MIRROR SYMMETRY: LECTURE 19

DENIS AUROUX NOTES BY KARTIK VENKATRAM

1. Homological Mirror Symmetry

Conjecture 1. X, X^{\vee} are mirror Calabi-Yau varieties $\Leftrightarrow D^{\pi} \text{Fuk}(X) \cong D^{b} \text{Coh}(X^{\vee})$

Look at T^2 at the level of homology [Polishchuk-Zaslow]: on the symplectic side, $T^2 = \mathbb{R}^2/\mathbb{Z}^2$, $\omega = \lambda dx \wedge dy$, so $\int_{T^2} \omega = \lambda$. On the complex side, $X^\vee = \mathbb{C}/\mathbb{Z} \oplus \tau \mathbb{Z}$, $\tau = i\lambda$. The Lagrangians L in X are Hamiltonian isotopic to straight lines with rational slope, and given a flat connection ∇ on a U(1)-bundle over L, we can arrange the connection 1-form to be constant. We will see that families of (L, ∇) in the homology class (p, q) correspond to holomorphic vector bundles over X^\vee of rank p, $c_1 = -q$. For $L \to X^\vee$ a line bundle, the pullback of L to the universal cover \mathbb{C} is holomorphically trivial, and

(1)
$$L \cong \mathbb{C} \times \mathbb{C}/(z, v) \sim (z + 1, v), (z, v) \sim (z + \tau, \phi(z)v)$$
$$\phi \text{ holomorphic, } \phi(z + 1) = \phi(z)$$

Example. $\phi(z) = e^{-2\pi i z} e^{-\pi i \tau}$ determines a degree 1 line bundle \mathcal{L} with a section given by the theta function

(2)
$$\theta(\tau, z) = \sum_{m \in \mathbb{Z}} e^{2\pi i (\frac{\tau m^2}{2} + mz)}$$

More generally, set

(3)
$$\theta[c', c''](\tau, z) = \sum_{m \in \mathbb{Z}} \exp\left(2\pi i \left[\frac{\tau(m + c')^2}{2} + (m + c')(z + c'')\right]\right)$$

Then

(4)
$$\theta[c', c''](\tau, z + 1) = e^{2\pi i c'} \theta[c', c''](\tau, z) \\ \theta[c', c''](\tau, z + \tau) = e^{-\pi i \tau} e^{-2\pi i (z + c'')} \theta[c', c''](\tau, z)$$

since the interior of exp for the latter formula is

(5)
$$\frac{\tau(m+c')^2}{2} + \tau(m+c') + (z+c'')(m+c') \\ = \frac{\tau(m+1+c')^2}{2} - \frac{\tau}{2} + (m+1+c')(z+c'') - (z+c'')$$

Furthermore, sections of $\mathcal{L}^{\otimes n}$ are $\theta[\frac{k}{n},0](n\tau,nz), k \in \mathbb{Z}/n\mathbb{Z}$. By the above

(6)
$$\theta[\frac{k}{n}, 0](n\tau, nz + n) = \theta[\frac{k}{n}, 0](n\tau, nz) \\ \theta[\frac{k}{n}, 0](n\tau, nz + n\tau) = e^{-\pi i n\tau} e^{-2\pi i nz} \theta[\frac{k}{n}, 0](n\tau, nz)$$

as desired. Other line bundles are given by pullback over the translation $z \mapsto z + c''$, and the higher rank bundlles are given by matrices or pushforward by finite covers.

On the mirror, consider the Lagrangian subvarieties

(7)
$$L_0 = \{(x,0)\}, \nabla_0 = d \text{ (mirror to } \mathcal{O}),$$

$$L_n = \{(x,-nx)\}, \nabla_n = d \text{ (mirror to } \mathcal{L}^{\otimes n}),$$

$$L_p = \{(a,y)\}, \nabla_p = d + 2\pi i b dy \text{ ("mirror to } \mathcal{O}_Z, z = b + a\tau")$$

For gradings, pick $\arg(dz)|_{L_i} \in [-\frac{\pi}{2}, 0]$. Then

(8)
$$s_{k} = \left(\frac{k}{n}, 0\right) \in CF^{0}(L_{0}, L_{n}),$$
$$e = (a, -na) \in CF^{0}(L_{n}, L_{p}),$$
$$e_{0} = (a, 0) \in CF^{0}(L_{0}, L_{p})$$

We want to find the coefficient of e_0 in $m_2(e, s_0)$, i.e. we need to count holomorphic disks in T^2 . All these disks lift to the universal cover \mathbb{C} , and a Maslov index calculation gives that rigid holomorphic disks are immersed. We obtain an infinite sequence of triangles T_m , $m \in \mathbb{Z}$ in the universal cover. T_m has corners at (0,0), (a+m,-n(a+m)), (a+m,0), and the area is $\int_{T_m} \omega = \frac{\lambda n(a+m)^2}{2}$. Taking holonomy on ∂T_m gives

(9)
$$\exp(2\pi i \int_{-n(a+m)}^{0} b dy) = \exp(2\pi i n(a+m)b)$$

The T_m are regular, and doing sign calculations makes them count positively. Now,

(10)
$$m_2(e, s_0) = \left(\sum_{m \in \mathbb{Z}} T^{\lambda \frac{n}{2}(a+m)^2} e^{2\pi i n(a+m)b} \right) e_0$$

As usual, set $T=e^{-2\pi}$ (convergence is not an issue here), i.e. $T^{\lambda}=e^{2\pi i \tau}$. Then

(11)
$$\sum_{n \in \mathbb{Z}} \exp 2\pi i \left[\frac{n\tau m^2}{2} + n(\tau a + b)m + (n\tau \frac{a^2}{2} + nab) \right]$$
$$= e^{\pi i n\tau a^2} e^{2\pi i nab} \theta(n\tau, n(\tau a + b))$$

What we have computed is the composition $\mathcal{O} \stackrel{s_0}{\to} \mathcal{L}^n \stackrel{\operatorname{ev}_z}{\to} \mathcal{O}_z$, where ev_z is obtained by picking a trivialization of the fiber at z. Looking at the coefficient of e_0 in $m_2(e, s_k)$, we obtain

$$\begin{split} \sum_{m \in \mathbb{Z}} \exp \, 2\pi i \left[\frac{n\tau}{2} (a+m-\frac{k}{n})^2 + n(a+m-\frac{k}{n})b \right] \\ &= \sum_{m \in \mathbb{Z}} \exp \, 2\pi i \left[\frac{n\tau}{2} (m-\frac{k}{n})^2 + n(\tau a+b)(m-\frac{k}{n}) + \frac{n\tau}{2} a^2 + nab \right] \\ &= e^{\pi i n \tau a^2} e^{2\pi i nab} \theta[0, \frac{k}{n}] (n\tau, n(\tau a+b)) \end{split}$$

so the ratios $\frac{s_k}{s_0}$ match. Next, we need to multiply sections. For $s_0^{1\to 2}\in \text{hom}(L_1,L_2), s_0^{0\to 1}\in \text{hom}(L_0,L_1),$ $m_2(s_0^{1\to 2},s_0^{0\to 1})=c_0s_0^{0\to 2}+c_1s_1^{0\to 2} \text{ for } s_0^{0\to 2},s_1^{0\to 2}\in \text{hom}(L_0,L_2) \text{ and }$

(13)
$$c_0 = \sum_{n \in \mathbb{Z}} T^{n^2 \lambda} = \sum_{n \in \mathbb{Z}} e^{2\pi i \tau n^2}$$
$$c_1 = \sum_{n \in \mathbb{Z}} e^{2\pi i \tau (n + \frac{1}{2})^2}$$

This corresponds to $\mathcal{O} \xrightarrow{\theta} \mathcal{L} \xrightarrow{\theta} \mathcal{L}^2$

(14)
$$\theta(\tau, z)\theta(\tau, z) = \underbrace{\theta(2\tau, 0)}_{c_0} \underbrace{\theta(2\tau, 2z)}_{s_0} + \underbrace{\theta[\frac{1}{2}, 0](2\tau, 0)}_{c_1} \underbrace{\theta[\frac{1}{2}, 0](2\tau, 2z)}_{s_1}$$