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1. Introduction

This is the notes from Professor Maciej Zworski’s Spring 2021 topics course at Berke-

ley. The primary reference is Sjöstrand’s book [Sj19].

1.1. Motivation from differential equations. One central problem of PDEs is the

stability of the equation under perturbation, in particular, the nonlinear perturbation.

Example 1. Consider the equation

∂tu = Au+ F (u), A ∈MN×N(C), F (u) = O(|u|ε).

Here F is considered as a small perturbation of the ODE. If F = 0, then as long as

σ(A) has negative real parts, the system is stable. However, let A = JN − 1/2 where

JN is the Jordan block matrix. Let

F (u) =


u2

1

0
...

0

 .

Then for initial value

u0 =


0

0
...

ε

 ,

the system will blow up for ε ∼
(

3
4

)N
. [Lack of proof or reference here.]

Example 2. Here is a PDE version of our previous example. Consider the following

PDE

∂tu =
1

ih
Pu+ au2

where P = h
i
∂x + ig(x) and g(x) is a real valued smooth function on T = R/2πZ. For

the linear problem, we can simply solve it and get the eigenvalues of P .

z = kh+ iĝ, k ∈ Z, ĝ =
1

2π

∫
T
g(x)dx.

Suppose ĝ < 0, then the linear problem is stable. However, for the nonlinear (quadratic)

perturbation, the system will blow up. Let us write the equation as

(∂t + ∂x)u =
1

h
g(x)u+ bu2
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where b = − ia
h

. Let

G(a, b) =

∫ a

b

g(τ)dτ,

the solution is

u(t, x) =
e

1
h
G(x,x−t)u0(x− t)

1− be 1
h
G(x,x−t)u0(x− t)

∫ t
0
e

1
h
G(x−s,x)ds

.

If g(x0) > 0 and bu0 is a bump function at x0, we find a blow up at time t ∼ tδ for

initial data u0 of size e−h
−1+δ

.

Example 3. Here is another example by.

∂tu = (−∂2
x + ∂x +

1

8
)u+ u2.

[Lack of proof or reference here.]

The nonlinear instability is related to the linear stability as shown in the following

theorem by Hager.

Theorem 1. Let

Pδ = hDx + ig(x) + δQ

on T1 where Q is a random operator with

Qu =
∑

|k|,|l|.h−1

αk,l(ω)〈u, ek〉el(x), el(x) = (2π)−1/2e2πilx

and αk,l are i.i.d standard Gaussian random variables. Let Γ b Ω = {z ∈ C :

min Reg < Rez < max Reg}, then for e−h
−1+ε ≤ δ ≤ h4, we have

](σ(Pδ) ∩ Γ) ∼ 1

2πh
|p−1(Γ)|

where p(x, ξ) = ξ + ig(x).

2. Random perturbation of Jordan blocks

In this section we are going to prove the following theorem.

Theorem 2. Let JN : CN → CN be the Jordan block matrix, and Q is a matrix with

entries i.i.d. standard Gaussian random variables. Let e−N
1−ε ≤ δ ≤ N−4, then

1

N

∑
λ∈σ(JN+δQ)

δλ →
1

2π
δS1 .
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2.1. Review of Spectral theory. In this section we breifly review the basics of

spectral theory.

Definition 1. Let A be a bounded operator on a Banach space, then the resolvant set

is

ρ(A) = {z ∈ C : A− z is inertible }

and the spectrum of A is

σ(A) = C \ ρ(A).

Roughly speaking, spectral theory is the study of spectrum of linear operators. An

important observation from linear algebra suggests some operators behave better from

the spectral point of view.

Definition 2. An bounded operator A on a Hilbert space H is called

• a self-adjoint operator if A = A∗,

• a unitary operator if AA∗ = A∗A = I,

• a normal operator if [A,A∗] = AA∗ − A∗A = 0.

For self-adjoint operators, we have the following psectral theorem.

Theorem 3. If A is a self-adjoint operator on a Hilbert space H, then there exists a

projection-valued measure dE(λ) such that

A =

∫
σ(A)

λdE(λ).

This is also true for normal operators, since we can always write any normal operator

A = ReA+ iImA, where

ReA =
1

2
(A+ A∗), ImA =

1

2i
(A− A∗).

Also, self-adjoint operators only have real spectrum. If A is self-adjoint, then by

spectral theorem we obtain

‖(A− z)−1‖ =
1

d(z, σ(A))
.

But this is dramatically not true for non-self-adjoint operators, as the following exam-

ple shows.

Example 4. Let JN ∈MN×N(C) be the Jordan block matrix, then

(JN − z)−1 = −z−1

(
1− JN

z

)−1

= −z−1

N−1∑
k=0

JkNz
−k
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and

‖(JN − z)−1‖ ≥ |z|−N .

To study non-self-adjoint operators, there is a more ’stable’ version of spectrum:

pseudospectrum.

Definition 3. Let A be a bounded operator on a Hilbert space, define the ε-pseudospectrum

of A as

σε(A) =

{
z ∈ C : ‖(A− z)−1‖ > 1

ε

}
∪ σ(A).

We have the following direct properties.

Proposition 4. • σ(A) +D(0, ε) ⊂ σε(A)

• When A is a normal operator, σε(A) = σ(A) +D(0, ε).

Also, we have the following equivalent definitions.

Proposition 5. The following are equivalent.

• (a) z ∈ σε(A);

• (b) There exists u with ‖u‖ = 1 and ‖(A− z)u‖ < ε;

• (c) There exists an operator B with ‖B‖ < 1 such that z ∈ σ(A+ εB).

Proof. Only (b)⇒ (c) is not trivial. But taking

Bv = −(A− z)u

ε
(v, u)u

would work. �

We also have another property of pseudospectrum.

Proposition 6. If U is a bounded component of σε(A), then U ∩ σ(A) is nonempty.

Proof. We recall a function on Ω ⊂ C is called subharmonic if it is upper semi-

continuous and for any h harmonic in K b Ω, u ≤ h on ∂K implies u ≤ h in

K.

By writing

‖(A− z)−1‖ = sup
‖u‖=‖v‖=1

Re〈(A− z)−1u, v〉

as the supremum of a family of harmonic functions, we obtain ‖(A − z)−1‖ is a sub-

harmonic function in z.
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If U ⊂ ρ(A), then ‖(A − z)−1‖ is subharmonic in U . Since ‖(A − z)−1‖ = ε−1 on

∂U , by subharmonicity we have

‖(A− z)−1‖ ≤ 1

ε
on U

This is a contradiction. �

2.1.1. Properties of matrix exponentials. There is a general theorem by Trefethen-

Embree relating matrix exponentials and its spectrum.

Theorem 4.

lim
t→+∞

t−1 log ‖etA‖ = α(a) := max Reσ(A). (2.1)

lim
t→0+

t−1 log ‖etA‖ = ω(a) := max σ(ReA). (2.2)

etα(A) ≤ ‖etA‖ ≤ etω(A), t ≥ 0. (2.3)

Proof. To prove (2.1), we write the Jordan normal form A = V JV −1, then

etA = V etJV −1.

Therefore,

‖etA‖ ≤ ‖V ‖‖V −1‖‖etJ‖

and

t−1 log ‖etA‖ ≤ t−1 log(‖V ‖‖V −1‖) + t−1 log(tKetmax Reσ(A)).

Let t→ +∞, we obtain (2.1).

To prove (2.2), we write

lim
t→0+

t−1 log ‖etA‖ =
d

dt
‖etA‖t=0.

Since

‖etA‖ = ‖etAetA∗‖1/2

= ‖1 + t(A+ A∗) +O(t2)‖1/2

= 1 + tmaxσ(ReA) +O(t2).

Taking the derivative gives (2.2).

To prove (2.3), suppose Av = µv where Reµ = max Reσ(A), then

etAv ≤ etµv

and then

‖etA‖ ≥ etµ.
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On the other hand,

‖etA‖ ≤ ‖etA/M‖M

=

(
1 +

t

M
ω(A) +O

((
t

M

)2
))M

.

Let M →∞, we get

‖etA‖ ≤ etω(A).

�

We conclude this part by a comment that Kreiss matrix theorem gives a surprising

bound for the matrix exponentials.

Theorem 5. Let A ∈MN×N(C) and

K(A) = sup
Rez>0

Re‖(A− z)−1‖,

then

K(A) ≤ sup
t≥0
‖etA‖ ≤ eNK(A).

2.2. Grushin problem. An important method in spectral theory is the following

Schur’s complement formula.

Theorem 6. Suppose(
P R−
R+ R+−

)
=

(
E E+

E− E−+

)−1

: X1 ×X− → X2 ×X+ (2.4)

are bounded operators on Banach spaces, then P is invertible if and only if E−+ is

invertible. Moreover, we have

P−1 = E − E+E
−1
−+E−, E−1

−+ = R+− −R+P
−1R−.

Proof. The proof is direct. If E−+ is invertible, then

PE +R−E− = I, PE+ +R−E−+ = 0,

and then

PE − PE+E
−1
−+E− = I.

Similarly, since

EP + E+R+ = I, E−P + E−+R+ = 0,

we get

EP − E+E
−1
−+E−P = I.
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We conclude that P is invertible and P−1 = E − E+E
−1
−+E−. The proof for the other

case is similar. �

If R+− = 0, we have the following observation.

Proposition 7. If R+− = 0 in(2.4), then R+ and E− are surjective, and R− and E+

are injective.

Proof. This is because we have

R+E+ = I, E−R− = I.

�

We will call the R+− = 0 case a Grushin problem, i.e.(
P R−
R+ 0

)
=

(
E E+

E− E−+

)−1

: X1 ×X− → X2 ×X+ (2.5)

Perturbation of Grushin problems are stable due to the Neumann series argument.

Proposition 8. Suppose (2.5) is true, and suppose A : X1 → X2 satisfies

‖EA‖X1→X1 , ‖AE‖X2→X2 < 1,

then the Grushin problem

PA =

(
P + A R−
R+ 0

)
is still well-posed with inverse (

F F+

F− F−+

)
where

F−+ = E−+ +
∞∑
k=1

(−1)kE−A(EA)k−1E+.

Proof. Let

P = E−1 =

(
P R−
R+ 0

)
then

PA = P
(

1 + E
(
A 0

0 0

))
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and

P−1
A =

(
1 + E

(
A 0

0 0

))−1

P−1

=
∞∑
k=0

(−1)k
(
E
(
A 0

0 0

))k
E

= E +
∞∑
k=1

(−1)k
(

(EA)k 0

E−A(EA)k−1 0

)
E .

�

The Grushin problem is closely related to the Fredholm property. The proof is taken

from [DyZw19, Appendix C].

Definition 9. A bounded linear operator P : X1 → X2 between two Banach spaces is

called a Fredholm operator if the kernel and cokernel of P are both finite dimensional.

The index of a Fredholm operator is defined as

indP = dim kerP − dim cokerP.

Theorem 7. (i) Suppose P : X1 → X2 is a Fredholm operator. Then there exists

finite dimensional spaces X± and operators R− : X− → X2 and R+ : X1 → X+ such

that the Grushin problem (2.5) is well-posed. In particular, the image of P is closed.

(ii) Suppose the Grushin problem (2.5) is well-posed, then P is a Fredholm operator if

and only if E−+ is a Fredholm operator, and

indP = indE−+.

Proof. (i) Let n+ = dim kerP and n− = dim cokerP . Let X± = C±. Suppose kerP is

spanned by x1, · · · , xn+ , by Hahn-Banach theorem there exists x∗j : X1 → R such that

x∗j(xi) = δij. We then define

R+ : X1 → Cn+ , x 7→ (x∗1(x), · · · , x∗n+
(x)).

On the other hand, choose a representative y1, · · · , yn− of cokerP and define

R− : Cn− → X2, (a1, · · · , an−) 7→
n−∑
j=1

ajyj.

We claim the operator (
P R−
R+ 0

)
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is bijective. First, if (
P R−
R+ 0

)(
u

u−

)
= 0,

then since the range of P and R− does are disjoint, we have Pu = R−u− = 0, so

u− = 0 and u ∈ kerP . By R+u = 0 we conclude u = 0. So it is injective. On the other

hand, (R,R−) : X1 ×X− → X2 is surjective by definition. Since modifying u ∈ kerP

does not affect value of Pu, we conclude the whole matix is also surjective.

Finally, PX1 can be viewed as the image of the closed subspace (X1, 0) under the

invertible map (P,R+) (mod kerP ). So the image of P is closed.

(ii) Take u− = 0, we observe that

Pu = v ⇐⇒ u = Ev + E+v+, 0 = E−v + E−+v+. (2.6)

So E− : PX1 → E−+X+ and induces

E]
− : X2/PX1 → X−/E−+X+.

By Proposition 7, E− is surjective, so E]
− is surjective. On the other hand, E−v ∈

E−+X+ will give us v ∈ PX1 by (2.6), so E]
− is also injective. We conclude

dim cokerP = dim cokerE−+.

Now we look at

E+ : kerE−+ → kerP.

It is injective by 7. Moreover, if u ∈ kerP , then by (2.6) we get v+ ∈ kerE−+ such that

E+v+ = u, so E+ is also surjective. We conclude

dim kerP = dim kerE−+.

This finishes the proof of (ii). �

Corollary 10. • The family of Fredholm operators is open and the index map is

locally constant, i.e.

ind : π0(Fred(H1,H2))→ Z.

• If K is a compact operator, then ind (I +K) = 0.

• Fredholm operator has closed image.

2.2.1. Fredholm theory. Here we provide several examples of Fredholm operators.

Example 5. Suppose P : H1 → H2 is a linear map between two finite dimensional

spaces, then P is Fredholm with

indP = dimH1 − dimH2.

Example 6. Let K be a compact operator on H, then I +K is a Fredholm operator.
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• The unit ball in ker(I +K) is compact, so ker(I +K) is finite dimensional.

• For w ∈ ker(I + K)⊥, ‖(I + K)w‖ ≥ C‖w‖. Suppose the opposite, then there

exists ‖wn‖ = 1 with ‖(I+K)wn‖ ≤ 1/n. Suppose Kwn → v, this gives wn → v

and v ∈ ker(I +K), a contradiction.

• im(I +K) is closed.

• coker(I +K) is finite dimensional since

dim coker(I +K) = dim im(I +K)⊥ = dim ker(I +K∗) <∞.

• We hace proved I+K is compact. There are many examples f compact examples

in PDEs, e.g. finite rank operators, H1(M)→ L2(M) compact embedding.

Proposition 11. Suppose K is a compact operator on a infinite dimensional Hilbert

space H, then σ(K) = {λj} ∪ {0} where λj → 0.

Proof. If K is invertible, then H is finite dimensional. So 0 ∈ σ(K). It suffices to

prove the spectrum is isolated outside {0}.
Suppose λ0 ∈ σ(K) \ {0}, then

K − λ0 = −λ0(I − 1

λ0

K)

and

(K − λ)−1 = E(λ)− E+(λ)E−+(λ)−1E−(λ)

if detE−+(λ) is not zero. But this is a meromorphic function, so there is only two

possibilities: either vanish in an isolated set of points, or vanish identically. If it

vanishes identically, then σ(K) is the whole C, contradictory to that K is bounded.

So the only possibility is it is isolated. �

Example 7. P − z : Dx + q(x)− z : H1(S1)→ L2(S1) is a Fredholm operator since

P − z = (I + (q − z + i)(Dx − i)−1)(Dx − i)

is a composition of Fredholm operators.

Corollary 12. An operator P : H1 → H2 is Fredholm if and only if it is invertible

modulo compact operators.

Proof. If P is Fredholm, then by the Grushin problem we get

PE = I −R−E−, EP = I − E+R+,

i.e. P is invertible modulo finite rank operators. On the other hand, if

PE = I +K1, EP = I +K2,

then

im(I +K1) ⊂ imP, kerP ⊂ ker(I +K2),
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which tells us P is Fredholm. �

Remark 1. If P − z : H1 → H2 is Fredholm for all z ∈ C, then σ(P ) is either empty

or the whole C.

We can use Grushin problem to simplify the question. Let us give an example.

Example 8. Let P = JN be the N-dimensional Jordan block matrix. Then the Grushin

problem

(
JN R−
R+ 0

)
=


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

1 0 0 · · · 0 0


is well-posed for

R− =


0

0
...

1

 , R+ =
(
1 0 0 · · · 0

)
.

For JN − z we define

O(z) =


−z 1 0 · · · 0 0

0 −z 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −z 1

1 0 0 · · · 0 −z

 = J̃N+1 − z, J̃N+1 =


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

1 0 0 · · · 0 0

 .

Since J̃N+1 is unitary, J̃N+1 − z is invertible for |z| < 1, and

E−+(z) =
zN

1− zN+1
.

There is a lemma we will use.

Lemma 13. Suppose we have a family of operators

P(z) =

(
P (z) R−(z)

R+(z) R+−(z)

)
=

(
E(z) E+(z)

E−(z) E−+(z)

)−1

: X1 ×X− → X2 ×X+ (2.7)

well-posed on Ω ⊂ C, P(z)−1 = E(z). Suppose moreover P (z) is invertible on ∂Ω, then

tr

∫
∂Ω

P (z)−1dP (z) = tr

∫
∂Ω

E−+(z)−1dE−+(z).
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Proof. When P(z) is holomorphic, there is an easy proof. Since ∂zP(z) = −P(z)∂zE(z)P(z),

we have

tr

∫
∂Ω

P (z)−1dP (z) = tr

∫
∂Ω

(E(z)− E+(z)E−+(z)−1E−(z))dP (z)

= tr

∫
∂Ω

−E+(z)E−+(z)−1E−(z)(P (z)dE(z)P (z) +R−(z)dE−(z)P (z)

+ P (z)dE+(z)R+(z) +R−(z)dE−+(z)R+(z)).

The first three terms vanish because e.g.

E−(z)P (z) + E−+(z)R−(z) = 0

gives

trE−+(z)−1E−(z)P (z) = −trR−(z)

so that E−+(z)−1 is eliminated. By similar methods and

E(z)P (z) + E+(z)R+(z) = I, P (z)E(z) +R−(z)E−(z) = I,

the last term becomes

tr

∫
∂Ω

E−+(z)−1dE−+(z).

Now we prove for the general case. We define a contour deformation by

P̃(z, s) =

(
P (z) cos sR−(z)

cos sR+(z) sin2 sE−+(z)−1 + cos2 sR+−(z)

)
=

(
P (z) 0

cos sR+(z) I

)(
I cos sP (z)−1R−(z)

0 E−+(z)−1

)
, 0 ≤ s ≤ π

2
.

Then

P̃
(
z,
π

2

)
=

(
P (z) 0

0 E−+(z)−1

)
, P̃ (z, 0) = P(z).

By the following crucial algebraic property

trd(P (z)−1dP (z)) = 0

for any family of operators, we obtain

0 = tr

∫
∂Ω×[0,π/2]

d(P̃−1dP̃)

= tr

∫
∂Ω

P̃
(
z,
π

2

)−1

dP̃
(
z,
π

2

)
− tr

∫
∂Ω

P̃(z, 0)−1dP̃(z, 0),

i.e.

tr

∫
∂Ω

P−1dP = tr

∫
∂Ω

(
P (z) 0

0 E−+(z)−1

)−1

d

(
P (z) 0

0 E−+(z)−1

)
.
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The left hand side vanishes since P is invertible, and a simple computation gives

tr

∫
∂Ω

P (z)−1dP (z) = tr

∫
∂Ω

E−+(z)−1dE−+(z).

�

2.3. Review of Probability theory. In the section we review basics of probability

theory.

Definition 14. A probability space is a triple (Ω,M, µ) where Ω is a set, M is a σ-

algebra of Ω, and µ is a measure onM such that µ(Ω) = 1 (we will call it a probability

measure).

Like Tao pointed out in [Ta12, Section 1.1], probability theory are considering

concepts which are preserved under extension. Here an extension of the probabil-

ity space (Ω,M, µ) is another probabillity space (Ω′,M′, µ′) along with a measurable

map π : Ω′ → Ω, such that π∗µ
′ = µ. For example, we define

Definition 15. A random variable X on the probability space (Ω,M, µ) is a measur-

able map from Ω to another measure space (R,R). When (R,R) = (R+,B) (B is the

Borel algebra), we define the expectation to be

EX =

∫
Ω

X(ω)dµ(ω).

The famous Borel-Cantelli lemma is an important tool to prove, e.g., convergence.

Lemma 16. Suppose a sequence En satisfies
∞∑
n=1

P (En) <∞,

then P (lim supEn) = 0, i.e. any element appears in at most finitely many En, almost

surely.

Now let us give several definitions of asymptotic validity of events.

Definition 17. Suppose we have a sequence En ∈M.

• The events En holds almost surely (a.s.) if P (En) = 1

• En holds with overwhelming probability (w.o.p) if P (En) > 1−O(n−∞)

• En holds with high probability (w.h.p) if there exists δ > 0 such that P (En) >

1−O(n−δ)

• En holds asymptotically if P (En)→ 1.

Example 9. (a) If E|Xn| ≤ C, then |Xn| = O(nε) with high probability.

(b) If E|Xn|k ≤ CK for each k ∈ N, then |Xn| = O(nε) with overwhelming probability.
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2.3.1. Independence.

Definition 18. A family of random variables {Xα} is called jointly independent if the

distribution of {Xα} is the product measure of individual Xα’s.

Example 10. Let M = MN×N(C) and M be the Borel algebra, then the following

distribution

dµN =
N∏

i,j=1

1

π
e−|aij |

2

dm(aij)

gives a random matrix with independent elements.

2.3.2. Convergence.

Definition 19. Suppose Xn, X : M → (R, d) are random variables with value in a

σ-compact metric space. Define

• Xn → X almost surely (a.s.) if P (lim sup d(Xn, x) ≤ ε) = 0 for any ε > 0;

• Xn → X in probability if lim inf P (d(Xn, X) ≤ ε) = 1 for any ε > 0;

• Xn → X in distribution if µXn → µX weakly.

Proposition 20. For the three kinds of convergence, we have (a)⇒ (b)⇒ (c).

Proof. If Xn → X a.s., then by Fatou’s lemma

lim inf P (d(Xn, X) ≤ ε) ≥
∫

lim inf 1d(Xn,X)≤ε = 1.

If Xn → X in probability, then for any f ∈ C(R), ε > 0 suppose d(xn, x) < δ gives

|f(xn)− f(x)| < ε.∣∣∣∣∫ fdµXn −
∫
fdµ

∣∣∣∣ =

∣∣∣∣∫ (f(Xn)− f(X))dµ

∣∣∣∣
≤ ε+

∫
d(Xn,X)>δ

2‖f‖∞dµ.

Therefore,

lim sup
n→∞

∣∣∣∣∫ fdµXn −
∫
fdµ

∣∣∣∣ ≤ ε

for any ε > 0, and this gives
∫
fdµXn →

∫
fdµ. �

Remark 2. The space of probability measures can be given the Lévy-Prkhorov metric

d(µ, ν) = inf{α > 0 : µ(A) ≤ ν(A+D(0, α)) + α, ν(A) ≤ µ(A+D(0, α)) + α}

which gives weak convergences.

We also have other metrics, e.g., Wasserstein distance or Kantorovich–Rubinstein

metric.
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Example 11. For a sequence of events En,

• 1En → 0 a.s. if and only if P (En)→ 0;

• 1En → 0 in probabillity if and only if P (∪n>kEk)→ 0.

In probability theory, it is sometimes difficult to prove a.s. convergence directly.

One useful tool is the Borel Cantelli lemma:

Proposition 21. If for any ε > 0 we have∑
n→∞

P (d(Xn, X) ≥ ε) <∞,

then Xn → X a.s.

Proof. By Borel-Cantelli lemma,

P (lim sup{d(Xn, X) ≥ ε}) = 0.

�

2.4. Proof. In this section we finish the proof of Theorem 2. For this purpose we need

a tool called logrithmic potential.

Definition 22. Let P(C) be the set of probability measures satisfying∫
log(1 + |z|2)dµ(z) <∞,

we define the logrithmic potential of µ ∈ P(C to be

Uµ(z) =

∫
log |z − w|dµ(w).

Proposition 23. For ν ∈ P(C), we have

• Uν ∈ L1
loc(m). In particular, Uν(z) > −∞ a.e.

• ∆Uν = 2πν.

Proof. The first statament is simple. For any R > 0, we have∫
|z|<R

|Uν(z)|dm(z) ≤
∫
|w|<2R

(∫
|z|<R

|log |z − w|| dm(z)

)
dν(w) + CR

∫
log(1 + |w|2)dν(w) <∞.

For the second statement, we only need to prove for ν = δ, i.e., for any φ ∈ C∞c (C)

we have ∫
log |z − w|∆φ(z)dm(z) = 2πφ(w).
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This is due to the fundamental solution of the 2-d Laplace equation, which can be

checked as follows.∫
log |z − w|∆φ(z)dm(z) = lim

ε→0

∫
C\D(0,ε)

(log |z − w|∆φ(z)−∆ log |z − w|φ(z))dm(z)

= lim
ε→0

∫
D(0,ε)

(− log |z − w|n∂xφ(z) +
(z − w) · (z − w)

|z − w|3
φ(z))dm(z)

= 2πφ(w).

�

We can recover the probability measure from the logrithmic potential as follows.

Lemma 24. Let νn, ν ∈ P(C) be random measures, and supp νn ⊂ Ω b Ω′ b C. If

for a.e. z ∈ Ω′, Uνn(z)→ Uν(z) almost surely, then

νn → ν a.s.

Proof. The crucial point is to notice Uνn is uniformly bounded in L2,since∫
Ω′
|Uν(z)|dm(z) ≤

∫ ∫
Ω′

(log |z − w|)2 dm(z)dν(w) ≤ C.

The result then follows from the fact a.e. convergence + L2 boundedness implies L1

convergence. Then for any φ ∈ C∞c (Ω′), we have∫
Uνn∆φ→

∫
Uν∆φ,

that is ∫
φdνn →

∫
φdν.

�

Lemma 25. Let Q be i.i.d standard Guassian N ×N matrix, then

P (‖Q‖HS ≥ CN) ≤ exp((log 2− 1

2
C2)N2).

Proof.

P (
∑
|Qij|2 ≥ (CN)2) ≤ E(exp(

1

2
(
∑
|Qij|2 − (CN)2)))

= e−
1
2

(CN)2
∏
i,j

Ee
1
2
|Qij |2

= e−
1
2

(CN)22N
2

= exp((log 2− 1

2
C2)N2).

�
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Corollary 26. • For C � 1, ‖Q‖HS ≤ CN w.o.p.

• For δ ≤ N−2, νN = N−1
∑

λ∈σ(JN+δQ)

δλ, we have supp ν ⊂ D(0, 2) w.o.p.

Define EN = {z ∈ C : d(z, S1) > 1
N
}, then for z /∈ EN , we have

‖Pδ(z)‖ =

∥∥∥∥∥
(
P(z) +

(
δQ 0

0 0

))−1
∥∥∥∥∥

=

∥∥∥∥∥
(
I + P(z)−1

(
δQ 0

0 0

))−1

P(z)−1

∥∥∥∥∥
≤ (1− δ‖P(z)−1‖‖Q‖)−1‖P(z)−1‖
≤ (d(z, S1))−1(1− δd(z, S1)CN)−1

≤ N(1− CδN2)−1, w.o.p.

So ‖Pδ(z)−1‖ ≤ CN for δ � N−2, z /∈ EN , w.o.p. It follows that |Eδ
−+(z)| ≤ CN and

1

N
log |Eδ

−+(z)| . logN

N
,w.o.p.

On the other hand, for z ∈ D(0, 2) \ EN we have

Eδ
−+(z) = E−+(z)− δE−QE+ − δ

∞∑
j=1

E−Q(−δEQ)jE+,

which implies

‖Eδ
−+(z)‖ ≥ ‖E−+(z)− δE−QE+‖ − δ2CN5(1− δCN2)−1.

Moreover,

E−QE+ =

(
1

1− zN+1

)−2 N−1∑
j,k=0

zj+kαjk

∼ NC

(
0,

(1− |z|2N)2

|1− zN+1|4(1− |z|2)2

)
.

Therefore,

P(|E−+(z)− δE−(z)QE+(z)| ≤ t) ≤ P(|Re(E−+(z)− δE−(z)QE+(z))| ≤ t)

≤ P(|Re(δE−(z)QE+(z))| ≤ t)

≤ 1√
π

∫
|x|δ(1−|z|2)−1.t

e−x
2

dx

= O
(
t

δ

)
.
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Let t
δ

= N−2+ε, then

|Eδ
−+(z)| ≥ δN−2+ε −O(δ2N−5) = δ(N−2+ε −O(δN5)).

If we take δ ≤ N−7, then |Eδ
−+(z)| ≥ δN−2+ε with probability 1 − O(N−2+ε). Under

these assumptions we get

1

N
log |Eδ

−+(z)| ≥ −N−ε.

In conclusion, for z /∈ S1, we have

−N−ε ≤ 1

N
log |Eδ

−+(z)| ≤ logN

N

with probability 1−O(N−2+ε). By Borel-Cantelli lemma we get convergence a.s.

Finally, we observe that

σ(J̃N+1 + δQ) = {ωk +O(δ‖Q‖)},

and

1

N

N−1∑
k=0

log |ωk +O(δCN)− z| → 1

2π

∫
log |eiθ − z|dθ.

So

1

N
log | det(JN + δQ− z)| → 1

2π
UδS1 (z), a.s.

which means

1

N

∑
λ∈σ(JN+δQ)

δλ →
1

2π
δS1 , a.s.

3. Random perturbation of differential operators

3.1. Unbounded operators. There is a need to study unbounded operators (of

course) in infinite dimensional spaces as the following example shows.

Example 12. In quantum mechanics, we have the Heisenberg uncertainty principle:

[A,B] = I.

This is impossible for bounded operators by

[An, B] = nAn−1

and

n‖An−1‖ ≤ 2‖A‖‖B‖‖An−1‖.
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Example 13. Let us look at the operator

P = p(x)∂x + q(x)

acting on S1 = R/2πZ, where p(x), q(x) ∈ C∞(S1;C) and p(x) 6= 0. Then the equation

(P − z)u = f has solution

u = ezα(x)−β(x)

∫ x

0

e−zα(y)−β(y)f(y)dy + cezα(x)−β(x)

if zα(2π)− β(2π) /∈ 2πiZ, where

α(x) =

∫ x

0

1

p(y)
dy, β(x) =

∫ x

0

q(y)

p(y)
dy.

When zα(2π) − β(2π) ∈ 2πiZ, ezα(x)−β(x) is an eigenfunction of P with eigenvalue z,

so

σ(P ) = {z ∈ C : zα(2π)− β(2π) ∈ 2πiZ}.

When α(2π) 6= 0, the spectrum is given by α(2π)−1(β(2π) + 2πiZ). When α(2π) = 0,

the spectrum is empty when β(2π) /∈ 2πiZ and is C when β(2π) ∈ 2πiZ.

We now give the definition of an unbounded operator.

Definition 27. P : H1 → H2 is called an unbounded operator if there exists a linear

subspace D(P ) ⊂ H1 and a linear map P : D(P )→ H2. P is called densely defined if

D(P ) is dense in H1.

We will be particlarly interested in closed operators defined as follows.

Definition 28. The graph of an unbounded operator P : H1 → H2 is

G(P ) = {(x, Px) : x ∈ D(P )} ⊂ H1 ×H2.

P is closed if the graph is closed. P is closurable if G(P ) is the graph of an operator

P̄ .

The closed graph theorem says a closed operator P with D(P ) = H1 is bounded.

Now we can also define the adjoint of an operator.

Theorem 8. Suppose P : H1 → H2 is a densely defined operator. Then tehre exists

P ∗ : H2 → H1 with

D(P ∗) = {v ∈ H2 : ∀u ∈ D(P ), u 7→ 〈Pu, v〉 is bounded },

and

〈Pu, v〉 = 〈u, P ∗v〉, u ∈ D(P ), v ∈ D(P ∗).
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Example 14. If P = Dx + q on S1 with D(P ) = H1(S1) has adjoint

P ∗ = Dx + q̄, D(P ∗) = H1(S1).

Definition 29. Let A,B be two unbounded operators, say A ⊂ B if G(A) ⊂ G(B).

Proposition 30. Let A be densely defined, then A ⊂ B ⇒ B∗ ⊂ A∗.

Definition 31. An unbounded operator A is symmetric if A ⊂ A∗. A is called self-

adjoint if A = A∗.

It is important to notice an unbounded operator may have different self-adjoint

extensions.

Example 15. Let P = Dx with D(P ) = C∞0 ((0, 1)), then

D(P ∗) = H1((0, 1)), D(P ∗∗) = P̄ = H1
0 ((0, 1))

are the maximal and minimal closed extensions. Then

D(Pθ) = {u ∈ C∞([0, 1]) : u(1) = u(0)e2πiθ}

gives an infinite family of self-adjoint extensions. Those self-adjoint extensions are not

unitarily equivalent since

σ(Pθ) = 2π(θ + Z).

We have the following theorem by von Neumann.

Theorem 9. Let T be closed, densely defined operator on a Hilbert space H. Then the

operator

T ∗T : D(T ∗T )→ H

given by

D(T ∗T ) = {u : u ∈ D(T ), Tu ∈ D(T ∗)}

is self-adjoint.

Definition 32. Let T be closed, densly defined, T ∗ densly defined, we say T is normal

if TT ∗ = T ∗T .

Proof.

Lemma 33. Let

J =

(
0 I

−I 0

)
: H×H → H×H.

Let P be a densely defined operator on H, then

J(G(P ))⊥ = G(P ∗).
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Proof of the Lemma.

J(G(P ))⊥ = {(u1, u2) : ∀u ∈ D(P ), 〈(u1, u2), (−Pu, u)〉 = 0}

gives 〈u2, u〉 = 〈u1, Pu〉, which means u1 ∈ D(P ∗) and u2 = P ∗u1. So (u1, u2) ∈ G(P ∗).

The other direction is obvious. �

Corollary 34. If P is densely defined and closed, then

H×H = J(G(P ))⊕G(P ∗).

Now we decompose

(0, u) = (v − Tv′, T ∗v + v′), v ∈ D(T ∗), v′ ∈ D(T ).

Then v = Tv′, which means v′ ∈ D(T ∗T ). Let S = I + T ∗T , then u = Sv′. So S has

an inverse. Since S−1 is a bounded symmetric operator, it is self-adjoint.

Now we claim D(T ∗T ) = ImS is dense:

(ImS)⊥ = {u : 〈S−1v, u〉 = 0}
= {u : 〈v, S−1u〉 = 0}
= {u : S−1u = 0}
= 0.

Finally we need to prove D(S∗) = D(S):

D(S∗) = {v ∈ H : ∀u ∈ D(S) : |〈Su, v〉| . ‖u‖}

we can find v0 such that Sv0 = S∗v. Moreover,

〈Su, v0〉 = 〈Su, v〉

gives v0 = v, so D(S∗) = D(S). �

Theorem 10. Suppose P : H → H is a densely defined self-adjoint operator, then

∅ 6= σ(P ) ⊂ R, ‖(P − z)−1‖ ≤ 1

|Im z|
.

Proof.

|〈(P − z)u, u〉| ≥ |Im z|‖u‖2, |〈(P − z)∗u, u〉| ≥ |Im z|‖u‖2

implies

‖(P − z)−1‖ ≤ 1

|Im z|
.

If σ(P ) = ∅, then

(P−1 − z)−1 = z(z−1 − P )−1P−1
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can only be singular at z = 0, so P−1 is a bounded operator with σ(P−1) = {0}, a

contradiction. �

3.2. Hager’s theorem. Hager proves this theorem in her Ph.D. thesis.

Theorem 11. Suppose Pδ = hDx+ig(x)+δQ, where g(x) ∈ C∞(S1,R) having exactly

two critical points and

Q =
∑

j,k.h−1

αjk(ω)ej(x)ek(x),

where ej(x) = 1√
2π
eijx and αj,k are i.i.d. standard Gaussian distributions, and e−

C
h ≤

δ ≤ hK for some large K, then for p(x, ξ) = x + iξ, ε = h log
(

1
δ

)
and Ω b p(C), we

have

]σ(Pδ) ∩ Ω =
1

2πh
Area p−1(Ω) +O(

√
ε

h
)

wtih probability ≥ 1−O( δ2√
εh2

).

3.3. Semiclassical analysis. To prove Hager’s theorem, we need a little bit of semi-

classical analysis, which, roughly speaking, studies the following quantum-classical

correspondence

p(x, ξ;h) =
∑
k≤m

ak(x;h)ξk 7→ P =
∑
k≤m

ak(x;h)(hDx)
k.

We assume ak has an expansion

ak(x;h) ∼
∑

ajk(x)hj

and define the principal symbol to be

σ(P ) =
∑
k≤m

a0
k(x)ξk.

Let us look at an example.

Example 16. Let

P =

(
JN R−
R+ 0

)
=


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0


be the Jordan block matrix, then

Pe1 = 0, [P, P ∗]e1 = e1

and

P ∗eN = 0, [P, P ∗]eN = −eN .
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This example suggests we should look for the solution of Pu = 0 at the place where

p(x, ξ) = 0 and {Rep, Imp} < 0. This can also be seen from

‖Pu‖2 = ‖RePu‖2 + ‖ImPu‖2 + i〈[ReP, ImP ]u, u〉.

(Oppositely, this will give unique continuation results.)

Let us apply this intuition to our case.

Lemma 35. For Hager’s operator P and for any z ∈ Ω as in Hager’s theorem, there

exists u ∈ C∞(S1) supported near x+(z) with ‖u‖L2 = 1 such that

(P − z)u = O(e−
1
Ch ).

Here x+(z) satisfies g(x) = Imz and g′(x) < 0.

Proof. We can write

(P − z)u = (hDx + ig(x)− z)u = eiφ/h(hDx)(e
−iφ/hu)

where

φ+(x) =

∫ x

x+(z)

(z − ig(y))dy.

Now since φ+(x+(z)) = Imφ′+(x+(z)) = 0, we have

Imφ+(x) ∼ −g′(x+(z))(x− x+(z))2

near x+(z). Now we put

ũ(x) = χ(x− x+(z))eiφ+(x)/h,

then

(P − z)ũ = e−φ+(x)/hh

i
χ′(x− x+(z)) = O(e−

1
Ch )

since Imφ+(x) > c > 0 on suppχ′(x).

Finally we need to estimate the L2-norm of ũ, which follows form the following

stationary phase lemma

Lemma 36. Suppose a ∈ C∞0 (R), φ ∈ C∞(R) such that

• φ(x) > 0 for x 6= 0

• φ(0) = φ′(0) = 0

• ψ′′(0) > 0

then ∫
a(x)e−ψ(x)/hdx ∼

√
2πh

ψ′′(0)
(a0 + b1h+ b2h

2 + · · · ).
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Proof. With out loss of generality we can assume supp a ⊂ (−δ, δ). Also write φ(x) =
1
2
f(x)2 and f ′(0) = ψ′′(0)

1
2 . Then

I =

∫
a(x(y))x′(y)e−

y2

2hdy

=
1

2π

∫
b̂(ξ)h

1
2

√
2πehξ

2/2dξ

=

√
h

2π

∑ hk

k!

∫
b̂(ξ)

(
−ξ

2

2

)k
dξ

=

√
h

2π
(2πb(0) + b1h+ · · · )

=

√
2πh

ψ′′(0)
(a0 + b1h+ · · · ).

�

�

Definition 37. The approximate solution constructed in 35 is called WKB approxi-

mate solution.

Now let Q = (P − z)∗(P − z) and Q̃ = (P − z)(P − z)∗ be self-adjoint operators on

L2(S1), where D(Q) = D(Q̃) = H2(S1) and

(Q− i)−1, (Q̃− i)−1 : L2(S1)→ H2(S1)

are isomorphisms. We conclude that σ(Q), σ(Q̃) are discrete, and tends to ∞. More-

over, Q and Q̃ are Fredholm oprators of index 0, so 1 ≥ dim kerQ = dim ker(P − z) =

dim ker(P − z)∗ = dim kerQ̃. Therefore, Q ahd Q̃ have the same spectrum at 0. They

of course have same eigenvalues outside 0, so

σ(Q) = σ(Q̃) = {t20, t21, · · · },

where 0 ≤ t0 < t1 < · · · .

Proposition 38.

t0 = O(e−
1
Ch ).

Proof. We know QeWKB = O(e−
1
Ch ), so

(.0, σ(Q)) = ‖Q−1‖−1 = O(e−
1
Ch ).

�
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Proposition 39.

t21 − t20 ≥
h

C
.

Proof. Step 1 There exists some eigenfunction e0 of the eigenvalue t20 such that

‖e0 − eWKB‖ = O(e−
1
Ch ).

Suppose we have

(P − z)e0 = v,

then ‖v‖2 = 〈Qv, v〉 = t20 = O(e−
1
Ch ), and

e0(x) = c0(z, h)h−
1
4a(h)e

i
h
φ+(x) +

1

h

∫ x

x+(z)

e
i
h

(φ+(x)−φ+(y))v(y)dy

= c0(z, h)h−
1
4a(h)e

i
h
φ+(x) +Kv.

Since |e ih (φ+(x)−φ+(y))| ∼ e−
|x−y|
h away from x±(z) and |e ih (φ+(x)−φ+(y))| & e−

|x−y|2
h

near x±(z), we have∫
|K(x, y)|dx,

∫
|K(x, y)|dy . 1

h

∫ 1

0

e−
t2

h dt ∼ h−
1
2 .

By Schur’s lemma we know ‖k‖ = O(h−
1
2 ). Therefore Kv = O(e−

1
Ch ) and

e0 = eWKB +O(e−
1
Ch ).

Step 2 We need to prove for u ⊥ e0,

〈Qu, , u〉 ≥ h

C
‖u‖2.

Recall

u = c0h
− 1

4a(z, h)e
i
h
φ+(x) +Kv,

and

0 = 〈u, e0〉

= c0〈h−
1
4a(z, h)e

i
h
φ+(x), eWKB〉+O(e−

1
Ch )‖u‖+O(h−

1
2 )‖v‖.

This implies

|c0| = O(e−
1
Ch )‖u‖+O(h−

1
2 )‖v‖

and then

‖u‖ = O(h−
1
2 )‖v‖.
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Thus

‖(P − z)u‖ ≥
√
h

C
‖u‖

and

〈Qu, u〉 ≥ h

C
‖u‖2,

�

There is a conjecture by Zelditch.

Conjecture 1. Let φ ∈ R[x1, x2, · · · , xn], if for Ω ⊂ Rn and any a ∈ C∞0 (Ω) we have∫
a(x)eiφ(x)/hdx = O(h∞),

then ∇φ 6= 0 in Ω.

Now suppose (P − z)ej = αjfj, then (P ∗ − z̄)fj = βjej. Moreover, we have

αjβj = t2j αj = βj,

so without loss of generality we can assume αj = βj = tj.

Now we can construct a Grushin problem.

Theorem 12. Suppose R+ : H1(S1)→ C and R− : C→ L2(S1) are defined as follows

R+u = 〈u, e0〉, R−u− = u−f0,

then

P(z) =

(
P − z R−
R+ 0

)
: H1

h(S1)× C→ L2(S1)× C

is invertible with

P(z)−1 = E(z) :=

(
E E+

E− E−+

)
where

‖E‖L2→H1
h

= O(
1√
h

), ‖E±‖ = O(1), ‖E−+‖ = O(e−
1
Ch ).

Here

‖u‖2
H1
h

= ‖u‖2
L2 + ‖hDxu‖2

L2 .

Moreover, we have the following explicit formula.

E+v+ = v+e0, E−v = 〈v, f0〉.
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Proof. The proof is simple. For any (v, v+) ∈ L2×C, we want to find (u, u−) ∈ H1
h×C

such that {
(P − z)u+R−u− = v,

R+u = v+.

Suppose v =
∑
vjfj, u =

∑
ujej, then

u0 = v+, u = v+e0 +
∑
j≥1

vj
tj
ej, u− = v0 − tjv+.

This tells us P(z) is invertible, and

E+v+ = v+e0, E−v = v0 = 〈v, f0〉.

The bounds follows from the spectral estimates. �

Remark 3. The operator Q(z) = (P − z)∗(P − z) is not holomorphic, so the Grushin

problem is also not holomorphic. To overcome this difficulty, we need the following

technique.

Proposition 40. Let f+ = (∂z̄R+)E+ and f− = E−∂z̄R−, then

∂z̄E−+(z) + f(z)E−+(z) = 0.

Proof. This follows from the formula

∂z̄E(z) = −E(z)∂z̄P(z)E(z).

�

To compute f(z), we need to use the approximate solution eWKB. So we need the

following lemma.

Lemma 41.

e0 = eWKB +O(e−
1
Ch )

holds with all derivatives ∂z, ∂z̄.

Proof. Let Π(z) : L2(S1)→ Ce0 be the orthogonal projection, so that e0 = α(z)Π(z)eWKB

with α(z) = 1 +O(e−
1
Ch ). We claim

‖∂αz ∂
β
z̄ Π(z)‖L2→L2 = O(h−Nα,β). (3.1)

This follows form the projection formula

Π(z) =
1

2πi

∫
γ

(w −Q(z))−1dw

and the spectral gap tells us

‖(w −Q(z))−1‖L2 = O(h−1).
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We claim we actually have

‖(w −Q(z))−1‖L2→H1
h

= O(h−1).

Recall Q = (hDx)
2 − 2(Rez)hDx + a(x) for some real smooth function a(x), we get

〈Qu, u〉 = ‖hDxu‖2 − 2Rez〈hDxu, u〉+ 〈au, u〉

≥ 1

2
‖hDxu‖2 − C‖u‖2.

Thus,

|〈(Q− w)u, u〉|+ ‖u‖2 ≥ 1

C
‖hDxu‖2.

This justifies

‖(w −Q(z))−1‖L2→H1
h

= O(h−1).

Now

∂z̄(w −Q(z))−1 = (w −Q)−1∂z̄Q(w −Q)−1

= (w −Q)−1(−hDx + ∂z̄a)(w −Q)−1

and

‖∂z̄(w −Q(z))−1‖ ≤ ‖(w −Q)−1‖‖(−hDx + ∂z̄a)(w −Q)−1‖ = O(h−2).

We can proceed similarly to justify (3.1).

Now our lemma follows easily: First ∂αz ∂
β
z̄ eWKB is of tempered growth, then by our

estimate of ∂αz ∂
β
z̄ Π(z), e0 is also of tempered growth. Then since e0 − eWKB is small,

we get ∂αz ∂
β
z̄ (e0 − eWKB) = O(e−

1
Ch ) be interpolation

|f ′(0)| ≤ Cε(‖f‖
1
2

L∞(−ε,ε)‖f
′′‖

1
2

L∞(−ε,ε) + ‖f‖L∞(−ε,ε)).

�

Lemma 42.

Re∆F = 4Re∂zf =
2

h

(
1

1
i
{p, p̄}(ρ+)

− 1
1
i
{p, p̄}(ρ−)

)
+O(1).

Proof. Recall f+ = (e0, ∂ze0) = (eWKB, ∂zeWKB)+O(e−
1
Ch ). A direct calculation shows

that

(eWKB, ∂zeWKB) = − i
h
∂zφ+(x+(z), z) +O(1)

=
i

h
ξ+(z)∂z̄x+(z) +O(1).

So

Re∂zf+ = Re
i

2h
∂z̄x+(z) +O(1).
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A similar computation for f− proves the lemma. �

Corollary 43.

Re∆Fdy ∧ dx =
1

h
(dξ+ ∧ dx+ − dξ− ∧ dx−).

3.3.1. The Grushin problem. To prove Hager’s theorem, we set up the following Grushin

problem.

Pδ(z) =

(
P − z + δQ R−

R+ 0

)
.

The following lemma is similar to the one we proved before.

Lemma 44.

‖Q‖HS ≤
C

h

with probability ≥ 1−O(e−
1

Ch2 ).

Now we know ‖P(z)‖ = O(h−1/2), so for ‖δQ‖ �
√
h we have Pδ(z) is invertible.

A direct calculation shows that

Eδ = E +O
(
δ

h2

)
Eδ

+ = E+ +O
(
δ

h
3
2

)
Eδ
− = E− +O

(
δ

h
3
2

)
Eδ
−+ = E−+ − δE−QE+ +O

(
δ2

h
5
2

)
.

Lemma 45.

|êWKB(k)| = O
((

h

|k|

)∞)
.

Proof. The crucail thing is

eWKB ≈ h−
1
4
e−

x2

h .

A direct calculation shows that

∂nxeWKB(x) . h−
1
4

((x
h

)n
+ h−

n
2

)
e−

x2

h



NOTES ON RANDOM PERTURBATION OF NON-SELF-ADJOINT OPERATORS 31

and ∫
eWKB(x)e−ikxdx =

1

kn

∫
Dn
xeWKB(x)e−ikxdx

. h−
1
4k−nh−

n
2

. h−
1
4h

n
4 |k|−

n
4 .

�

Corollary 46.

E−QE+ ∼ NC(0, 1−O(h∞)).

Proof. This is because

E−QE+ = 〈f0, Qe0〉

=
∑

|k|,|j|≤C
h

αjk(ω)f̂0(j)ê0(k)

∼ NC(0,
∑

|k|,|j|≤C
h

|ê0(k)|2|f̂0(j)|2).

�

Now we have

Proposition 47. For 0 < t� 1, 0 < δ � h
3
2 , δt� e−

1
Ch , t� δ

h
5
2

, we have

• ”∀z ∈ Ω, |Eδ
−+(z)| ≤ e−

1
Ch + Cδ

h
”, with probability ≥ 1−O(e−

1
Ch ).

• ∀z ∈ Ω, ”|Eδ
−+(z)| ≥ tδ

C
, with probability ≥ 1−O(t2)−O(e−

1
Ch )”.

Proof. This follows from

Eδ
−+ = E−+ − δE−QE+ +O

(
δ2

h
5
2

)
.

�

3.3.2. Counting zeros of holomorphic functions. Now we can estimate the zeros of

Eδ
−+(z) by the following lemma due to Hager-Sjöstrand.

Theorem 13. Let Ω b Ω̃ b C, ∂Ω is smooth. ϕ ∈ C2(Ω̃), z 7→ u(z, h) is a holomor-

phic function in Ω̃, 0 < ε� 1. Suppose

• |u(z, h)| ≤ exp( 1
h
(ϕ(z) + ε)), for z ∈ nbhd(∂Ω).

• z1, z2, · · · , zn ∈ ∂Ω, zj = zj(h), N ∼ 1√
ε
, and ∂Ω ⊂ ∪jD(Zj,

√
ε), such that

|u(zj, h)| ≥ exp(
1

h
(ϕ(z)− ε)).
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Then

]u−1(0) ∩ Ω =
1

2πh

∫
Ω

∆ϕdm(z) +O(

√
ε

h
).

This theorem follow from the local version of Hadamard’s factorization theorem.

Theorem 14. Suppose f(z) is a holomorphic function in |z| ≤ 2R and |f(z)| ≤ M

for |z| ≤ 2R. Also, |f(0)| ≥M−1. Then there exists C > 0 idependent of R such that

f(z) = eiθeg(z)
N∏
j=1

(z − zj), |z| ≤ R,

where zj are zeros of f in |z| ≤ 3R
2

, and

N ≤ C logM, |g(z)| ≤ C logM(1 + log〈R〉).

Proof. We will use three steps to prove this theorem.

Step 1: Jensen’s formula.

log |f(0)|+
∫ r

0

N(t)

t
dt =

1

2π

∫ 2π

0

log |f(reiθ)|dθ.

Suppose f(z) does not no zeros in |z| ≤ r, then it follows directly from the fact

that Re log f(z) is a harmonic function.

If f(z) has no zero on the circle |z| = r, then we can apply the formula to

f̃(z) =
N∏
j=1

r2 − zz̄j
r(z − zj)

f(z)

and get the desired formula. Finally, the case when there are zeros on the circle

|z| = r follows by continuity.

The estiamte for the number of zeros N ≤ C logM follows directly from

Jensen’s formula. But to find a bound for g(z), we need a lower bound for the

polynomial
N∏
j=1

(z − zj), which is obtained by the following Cartan’s lemma.

Step 2: Cartan’s lemma.

Lemma 48. Let µ be a finite Radon measure on C and consider the logrithmic

potential of µ:

u(z) =

∫
C

log |z − ζ|dµ(ζ).

Then for any 0 < η < 1, there exists a set of discs Cj of radii rj, s.t.

–
∑
j

rj < 5η

– For z /∈ ∪Cj, |u(z)| ≥ µ(C) log η
e
.

For polynomials, the constant 5 can be replaced by 2.
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Proof. We only prove for the polynomial case, since this is the case we will be

using. Let Z = {zj} with multiplicity, and set

C = {D(z, λ
η

N
)} : ]Z ∩D(z, λ

η

N
) = λ}.

If we take discs near the boundary of the convex hall of Z, it is easy to see C
is not empty. Now let λ1 = max{λ : D(z, λ η

N
) ∈ C}. Then we observe

λ > λ1 ⇒ ]Z ∩D(z, λ
η

N
) < λ.

Now let C1 be a disc of radius λ η
N

such that ]Z ∩ C1 = λ1 (we call the points

of rank λ1), and let Z1 = Z \C1. For this new Z1, we can repeat the procedure

and get smaller and smaller discs C2, C3, · · · , Ck, with λ1 ≥ λ2 ≥ · · · ≥ λk,∑
λi = N . Now let C̃j be the concentric discs with Cj with twice radii. We

have

z /∈
p⋃
1

C̃j ⇒ D(z, λ
η

N
)
⋂ ⋃

λ≤λj

Cj = ∅

⇒ rank of points in D(z, λ
η

N
) < λ

⇒ ]Z ∩D(z, λ
η

N
) ≤ λ− 1.

Suppose

|z − z1| ≤ |z − z2| ≤ · · · ≤ |z − zN |,

then

]Z ∩D(z, λ
η

N
) ≤ λ− 1⇒ |z − zj| ≥

jη

N
.

Thus ∏
j

|z − zj| ≥
∏
j

jη

N
≥
( η
N

)N
N ! ≥

(η
e

)N
.

�

Step 3: Borel-Carathéodory inequality.

For a holomorphic function g(z) in |z| ≤ R, and |z| = r < R, we have the

following Borel-Carathéodory inequality.

|g(z)| ≤ 2r

R− r
max
|z|≤R

Reg(z) +
R + r

R− r
|g(0)|.

To prove the lemma, we can first assume g(0) = 0 without loss of generality,

then let

u(z) =
g(z)

2 max
|z|≤R

Reg(z)− g(z)
,
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we have

u(0) = 0 and |u(z)|2 =
|g(z)|2

(2 max
|z|≤R

Reg(z)− Reg(z))2 + (Img(z))2
≤ 1.

By Schwarz lemma we have

|u(z)| ≤ |z|
R

and then

|g(z)| ≤ |z|
R

∣∣∣∣2 max
|z|≤R

Reg(z)− g(z)

∣∣∣∣⇒ |g(z)| ≤ 2r

R− r
max
|z|≤R

Reg(z).

The final step to to apply the Borel-Carathéodory inequality to g(z) given by

the decomposition

f(z) = eg(z)
∏
j

(z − zj)

Since

Reg(z) ≤ log |f(z)| − log |
∏
j

(z − zj)|

≤ C logM − C log
(η
e

)N
≤ C(1 + log

(η
e

)
) logM

and

Reg(0) ≥ log |f(0)| −
N∑
j=1

log |zj|

≥ −C(1 + log〈R〉) logM.

Proof of Theorem 13. Let iϕj(z) = ϕ(zj) + 2∂zϕ(zj)(z − zj), then

ϕ(z) = Re (iϕj(z)) +O((z − zj)2)

and

∂zϕj(z) =
2

i
∂zϕ(z) +O((z − zj)).

Let

vj(z) = u(z)e−iϕj(z)/h,

then

e−
Cε
h ≤ |vj(z)| ≤ e

Cε
h
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in the disc D(zj, C
√
ε). Let f(z) = vj(zj +

√
ε(z− zj)), by our previous lemma we get

f(z) = eiθeg(z)
N∏
j=1

(z − zj)

for N . ε
h

and |g(z)| . ε
h
. Now the number of zeros of u(z) in Ω is

1

2πi

∫
∂Ω

u′(z)

u(z)
dz =

1

2πi

∑
j

∫
γj

(
i

h
ϕ′j(z) +

v′j(z)

vj(z)

)
dz

=
1

2πh

∫
∂Ω

2

i
∂zϕ(z)dz +O(

√
ε

h
)

=
1

2πh

∫
Ω

∆ϕ(z)dm(z) +O(

√
ε

h
).

�

�

Lemma 49. Let u(z) = eF
δ(z)Eδ

−+(z), then the zeros of u(z) coincides with eigenvalues

of P δ with multiplicity.

Proof. By Lemma 13, we have

lim
γ→z0

tr

∫
γ

P δ(z)−1dP δ(z) = lim
γ→z0

∫
γ

Eδ
−+(z)−1dEδ

−+(z)

= lim
γ→z0

∫
γ

(eF
δ(z)Eδ

−+(z))−1d(eF
δ(z)Eδ

−+(z)).

�

Proof of Hager’s theorem. Use Theorem 13 for ϕ(z) = hF (z) and ε = h log(1
δ
), then

]u−1(0) ∩ Ω =
1

2πh

∫
Ω

∆ϕdm(z) +O(

√
ε

h
)

=
1

2πh

∫
Ω

(dξ+ ∧ dx+ − dξ− ∧ dx−) +O(

√
ε

h
)

=
1

2πh

∫
p−1(Ω)

dξ ∧ dx+O(

√
ε

h
).

�

4. Higher oder generalizations

4.0.1. Examples. Consider the operator

P = ∂x(sinx)∂x + ∂x.
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The spectrum is discrete on the imaginary axis.

4.1. Basic constructions. Let

P (x, hDx, h) =
∑
h≤m

bk(x, h)(hDx)
k,

we want to use WKB method to find an approximate eigenvalue.

Lemma 50.

p]q =
∑
l

1

l!
∂lξp(x, ξ, h)(hDx)

lq(x, ξ, h).

Proof.

p]q(x, ξ, h) = PQ1

= e−
−ixξ
h Pe

ixξ
h e−

ixξ
h Qe

ixξ
h 1

= P (x, ξ + hDx, h)q(x, ξ, h)

=
∑
l

1

l!
∂lξp(x, ξ, h)(hDx)

lq(x, ξ, h).

�

Now consider

Pϕ = e−
iϕ
h Pei

ϕ(x)
h ,

if

p(x, ϕ′(x)) = 0 ∂ξp(x, ϕ
′(x)) 6= 0,

then

Pϕ = Q0 +Q1h+Q2h
2 + · · · ,

where

Q0 = p(x, ϕ′(x)) = 0, Q1 = ∂ξp(x, ϕ
′(x))Dx + Pϕ,1(x, 0).

Thus, we can inductively solve

Pϕa = 0

for a ∼ a0 + a1h + a2h
2 + · · · . By Borel’s lemma we get a (local) WKB solution

Pϕa = O(h∞)C∞ .

Under strong conditions, we can prove a global WKB method.

Theorem 15. Suppose p(x0, ξ0) = 0, 1
i
{p, p̄}(x0, ξ0) > 0, then we can find an approx-

imate solution u ∈ C∞ with ‖u‖L2 = 1 and

‖Pu‖L2 = O(h∞).
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Proof. We consider the function ϕ such that

p(x, ϕ′(x)) = 0, ϕ′(x0) = ξ0

(such function exists by implicit function theorem), then

p′x(x0, ξ0) + p′ξ(x0, ξ0)ϕ′′(x0) = 0

and

Imϕ′′(x0) = −Im
p′x(x0, ξ0)

p′ξ(x0, ξ0)

= −Im
p′x(x0, ξ0)p̄′ξ(x0, ξ0)

|p′ξ(x0, ξ0)|2

=
1

2|p′ξ|2
1

i
{p, p̄}(x0, ξ0) > 0.

Now we can define

f(x, h) = h−
1
4a(x, h)ei

ϕ
h

near x0, and we alraedy proved that

Pf = rei
ϕ
h , r = O(h∞).

By stationary phase we know

‖f‖2
L2 =

|a(0)|
√

2π√
2Imϕ′′(x0)

+ o(h).

Moreover, we have ∫
δ<|x−x0|< 1

C

|f |2 = O(e−
1
Ch )

since ei
ϕ
h is localized (exponentially) near x0. Let

u =
χf

‖χf‖
,

we have ‖u‖L2 = 1 and

Pu =
χPf + [P, χ]f

‖χf‖
= O(h∞).

�
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Definition 51. Let

Σ = p(S1 × R) ⊂ C

Σ+ =

{
z : ∃(x, ξ) such that p(x, ξ) = z,

1

i
{p, p̄} > 0

}
Σ− =

{
z : ∃(x, ξ) such that p(x, ξ) = z,

1

i
{p, p̄} < 0

}
.

The global WKB method proves that for any K b Σ+ we have

K ⊂ σH∞(P ).

Here we also recall two trivial bounds for approximate solutions.

Proposition 52. • For z ∈ p(S1×R), there exists u ∈ C∞, ‖u‖L2 = 1 such that

‖(P − z)u‖ = O(h
1
2 ).

• If p is real-valued, z = p(x0, ξ0) and dp(x0, ξ0) 6= 0, then there exists u ∈ C∞0
with ‖u‖L2 = 1 and ‖(P − z)u‖L2 = O(h).

Proof. • For the first one, let us try

u(x) = e
i(x−x0)ξ0

h χ(h−γ(x− x0))h−
γ
2 ,

then

Pu = e
i(x−x0)ξ0

h P (x, ξ0 + hDx, h)χ(h−γ(x− x0))h−
γ
2

= e
i(x−x0)ξ0

h h−
γ
2 p(x, ξ0, h)χ(h−γ(x− x0))

= e
i(x−x0)ξ0

h h−
γ
2

(
p(x, ξ0, h)χ(h−γ(x− x0)) +

∑
k>0

hk

k!
∂kξ p(x, ξ0, h)Dk

x

(
χ

(
x− x0

hγ

)))
= O(h

γ
2 )1|x−x0|≤hγ +O(h1− 3γ

2 )1|x−x0|≤hγ .

Taking γ = 1
2

we get

‖Pu‖L2 = O(h
γ
2 + h1− γ

2 ) = O(h
1
2 ).

• To prove the second one, recall in local WKB method we get

P (e
iϕ
h a) = e

iϕ
h r, r = O(h∞).

The crucial point is that when p is real-valued then potential ϕ is also real-

valued. So let

ũ = χe
iϕ
h a

we have

Pũ = χe
iϕ
h r + [P, χ]e

iϕ
h a = O(h∞) +O(h).



NOTES ON RANDOM PERTURBATION OF NON-SELF-ADJOINT OPERATORS 39

�

We offer an easy case of Morse-Sard theorem.

Theorem 16. Let f : R2 → R2 be a C1 map, then the singular values of f has zero

(Lebesgue) measure.

Proof. Suppose K b R2 is a set of singular values, then there is a covering

K =
⋃

Ij

with disjoint cubes Ij of diameter ε > 0 such that∑
m(Ij) ≤ C.

Moreover, if zj ∈ K ∩ Ij, then

f(z) = f(zj) + ∂f(zj)(z − zj) + o(z − zj)

and

m(f(Ij)) = o(ε2) = o(1)m(Ij).

Then

m(f(K)) ≤
∑

m(f(Ij)) = o(1)
∑

m(Ij) = o(1).

�

Another important step in Hager-Sjöstrand theorem is that Σ+ = Σ−, we provide a

statement that holds in general.

Theorem 17. Suppose p(x, ξ) =
∑
k≤m

ξkbk(x) and there exists z0 such that

|p(x, ξ)− z0| ≥
1

C
〈ξ〉m,

(i.e. p is elliptic of order m), then Σ+ = Σ−. Moreover, if Ω ⊂ C is simply-connected,

and {p, p̄} 6= 0 on p−1(Ω), then for any z ∈ Ω,

p−1(z) = {ρ+
1 , · · · , ρ+

N , ρ
−
1 , · · · , ρ−N},

where

ρ±j = (x±j (z), ξ±j (z)), ±1

i
{p, p̄}(ρ±j ) > 0.

Using all the previous ingradients (WKB method and topological properties for gen-

eral elliptic differential operators), we can proceed as before and get Hager-Sjöstrand’s

theorem.
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Theorem 18. Let p(x, ξ) =
∑
k≤m

ξkbk(x) and P =
∑
k≤m

bk(x)(hD)k. Assume there exists

z0 ∈ C such that

|p(x, ξ)− z0| ≥
1

C
〈ξ〉m,

Ω b p(S1 × R) simply connected, ∂Ω ∈ C∞, and {p, p̄}(x, ξ) 6= 0 for any (x, ξ) ∈ Ω.

Let

Q =
∑
i,j≤C

h

αij(w)ei ⊗ e∗j

with αij i.i.d standard Gaussian distributions, then

]σ(P + δQ) ∩ Ω =
vol(p−1(Ω))

2πh
+ o(h−1)

with probability ≥ 1− o(hη) for some η > 0.

There is an even finer description by Vogel-Nonnenmacher in the case p(x, ξ) =

p(x,−ξ) which even hold for pertubation by potentials

Q =
∑
j≤ C

h2

vjej.

Lh,z0 → LG(z0), h→ 0

where

Lh,z0 =
∑

z∈σ(P+δQ)

δ z−z0√
h

is the distribution for the spectrum and LG(z0) is the distribution of zeros of Gaussian

analytic functions defined as follows.

Let

gσ(w) =
∑
n

αn
σ
n
2ωn√
n!

, αn ∼ NC(0, 1)

be a Gaussian analytic function, we define its distribution of zeros as Lgσ =
∑

z∈g−1
σ (0)

δz.

The function G(z0) is defined as det(gijz0) where

gijz0 = gσijz0
, σijz0 =

∑
±

i

{p, p̄}(ρ±j (z0))
.
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5. WKB methods for analytic PDEs

If we have a PDE with analytic coefficients, we can find some special phenomenon.

The material comes from [Sj19, Chapter 7].

Example 17. Let

Pt = (hDx)
2 + (1− t+ ti) sinx : H2(S1)→ L2(S1),

we want to study the spectrum of Pt. It turns out that there exists a holomorphic family

E 7→ I(E, h) = I0(E) + h2I2(E) + · · ·

such that SpecPt are given by solutions to I(E, h) = 2πh(n+ 1
2
) (the Bohr-Sommerfeld

quantization condition). Moreover, I0(E) is given by

I0(E) =

∫
γ

ξdx

where γ ∈ H1(p−1(E)) is the generator of the homology.

To study the general case, we need to first look at the equation

(h∂x − A(x))u = 0, u(x0) = u0, A(x) ∈ C∞(I,M2×2).

Proposition 53. There exists a unique solution operator E(x, y) such that

u(x) = E(x, x0)u0

solves the equation. Moreover, we have an estimate

‖E(x, y)‖ ≤

 exp
(∫ x

y
µ+(A(t))dt

h

)
, x ≥ y,

exp
(∫ x

y
µ−(A(t))dt

h

)
, x ≤ y.

where

µ+(A(x)) = sup
‖v‖=1

Re 〈A(x)v, v〉, µ−(A(x)) = inf
‖v‖=1

Re 〈A(x)v, v〉.

• Now let us assume A(x) has two distinct eigenvalues λ1(x) and λ2(x).

• Reλ1(x) ≥ Reλ2(x).

Example 18. Consider the Schrödinger operator P = (hDx)
2 + V (x), if V (x) 6= 0,

then we can consider the following equation.(
h∂x −

(
0 1

V (x) 0

))
u(x) = 0.

The matrix A(x) =

(
0 1

V (x) 0

)
has eigenvalues λ1(x) = −

√
V (x) and λ2(x) =√

V (x).
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Proposition 54. There exists a smooth family of operators

U(x, h) ∼ U0(x) + hU1(x) + · · ·

such that

U−1(h∂x − A(x))U = h∂x − Λ(x, h)

where

Λ(x, h) = Λ0(x) + hΛ1(x) + · · ·

is diagonal.

Corollary 55. Let ϕ′j(z) = λj(z). There exists

a ∼ a0(z) + ha1(z) + · · ·

with a0 6= 0, A(z)a0 = λja0 such that

(h∂z − A(z))(a(z, h)eϕj(z)/h) = r(z, h)eϕj(z)/h, r(z, h) = O(h∞).

Theorem 19. If Re ( ˙γλ1) ≥ Re ( ˙γλ2). Let ujWKB(z, h) = eϕj(z)/haj(z, h), suppose u

solves (h∂z − A(z))u = 0 in Ω, and

• u(γ(a)) = uWKB(γ(a)), j = 1,

• or u(γ(b)) = uWKB(γ(b)), j = 2,

then

|u− uWKB| = O(h∞)eϕj(z)/h on γ([a, b]).

If Re ( ˙γλ1) > Re ( ˙γλ2) on γ, then

|u− uWKB| = O(h∞)eϕj(z)/h on

{
nbhd(γ((a, b])), j = 1,

nbhd(γ([a, b))), j = 2.

Definition 56. Suppose we have a phase function ϕ(z), the Stokes line is defined as

Reϕ = 0 and the anti-Stokes lines is defined as Imϕ = 0.

Example 19. A standard example is given by V (z) = z, ϕ′(z) =
√
z and ϕ(z) = 2

3
z

3
2 .

We have the relations

(ϕ′j)
1/2 = iνj,k(ϕ′k)

1/2

with

νj,k = −νk,j, νi,j + νj,k + νk,i = 1.
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