
MIRROR SYMMETRY: LECTURE 6

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

1. The Quintic 3-fold and Its Mirror

The simplest Calabi-Yau’s are hypersurfaces in toric varieties, especially smooth
hypersurfaces X in CPn+1 defined by a polynomial of degree d = n + 2, i.e. a
section of OPn+1(d). Smoothness implies that NX

∼→ OPn+1(d)|X , defined by
v 7→ ∇vP = dP (v), so TPn+1|X = TX ⊕ NX = TX ⊕ OPn+1(d)|X (“adjunc-
tion”). Passing to the dual and taking the determinant, we obtain

Ωn+1|Pn+1 |X ∼= Ωn
X ⊗OPn+1(−d)|X(1)

Now:

T`Pn+1 ⊕ C = Hom(`, `⊥)⊕ Hom(`, `) = Hom(`,Cn+2) = Hom(O(−1)`,Cn+2)

(2)

implying that TPn+1 ⊕O ∼= O(1)n+2. Again, passing to the dual and taking the
determinant, we obtain

Ωn+1
Pn+1 ⊗O ∼= O(−1)⊗(n+2) = O(−(n+ 2))(3)

We finally have

OPn+1(−(n+ 2))|X ∼= Ωn
X ⊗OPn+1(−d)|X =⇒ Ωn

X
∼= O(4)

if d = n+ 2, i.e. our X is indeed Calabi-Yau.

Example. Cubic curves in P2 correspond to elliptic curves (genus 1, isomorphic
to tori), while quartic surfaces in P3 are K3 surfaces.

The quintic in P4 is the world’s most studied Calabi-Yau 3-fold. The coho-
mology of the quintic can be computed via the Lefschetz hyperplane theorem:
inclusion induces i∗ : Hr(X)

∼→ Hr(CP4) for r < n = 3, so H1(X) = 0, H2(X) =
H2(CP4) = Z. Thus, h1,0 = 0 and h2,0 = 0: by argument seen before, h1,1 = 1.
Moreover,

χ(X) = e(TX) · [X] = c3(TX) · [X](5)

By working out c(TP4)|X = c(TX)c(OP4(5))|X (from adjunction), we have

c(TP4) = c(TP4 ⊕O) = c(O(1)⊕5) = (1 + h)5(6)
1
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where h = c1(O(1)) is the generator of H2(CP4) and is Poincaré dual to the
hyperplane. Restricting to X gives

(1 + h|X)5 = 1 + 5h|X + 10h2|X + 10h3|X = (1 + c1 + c2 + c3)(1 + 5h|X)(7)

so c1 = 0, c2 = 10h2|X , c3 = −40h3|X . Thus,

χ(X) = −40h3 · [X] = −40([line] ∩ [X]) = −40 · 5 = −200(8)

We conclude that

h0 + h2 − h3 + h4 + h6 = 1 + 1− dim H3(X) + 1 + 1 = −200(9)

implying that dim H3 = 204. Since h3,0 = h0,3 = 1, we obtain h1,2 = h2,1 = 101.
In fact, h1,1 = 1, and we have a symplectic parameter given by the area of a
generator of H2(X) (given by the class of a line in H2(P4)). We further have
101 = h2,1 complex parameters: the equation of the quintic gives h0(OP4(5)) =(
9
5

)
= 126 dimensions, from which we lose one by passing to projective space, and

24 by modding out by Aut(CP4) = PGL(5,C). That is, all complex deformations
are still quintics.

Now we construct the mirror of X. Start with a distinguished family of quintic
3-folds

Xψ = {(x0 : · · · : x4) ∈ P4 | fψ = x5
0 + · · ·+ x5

4 − 5ψx0x1x2x3x4 = 0}(10)

Let G = {(a0, . . . , a4) ∈ (Z/5Z)5 |
∑
ai = 0}/(Z/5Z = {(a, a, a, a, a)}). Then

G ∼= (Z/5Z)3 acts on Xψ by (xj) 7→ (xjξ
aj) where ξ = e2πi/5 (fψ is G-invariant

because
∑
aj = 0 mod 5, and (1, 1, 1, 1, 1) acts trivially because the xj are

homogeneous coordinates). Furthermore, Xψ is smooth for ψ generic (i.e. ψ5 6=
1), but Xψ/G is singular: the action has fixed point (x0 : · · · : x4) ∈ Xψ s.t. at
least two coordinates are 0. This consists of

• 10 curves Cij, where e.g. C01 = {x0 = x1 = 0, x5
2 + x5

3 + x5
4 = 0} with

stabilizer Z/5 = {(a,−a, 0, 0, 0)}, so C01/G ∼= P1 is the line y2+y3+y4 = 0
in P2, yi = x5

i , and
• 10 points Pijk, e.g. P0,1,2 = {x0 = x1 = x2 = 0, x5

3 + x5
4 = 0} with

stabilizer (Z/5Z)2, so P012/G = {pt}.
The singular locus of Xψ/G is the 10 curves Cij = Cij/G ∼= P1 with Cij, Cjk, Cik

meeting at the point P ijk.
Next, let X∨ψ be the resolution of singularities of (Xψ/G), i.e. X∨ψ smooth and

equipped with a map X∨ψ
π→ Xψ/G which is an isomorphism outside π−1(

⋃
Cij).

The explicit construction is complicated, and one can use toric geometry to do
it. One can further show that it is a crepant resolution, i.e. the canonical bundle
KX∨ψ

= π∗KXψ/G, so the Calabi-Yau condition is preserved and X∨ψ is a Calabi-

Yau 3-fold.
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Along Cij (away from P ijk), Xψ/G looks like (C2/(Z/5Z))× C, (x1, x1, x3) ∼
(ξaxi, ξ

−ax2, x3). Now C2/(Z/5Z) ∼= {uv = w5} ⊂ C3, [x1, x2] 7→ [x5
1, x

5
2, x1x2]

is an A4 singularity, which can be resolved by blowing up twice, getting four
exceptional divisors. Doing this for each Cij gives 40 divisors. Similarly, resolving
each pijk creates six divisors, for a total of 60 divisors. Thus, X∨ψ contains 100

new divisors in addition to the hyperplane section, so indeed h1,1(X∨ψ ) = 101.

Similarly, as we were only able to build a one-parameter family, h2,1(X∨ψ ) = 1,
giving us mirror symmetric Hodge diamonds:

hij(X) =


1 0 0 1
0 1 101 0
0 101 1 0
1 0 0 1

 , hij(X∨ψ ) =


1 0 0 1
0 101 1 0
0 1 101 0
1 0 0 1

(11)

We want to see how mirror symmetry predicts the Gromov-Witten invariants
Nd (the “number of rational curves” nd) of the quintic. For that, we need to
understand the mirror map between the Kähler parameter q = exp(2πi

∫
`
B+iω)

on X and the complex parameter ψ on the mirror X∨ψ (which will also give, by

differentiating, an isomorphism H1,1(X)
∼→ H2,1(X)) as well as calculations of

the Yukawa coupling on H2,1(X∨ψ ).

1.1. Degenerations and the Mirror Map. Last time, we saw a basis {ei} of
H2(X,Z) by elements of the Kähler cone gives coordinates on the complexified
Kähler moduli space: if [B + iω] =

∑
tiei, the parameter qi = exp(2πiti) ∈ C∗

gives the large volume limit as qi → 0, Im (ti) → ∞. Physics predicts that
the mirror situation is degeneration of a large complex structure limit and that,
near such a limit point, there are “canonical coordinates” on the complex moduli
spaces making it possible to describe the mirror map.

• Degeneration: consider a family X π→ D2 where for t 6= 0, Xt
∼= X (with

varying J) and for t = 0, X0 is typically singular. For instance, consider
the camily of elliptic curves Ct = {y2z = x3 +x2z− tz3} ⊂ CP2 (in affine
coordinates, Ct : y2 = x3 + x2 − t). Ct is a smooth torus for t 6= 0, and
nodal at t = 0, obtained by pinching a loop on the torus.
• Monodromy: follow the family (Xt) as t varies along the loop in π1(D

2 r
{0}, t0) going around the origin. All the Xis are diffeomorphic, and thus
induce a monodromy diffeomorphism φ of Xt0 , defined up to isotopy. This
in turn induces φ∗ ∈ Aut(Hn(Xt0 ,Z)). In the above example, φ acts on

H1(Ct0) = Z2 by

(
1 1
0 1

)
(the Dehn twist): observe that Ct

2:1→ CP1 =

C ∪ {∞} by projection to x, and the branch points are ∞ plus the roots
of x3 +x2− t. As t→ 0, there is one root near −1 and two near 0, which
rotate as t goes around 0. Letting a be the line between the two roots
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near 0 and b be between the root near −1 and the closest other root, the
monodromy maps a, b to a, b+ a.

Remark. Note that this complex parameter t is ad hoc. A more natural way to
describe the degeneration would be to describe Ct as an abstract elliptic curve
Ct ∼= C/Z + τ(t)Z. Then τ(t), or rather exp(2πiτ), is a better quantity. Equip
Ct with a holomorphic volume form Ωt normalized so

∫
a

Ωt = 1 ∀ t. Then let
τ(t) =

∫
b
Ωt: as t goes around the origin, τ(t) → τ(t) + 1 since b 7→ b + a.

Moreover, q(t) = exp(2πiτ(t)) is still single-valued, and as t → 0, we still have
Im τ(t) → ∞ and q(t) → 0. In the former case, we have

∫
a
dx
y
∈ −iR+ tending

to 0 and
∫
b
dx
y
∈ R+ tending to a constant value, so the ratio goes to +i∞. In

the latter case, q(t) is a holomorphic function of t, and goes around 0 once when
t does, i.e. it has a single root at t = 0. Thus, q is a local coordinate for the
family.

Next time, we will see an analogue of this for a family of Calabi-Yau manifolds.


