MIRROR SYMMETRY: LECTURE 2

DENIS AUROUX NOTES BY KARTIK VENKATRAM

Reference for today: M. Gross, D. Huybrechts, D. Joyce, "Calabi-Yau Manifolds and Related Geometries", Chapter 14.

1. Deformations of Complex Structures

An (almost) complex structure (X, J) splits the complexified tangent and (wedge powers of) cotangent bundles as

$$TX \otimes \mathbb{C} = TX^{1,0} \oplus TX^{0,1}, v^{0,1} = \frac{1}{2}(v + iJv)$$

$$T^*X \otimes \mathbb{C} = T^*X^{1,0} \oplus T^*X^{0,1}, T^*X^{1,0} = \operatorname{Span}(dz_i), T^*X^{0,1} = \operatorname{Span}(d\overline{z}_i)$$

$$\bigwedge^k T^*X \otimes \mathbb{C} = \bigoplus_{p+q=k} \bigwedge^{p,q} T^*X = \Omega^{p,q}(X)$$

If J is almost complex, these are \mathbb{C} -vector bundles. J is integrable (i.e. a complex structure)

(2)
$$[T^{1,0}, T^{1,0}] \subset T^{1,0} \Leftrightarrow d = \partial + \overline{\partial} \text{ maps } \Omega^{p,q} \to \Omega^{p+1,q} \oplus \Omega^{p,q+1}$$
$$\Leftrightarrow \overline{\partial}^2 = 0 \text{ on diff. forms}$$

We obtain a Dolbeault cohomology for holomorphic vector bundles E:

(3)
$$C^{\underline{q}}_{\overline{\partial}}(X,E) = \{ C^{\infty}(X,E) \xrightarrow{\overline{\partial}} \Omega^{0,1}(X,E) \xrightarrow{\overline{\partial}} \Omega^{0,2}(X,E) \to \cdots \}$$

$$H^{\underline{q}}_{\overline{\partial}}(X,E) = \ker \overline{\partial}/\mathrm{im}\overline{\partial}$$

Deforming J to a "nearby" J' gives

(4)
$$\Omega_{J'}^{1,0} \subseteq T^* \mathbb{C} = \Omega_J^{1,0} \oplus \Omega_J^{0,1}$$

is a graph of a linear map $(-s): \Omega_J^{1,0} \to \Omega_J^{0,1}$. J' is determined by $\Omega_{J'}^{1,0}$ (acted on by i) and $\Omega_{J'}^{0,1}$ (acted on by i'). s is a section of $(\Omega_J^{1,0})^* \otimes \Omega_J^{0,1} = \mathbb{T}_j^{1,0} \otimes \Omega_J^{0,1}$ i.e. a $(0,1)_J$ -form with values in $T_J^{1,0}X$. If z_1,\ldots,z_n are local holomorphic

coordinates for J, then $s = \sum s_{ij} \frac{\partial}{\partial z_i} \otimes d\overline{z}_j$. A basis of (1,0)-forms for J' is given

by
$$dz_i - \underbrace{\sum_j s_{ij} d\overline{z}_j}_{s(dz_i)}$$
 and $(0,1)$ -vectors for J' by $\frac{\partial}{\partial \overline{z}_k} + \underbrace{\sum_\ell s_{\ell k} \frac{\partial}{\partial z_\ell}}_{s(\partial/\partial \overline{z}_k)}$.

We can use this to test the integrability of J'. The Dolbeault complex $(\bigoplus_q \Omega_X^{0,q} \otimes TX^{1,0}, \overline{\partial})$ ($\overline{\partial}$ acts "on forms") carries a Lie bracket

$$[\alpha \otimes v, \alpha' \otimes v'] = (\alpha \wedge \alpha') \otimes [v, v']$$

giving it the structure of a differential graded Lie algebra.

Proposition 1. J' is integrable $\Leftrightarrow \overline{\partial}s + \frac{1}{2}[s,s] = 0$.

Proof. We want to check that the bracket of two 0, 1 tangent vectors is still 0, 1, i.e. that

(6)
$$[\frac{\partial}{\partial \overline{z}_k} + \sum_{\ell} s_{\ell k} \frac{\partial}{\partial z_{\ell}}, \frac{\partial}{\partial \overline{z}_k} + \sum_{\ell} s_{\ell k} \frac{\partial}{\partial z_{\ell}}] \in TX_{J'}^{0,1}$$

Evaluating this bracket gives

(7)
$$\sum_{\ell} \left(\frac{\partial s_{\ell j}}{\partial \overline{z}_i} - \frac{\partial s_{\ell i}}{\partial \overline{z}_j} \right) \frac{\partial}{\partial z_{\ell}} + \sum_{k \ell} \left(s_{ki} \frac{\partial s_{\ell j}}{\partial z_k} - s_{kj} \frac{\partial s_{\ell i}}{\partial z_k} \right) \frac{\partial}{\partial z_{\ell}}$$

We want this to be 0, i.e. for all i, j, ℓ ,

(8)
$$0 = \underbrace{\frac{\partial s_{\ell j}}{\partial \overline{z}_{i}} - \frac{\partial s_{\ell i}}{\partial \overline{z}_{j}}}_{\text{coefficient of } \frac{\partial}{\partial z_{\ell}} \otimes (d\overline{z}_{i} \wedge d\overline{z}_{j}) \text{ in } (\overline{\partial}s)} + \sum_{k} \underbrace{\left(s_{k i} \frac{\partial s_{\ell j}}{\partial z_{k}} - s_{k j} \frac{\partial s_{\ell i}}{\partial z_{k}}\right)}_{\text{in } \frac{1}{2}[s,s]}$$

We leave the rest as an exercise.

We would now like to use this to understand the moduli space of complex structures. Define

(9)
$$\mathcal{M}_{CX}(X) = \{ J \text{ integrable complex structures on } X \} / \text{Diff}(X)$$

(or, assuming that $\operatorname{Aut}(X, J)$ is discrete, we want that near J, \exists a universal family $\mathcal{X} \to \mathcal{U} \subset \mathcal{M}_{CX}$ (complex manifolds, holomorphic fibers $\cong X$) s.t. any family of integrable complex structures $\mathcal{X}' \to S$ induces a map $S \to \mathcal{U}$ s.t. \mathcal{X} pulls back to \mathcal{X}'). We have an action of the diffeomorphisms of X: for $\phi \in \operatorname{Diff}(X)$ close to id,

(10)
$$d\phi: TX \otimes \mathbb{C} \xrightarrow{\sim} \phi^* TX \otimes \mathbb{C}$$
$$\partial \phi: TX^{1,0} \to \phi^* TX^{1,0}$$
$$\overline{\partial} \phi: TX^{0,1} \to \phi^* TX^{1,0}$$

SO

(11)
$$\phi^* dz_i = dz_i \circ d\phi = dz_i \circ \partial\phi + dz_i \circ \overline{\partial}\phi$$
$$= \underbrace{(dz_i \circ \partial\phi)}_{(1,0) \text{ for } J} (\operatorname{id} + (\partial\phi)^{-1} \cdot \overline{\partial}\phi)$$

Deformation by $s \in \Omega^{0,1}(X, TX^{1,0})$ gives $\Omega^{1,0}_{J'} = \{\alpha - s(\alpha) | \alpha \in \Omega^{1,0}\}$ (the graph of -s): taking $s = -(\partial \phi)^{-1} \cdot \overline{\partial} \phi : TX^{0,1} \to \phi^* TX^{1,0} \to TX^{1,0}$ gives the desired element of $\Omega^{0,1}(TX^{1,0})$.

1.1. First-order infinitesimal deformations. Given a family J(t), J(0) = J gives $s(t) \in \Omega^{0,1}(X, TX^{1,0}), s(0) = 00$. By the above, this should satisfy

(12)
$$\overline{\partial}s(t) + \frac{1}{2}[s(t), s(t)] = 0$$

In particular, $s_1 = \frac{ds}{dt}|_{t=0}$ solves $\overline{\partial} s_1 = 0$. We obtain an infinitesimal action of Diff(X): for (ϕ_t) , $\phi_0 = \mathrm{id}$, $\frac{d\phi}{dt}|_{t=0} = v$ a vector field,

(13)
$$\frac{d}{dt}|_{t=0}(-(\partial\phi_t)^{-1}\circ\overline{\partial}\phi_t) = -\frac{d}{dt}|_{t=0}(\overline{\partial}\phi_t) = -\overline{\partial}v$$

This implies that first-order deformations are given as

(14)
$$\operatorname{Def}_{1}(X, J) = \frac{\operatorname{Ker}(\overline{\partial} : \Omega^{0,1}(TX^{1,0}) \to \Omega^{2,0}(TX^{1,0}))}{\operatorname{Im}(\overline{\partial} : C^{\infty}(TX^{1,0}) \to \Omega^{0,1}(TX^{1,0}))}$$

We can write this more compactly using Dolbeault cohomology, namely $H^1_{\overline{\partial}}(X, TX^{1,0})$. Furthermore, given a family

$$(15) \qquad \begin{array}{c} X \longrightarrow \mathcal{X} \\ \downarrow & \downarrow \\ * \longrightarrow S \end{array}$$

of deformations of (X, J) parameterized by S, we get a map $T_*S \to H^1(X, TX^{1,0})$ called the *Kodaira Spencer map*

Remark. A complex manifold (X, J) is a union of complex charts U_i with biholomorphisms $\phi_{ij}: U_{ij} \stackrel{\sim}{\to} U_{ji}$ s.t. $\phi_{ij} = \phi_{ji}^{-1}$ and $\phi_{ij}\phi_{jk} = \phi_{ik}$ on U_{ijk} . Deformations of (X, J) come from deforming the gluing maps ϕ_{ij} among the space of holomorphic maps. To first order, this is given by holomorphic vector fields v_{ij} on $U_i \cap U_j$ s.t. $v_{ij} = -v_{ji}$ and $v_{ij} + v_{jk} = v_{ik}$ on U_{ijk} . This is precisely the Čech 1-cocycle conditions in the sheaf of holomorphic tangent vector fields. Modding out by holomorphic functions $\psi_i: U_i \stackrel{\sim}{\to} U_i$ (which act by $\phi_{ij} \mapsto \psi_j \phi_{ij} \psi_i^{-1}$) is precisely modding by the Čech coboundaries. Thus, $\mathrm{Def}_1(X, J) = \check{H}^1(X, TX^{1,0})$.

1.2. Obstructions to Deformation. Given a first-order deformation s_1 , one can ask if one can find an actual deformation $s(t) = s_1 t + O(t^2)$ (or even a formal deformation, i.e. non-convergent power series). Expand

(16)
$$s(t) = s_1 t + s_2 t^2 + \dots \in \Omega^{0,1}(X, TX^{1,0})$$

Then the condition $\overline{\partial}s(t) + \frac{1}{2}[s(t), s(t)] = 0$ implies that $\overline{\partial}s_1 = 0$, $\overline{\partial}s_2 + \frac{1}{2}[s_1, s_1] = 0$, $\overline{\partial}s_3 + [s_1, s_2] = 0$, \cdots . Now, we need $[s_1, s_1] \in \operatorname{im}(\overline{\partial}) \subset \Omega^{0,2}(TX^{1,0})$. We know that $[s_1, s_1] \in \operatorname{Ker}(\overline{\partial})$. Thus, the primary obstruction to deforming is the class of $[s_1, s_1]$ in $H^2(X, TX^{1,0})$. If it is zero, then there is an s_2 s.t. $\overline{\partial}s_2 + \frac{1}{2}[s_1, s_1] = 0$, and the next obstructure is the class of $[s_1, s_2] \in H^2(X, TX^{1,0})$. We are basically attempting to apply by brute force the implicit function theorem.

If it happens that $H^2(X, TX) = 0$, then the deformations are unobstructed and the moduli space of complex structures is locally a smooth orbifold (not a manifold, because we may have to quotient by automorphisms) with tangent space $H^1(X, TX^{1,0})$. For Calabi-Yau manifolds, this will not be true: however, we still have

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau $(\Omega_X^{n,0} \cong \mathcal{O}_X)$ with $H^0(X,TX)=0$ (automorphisms are discrete), deformations of X are unobstructed and, assuming $\operatorname{Aut}(X,J)=\{1\}$, \mathcal{M}_{CX} is locally a smooth manifold with $T\mathcal{M}_{CX}=H^1(X,TX)$.

Theorem 2 (Griffiths Transversality). For a family (X, J_t) , $\alpha_t \in \Omega^{p,q}(X, J_t) \Longrightarrow \frac{d}{dt}|_{t=0}\alpha_t \in \Omega^{p,q} + \Omega^{p+1,q-1} + \Omega^{p-1,q+1}$.

Proof. J_t is given by $s(t) \in \Omega^{0,1}(TX^{1,0}), s(0) = 0$. In local coordinates, we have $T^*X_{J_t}^{1,0} = \operatorname{Span}\{dz_i^{(t)} = dz_i - \sum s_{ij}(t)d\overline{z}_j\}$

(17)
$$\alpha_t = \sum_{I,J||I|=p,|J|=q} \alpha_{IJ}(t) dz_{i_1}^{(t)} \wedge \cdots \wedge dz_{i_p}^{(t)} \wedge d\overline{z}_{j_1}^{(t)} \wedge \cdots \wedge d\overline{z}_{j_q}^{(t)}$$

Taking $\frac{d}{dt}|_{t=0}$, the result follows from the product rule. We mostly get (p,q) terms and a few (p+1,q-1), (p-1,q+1) forms (the latter from $\frac{d}{dt}|_{t=0}(dz_{i_k}^{(t)})$.