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Abstract. For standard torus T2 = R2/Z2, we prove observability for free Schrödinger

equation from a ball of radius ε with explicit dependence of the observability constant

on ε.

1. Introduction

We will follow some methods of Bourgain-Burq-Zworski [BBZ13][BuZw12] and Jin

[Jin18] to prove a quantitative version of observability result for the Schrödinger equa-

tion on the 2-dimensional standard torus.

Theorem 1 (Semiclassical Observability Estimate). Let T2 = R2/Z2, and Ωε =

B(0, ε) ⊂ T2. Then for any δ > 0, there exists a numerical constant C such that

for sufficiently small constant ε > 0 and 0 < h < h0 = ε16+δ,

‖u‖L2(T2) ≤ Cε−4‖u‖L2(Ωε) + Cε−2h−2‖(−h2∆− 1)u‖L2(T2).

From Theorem 1 we deduce the classical version

Theorem 2. On the torus T2 = R2/Z2 we have

‖u0‖2
L2(T2) ≤ CΩε

∫ 1
2π

0

‖eit∆u0‖2
L2(Ωε)

dt

for Ωε = B(0, ε) and CΩε = exp exp
(
C log ε−1

log log ε−1

)
with some constant C independent of

ε.

The bad constant comes from the low frequency parts. For high frequency parts, we

have a better estimate with constant ε−8, see Theorem 3 for details.

1.1. Historical Remark. Lebeau [Le92] first obtained the control for Schrödinger

equation under the following geometric control condition

There exists T > 0 such that every geodesic of length T intersects Ω.

In general, the geometric control condition is not necessary. The observability es-

timate in the case of flat tori was obtained by Jaffard [Jaf90] and Haraux [Ha89] in
1
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dimension two and by Komornik [Ko92] in higher dimensions. In dimension two, Burq-

Zworski [BuZw12] extended the result to Schrödinger equation with smooth potential.

Bourgain-Burq-Zworski [BBZ13] further extended it to the case of L2 potential. In

higher dimensions, the result was obtained by Anantharaman-Macià [AnMa14] with

some class of potentials including continuous ones.

For integrable systems, Macià-Rivière [MaRi17] studied observability for Zoll mani-

fold. Anantharaman-Léautaud-Macià [ALM16] studied observability for the unit disk.

For compact negatively curved surfaces, the observability by any nonempty open set

was proved by Dyatlov-Jin-Nonnenmacher [DJN19].

None of the above results provides an exact constant for torus. However, the ob-

servability estimate is proved for any T > 0. We expect that our exact constant is

valid for any T > 0 but are not able to prove it for some technical reasons.

Theorem 1 gives a lower bound on quantum limits on the standard torus. A better

bound can be provided by the explicit description of the quantum limits by Jakobson

[Jak97].

1.2. Outline of the proof. Microlocal method relate the issues of observability and

control to classical dynamics. The point of our proof is to keep track of different

directions of the geodesic flow, which is possible as that flow is completely integrable.

In §2 we prove a quantitative estimate for one-dimensional case, which implies a

control result for regions of the form (−ε, ε) × T. Then we present a brief review

of semiclassical analysis in §3. Specifically we recall Egorov’s theorem in the form

we need (see Lemma 6, Proposition 8). In §4, we use combinatorial arguments to

separate rational and irrational directions. In §5, we prove semiclassical observability

estimates (Theorem 1) with rational and irrational directions treated separately: for

rational directions, the estimate follows from the projection to one-dimensional case

studied in §2. That is inspired by the methods of [BuZw12] but here the estimates

are quantitative. In §6, we first derive the high frequency observability estimate from

the semiclassical results of §5. Finally, the low frequency estimate is obtained using

Nazarov-Turán lemma and a classical estimate coming from analytic number theory.
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2. Estimate in dimension one

To prove the semiclassical observability estimate (Theorem 1), we need to first show

the following observability estimate for a strip. The technique is to first prove explicitly

for one-dimensional case and then the strip case follows easily.

Proposition 1. Let ωε = (−ε, ε)× [0, 1] ⊂ T2 = R2/Z2, then for any u ∈ H2(T2) and

h > 0,

‖u‖2
L2(T2) ≤ Cε−3‖u‖2

L2(ωε)
+ 4h−4‖(−h2∆− 1)u‖2

L2(T2).

Proof. Step 1

We follow the method in [BuZw05] to prove an estimate in dimension one. Let

T1 = R/Z, for any v ∈ H2(T1) and z ∈ R, we claim

‖v‖2
L2(T1) ≤ Cε−3‖v‖2

L2((−ε,ε)) + 4h−4‖(−h2∂2
x − z)v‖2

L2(T1). (2.1)

Denote f = (−h2∂2
x − z)v, we separate the proof into two cases:

Case 1: z ≤ 0. In this case we have

h2‖∂xv‖2
L2(T1) ≤

∫
T1

((−h2∂2
x − z)v̄)vdx

≤ ‖f‖L2(T1)‖v‖L2(T1).

By integrating

|v(x)| ≤
∣∣∣∣∫ x

t

∂xv(y)dy

∣∣∣∣+ |v(t)|

≤ ‖∂xv‖L2(T1) + |v(t)|,

we get

‖v‖2
L2(T1) ≤ 2‖∂xv‖2

L2(T1) + ε−1‖v‖2
L2((−ε,ε))

≤ 2

h2
‖v‖L2(T1)‖f‖L2(T1) + ε−1‖v‖2

L2((−ε,ε))

≤ 1

2
‖v‖2

L2(T1) +
2

h4
‖f‖2

L2(T1) + ε−1‖v‖2
L2((−ε,ε)).

So

‖v‖2
L2(T1) ≤

4

h4
‖f‖2

L2(T1) + 2ε−1‖v‖2
L2((−ε,ε)).

Case 2: z > 0

First choose χ ∈ C∞0 (T1) such that χ = 0 on B(0, ε
3
) and χ = 1 on T1 \ B(0, ε

2
) with

|χ(k)(x)| ≤ Ck
εk
,∀k ∈ N. We then have

(−h2∂2
x − z)(χv) = h2∂2

xχv − 2h2∂x(∂xχv) + χf = f̃ .
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The solution of this ODE is

χ(x)v(x) = − 1

h
√
z

∫ x

0

sin

√
z(x− t)
h

f̃(t)dt.

For each term we have∣∣∣∣− 1

h
√
z

∫ x

0

sin

√
z(x− t)
h

h2∂2
xχv(t)dt

∣∣∣∣ ≤ ‖∂2
xχv‖L1((−ε,ε)) ≤

C

ε
3
2

‖v‖L2((−ε,ε)),

∣∣∣∣− 1

h
√
z

∫ x

0

sin

√
z(x− t)
h

h2∂t(∂xχv)(t)dt

∣∣∣∣ =

∣∣∣∣− 1

h
√
z

∫ x

0

∂t

(
sin

√
z(x− t)
h

)
h2∂xχv(t)dt

∣∣∣∣
≤ ‖∂xχv(t)‖L1((−ε,ε))

≤ C

ε
1
2

‖v‖L2((−ε,ε)),

∣∣∣∣− 1

h
√
z

∫ x

0

sin

√
z(x− t)
h

χf(t)dt

∣∣∣∣ ≤ 1

h2
‖f‖L1(T1).

Put them together we get

‖v‖L2(T1) ≤ ‖χv‖L2(T1) + ‖(1− χ)v‖L2(T1)

≤ C

ε
3
2

‖v‖L2((−ε,ε)) +
C

ε
1
2

‖v‖L2((−ε,ε)) +
1

h2
‖f‖L1(T1) + ‖v‖L2((−ε,ε))

≤ C

ε
3
2

‖v‖L2((−ε,ε)) +
1

h2
‖f‖L2(T1).

Step 2

Let g = (−h2∆− 1)u, we prove the 2-dimensional estimate by Fourier expansion in

y.

Decompose u =
∑
k∈Z

uk(x)ek(y), and g =
∑
k∈Z

gk(x)ek(y) where ek(y) = e2kπiy, then

(−h2∂2
x + (2kπ)2h2 − 1)uk = gk.

The proof follows from the one-dimensional estimate (2.1)

‖uk‖2
L2(T1) ≤ Cε−3‖uk‖2

L2(B(0,ε)) + 4h−4‖gk‖2
L2(T1).

�

Finally we point out that this is the best possible estimate by looking at

u(x, y) = sin(2πx)e2πik(h)y or u(x, y) = χ(x)e2πil(h)y

where 4π2h2(k(h)2 + 1) = 1, 4π2h2l(h)2 = 1, and χ(x) is supported outside (−ε, ε).
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3. Semiclassical preliminaries

In this section we recall some semiclasscial preliminaries we will use. The general

reference is [Zw12]. The results for the torus are also discussed in Anantharaman-Macià

[AnMa14]. Throughout this section, we take Tn = Rn/(LZ)n for some L ≥ 1.

3.1. L2 boundedness of pseudo-differential operators. We will recall several

properties related to L2 boundedness of pseudo-differential operators. First we recall

the definition of Weyl quantization.

Definition 2. Let a(x, ξ) ∈ Sm(T ∗Tn), the Weyl quantization is defined as

Opwh (a)u(x) =
1

(2πh)n

∫
Rn

∫
Rn
a

(
x+ y

2
, ξ

)
ei(x−y)ξ/hu(y)dydξ

for u ∈ D′(Tn), where a is regarded as a periodic function on Rn × Rn. Opwh (a) is

called an m-th order pseudo-differential operator.

0-th order pseudodifferential operators are bounded on L2(Tn). In fact, we have

Lemma 3. If a ∈ S0(T ∗Tn), then Opwh (a) : L2(Tn)→ L2(Tn) is bounded with

‖Opwh (a)‖ ≤ C
∑
|α|≤Kn

h
|α|
2 ‖∂αa‖L∞

for some universal constant K.

Proof. The proof follows from the proof of [Zw12, Theorem 4.23, Theorem 5.5]. �

Since we will need to estimate L2 bound for remainders in composition formula, we

prove an estimate for the composition formula of pseudo-differential operators.

Lemma 4. Let A(D) = 1
2
〈QD,D〉 with Q a real nonsingular symmetric matrix. Sup-

pose a ∈ C∞(Rn), then for every N ∈ N, there exists a constant C depending only on

the dimension n, such that∑
|α|≤N

h
|α|
2 ‖∂αeihA(D)a‖L∞ ≤ C

∑
|α|≤N+n+1

h
|α|
2 ‖∂αa‖L∞ .

Proof. We just need to prove for N = 0. Let χ ∈ C∞0 (Rn) be a cutoff function near 0

(i.e. χ(x) = 1 in a neighbourhood of 0), then

eihA(D)a =
C

h
n
2

∫
Rn
e
iφ(w)
h a(z − w)dw

=
C

h
n
2

∫
Rn
e
iφ(w)
h χ

(
w√
h

)
a(z − w)dw +

C

h
n
2

∫
Rn
e
iφ(w)
h

(
1− χ

(
w√
h

))
a(z − w)dw

= A1 + A2
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where φ(w) = −1
2
〈Q−1w,w〉.

We have |A1| ≤ C
∣∣∣∫Rn eiφ(w)χ(w)a(z −

√
hw)dw

∣∣∣ ≤ C‖a‖L∞ . On the other hand,

applying L = 〈∂φ,D〉
|∂φ|2 gives

|A2| ≤ C

∣∣∣∣∫
Rn
eiφ(w)(1− χ(w))a(z −

√
hw)dw

∣∣∣∣
= C

∣∣∣∣∫
Rn

(Ln+1eiφ(w))(1− χ(w))a(z −
√
hw)dw

∣∣∣∣
= C

∣∣∣∣∫
Rn
eiφ(w)(LT )n+1((1− χ(w))a(z −

√
hw))dw

∣∣∣∣
≤ C

∑
|α|≤n+1

h
|α|
2 ‖∂αa‖L∞ .

The estimates for A1 and A2 together give the desired estimate. �

Now in general, we have

eihA(D)a =
N∑
k=0

ikhk

k!
A(D)ka+

iN+1hN+1

N !

∫ 1

0

(1− t)NeithA(D)A(D)N+1adt

=
N∑
k=0

ikhk

k!
A(D)ka+ON(hN+1)

∑
|α|≤n+1

h
|α|
2 ‖∂αA(D)N+1a‖L∞ .

This provides the following corollary.

Corollary 5. Let a, b ∈ S0(T ∗Tn), then there exists a universal constant K such that

‖Opwh (a) Opwh (b)−Opwh (ab)‖ ≤ Ch
∑
|α|≤Kn

h
|α|
2 ‖∂ασ(D)(a⊗ b)‖L∞

where σ(x, ξ, y, η) = 〈ξ, y〉 − 〈x, η〉 is the standard symplectic product on T ∗R2n.

Proof. By composition formula for pseudo-differential operators [Zw12, Theorem 4.11],

Opwh (a) Opwh (b) = Opwh (a]b)

where

a]b(x, ξ) = eihA(D) (a(x, ξ)b(y, η))|y=x,η=ξ

and A(D) = 1
2
σ(Dx, Dξ, Dy, Dη). By the previous discussion after Lemma 4,

a]b(x, ξ) = a(x, ξ)b(x, ξ) +O(h)
∑

|α|≤4n+1

h
|α|
2 ‖∂αA(D)(a⊗ b)‖L∞

with all the derivatives satisfying similar estimates. Then by Lemma 3 we get the

desired result.
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�

3.2. Propagation of singularities. We will study the quantitative version of prop-

agation of singularities of Schrödinger equation. First we recall an important lemma

which relates Schrödinger equation with the geodesic flow on the torus.

Lemma 6 (Egorov theorem). Let a ∈ S0(T ∗Tn), vh(t) = e−iht∆ be a unitary operator,

and φt(x, ξ) = (x+ 2tξ, ξ) be the corresponding Hamiltonian flow. Then

vh(t) Opwh (a)vh(−t) = Opwh (a ◦ φt).

Proof. We recall the identity for Weyl quantization following e.g. by an explicit com-

putation from [Zw12, Theorem 4.6]

[−h2∆,Opwh (a)] = −ihOpwh ({|ξ|2, a}).

Then let A(t) = vh(−t) Opwh (a ◦ φt)vh(t), we get

∂tA(t) = vh(−t)(−
i

h
[−h2∆,Opwh (a ◦ φt)] + Opwh (2ξ · ∂xa ◦ φt))vh(t)

= vh(−t)(−Opwh ({|ξ|2, a ◦ φt}) + Opwh (2ξ · ∂xa ◦ φt))vh(t)
= 0.

Hence

A(t) = A(0) = Opwh (a)

or

vh(t) Opwh (a)vh(−t) = Opwh (a ◦ φt).

�

In addition, we have (see [DyJin18, Lemma 4.2])

Lemma 7.

‖eit(−h2∆−1)/hu− u‖L2 ≤ |t|
h
‖(−h2∆− 1)u‖L2

Proof. It is obvious from

∂te
it(−h2∆−1)/hu =

i

h
eit(−h

2∆−1)/h(−h2∆− 1)u.

�

Combining Lemma 6 and Lemma 7, we have

‖Opwh (a ◦ φt)u‖ ≤ ‖Opwh (a)u‖+
|t|
h
‖Opwh (a)‖‖(−h2∆− 1)u‖. (3.1)

Now we can prove a quantitative version of propagation of singularities.
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Proposition 8. Let a ∈ C∞0 (T ∗Tn; [0, 1]) and b ∈ S0(T ∗Tn; [0, 1]). If there exist

t1, · · · , tM ∈ (0, t) such that for any p ∈ supp(a), there exists j such that φtj(p) ∈ {b =

1}, then for any u ∈ H2(Tn), we have

‖Opwh (a)u‖2
L2 ≤ Ca,b,1‖Opwh (b)u‖2

L2 + Ca,b,2
|t|2

h2
‖(−h2∆− 1)u‖2

L2 + Ca,b,3h‖u‖2
L2

where Ca,b,1 = C‖a ⊗ b‖CKnh;M,tM , Ca,b,2 = CM‖a ⊗ b‖CKnh;M,t‖b‖
2
CKnh

and Ca,b,3 = C‖a ⊗
b‖CKnh:M,t;2‖b‖CKnh .

Here we use the notations: ‖f‖Ckh =
∑
|α|≤k

h
|α|
2 ‖∂αf‖L∞,

‖a⊗ b‖Ckh;s,t =
∑
j≤k

h
j
2

∑
l0+l1+···+lm=j

smtl1+···+lm‖a‖Cl0‖b‖Cl1 · · · ‖b‖Clm ,

‖a⊗ b‖Ckh;s,t;2 =
∑
j≤k

h
j
2

∑
l0+l1+···+lm=j+2

smtl1+···+lm‖a‖Cl0‖b‖Cl1 · · · ‖b‖Clm .

Proof. Let χ =
∑
j

|b ◦ φtj |2 ≥ 1 on supp(a). Let q = |a|2
χ

, then by Lemma 3 and

Corollary 5

〈Opwh (|a|2)u, u〉 ≤
∑
j

〈Opwh (φ∗tjb) Opwh (q) Opwh (φ∗tjb)u, u〉

+ Ch(
∑
j

‖σ(D)(φ∗tjb⊗ q)‖CKnh ‖b‖CKnh + ‖σ(D)(qφ∗tjb⊗ φ
∗
tj
b)‖CKnh )‖u‖2

≤ C‖q‖CKnh
∑
j

‖Opwh (φ∗tjb)u‖
2 + Ch‖a⊗ b‖CKnh:M,t;2‖b‖CKnh ‖u‖

2

≤ C‖a⊗ b‖CKnh;M,t
∑
j

‖Opwh (φ∗tjb)u‖
2 + Ch‖a⊗ b‖CKnh:M,t;2‖b‖CKnh ‖u‖

2.

By (3.1),

‖Opwh (φ∗tjb)u‖ − ‖Opwh (b)u‖ ≤ |t|
h
‖Opwh (b)‖‖(−h2∆− 1)u‖

≤ C
|t|
h
‖b‖CKnh ‖(−h

2∆− 1)u‖.

So

‖Opwh (a)u‖2 = 〈Opwh (|a|2)u, u〉
≤ C‖a⊗ b‖CKnh;M,tM‖Opwh (b)u‖2 + Ch‖a⊗ b‖CKnh:M,t;2‖b‖CKnh ‖u‖

2

+ CM
t2

h2
‖a⊗ b‖CKnh;M,t‖b‖

2
CKnh
‖(−h2∆− 1)u‖2.

�
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4. Rational and irrational directions

To prove Theorem 1, the main point is to deduce the high frequency estimate by

considering the geodesic flow on the torus. However, the dynamics on the torus does

not satisfy the geometric control condition. So we divide the discussion into two cases-

rational and irrational as follows.

Take Ωε = B(0, ε) ⊂ T2 = R2/Z2 and φt(x, ξ) = (x + 2tξ, ξ) be the geodesic flow.

We will always assume ε > 0 is sufficiently small. We give the following definition

Definition 9. A vector ξ ∈ R2\{0} is called a direction. Two directions ξ, ξ′ ∈ R2
ξ\{0}

are equivalent iff ξ = λξ′ for some λ ∈ R+. We denote ξ ∼ ξ′ for equivalent directions.

If η ∼ (a, b) ∈ Z2 \ {0}, then it is called rational. For rational directions, define

Lη =
√
a2 + b2

to be the length of the primitive geodesic in direction η, where gcd(a, b) = 1. If a

rational direction η satisfies

L2
η = a2 + b2 <

32

ε2
,

then we call η an ε-rational direction.

Proposition 10. Let ξ ∈ R2 \ {0} be a direction of length 1 (i.e. |ξ| = 1) and ε > 0

be a small constant. If there exists constant C > 0 such that

| arg ξ − arg η| ≥ ε

CLη
(4.1)

for any ε-rational direction η, then there exists C ′ = C ′(C) such that for any x ∈ T2,

there exists t ∈ [0, C ′ε−1] such that x+ tξ ∈ B(0, ε
3
).

Proof. Assume ξ ∼ (1, α) with 0 < α < 1 and C > 12 without loss of generality. Define

‖x‖1 := min
m∈Z
|x−m|, consider {nα mod 1 : 1 ≤ n ≤ 3C

ε
}, by Pigeonhole Principle there

exist 3C
ε
≥ n′ > n′′ ≥ 1 such that

‖n′α− n′′α‖1 ≤
ε

2C
.

Let n = n′ − n′′, then n ∈ [1, 3C
ε
− 1] and there exists m ∈ Z such that

|nα−m| ≤ ε

2C
.
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We have 0 ≤ m ≤ n, assume gcd(n,m) = 1 without loss of generality. Now let

η = (n,m)√
n2+m2 , then

ε

2C
≥ |nα−m|

= |(n,m)× (1, α)|

= Lη
√

1 + α2| sin(arg ξ − arg η)|

≥ 2

π
Lη| arg ξ − arg η|.

So | arg ξ − arg η| ≤ πε
4CLη

, which means that η is not ε-rational by condition (4.1)

(i.e. 4
√

2
ε
≤ Lη ≤ 3

√
2C
ε

). The intersection of the closed trajectory γ = {(tn, tm) : t ∈
[0, 1]} ⊂ T2 with the circle {x1 = 0} is given by {(0, k

n
) : 0 ≤ k < n}. Thus each

ball of radius r > 1
2n

has to intersect γ. Since n ≥ Lη√
2
≥ 4

ε
, there exists t ∈ [0, Lη],

x+ tη ∈ B(0, ε
7
) for any x ∈ T2.

Now

|(x+ tξ)− (x+ tη)| ≤ Lη|ξ − η| ≤ Lη| arg ξ − arg η| < ε

C
<

ε

12
.

So x+ tξ ∈ B(0, ε
3
), i.e. C ′ = 3

√
2 max(C, 12) would work. �

In the following section, we will prove Theorem 1 by considering rational and irra-

tional directions separately. First we note that for ψ ∈ C∞0 (R; [0, 1]) such that ψ(x) = 1

on [−K,K], we have

‖(1− ψ)(−∆− h−2)u‖L2(T2) ≤
1

K
‖(−∆− h−2)u‖L2(T2).

So we only need to consider the case when the frequency is close to h−1. We choose a

cutoff function a ∈ C∞0 (Nε; [0, 1]) such that a = 1 on N ε
2

where Nε = {1− ε3 < |ξ| <
1 + ε3} and |∂αa| ≤ Cαε

−3|α|. Furthermore, we make a partition of unity

a(ξ) = airr(ξ) +
∑
η

aη(ξ)
2

requiring the following conditions, where the sum is over all ε-rational directions η.

• For any ε-rational direction η, there exists aη such that a2
η = a on {ξ ∈ Nε :

| arg ξ − arg η| < ε
25Lη
} and aη = 0 outside {ξ ∈ Nε : | arg ξ − arg η| < ε

24Lη
}. In

addition,

‖aη‖Ck ≤ Ck max

((
ε

Lη

)k
, ε−3k

)
≤ Ckε

−3k.

These aη’s are called rational cutoff functions. Their number is O(ε−2).
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• Define airr := a−
∑
η

a2
η to be the irrational part. It also satisfies

‖airr‖Ck ≤ Ckε
−3k.

We claim that any two rational aη and aη′ have disjoint support. If there exists

ξ ∈ supp(aη) ∩ supp(aη′), assume Lη ≤ Lη′ and η ∼ (1, q
p
) and η′ ∼ (1, q

′

p′
) such that

0 < q < p and 0 < q′ < p′ without loss of generality, then

1

pp′
≤
∣∣∣∣qp − q′

p′

∣∣∣∣ < 2| arg η − arg η′| ≤ 2ε

12Lη
≤ ε

6p
.

Therefore, 1
pp′

< ε
6p

, which means that p′ > 6
ε
, contradictory to that η′ is ε-rational.

See Figure 1 for a picture of the rational cutoff functions.

Figure 1. The blue set contains the union of the supports of the ratio-

nal cutoff functions aη

5. Proof of semi-classical observability

In this section we give the proof of Theorem 1 by treating the irrational and rational

case separately. First we deal with the irrational case.

Proposition 11. Let T2 = R2/Z2 and h = O(ε8+δ) for some δ > 0, then for suffi-

ciently small ε > 0, we have the following estimate

‖Opwh (airr)u‖2
L2(T2) ≤ Cε−2‖u‖2

L2(Ωε)
+ Cε−4h−2‖(−h2∆− 1)u‖2

L2(T2) + Cε−8h‖u‖2
L2(T2).

(5.1)

Proof. We choose a cutoff function χ ∈ C∞0 (Ωε) with ‖χ‖Ck ≤ Ckε
−k and χ = 1

on B(0, 2ε
3

). On supp(airr) the assumption of Proposition 10 is satisfied for C = 25,

so there exists C ′ such that for any p ∈ supp(airr), there exists t ∈ [0, C ′ε−1] such
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that φt(p) ∈ T ∗B(0, ε
3
). Let tj = j ε

12
, j = 1, · · · ,M = d12C ′ε−2e, then φtj(p) ∈

T ∗B(0, 2ε
3

) ⊂ {χ = 1} for some j ∈ [1,M ]. By Proposition 8 we have

‖Opwh (airr)u‖2
L2 ≤ Cairr,χ,1‖Opwh (χ)u‖2

L2 + Cairr,χ,2
|t|2

h2
‖(−h2∆− 1)u‖2

L2 + Cairr,χ,3h‖u‖2
L2

with M = O(ε−2) and t = O(ε−1), so

Cairr,χ,1 ≤ Cε−2(1 + h
1
2 ε−4)2K ,

Cairr,χ,2 ≤ Cε−2(1 + h
1
2 ε−4)2K(1 + h

1
2 ε−1)4K ,

Cairr,χ,3 ≤ Cε−8(1 + h
1
2 ε−4)2K(1 + h

1
2 ε−1)2K .

Therefore, let h = O(ε8+δ), then

‖Opwh (airr)u‖2
L2(T2) ≤ Cε−2‖u‖2

L2(Ωε)
+ Cε−4h−2‖(−h2∆− 1)u‖2

L2(T2) + Cε−8h‖u‖2
L2(T2).

�

Then we deal with the rational case.

Proposition 12. Let T2 = R2/Z2 and h = O(ε8+δ) for some δ > 0, then for suffi-

ciently small ε > 0 and an ε-rational direction η, we have the following estimate

‖Opwh (aη)u‖2
L2(T2) ≤ Cε−6‖u‖2

L2(Ωε)
+ Cε−4h−4‖Opwh (aη)(−h2∆− 1)u‖2

L2(T2)

+ Ch−2ε−10‖(−h2∆− 1)u‖2
L2(T2) + Cε−14h‖u‖2

L2(T2).
(5.2)

Proof. For ε-rational direction η ∼ (a, b) ∈ Z2 \ {0} (gcd(a, b) = 1), let L = Lη be the

new period and aη be the corresponding ε-rational cutoff function (‖aη‖Ck ≤ Ckε
−3k).

Cover T2 with a larger square with edges in direction η and η⊥. The square has area

a2 + b2 and induces a torus T̃2 = T̃1
η × T̃1

η⊥ . We extend the function u to the larger

torus periodically. Let bη ∈ C∞(T̃1
η⊥) such that supp(bη) ⊂ (− ε

3
, ε

3
) and bη = 1 on

(− ε
4
, ε

4
) with ‖bη‖Ck ≤ Ckε

−k. See Figure 2 for the covering and cutoff.

By Proposition 1 we have

‖Opwh (aη)u||2L2(T̃2)
≤ C

(
L

ε

)3

‖Opwh (bη) Opwh (aη)u‖2
L2(T̃2)

+ 4L4h−4‖Opwh (aη)(−h2∆− 1)u‖2
L2(T̃2)

.

Moreover,

‖(Opwh (aηbη)−Opwh (bη) Opwh (aη))u‖L2(T̃2)

≤ Ch
∑
|α|≤2K

h
|α|
2 ‖∂ασ(D)(bη ⊗ aη)‖L∞‖u‖L2(T̃2)

≤ Chε−4(1 + h
1
2 ε−3)2K‖u‖L2(T̃2).
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Figure 2. Cover the standard torus with a larger one. The cutoff

function bη restricts the consideration into a small strip coming through

the small ball.

We then choose a cutoff function χ ∈ C∞0 (Ωε) with ‖χ‖Ck ≤ Ckε
−k and χ = 1 on

B(0, 2ε
3

). Notice that for any p ∈ supp(aηbη), there exists t = O(L) ≤ C ′ε−1 such

that φt(p) ∈ T ∗B(0, 9ε
24

). Let tj = j ε
12

, j = 1, · · · ,M = d12C ′ε−2e, then φtj(p) ∈
T ∗B(0, 2ε

3
) ⊂ {χ = 1} for some j ∈ [1,M ]. By Proposition 8,

‖Opwh (aηbη)u‖2
L2 ≤ Caηbη ,χ,1‖Opwh (χ)u‖2

L2

+ Caηbη ,χ,2
|t|2

h2
‖(−h2∆− 1)u‖2

L2 + Caηbη ,χ,3h‖u‖2
L2

with M = O(ε−2) and t = O(ε−1), so

Caηbη ,χ,1 ≤ Cε−2(1 + h
1
2 ε−4)2K ,

Caηbη ,χ,2 ≤ Cε−2(1 + h
1
2 ε−4)2K(1 + h

1
2 ε−1)4K ,

Caηbη ,χ,3 ≤ Cε−8(1 + h
1
2 ε−4)2K(1 + h

1
2 ε−1)2K .

So for h = O(ε8+δ),

‖Opwh (aηbη)u‖2
L2(T̃2)

≤ Cε−2‖Opwh (χ)u‖2
L2(T̃2)

+ Cε−4h−2‖(−h2∆− 1)u‖2
L2(T̃2)

+ ε−8h‖u‖2
L2(T̃2)

and

‖Opwh (bη) Opwh (aη)u‖2
L2(T̃2)

≤ 2‖Opwh (aηbη)u‖2
L2(T̃2)

+ ε−8h2‖u‖2
L2(T̃2)

.
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Put them together

‖Opwh (aη)u||2L2(T̃2)
≤ C

(
L

ε

)3

‖Opwh (bη) Opwh (aη)u‖2
L2(T̃2)

+
4L4

h4
‖Opwh (aη)(−h2∆− 1)u‖2

L2(T̃2)

≤ Cε−5L3‖u‖2
L2(Ωε)

+ C
ε−10

h2
‖(−h2∆− 1)u‖2

L2(T̃2)

+
Cε−4

h4
‖Opwh (aη)(−h2∆− 1)u‖2

L2(T̃2)
+ Cε−14h‖u‖2

L2(T̃2)
.

Therefore,

‖Opwh (aη)u‖2
L2(T2) ≤ Cε−6‖u‖2

L2(Ωε)
+ Cε−4h−4‖Opwh (aη)(−h2∆− 1)u‖2

L2(T2)

+ Ch−2ε−10‖(−h2∆− 1)u‖2
L2(T2) + Cε−14h‖u‖2

L2(T2).

�

We combine the irrational estimate (5.1) and rational estimate (5.2) to get

Proof of Theorem 1. The number of ε-rational directions is O(ε−2). For h = O(ε16+δ)

we have

‖u‖2
L2(T2) ≤ 〈Opwh (a)u, u〉+ 〈Opwh (1− a)u, u〉

≤ ‖Opwh (airr)u‖L2(T2)‖u‖L2(T2) +
∑
η

‖Opwh (aη)u‖2
L2(T2)

+ Cε−6‖(−h2∆− 1)u‖2
L2(T2)

≤ C(‖Opwh (airr)u‖2
L2(T2) +

∑
η

‖Opwh (aη)u‖2
L2(T2) + Cε−6‖(−h2∆− 1)u‖2

L2(T2))

≤ Cε−8‖u‖2
L2(Ωε)

+ C
ε−4

h4
‖(−h2∆− 1)u‖2

L2(T2).

This ends the proof of Theorem 1. �

6. Classical observability

In this section, we deduce the classical observability estimate from the semiclassical

estimate on T2 = R2/Z2. Let {ϕλ,k = e2πi(px+qy)} be eigenfunctions of −∆ with respect

to eigenvalue λ2 (i.e. λ2 = 4π2(p2 + q2)) such that {ϕλ,k} forms an orthonormal basis

of L2(T2). Let ΠN =
∑
λ=N

〈u, ϕλ,k〉ϕλ,k and Π≤N =
∑
λ≤N

Πλ. Similarly, Π>N =
∑
λ>N

Πλ.
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6.1. High frequency estimate. We first prove the high frequency estimate.

Theorem 3. Let Ωε = B(0, ε) ⊂ T2 = R2/Z2 and Π = Π>h−1
0

where h0 = ε16+δ for

δ > 0 and sufficiently small ε > 0, then we have

‖Πu0‖2
L2(T2) ≤ Cε−8

∫ 1
2π

0

‖eit∆Πu0‖2
L2(Ωε)

dt.

Proof. Let u0 = Πu0, χ ∈ C∞0 ((0, 1)), u = eit∆u0 and v = χT (t)u where χT (t) = χ( t
T

).

We argue similarly to [BBZ13, Proposition 3.1],

(i∂t −∆)v =
i

T
χ′T (t)u.

Take Fourier transform in t,

(−τ −∆)v̂ =
i

T
̂(χ′T (t)u).

For τ > h−2
0 , apply Theorem 1, we have

‖v̂‖L2(T2) ≤
Cε−2

T
‖ ̂(χ′T (t)u)‖L2(T2) + Cε−4‖v̂‖L2(Ωε).

This is obviously true for τ ≤ h−2
0 . So

‖χT (t)u‖L2(T2×R) ≤
Cε−2

T
‖χ′T (t)u‖L2(T2×R) + Cε−4‖χT (t)u‖L2(Ωε×R),

‖χ‖‖u0‖L2(T2) ≤
Cε−2

T
‖χ′‖‖u0‖L2(T2) + Cε−4‖χ(t)u(tT, x)‖L2(Ωε×R).

Take appropriate T = O(ε−2), we have

‖u0‖2
L2(T2) ≤ C

ε−8

T
‖u‖2

L2(Ωε×(0,T )).

Because eit∆u0 has period 1
2π

, we have

1

T
‖u‖2

L2(Ωε×(0,T )) ≤ C

∫ 1
2π

0

‖eit∆Πu0‖2
L2(Ωε)

dt.

This ends the proof. �

6.2. Low frequency estimate. Then we estimate the low frequency part. By [HaWr60,

Theorem 317], we have rank Πλ ≤ eC log λ/ log log λ. Now we want to determine the con-

stant in the following estimate

‖Πλu0‖2
L2(T2) ≤ C(ε, λ)‖Πλu0‖2

L2(Ω).

We use the following Nazarov-Turán lemma [Na00]
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Lemma 13 (Nazarov-Turán). Let T1 = R/Z, E ⊂ T1 be a measurable subset, and

p(x) =
n∑
k=1

cke
2πikx be a trigonometric polynomial in n characters, then exists numerical

constant C such that

‖p‖L2(T1) ≤
(
C

|E|

)n− 1
2

‖p‖L2(E).

Corollary 14. Let T2 = R2/Z2 and λ ≤ h−1
0 = ε−17, there exists constant C such that

‖Πλu0‖2
L2(T2) ≤ ee

C log ε−1/ log log ε−1

‖Πλu0‖2
L2(Ωε)

.

Proof. Let u0 = Πλu0 =
n∑
k=1

ckϕλ,k where n ≤ rank Πλ ≤ eC log λ/ log log λ. We first fix y

and apply Nazarov-Turán lemma to get

‖u0‖2
L2(T1

x×{y}) ≤ (Cε−1)2n‖u0‖2
L2([− ε

2
, ε
2

]×{y}).

By integrating it on y, we get

‖u0‖2
L2(T2) ≤ (Cε−1)2n‖u0‖2

L2([− ε
2
, ε
2

]×T1
y).

Similarly, we have

‖u0‖2
L2([− ε

2
, ε
2

]×T1
y) ≤ (Cε−1)2n‖u0‖2

L2([− ε
2
, ε
2

]×[− ε
2
, ε
2

]).

In conclusion, we get

‖u0‖2
L2(T2) ≤ (Cε−1)4n‖u0‖2

L2([− ε
2
, ε
2

]2)

≤ (Cε−1)4n‖u0‖2
L2(Ωε)

≤ ee
C log ε−17/ log log ε−17+log log(Cε−1)‖u0‖2

L2(Ωε)

≤ ee
C log ε−1/ log log ε−1

‖u0‖2
L2(Ωε)

.

�

Now for any eigenvalues λ 6= µ ∈ Spec(
√
−∆),∫ 1

2π

0

〈eit∆Πλu0, e
it∆Πµu0〉L2(Ωε)dt = 0.

This orthogonality gives

‖Π≤h−1
0
u0‖2

L2(T2) ≤ ee
C log ε−1/ log log ε−1

∫ 1
2π

0

‖eit∆Π≤h−1
0
u0‖2

L2(Ωε)
dt.

Combine this with Theorem 3 we get

‖u0‖2
L2(T2) ≤ ee

C log ε−1/ log log ε−1
∫ 1

2π

0

‖eit∆u0‖2
L2(Ωε)

dt.

This ends the proof of Theorem 2.
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