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1. Introduction

In this note we justify the definition of the transmission rate given in [1] in the case of
no interaction, that is for the linear Schrödinger operator.

2. Review of one dimensional scattering

We follow lecture notes [2] covering scattering by compactly supported potentials but
make the exposition self-contained, referring to [2] for detailed proofs only. In our approach
to scattering we eventually focus on quantum resonances and hence the resolvent plays a
crucial rôle.

Thus let V ∈ L∞comp(R) be real valued, and define

HV
def
= −∂2

x + V (x) .

Then the resolvent

RV (λ)
def
= (HV − λ2)−1 : L2(R) −→ L2(R) ,

is meromorphic in C \ R. If we consider

RV (λ) : L2
comp(R) −→ L2

loc(R) , Im λ > 0 ,

then it continues meromorphically to C and it is analytic in R\{0}. Of course, for Im λ < 0
this continuation does not coincide with the resolvent defined in C \ R. The poles in
Im λ < 0 are called quantum resonances. We recalled the following important fact: for any
χ ∈ C∞c (R), there exists a constant C > 0 such that

(2.1) ‖χRV (λ)χ‖L(L2,L2) ≤ C
exp(− Im λ/C)

|λ|
, Im λ > − log(1 + |Re λ|)/C .

Also, the pole of RV (λ) at λ = 0 has at most multiplicity one, that is, λRV (λ) is always
analytic near 0.

We define special solutions, e±(x, λ), to (HV − λ2)e± = 0, by requiring that

(2.2) e±(x, λ) =

{
T±(λ)e±iλx for ± x � 0

e±iλx + R±(λ)e∓iλx for ± x � 0
1
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It is not obvious that such solutions have to exist and in fact for complex values of λ they
do not, precisely at resonant energies. To see that e± exist when λ ∈ R we introduce the
important notion of quantum flux of a (possibly time dependent) wave function u(x):

(2.3) Fu(x)
def
= 2 Im(∂xuu(x)) .

We have the following simple but important

Lemma 1. Suppose that (HV − λ2)u = 0 and λ2 ∈ R. Then ∂xFu(x) ≡ 0, that is the
quantum flux is constant.

Proof. This is the standard calculation:

∂xFu(x) = 2 Im(∂2
xu(x)u(x) + |∂xu(x)|2) = 2 Im((V − λ2)|u(x)|2) = 0 .

�

We can now conclude that the solutions e±(x, λ) exist for λ ∈ R \ {0}. In fact, we
can always find a solution u± equal to e±iλx for ±x � 0. That solution has to equal to
a±e±iλx + b±e∓iλx for ±x � 0, and we need to show that a± 6= 0. If not than

Fu±(x)�±x�0= ±2λ 6= ∓2|b±|2λ = Fu±(x)�±x�0 ,

contradicting Lemma 1.

The coefficient T (λ) in (2.2) is called the transmission coefficient and, R±(λ) the reflection
coefficients.

We can write down the expression for RV (λ) in terms of e±. For λ ∈ R\{0}, we have

(2.4) RV (λ)(x, y) =
1

2iλT (λ)

(
e+(x, λ)e−(y, λ)(x− y)0

+ + e+(y, λ)e−(x, λ)(x− y)0
−
)

.

In particular we have the following far field expression for the resolvent:

(2.5) RV (λ)(±r, y) =
1

2iλ
e±iλr e∓(y, λ) for r � 0 .

The following two lemmas are special cases of more precise results allowing for very
general potentials and not requiring cut-offs. We present simple proofs in our special
setting.

Lemma 2. Suppose that χ ∈ C∞c (R). Then

‖χe−itHV χ‖L(L1,L∞) ≤ Ct−
1
2 , t > 0 .

Proof. We first consider t small. We then apply Duhamel’s formulæ,

e−itHV = e−itH0 + i

∫ t

0

e−i(t−s)H0V e−isHV ds

= e−itH0 − i

∫ t

0

e−i(t−s)HV V e−isH0ds ,
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to write

e−itHV = e−itH0 + i

∫ t

0

e−i(t−s)H0V e−isH0ds +

∫ t

0

∫ s

0

e−i(t−s)H0V e−i(s−r)HV V e−irH0ds dr .

This gives,

‖χe−itHV χ‖L(L1,L∞) ≤ ‖e−itH0‖L(L1,L∞) +

∫ t

0

‖e−i(t−s)H0V ‖L(L∞,L∞)‖e−isH0‖L(L1,L∞)ds

+

∫ t

0

∫ s

0

‖χe−i(t−s)H0V ‖L(L2,L∞)‖e−i(s−r)HV ‖L(L2,L2)‖V e−irH0χ‖L(L1,L2)ds dr .

Hence, for t ≤ C,

‖χe−itHV χ‖L(L1,L∞) ≤ C0t
− 1

2 +

∫ t

0

(t− s)−
1
2 s−

1
2 ds +

∫ t

0

∫ s

0

(t− s)−
1
2 r−

1
2 dsdr

≤ C1t
− 1

2 .

For large t we use the representation of the propagator using the resolvent:

(2.6) e−itHV =

∫ ∞

0

λ

πi
(RV (λ)−RV (−λ))e−iλ2tdλ .

Now, we can deform the contour and use (2.1). The contribution from large λ’s gives
exponential decay in t, and the norm of the contribution from a neighbourhood of λ = 0 is
bounded by ∫ 1

0

e−λ2tdλ = O(t−
1
2 ) .

We note that we can insert HV as λ2 into the integrand and hence the bound holds between
any Sobolev spaces. In particular that shows a bounds between L1 and L∞ completing the
proof. �

When the resolvent is analytic near 0 we easily obtain an improvement:

Lemma 3. Suppose that RV (λ) is regular at λ = 0, that is V does not have a zero resonance.
Then

‖χe−itHV χ‖L(L1,L∞) ≤ Ct−
3
2 , t > 0 .

Proof. In (2.6) we now observe that analyticity of RV (λ) near 0 implies that λ(RV (λ) −
RV (−λ)) = λ2A(λ) where A(λ) is analytic near 0. The contour deformation argument in
the proof of Lemma 2 still produces exponential decay in t for λ large, but for λ small we
now have the estimate ∫ 1

0

e−λ2tλ2dλ = O(t−
3
2 ) ,

which proves the lemma. �
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3. Transmission rate using time dependent Schrödinger equation

Following [1] we consider the following scattering problem: at some point left to the
support of the potential we add a source term emitting waves and we consider the resulting
time evolution. The transmission rate is naturally defined as the ratio of fluxes left to the
source point with and without the potential. As we show, at least for potentials without
a zero resonance, that definition coincides with the standard stationary definition. This is
the content of the following

Theorem. Suppose that V ∈ L∞comp(R) does not have a zero resonance and consider the
solution of

(3.1) iut = −uxx + V u + e−itλ2

δx0(x) , u(x, 0) = 0 .

Then for any x ∈ R,

(3.2) u(t, x) = e−itλ2

RV (x, x0) +O(t−
1
2 ) .

In particular, if x0 < minsupp V x, and u0 denotes the solution of the problem with V = 0,
then for x > x0,

(3.3)
Fu(x, t)

Fu0(x, t)
= |T (λ)|2 +O(t−

1
2 ) .

We start with the following

Lemma 4. Let v± = v±(x, t) be the solutions of the following initial value problems,

(3.4) i∂tv± = −∂2
xv± , v±(x, 0) = 1lR±(x)eiλ|x| , λ > 0 .

Then, there exists C > 0 such that for any x ∈ R, there exist t0(x) > 0, so that

(3.5) |v±(x, t)| ≤ Ct−
1
2 , t > t0(x)

Proof. This is a direct computation based on the explicit formula for the solution. We
consinder the case of v+ as the other case is identical. Thus,

v+(x, t) = lim
ε→0+

1

(4πt)
1
2

∫ ∞

0

ei
|x−y|2

4t eiyλ−εydy .

We will drop ε in the subsequent computations noting that inserting it justifies the inte-
gration procedures. Completing the square and changing variables we obtain

v+(x, t) = e−iλ2t+iλx 1

(4πt)
1
2

∫ ∞

0

ei(y−x+2tλ)2/(4t)dy

= O((2λt
1
2 − x/t

1
2 )−1

+ ) ,
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since ∫ ∞

0

ei(r+s)2dr =

∫ ∞

s

eir2

dr = O(s−1
+ ) .

�

We note that the lemma is false if eiλ|x| is replaced by e−iλ|x| in (3.4), that is outgoing
initial condition is replaced by an incoming one.

Proof of Theorem: Let u1(x, t)
def
= e−itλ2

RV (λ)(x, x0). Then u1 solves (3.1) but violates the
boundary condition. Hence we need to show that the solution to

iwt = −wxx + V w , w(x, 0) = RV (x, x0) ,

satisfies w(x, t) = O(t−
1
2 ) for every x, that is that for any χ ∈ C∞c (R),

(3.6) ‖χ exp(−itHV )RV (•, x0)‖L∞ = O(t−
1
2 ) .

We use Duhamel’s formula,

e−itHV = e−itH0 − i

∫ t

0

e−i(t−s)HV V e−isH0ds .

Now, for some coefficients a±,

RV (x, x0) = a+eiλ|x|1lR+(x) + a−eiλ|x|1lR−(x) + r(x) , r ∈ L∞comp(R) ,

and hence, Lemmas 2 and 4 show that

‖χ0 exp(−itH0)(RV (•, x0))‖L∞ = O(t−
1
2 ) , χ0 ∈ C∞c (R) .

Taking χ0 such that χ0V = V this shows that

‖χ exp(−itHV )RV (•, x0)‖L∞ ≤ Ct−1/2 + C

∫ t

0

‖χ exp(−i(t− s)HV )χ0‖L(L∞,L∞)s
− 1

2 ds

≤ Ct−1/2 + C

∫ t

0

min((t− s)−
3
2 , (t− s)−

1
2 )s−

1
2 ds ,

where we used Lemmas 2 and 3 to estimate the propagator exp(−i(t − s)HV ). The last
integral is bounded by∫ t−1

0

(t− s)−
3
2 s−

1
2 ds +

∫ t

t−1

(t− s)−
1
2 s−

1
2 ds ≤

t−1

∫ 1/t

0

σ−
3
2 (1− σ)−

1
2 dσ + (t− 1)−

1
2

∫ 1

0

σ−1/2dσ = O(t−1/2) ,

and this gives (3.6) completing the proof of (3.2).

To prove (3.2) we simply combine (2.2) with the far field asymptotics (2.5).
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4. A relevant estimate?

Here we establish some simple estimates needed for the non-linear propagation result.

Lemma 5. Suppose that ivt(x, t) + vxx(x, t) = u(x, t), v(x, 0) = 0. Then, for any s ∈ R,

‖v(•, t)‖Hs+2(R) ≤ ‖u(•, t)‖Hs(R) + ‖u(•, 0)‖Hs(R)

+ C
√

t

(∫ t

0

(‖u(•, t′)‖2
Hs(R) + ‖∂tu(•, t′)‖2

Hs(R))dt′
) 1

2

.

Proof. This follows immediately from Duhamel’s formula applied on the Fourier transform
side:

v̂(ξ, t) = i

∫ t

0

e−i(t−t′)ξ2

û(ξ, t′)dt′ ,

which implies that

‖v(•, t)‖Hs(R) ≤ C
√

t

(∫ t

0

‖u(•, t′)‖2
Hs(R)dt′

) 1
2

.

But we also have

ξ2v̂(ξ, t) =

∫ t

0

∂t′

(
e−i(t−t′)ξ2

)
û(•, t′)dt′

= û(ξ, t) + û(ξ, 0)e−itξ2 −
∫̂ t

0

e−i(t−t′)ξ2

∂t′û(•, t′)dt′ ,

which completes the proof. �

For instance when u(x, t) = θ(t)δ0(x), θ, θ′ ∈ L∞(R), then u(•, t) ∈ H− 1
2
−ε(R) and

consequently

(4.1) ‖v(•, t)‖
H

3
2−ε(R)

≤ Cε〈t〉 .

We will now consider that case but with a potential:

Lemma 6. Suppose that V ∈ L∞comp(R) has no zero resonance, and that

iut = −uxx + V (x)u + θ(t)δ0(x) , u(x, 0) = 0 ,

where θ, θ′ ∈ L∞(R). Then for any ε > 0,

‖u(•, t)‖
H

3
2−ε(R)

≤ Cε〈t〉 .

Proof. We write

u(x, t) =

∫ t

0

e−i(t−t′)H0(θ(t′)δ0(x))dt′ +

∫ t

0

∫ t′

0

e−i(t−t′−t′′)H0V e−it′′HV (θ(t′)δ0(x))dt′′dt′ .

(4.2)
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By (4.1) the first term satisfies the conclusion of the lemma. We write the second term as∫ t

0

e−(t−t′)H0v(x, t′)dt′ , v(x, t)
def
=

∫ t

0

eisH0V e−isH0(θ(t)δ0(x))dt′′ .

If we show that

(4.3) ‖∂k
t v(•, t)‖L2(R) ≤ C , k = 0, 1 ,

then Lemma 5 will conclude the proof by showing that the second term in (4.2) is bounded
in H2 with norm O(〈t〉).

Lemmas 2 and 3 and the regularity of the kernel (see [2]), show that

‖V e−isHV (θ(t)δ0(x))‖L2 ≤ C‖e−isHV (θ(t)δ0(x))‖L∞ ≤ C ′min(s−
1
2 , s−

3
2 )

and this gives (4.3). �
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