MIRROR SYMMETRY: LECTURE 22

DENIS AUROUX NOTES BY KARTIK VENKATRAM

1. SYZ Conjecture (cntd.)

Recall:

Proposition 1. First order deformations of special Lagrangian L in a strict (resp. almost) Calabi-Yau manifold are given by $\mathcal{H}^1(L,\mathbb{R})$ (resp. $\mathcal{H}^1_{\psi}(L,\mathbb{R})$), where

(1)
$$H^1_{\psi}(L,\mathbb{R}) = \{ \beta \in \Omega^1(L,\mathbb{R}) \mid d\beta = 0, d^*(\psi\beta) = 0 \}$$

It is still true that $\mathcal{H}^1_{\psi}(L,\mathbb{R}) \cong H^1(L,\mathbb{R})$.

Theorem 1 (McLean, Joyce). Deformations of special Lagrangians are unobstructed, i.e. the moduli space of special Lagrangians is a smooth manifold B with $T_LB \cong \mathcal{H}^1_{\psi}(L,\mathbb{R}) \cong H^1(L,\mathbb{R})$.

There are two canonical isomorphisms $T_L B \xrightarrow{\sim} H^1(L, \mathbb{R}), v \mapsto [-\iota_v \omega]$ ("symplectic") and $T_L B \xrightarrow{\sim} H^{n-1}(L, \mathbb{R}), v \mapsto [\iota_v \operatorname{Im} \Omega]$ "complex".

Definition 1. An affine structure on a manifold N is a set of coordinate charts with transition functions in $GL(n, \mathbb{Z}) \ltimes \mathbb{R}^n$.

Corollary 1. B carries two affine structures.

For affine manifolds, mirror symmetry exchanges the two affine structures. Our particular case of interest is that of special Lagrangian tori, so dim $H^1 = n$. The usual harmonic 1-forms on flat T^n have no zeroes, and give a pointwise basis of T^*L . We will make a standing assumptions that ψ -harmonic 1-forms for $g|_L$ have no zeroes (at least ok for $n \leq 2$). Then a neighborhood of L is fibered by special Lagrangian deformations of L: locally,

(2)
$$T^{n} \longrightarrow U \subset X$$

$$\downarrow^{\pi}$$

$$V \subset B$$

In local affine coordinates, we pick a basis $\gamma_1, \ldots, \gamma_n \in H_1(L, \mathbb{Z})$: deforming from L to L', the deformation of γ_i gives a cylinder Γ_i , and we set $x_i = \int_{\Gamma_i} \omega$ (the flux of the deformation $L \to L'$). These are affine coordinates on the symplectic

side. On the complex side, pick a basis $\gamma_1^*, \ldots, \gamma_n^* \in H_{n-1}(L, \mathbb{Z})$, construct the associated Γ_i^* , and set $x_i^* = \int_{\Gamma_i^*} \operatorname{Im} \Omega$. Globally, there is a monodromy $\pi_1(B, *) \to \operatorname{Aut} H^*(L, \mathbb{Z})$. In our case, the monodromies in $GL(H^1(L, \mathbb{Z})), GL(H^{n-1}(L, \mathbb{Z}))$ are transposes of each other.

1.1. Prototype construction of a mirror pair. Let B be an affine manifold, $\Lambda \subset TB$ the lattice of integer vectors. Then TB/Λ is a torus bundle over B, and carries a natural complex structure, e.g.

(3)
$$T(\mathbb{R}^n) \cong \mathbb{C}^n, \mathbb{C}^n = \mathbb{R}^n \oplus \mathbb{R}^n, GL(n, \mathbb{Z}) \ni A \mapsto \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$$

Setting $\Lambda^* = \{ p \in T^*B \, | \, p(\Lambda) \subset \mathbb{Z} \}$ to be the dual lattice of integer covectors, we find that T^*B/Λ^* has a natural symplectic structure since $GL(n,\mathbb{Z}) \ni A \mapsto \begin{pmatrix} A & 0 \\ 0 & A^T \end{pmatrix} \in \operatorname{Sp}(2n)$.

In our case, we have two affine structures with dual monodromies

$$TB \xrightarrow{\sim} T^*B$$

$$\sim \downarrow^{cx} \qquad symp \downarrow^{\sim}$$

$$H^{n-1}(L, \mathbb{R}) \xrightarrow{\sim} H_1(L, \mathbb{R})$$

$$\uparrow \qquad \qquad \downarrow$$

$$\Lambda_c = H^{n-1}(L, \mathbb{Z}) \xrightarrow{\sim} H_1(L, \mathbb{Z}) = \Lambda_s^*$$

so the complex manifold TB/Λ_c is diffeomorphic to the symplectic manifold T^*B/Λ_s^* . Dually, $X^{\vee} \cong T^*B/\Lambda_c^* \cong TB/\Lambda_s$.

1.2. More explicit constructions [cf. Hitchin]. Let

(5)
$$M = \{(L, \nabla) \mid L \text{ a special Lagrangian torus in } X,$$
$$\nabla \text{ flat } U(1) - \text{conn on } \mathbb{C} \times L \text{ mod gauge} \}$$

i.e. $\nabla = d + iA, iA \in \Omega^1(L, i\mathbb{R}), dA = 0$ mod exact forms.

(6)

$$T_{(L,\nabla)}M = \{(v, i\alpha) \in C^{\infty}(NL) \oplus \Omega^{1}(L; i\mathbb{R}) \mid -\iota_{v}\omega \in \mathcal{H}^{1}_{\psi}(L, \mathbb{R}), d\alpha = 0 \text{ mod Im } (d)\}$$

$$= \{(v, i\alpha) \in C^{\infty}(NL) \oplus \Omega^{1}(L; i\mathbb{R}) \mid -\iota_{v}\omega + i\alpha \in \mathcal{H}^{1}_{\psi}(L; \mathbb{C})\}$$

$$= H^{1}_{\psi}(L, \mathbb{C})$$

which is a complex vector space, and J^{\vee} is an almost-complex structure.

Proposition 2. J^{\vee} is integrable.

Proof. We build local holomorphic coordinates. Let $\gamma_1, \ldots, \gamma_n$ be a basis of $H_1(L, \mathbb{Z})$, and assume $\gamma_i = \partial \beta_i, \beta_i \in H_2(X, L)$. Set

(7)
$$z_i(L, \nabla) = \underbrace{\exp(-\int_{\beta_i} \omega)}_{\mathbb{R}_+} \underbrace{\operatorname{hol}_{\nabla}(\gamma_i)}_{U(1)} \in \mathbb{C}^*$$

Then

(8)
$$\operatorname{dlog} z_i : (v, i\alpha) \mapsto -\int_{\gamma_i} \iota_v \omega + \int_{\gamma_i} i\alpha = \langle \underbrace{[-\iota_v \omega + i\alpha]}_{H^1(L,\mathbb{C})}, \gamma_i \rangle$$

is \mathbb{C} -linear. If there are no such β_i , we instead use a deformation tube as constructed earlier. Warning: all of our formulas are up to (i.e. may be missing) a factor of 2π .

Next, consider the holomorphic (n,0)-form on M

$$(9) \quad \Omega^{\vee}((v_1, i\alpha_1), \dots, (v_n, i\alpha_n)) = \int_L (-\iota_{v_1}\omega + i\alpha_1) \wedge \dots \wedge (-\iota_{v_n}\omega + i\alpha_n)$$

After normalizing $\int_L \Omega = 1$, we have a Kähler form

(10)
$$\omega^{\vee}((v_1, i\alpha_1), (v_2, i\alpha_2)) = \int_L \alpha_2 \wedge (\iota_{v_1} \operatorname{Im} \Omega) - \alpha_1 \wedge (\iota_{v_2} \operatorname{Im} \Omega)$$

Proposition 3. ω^{\vee} is a Kähler form compatible with J^{\vee} .

Proof. Pick a basis $[\gamma_i]$ of $H_{n-1}(L,\mathbb{Z})$ with a dual basis $[e_i]$ of $H_1(L,\mathbb{Z})$, i.e. $e_i \cap \gamma_j = \delta_{ij}$. For all $a \in H^1(L), b \in H^{n-1}(L)$

(11)
$$()\langle a \cup b, [L] \rangle = \sum_{i} \langle a, e_i \rangle \langle b, \gamma_i \rangle$$

Letting $a = \sum a_i dx_i$, $b = \sum b_i (-1)^{i-1} (dx_1 \wedge \cdots \wedge dx_i \wedge \cdots \wedge dx_n)$, $\int_{T^n} a \wedge b = \sum a_i b_i$. Again, take a deformation from L_0 to L', C_i the tube (an *n*-chain) formed by the deformation of γ_i , and set $p_i = \int_{C_i} \text{Im } \Omega$, $\theta_i = \int_{e_i} A$ for A the connection 1-form (i.e. $\text{hol}_{e_i}(\nabla) = \exp(i\theta_i)$). Then

(12)
$$dp_i : (v, i\alpha) \mapsto \int_{\gamma_i} \iota_v \operatorname{Im} \Omega = \langle [\iota_v \operatorname{Im} \Omega], \gamma_i \rangle$$
$$d\theta_i : (v, i\alpha) \mapsto \int_{e_i} \alpha = \langle [\alpha], e_i \rangle$$

By (11), $\omega^{\vee} = \sum dp_i \wedge d\theta_i$, implying that ω^{\vee} is closed, and

(13)
$$\omega^{\vee}((v_{1},\alpha_{1}),(v_{2},\alpha_{2})) = \int_{L} \alpha_{2} \wedge (-\psi *_{g} \iota_{v_{1}}\omega) - \alpha_{1} \wedge (-\psi *_{g} \iota_{v_{2}}\omega)$$

$$= \int_{L} \psi \cdot (\langle \alpha_{1},\iota_{v_{2}}\omega \rangle_{g} - \langle \alpha_{2},\iota_{v_{1}}\omega \rangle_{g}) \operatorname{vol}_{g}$$

$$\omega^{\vee}((v_{1},\alpha_{1}),J^{\vee}(v_{2},\alpha_{2})) = \int_{L} \psi \cdot (\langle \alpha_{1},\alpha_{2}\rangle_{g} + \langle \iota_{v}\omega,\iota_{v_{2}}\omega \rangle_{g}) \operatorname{vol}_{g}$$

which is clearly a Riemannian metric.