G/H, rank (π−1(H ′)) = rank (H) + rank (H ′). In
particular, rank (G) = rank (H) + rank (G/H).

Let groups G,Gj , homomorphisms ϕj , and exponents pj satisfy the hypothe-
ses of Theorem 2.4. Consider first the case where there exists a subgroup
G′ ⊂ G, satisfying 0 < rank (G′) < rank (G), which is critical in the sense
that

∑
j p
−1
j rank (ϕj(G′)) = rank (G′). Define G′j = ϕj(G′) ⊂ Gj . Since ev-

ery subgroup of G inherits the hypothesis of the theorem, we may conclude by
induction on the rank that

(6.1)
∑
y∈G′

∏
j

(fj ◦ ϕj)(y) ≤ C
∏
j

‖fj‖`pj (G′j).

Define Fj ∈ `pj (Gj/G′j) by

Fj(x+G′j) = (
∑
z∈G′j

|fj(x+ z)|pj )1/pj .

Then ‖Fj‖`pj (Gj/G′j) = ‖fj‖`pj (Gj). Define homomorphisms ψj : G/G′ → Gj/G
′
j

by composing each ϕj with the quotient map from Gj to G′j . Then∑
y∈G

∏
j

(fj ◦ ϕj)(y) =
∑

x∈G/G′

∑
z∈G′

∏
j

(fj ◦ ϕj)(x+ z)

≤ C
∑

x∈G/G′

∏
j

(Fj ◦ ψj)(x);
(6.2)

the inequality follows from an invocation of (6.1). It suffices to show that the
homomorphisms ψj inherit the hypothesis of Theorem 2.4, which may then be
applied by induction on the rank to yield the desired bound O(

∏
j ‖Fj‖`pj ).

This hypothesis is verified using the criticality of G′ and the additivity of ranks,
just as additivity of dimensions was used in the proof of Theorem 2.1. Thus
Theorem 2.4 is proved in the special case where there exists a critical subgroup
G′ ⊂ G satisfying 0 < rank (G′) < rank (G).

In the general case of Theorem 2.4, consider the compact convex set K of all
(t1, · · · , tm) ∈ [0, 1]m for which rank (H) ≤

∑
j tj rank (ϕj(H)) for all subgroups

H ⊂ G. As in the proof of Theorem 2.1, the set of all extreme points of K is
finite, and K is equal to its convex hull.6 It suffices to prove that

∑
y∈G

∏
j(fj ◦

ϕj)(y) ≤ C
∏
j ‖fj‖1/tj for all extreme points (t1, · · · , tm) of K.

6There is a subtlety here. The set of all subspaces of fixed dimension of a finite-dimensional

vector space naturally carries the structure of a compact topological space. The set of
all subgroups of a finitely generated Abelian group lacks such structure. However, the in-
equalities which define K here are in one-to-one corresondence with the set of all m-tuples
(rank (H), rank (ϕ1(H)), · · · , rank (ϕm(H))), as H varies over all subgroups of G. Since all

ranks belong to the finite set [0, rank (G)] ∩ Z, only finitely many such inequalities arise.
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If (t1, · · · , tm) is an extreme point then either
∑
j tj rank (ϕj(G′)) = rank (G′)

for some subgroup G′ satisfying 0 < rank (G′) < rank (G), or tj ∈ {0, 1} for all
indices j, or the total number m of indices j equals one. The first case has
already been treated above.

Suppose that (t1, · · · , tm) ∈ K and tj ∈ {0, 1} for all j. Let S = {j : tj = 1},
and consider the subgroup G′ = ∩j:tj=1 kernel (ϕj). The hypothesis (2.10) states
that 0 =

∑
j∈S rank (ϕj(G′)) ≥ rank (G′), so G′ has rank 0, hence is finite. For

any point z = (zj)j∈S ∈
∏
j∈S Gj , the cardinality of {y ∈ G : φj(y) = zj ∀j ∈ S}

is ≤ |G′|. Therefore∑
y∈G

∏
j

(fj ◦ ϕj)(y) ≤
∏
j /∈S

‖fj‖`∞
∑
y∈G

∏
j∈S

(fj ◦ ϕj)(y)

=
∏
j /∈S

‖fj‖`∞
∑

z∈
Q

j∈S Gj

|{y : ϕj(y) = zj ∀j ∈ S}|
∏
j∈S

fj(zj)

≤ |G′|
∏
j /∈S

‖fj‖`∞
∏
j∈S
‖fj‖`1 ,

which is the desired inequality.
If m = 1 then the hypothesis rank (G) = p−1

1 rank (ϕ1(G)) forces p1 = 1 and
rank (ϕ1(G)) = rank (G). Therefore the kernel of ϕ1 has rank 0, that is, it is
a finite group. The required inequality

∑
y∈G(f1 ◦ ϕ1)(y) ≤ C ‖f1‖`1 is then

immediate. �
Conversely, necessity of the hypothesis that rank (H) ≤

∑
j p
−1
j rank (ϕj(H))

for all subgroups H of G is routine. Observe first that if the conclusion of
Theorem 2.4 holds, then it holds with G replaced by any subgroup H; this
follows simply by restricting the sum over all y ∈ G on the left-hand side of
(2.11) to y ∈ H. Therefore in order to prove necessity of the hypothesis, it
suffices to prove that rank (G) ≤

∑
j p
−1
j rank (ϕj(G)).

It is no loss of generality to replace Gj by ϕj(G), so we may assume that each
homomorphism ϕj is surjective. Each group Gj is isomorphic to Zrj ×Tj where
rj = rank (Gj), and Tj is some finite group. Write (xj , tj) for coordinates on
Zrj×Tj , and define ‖(xj , tj)‖ = |xj |. Define a similar function G 3 y 7→ ‖y‖. Let
R be an arbitrary large positive real number, and set fj(xj , tj) = 1 if |xj | ≤ R,
and = 0 otherwise. Then ‖fj‖pj

∼ Rrj/pj for large R. On the other hand, there
exists c > 0 independent of R such that

∏
j(fj◦ϕj)(y) = 1 for all y ∈ G satisfying

‖y‖ ≤ cR. The number of such points y ∈ G is ≥ c′Rrank (G). By letting R→∞
we conclude that if (2.11) holds, then rank (G) ≤

∑
j p
−1
j rank (Gj). �

Outline of proof of Theorem 2.5. This argument requires no essentially new ideas.
Necessity of the hypothesis for a subspace V is proved by defining each fj to
be the intersection of {xj : |xj | ≤ R} with {xj : distance (xj , `j(V )) ≤ C0}, and
letting R→∞ while C0 remains fixed.

The proof of sufficiency is based on an inductive argument for the critical
case, in which there exists a proper subspace of positive dimension satisfying
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dim (V ) =
∑
j p
−1
j dim (`j(V )), and a direct verification for the case in which all

pj ∈ {0, 1}. The latter is straightforward.
The former is more awkward than the corresponding step in our other proofs,

because the intersection of Zd with a subspace of Rd is rarely a cocompact
lattice. Let V be a nonzero critical subspace of Rd. For each index j, define Wj

to be the orthocomplement in Rdj of `j(V ). Choose a sublattice Lj of Wj of
rank dim (Wj), and a sublattice L′j of `j(V ) of rank equal to dim (`j(V )). Let
A,A′ <∞ be large constants. For y ∈Wj define

Fj(y) =
( ∑
n∈L′

sup
|y−n|≤A

|fj(y + n)|pj
)1/pj

.

Define ‖Fj‖`pj (L∞) by first taking the L∞ norm over {y : |y − n| < A′} for
each n ∈ L, then taking an `pj norm with respect to n. Such a norm, associated
to any sublattice of full rank, is comparable to such a norm associated to any
other sublattice of full rank, provided that the constants A′ are chosen to be
sufficiently large, depending on the sublattices in question. For any A,A′ < ∞
there exists C <∞ such that

‖Fj‖`pj (L∞)(`j(V )) ≤ C ‖fj‖`pj (L∞)(Rdj ) .

If A is sufficiently large then uniformly for all y ∈ V ⊥,∫
V

∏
j

(fj ◦ `j)(y + z) dz ≤ CA′
∏
j

(Fj ◦ Lj)(y)

where Lj : V ⊥ →Wj is `j |V ⊥ followed by orthogonal projection onto Wj . Thus

Λ(f1, · · · , fm) ≤ CAΛ̃(F1, · · · , Fm) =
∫
V ⊥

∏
j

(Fj ◦ Lj).

If the constant A′ appearing in the definition of the `pj (L∞) norms of the func-
tions Fj is chosen to be sufficiently large, then there exists C <∞ such that

Λ̃(F1, · · · , Fm) ≤ C
∏
j

‖Fj‖`pj (L∞) .

The rest of the argument is as in our other proofs. �

7. Variants based on product structure

Our next result is analogous to a unification of Theorems 2.3 and 2.5. We say
that a measure space (X,µ) is atomic if there exists δ > 0 such that µ(E) ≥ δ
for every measurable set E having strictly positive measure.

Proposition 7.1. Suppose that the index set I is a disjoint union I = I0∪I∞∪
I?, where Xi is a finite measure space for each i ∈ I0, is atomic for each i ∈ I∞,
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and is an arbitrary measure space for each i ∈ I?. Then a sufficient condition
for the inequality (2.16) is that

1 ≥
∑
j:i∈Sj

p−1
j for all i ∈ I0(7.1)

1 ≤
∑
j:i∈Sj

p−1
j for all i ∈ I∞(7.2)

1 =
∑
j:i∈Sj

p−1
j for all i ∈ I?.(7.3)

That these sufficient conditions are also necessary, in general, is a consequence
of the necessity of the hypotheses of Theorem 2.3.

Remark 7.1. Consider the case where each Xi is a finite measure space. If
(pj)j∈J satisfies the hypothesis (2.15), and if qj ≥ pj for all j ∈ J , then
Λ(fj)j∈J ≤ C

∏
j ‖fj‖pj

≤ C ′
∏
j ‖fj‖qj

by Finner’s theorem and Hölder’s in-
equality. However, there are situations7 in which (qj)j∈J satisfies (7.1) yet there
exists no (pj)j∈J satisfying (2.15) with qj ≥ pj for all j ∈ J .

To construct an example, begin with any situation where there is an extreme
point (q−1

j )j∈J of K = {(tj)j∈J ∈ [0, 1]J : 1 =
∑
j:i∈Sj

tj for all i ∈ I}, such that
q−1
j < 1 for all j; for instance, the Loomis-Whitney example. Augment I by

adding a single new index i′, choose one index j′ already in J , and replace Sj′ by
Sj∪{i′}, while keeping Sj unchanged for all j 6= j′. Thus

∑
j:i′∈Sj

q−1
j = q−1

j′ < 1;
(qj)j∈S satisfies (7.1). However no (pj)j∈J . For if pj ≥ q−1

j for all j with
strict inquality for some index k, choose some i ∈ Sk. Then

∑
j:i∈Sj

p−1
j >∑

j : i ∈ Sjq−1
j = 1, so that (7.1) fails for (pj)j∈S .

Proposition 7.1 can be proved by repeating Case 1 of the proofs of Theo-
rems 2.1 and 2.3, arguing by induction on |I|, and integrating with respect to
the m-th coordinate in

∏
i∈I Xi while all other coordinates are held constant.

The basis case m = 1 is Hölder’s inequality. Indeed, this is the argument given
in [10] for the special case when I = I?.

Alternatively, when I0 is empty,8 Proposition 7.1 can be reduced to the case
where each Xi is R1 equipped with Lebesgue measure, by approximating general
functions by finite linear combinations of characteristic functions of product
sets, and then embedding any particular situation measure-theoretically into a
(product of copies of) R1. The inequality (2.16) then follows from an application
of Theorem 2.1.

7The special case of Proposition 7.1 in which all Xi are finite measure spaces is stated in
[10], p. 1898, but no proof is given.

8To treat the general case in this way would require a unification of Theorems 2.3 and 2.5

analogous to Proposition 7.1. We see no obstruction to such a result.
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8. A final remark

We have assumed throughout the discussion that all exponents satisfy pj ≥ 1.
In Theorems 2.1, 2.2, and 2.3, the inequalities in question are false if some pj < 1.
To see this, fix one index j. Take fi to be the characteristic function of a fixed
ball centered at the origin for each i 6= j, take fj to be the characteristic function
of a ball of measure δ centered at the origin, and let δ → 0. Then Λ̃(f1, · · · , fm)
has order of magnitude δ, while

∏
i ‖fi‖Lpi has order of magnitude δ1/pj � δ.

Valid inequalities can hold in Theorems 2.4 and 2.5 with some exponents
strictly less than one, but they are always implied by stronger inequalities already
contained in those theorems. More precisely, if the inequality holds for some m-
tuple (p1, · · · , pm), then it also holds with each pi replaced by max(pi, 1). In
the case of Theorem 2.4, that pj can be replaced by 1 if pj < 1 can be shown
by considering the case when the support of fi is a single point, then exploiting
linearity and symmetry.
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