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By Hung-Hsi Wu

Many sets of state and national mathematics stan-
dards have come and gone in the past two decades. 
The Common Core State Mathematics Standards 
(CCSMS), which were released in June of 2010,* 

have been adopted by almost all states and will be phased in 
across the nation in 2014. Will this be another forgettable stan-
dards document like the overwhelming majority of the others? 

Perhaps. But unlike the others, it will be a travesty if this one is 
forgotten. The main difference between these standards and most 
of the others is that the CCSMS are mathematically very sound 
overall. They could serve—at long last—as the foundation for 
creating proper school mathematics textbooks and dramatically 
better teacher preparation.

Before the CCSMS came along, America long resisted the idea 
of commonality of standards and curriculum—but it did not 
resist such commonality in actual classrooms. Despite some 
politicians’ rhetoric extolling the virtues of local control, there 
has been a de facto national mathematics curriculum for 
decades: the curriculum defined by the school mathematics 
textbooks. There are several widely used textbooks, but mathe-
matically they are very much alike. Let’s call this de facto math-
ematics curriculum Textbook School Mathematics (TSM).1 In 
TSM, precise definitions usually are not given and logical rea-
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soning is hardly ever provided (except in high school geometry 
texts) because the publishers mistakenly believe that intuitive 
arguments and analogies suffice. Thus, fractions are simultane-
ously (and incomprehensibly) parts of a whole, a division, and 
a ratio; decimals are taught independently from fractions by 
appealing to the analogy with whole numbers; negative num-
bers are taught by using patterns and metaphors; the central 
idea of beginning algebra is the introduction of the concept of a 
variable (which implies, wrongly, that something is going to 
vary), when it ought to be becoming fluent in using symbols so 
as to do generalized arithmetic; solving equations is explained 
by the use of a balance to weigh variables on the weighing plat-
forms; etc.

Worse, with TSM in the background, the prevailing 
dogma in mathematics education is that the main pur-
pose of a set of standards is either to pick and choose from 
a collection of tried-and-true topics (from TSM, of course) 
and organize the selected items judiciously, or to vary the 
pedagogical approaches to these topics. For example, 
when California’s Number Sense Standards ask that, in 
grade 5, “Students perform calculations and solve prob-
lems involving addition, subtraction, and simple multi-
plication and division of fractions and decimals,” it is 
understood that all of the classrooms will do these arith-
metic operations on fractions in accordance with TSM. 
From this perspective, the main point of this standard is 
that these calculations with fractions are taught in the fifth 
grade. Indeed, the very purpose of mathematics standards 
(prior to the CCSMS) seems to be to establish in which 
grade topics are to be taught. Often, standards are then 
judged by how early topics are introduced; thus, getting 
addition and subtraction of fractions done in the fifth 
grade is taken as a good sign. By the same ridiculous 
token, if a set of standards asks that the multiplication 
table be memorized at the beginning of the third grade or 
that Algebra I be taught in the eighth grade, then it is con-
sidered to be rigorous.

The CCSMS challenge this dogma. Importantly, the 
CCSMS do not engage in the senseless game of accel-
eration—to teach every topic as early as possible—even 
though refusing to do so has been a source of conster-
nation in some quarters. For example, the CCSMS do 
not complete all the topics of Algebra I in grade 8 
because much of the time in that grade is devoted to the geom-
etry that is needed for understanding the algebra of linear 
equations.2 But the real contribution of the CCSMS lies in their 
insistence on righting the many wrongs in TSM. As opposed to 
the standards of years past, the CCSMS are aware of the chasm 
between what TSM is and what school mathematics ought to 
be. They are unique in their realization that the flaws in the 
logical development of most topics in TSM—not how early or 
how late each topic is placed in the standards—are the real 
impediment to any improvement in mathematics education. 
Garbage in, garbage out, as the saying goes. If we want students 
to learn mathematics, we have to teach it to them. Neither the 
previous mathematics standards nor the TSM on which they 
rely did that, but the CCSMS do.

Beyond the frequent absence of reasoning, the disconnected-

ness in the presentation of mathematical topics in TSM turns a 
coherent subject into nothing more than a bag of tricks. Students 
are made to feel that what is learned one year can be forgotten in 
the next. By contrast, the CCSMS succeed in most instances in 
maintaining continuity from grade to grade. The most striking 
example may well be the seamless transition from eighth-grade 
geometry to high school geometry. In fact, the CCSMS succeed in 
integrating geometry into the overall fabric of school mathemat-
ics. The mathematics in the CCSMS finally begins to look like 
mathematics.

Unfortunately, textbook developers have yet to accept that the 
CCSMS are radically different from their predecessors. Most (and 

possibly all) textbook developers are only slightly revising their 
texts before declaring them aligned with the CCSMS. Do not be 
fooled. TSM is much too vague and has far too many errors to be 
aligned with the CCSMS. For example, when the National Math-
ematics Advisory Panel reviewed two widely used algebra text-
books to determine their “error density” (which was defined as 
the number of errors divided by the number of pages in the book), 
it found that one had an error density of 50 percent and the other 
was only slightly better at 41 percent.3 We must start from scratch. 
Since teacher education in mathematics has long been based on 
TSM, both pre-service and in-service training must also be cre-
ated anew.

Let us give two examples of the kind of change the CCSMS  
(if properly implemented) will bring to the mathematics 
classroom.
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Example 1: Adding Fractions
How should students add 1⁄8 + 5⁄6? The way it is done in TSM is to 
not say anything about what it means to add fractions, but instead 
to prescribe the procedure of finding the least common multiple 
of the denominators 8 and 6, which is 24, and note that 24 = 3 × 8 
and 24 = 4 × 6. Students are then instructed to add as follows:

1  
+

  5  
= 

 (3 × 1)  + 
 (4 × 5)  

=
  23–       –        ——––        ——––         — .

8        6       (3 × 8)       (4 × 6)       24

By all accounts, this procedure makes no sense to fifth-graders, 
but many seem to memorize it and it remains firmly entrenched 
in TSM. Adding is supposed to “combine things.” The concept of 
“combining” is so basic that it is always taught at the beginning of 
arithmetic. Yet, can one detect any “combining” in the TSM 

approach to 1⁄8 + 5⁄6? Children who have made the effort to master 
the addition of whole numbers naturally expect that the addition 
of fractions will be more of the same, i.e., “combining things.” But 
when “adding fractions” is presented as having nothing to do with 
“adding whole numbers,” the fear that they cannot articulate is 
undoubtedly that mathematics is impossible to understand. 
Indeed, there are reports that much math phobia begins with 
adding fractions.

In the CCSMS, adding fractions is spread through three grades, 
progressing from the simple to the complex, giving students time 
for complete mastery.* Briefly, in grade 3, students learn to think 
of a fraction as a point on the number line that is “so many copies” 
of its corresponding unit fraction. For example, 5⁄6 is 5 copies of 
the unit fraction 1⁄6 (and 1⁄6 is 1 copy). When we represent a fraction 
as a point on the number line, we place a unit fraction such as 1⁄6 
on the division point to the right of 0 when the unit segment from 
0 to 1 is divided into 6 equal segments. It is natural to identify such 
a point with the segment between the point itself and 0. Thus, as 
shown below, 1⁄6 is identified with the red segment between 0 and 
1⁄6, 5⁄6 is identified with the segment between 0 and 5⁄6, etc. Then, 
the statement that “5⁄6 is 5 copies of 1⁄6” acquires an obvious visual 
meaning: the segment from 0 to 5⁄6 is 5 copies of the segment from 
0 to 1⁄6.

0 −16 5−6 1

▶ ▶ ▶ ▶▶

In third grade, students also learn about simple cases of equiv-
alent fractions: 2⁄5 is the same point as—i.e., is equal to— 
(3 × 2)/(3 × 5), or 6⁄15. This is because 2⁄5 is the second division point 
to the right of 0 when the unit segment from 0 to 1 is divided  
into 5 equal segments. When each of these 5 segments is divided 
into 3 equal segments, it creates a division of the unit segment into  
3 × 5 = 15 equal segments. It is then obvious that the point 2⁄5 is 
exactly the same point as 6⁄15, which is (3 × 2)/(3 × 5), as shown 
below.

0 −5 4− 13−2−

— 6 9

1

1

1

5 5 5

15 —15 —15 —153

In grade 4, the CCSMS call for students to learn about adding 
two fractions as joining two parts of the same whole. 
Think of the two fractions as segments, put them 
together end-to-end on the same number line, and the 
sum is by definition the length of the joined segment. 
For fractions with the same denominator, adding these 
fractions yields a fraction whose numerator is the sum 
of the respective numerators, as we can see clearly from 
an example. Let’s show that 2⁄3 + 5⁄3 = (2 + 5)/3. On the 
number line below, 1⁄3 is the red segment.

0 21−23 −53 −73

Thus, 2∕3 is 2 copies of the red segment and 5∕3 is 5 copies of the 
red segment, so “combining” 2∕3 and 5∕3 yields (2+5) copies of the 
red segment, which is 7∕3. Therefore, adding fractions is “combin-
ing things” in this case.†

In grade 4, students also go beyond the simple cases to learn 
about equivalent fractions in general. Then in the fifth grade of 
the CCSMS, students handle the sum of any two fractions. Of 
course, it is still obtained by joining parts: putting two segments 
together so that the sum is the total length. This they are ready for 
because, by use of equivalent fractions, any two fractions may be 
regarded as two fractions with the same denominator. For exam-
ple, 1∕8 and 5∕6 are equal to (6 × 1)/(6 × 8) and (8 × 5)/(8 × 6), which 
now have the same denominator, 48. So these fifth-graders can 
easily address our original question—How should students add 
1∕8 + 5∕6?—in a mathematically sound manner. With their strong 
foundation from the third and fourth grades of the CCSMS, they 
know that this addition problem is the same as asking how long 
the following combined segment is.

?

−18 −56

1  
+

  5  
= 

 (6 × 1)  + 
 (8 × 5)  

=
  [(6 × 1) + (8 × 5)]  

= 
 46So,   –       –        ——––        ——––         ——–——————                                         —     .

8        6       48           48                     48             48

Unfortunately, textbook developers 
have yet to accept that the Common 
Core State Mathematics Standards 
are radically different from their 
predecessors.

*For an extended discussion of how to teach fractions in grades 3–7 in accordance 
with the CCSMS, please see my guide “Teaching Fractions According to the Common 
Core Standards,” available at http://math.berkeley.edu/~wu/CCSS-Fractions.pdf.

†For an extended discussion of how to approach these two examples from the point of 
view of the number line, one may consult parts 2 and 3 of my new textbook for 
teachers, Understanding Numbers in Elementary School Mathematics, published by 
the American Mathematical Society. (See the box on pages 12–13.)
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This is the same answer as before because, by equivalent fractions, 
46∕48 = 23∕24. Therefore, students get to see that adding fractions is 
“combining things.” Incidentally, there has been no mention of 
the least common multiple of 8 and 6, and this is as it should be. 
(My pointing out that 46∕48 = 23∕24 should not be interpreted as 
affirming the common practice of insisting that every fraction be 
reduced to the simplest form. There is no mathematical justifica-
tion for this practice; I did it merely to show that we got the same 
answer either way.)

I hope this example begins to clarify the vast differences 
between TSM and the CCSMS. Adding fractions is a foun-
dational topic: TSM gives students (and teachers) a gim-
mick; the CCSMS require that students actually learn 
mathematics.

Example 2: Multiplying 
Negative Numbers
Why is (-2)(-3) = 2 × 3? This is quite possibly the most fre-
quently asked question in K–12 mathematics: why is nega-
tive times negative positive? The answer, according to 
TSM, can be given in terms of patterns. For the specific 
case of (-2)(-3), we observe that the values of 4(-3), 3(-3), 
2(-3), 1(-3), and 0(-3) are as follows:

4(-3) = (-3) + (-3) + (-3) + (-3) = -12
3(-3) = (-3) + (-3) + (-3) = -9
2(-3) = (-3) + (-3) = -6
1(-3) = -3
0(-3) = 0.

There is an unmistakable pattern: the answer on each line 
is obtained by adding 3 to the answer from the line above. 
Thus, starting with the last line, 0 = 3 + (-3), -3 = 3 + (-6),  
-6 = 3 + (-9), -9 = 3 + (-12), and of course the pattern per-
sists if we also take into account 5(-3), 6(-3), etc. But if we 
now continue the sequence of multiplications of 4(-3), 
3(-3), 2(-3), 1(-3), and 0(-3), then the next couple of items 
in line will be

(-1)(-3) = ?
(-2)(-3) = ?

Encouraged by the pattern we just observed, we are con-
fident that the number (-1)(-3) should be one that is 
obtained from the number 0(-3) (which is 0) by adding 3: 
(-1)(-3) = 3 + 0 = 3. Similarly, (-2)(-3) should be one obtained from 
(-1)(-3) by adding 3: (-2)(-3) = 3 + 3 = 2 × 3.

Is this a good explanation? No. There are two problems. First, 
if instead of dealing with the product of integers, we consider a 
product such as (-5∕11)(-4∕3), then a little thought would reveal that 
this reasoning by patterns breaks down completely. Second, we 
must convince ourselves that the pattern should persist all the way 
to (-1)(-3), (-2)(-3), (-3)(-3), etc. In greater detail, this pattern asks 
students to believe that

(-1)(-3) = 3 + 0(-3),
(-2)(-3) = 3 + (-1)(-3),
(-3)(-3) = 3 + (-2)(-3), etc.

Of these, the critical one is the first: (-1)(-3) = 3. If we know that, 
then, with or without a pattern, we will have the remaining equali-

ties for the following reason. The distributive law, which is a state-
ment about how multiplication behaves with respect to addition, 
says if x, y, and z are any three numbers, we always have [y + z] x 
= yx + zx. Thus, for example, [2 + (-1∕3)](-4) = 2(-4) + (-1∕3)(-4). The 
fact that all numbers positive or negative obey the distributive law 
is a fundamental assumption in mathematics. Now if y = z = (-1) 
and x = (-3), then we have [(-1) + (-1)](-3) = (-1)(-3) + (-1)(-3). 
Making use of this fact and assuming (-1)(-3) = 3, we now get:

(-2)(-3) = [(-1) + (-1)](-3) = (-1)(-3) + (-1)(-3) = 3 + 3 = 2 × 3.

For exactly the same reason, we would get (-3)(-3) = 3 × 3, (-4)(-3) 
= 4 × 3, etc., provided we assume (-1)(-3) = 3. But how do we know 
(-1)(-3) = 3? In TSM, there is no answer. This is the nature of TSM: 
it often half-satisfies students’ appetite for knowledge—but given 
the precise nature of mathematics, this is almost the same as no 
knowledge at all.

Let us now look at what the CCSMS say on this matter. In the 
broader context of understanding negative numbers, it is impor-
tant that students have a clear conception of what a negative 
number is. It should be a specific object rather than some inef-
fable philosophical idea. For this, the CCSMS go back to the num-
ber line just as in the case of fractions.* One standard in the 
CCSMS for grade 6 has this to say:

*This is a small example of the longitudinal coherence of mathematics: the fact that 
fractions and rational numbers are united by the number line.
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Recognize opposite signs of numbers as indicating locations 
on opposite sides of 0 on the number line; recognize that the 
opposite of the opposite of a number is the number itself, e.g., 
-(-3) = 3, and that 0 is its own opposite.

Negative numbers are points on the number line to the left of 0. 
More precisely, for each fraction that is a point to the right of 0, its 
negative is the point to the left of 0 that is equidistant from 0. We 
can think of a fraction such as 3.4 (which is 34∕10, by definition) and 
its negative -3.4 as mirror images of each other with respect to 0, 
as shown below.

0 1-1-3.4 3.4

Jumping ahead to multiplying negative numbers, the CCSMS 
for grade 7 say the following:

Understand that multiplication is extended from fractions to 
rational numbers by requiring that operations continue to 
satisfy the properties of operations, particularly the distribu-
tive property, leading to products such as (-1)(-1) = 1 and the 
rules for multiplying signed numbers. Interpret products of 
rational numbers by describing real-world contexts.

This standard needs amplification, which I will provide in the 
process of giving a correct explanation of (-2)(-3) = 2 × 3. This 
explanation will be valid also for the general case of (-m)(-n) = mn 
for any integers m and n. When m and n are fractions (which is 
what this standard calls for), a slightly more sophisticated expla-
nation will be necessary (and thus should be provided by any 
decent textbook), but we will settle for the simpler case here.

The key step in the correct explanation lies in the proof of  
(-1)(-1) = 1 (as asserted in the grade 7 standard). Pictorially, what 
this equality says is that multiplying (-1) by (-1) flips (-1) to its 
mirror image 1 on the right side of 0. A more expansive treatment 
of this topic in accordance with the CCSMS would show that, more 
generally, multiplying any number by (-1) flips it to its mirror 
image on the other side of 0.

Now, how to find out if (-1)(-1) is the number 1 or not? For 
students in grades 6 or 7, the most desirable way to do so is  
by performing a direct computation that starts with (-1)(-1) and 
ends with 1. However, since there is no known way of doing this, 
we’ll take an indirect approach by anticipating the right answer 
(which is 1, of course) and asking: is (-1)(-1) + (-1) equal to 0?  
If so, then we will see that (-1)(-1) is equal to 1 and we are done. 
The key difference between (-1)(-1) and the longer expression  

(-1)(-1) + (-1) is that we can actually do a computation on the 
latter! We appeal to the distributive law in the second equal sign 
below.

(-1)(-1) + (-1) = (-1)(-1) + 1 (-1) = [(-1) + 1] (-1) = 0 (-1) = 0

Notice that it is only when we get to [(-1)+1] (-1) that we can begin 
to “compute” in the usual sense of arithmetic: (-1) + 1 is equal to 
0, and 0(-1) is also 0. In any case, we have finally demonstrated—
using familiar arithmetic—that (-1)(-1) = 1.

Now we can prove (-2)(-3) = 2 × 3. We first show (-1)(-3) = 3. 
We have (-1)(-3) = (-1)[(-1) + (-1) + (-1)] which, by the distributive 
law again, is equal to (-1)(-1) + (-1)(-1) + (-1)(-1) = 1 + 1 + 1 = 3. 
Thus (-1)(-3) = 3. Having taken care of our earlier concern as 
to why (-1)(-3) is equal to 3, we can now easily complete  

our reasoning about (-2)(-3) = 2 × 3, namely: 
(-2)(-3) = [(-1) + (-1)](-3) = (-1)(-3) + (-1)(-3), by the 
distributive law (yet again!). And, by what we just 
proved, the latter is 3 + 3 = 2 × 3. So (-2)(-3) = 2 × 3 
after all.

If we reflect on the reasoning above, we see clearly 
that the critical step was the application of the dis-
tributive law; without that it would have been impos-
sible to conclude that (-1)(-1) + (-1) = 0, that  
(-1)(-3) = 3, or that (-2)(-3) = 2 × 3. This is exactly the 
main emphasis in the preceding standard from the 
CCSMS. The proof of (-m)(-n) = mn, for whole num-
bers m and n, is entirely similar. Thus, a teacher 

guided by the CCSMS, unlike a teacher guided by TSM, would 
provide a correct and complete mathematical explanation of why 
a negative times a negative equals a positive. There is no need to 
look for patterns that do not hold true and no excuse for providing 
a half-satisfactory explanation.

It takes no real knowledge of mathematics to see from these 
two examples that the leap from TSM to the mathematical 
demands of the CCSMS is a gigantic one. With more space, I 
could provide many more examples: most of the time, the 

distance between TSM and the CCSMS is vast. We cannot expect 
the nation’s teachers to implement the CCSMS on their own. So 
far, textbook developers are not rising to the challenge of the 
CCSMS. Our only hope, therefore, lies in providing professional 
development to help our teachers acquire the mathematical 
knowledge necessary to see the flaws in TSM.

“Start Selling What They Need”
For in-service teachers, professional development is hardly 
synonymous with learning content knowledge. Far too often, 
“professional development” is filled with games, fun new 
manipulatives, the latest pedagogical strategies, and classroom 
projects that supposedly make mathematics easy. The more 
serious kind of professional development, which some small 
percentage of teachers are lucky enough to participate in, 
addresses topics such as children’s mathematical thinking, 
appropriate use of technology, teacher-student communica-
tion, and refined teaching practices. While these are important 
issues for teaching, they are not sufficient for transitioning 
from TSM to the CCSMS. Right now, professional development 
that replaces TSM with correct, coherent, precise, and logical 

Textbook School Math often  
half-satisfies students’ appetite for 
knowledge—but given the precise 
nature of mathematics, this is almost 
the same as no knowledge at all.
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K–12 mathematics is urgently needed.
A natural reaction to the last point would be disbelief: don’t 

colleges and universities teach future teachers the mathematics 
they need for teaching? Some may, but the vast majority do not 
(if they did, teachers would be continuously complaining about 
the errors in their students’ textbooks, and our international rank-
ing on mathematics assessments would be much higher). 

In courses for future high school math teachers, colleges and 
universities usually teach university-level mathematics. The idea 
is that the “Intellectual Trickle-Down Theory” 
should work: learn advanced mathematics 
and you would automatically be knowledge-
able about school mathematics. But it doesn’t 
work, not in theory and not in practice. What 
colleges and universities should do is erase 
the damage done by TSM and revamp future 
high school teachers’ knowledge of the alge-
bra, geometry, trigonometry, etc., that they 
will be teaching. 

In courses for future elementary teachers, 
who have to master a whole range of subjects, colleges and uni-
versities often teach pedagogy-focused “math methods” that 
merely embellish TSM.* These courses are usually taught by 
mathematics education professors, not mathematicians (who 
avoid teaching such courses because they wrongly see elementary 
mathematics as trivial); so it may well be that in most of these 
math methods courses no one—not even the professor—is aware 
of the flaws in TSM.

Perhaps we can better expose the absurdity of the way we pre-
pare mathematics teachers if we consider the analogous situation 
of producing good high school French teachers: should we require 
them to learn Latin in college but not French? After all, Latin is 
the mother language of French and is linguistically more complex 
than French. Surely mastering a more complex language would 
enhance teachers’ understanding of the French they already know 
from their school days. Is teaching future French teachers Latin 
any different from teaching future geometry teachers university-

level mathematics? I don’t think it is. In the same way, if we want 
to produce good elementary French teachers, wouldn’t we ensure 
that they are fluent and literate in French before they begin 
courses on methods for teaching French? We would—and we 
should expect no less of our higher education institutions’ 
approach to preparing elementary math teachers.

The failure of institutions of higher learning to take seriously 
their obligation to properly prepare mathematics teachers is a 
main reason why TSM has become entrenched in K–12.† The fail-

The Fundamental Principles of Mathematics

I believe there are five interrelated, 
fundamental principles of mathematics. 
They are routinely violated in school 
textbooks and in the math education 
literature, so teachers have to be aware of 
them to teach well.

1. Every concept is precisely defined, and 
definitions furnish the basis for logical 
deductions. At the moment, the 
neglect of definitions in school 
mathematics has reached the point at 
which many teachers no longer know 
the difference between a definition 
and a theorem. The general percep-
tion among the hundreds of teachers I 
have worked with is that a definition is 
“one more thing to memorize.” Many 

bread-and-butter concepts of K–12 
mathematics are not correctly defined 
or, if defined, are not put to use as 
integral parts of reasoning. These 
include number, rational number (in 
middle school), decimal (as a fraction 
in upper elementary school), ordering 
of fractions, product of fractions, 
division of fractions, length-area-
volume (for different grade levels), 
slope of a line, half-plane of a line, 
equation, graph of an equation, 
inequality between functions, rational 
exponents of a positive number, 
polygon, congruence, similarity, 
parabola, inverse function, and 
polynomial.

2. Mathematical statements are precise. 
At any moment, it is clear what is 
known and what is not known. There 
are too many places in school math-
ematics in which textbooks and other 

education materials fudge the 
boundary between what is true and 
what is not. Often a heuristic argu-
ment is conflated with correct logical 
reasoning. For example, the identity 
√a√b = √ab for positive numbers a and 
b is often explained by assigning a few 
specific values to a and b and then 
checking for these values with a 
calculator. Such an approach is a poor 
substitute for mathematics because it 
leaves open the possibility that there 
are other values for a and b for which 
the identity is not true.

3. Every assertion can be backed by 
logical reasoning. Reasoning is the 
lifeblood of mathematics and the 
platform that launches problem 
solving. For example, the rules of 
place value are logical consequences 
of the way we choose to count. By 
choosing to use 10 symbols (i.e., 0 to 9), 

This sidebar is adapted with permission from “The 
Mis-Education of Mathematics Teachers” by Hung-Hsi 
Wu, which was published in the March 2011 issue of 
the Notices of the American Mathematical Society 
(www.ams.org). 

Right now, professional development 
that replaces Textbook School Math with 
correct, coherent, precise, and logical 
K–12 mathematics is urgently needed.

*Future teachers certainly do need to learn effective pedagogy, but they also must 
learn the content they will teach. This article is about building relevant and sound 
mathematics content knowledge into teacher preparation; it is not about taking 
pedagogical studies away from teacher preparation.

†This is not the only reason. The long-standing separation between educators and 
mathematicians is the other one.
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ure occurs on two fronts: content knowledge and pedagogy. My 
main concern is with content knowledge, as I believe that master-
ing the mathematics is the hardest part of becoming a good math 
teacher, but I appreciate that others are focused on pedagogy. For 
example, an article in the last issue of American Educator by 
Deborah Loewenberg Ball and Francesca M. Forzani addresses 
the inadequacy of teachers’ pedagogical preparation across all 
subjects.4 I encourage readers who are interested in improving 
mathematics pedagogy to read their article. However, because 
Ball and Forzani are talking about teacher preparation in general, 
not just in mathematics, I would like to call attention to the fol-
lowing passage,5 which may be misinterpreted in the context of 
mathematics teachers:

“High-leverage content” comprises those texts, topics, ideas, 
and skills in each school subject area that are essential for a 
beginning teacher to know well. High-leverage content is 
foundational to the ideas and skills of the K–12 curricula in 
this country, is taught in some form or another across most 
published textbooks and curricula, and appears frequently. 

In addition, high-leverage content is fundamental to stu-
dents’ learning and often causes difficulty if not taught 
well. It also is often known only superficially by prospec-
tive teachers, or is entirely new to them.

To me, the key to correctly applying this to mathe-
matics education is to focus on their statement that 

“High-leverage content … is taught in some form 
or another across most published textbooks.” 

Having worked with Ball, I 
believe she is well 

aware of the flaws in students’ math textbooks. TSM does touch 
on all the important mathematics in some form or another, but 
almost never in a correct form. So while I would agree that high-
leverage topics can be found in today’s most widely used math 
textbooks, I would not agree that high-leverage content can be 
found in them.

That, of course, brings me back to my main concern. Because 
of the teacher preparation programs’ failure to teach content 
knowledge relevant to K–12 classrooms, the vast majority of pre-
service teachers do not acquire a correct understanding of K–12 
mathematics while in college. Because the flawed TSM they 
learned as K–12 students is not exposed, much less corrected, 
they unwittingly inflict TSM on their own students when they 
become teachers. So it comes to pass that TSM is recycled in 
K–12 from generation to generation. Today, this vicious cycle is 
so well ingrained that many current and future mathematics 
educators also are victimized by TSM, and their vision of K–12 
mathematics is impaired. They have been led to equate TSM 
with “mathematics,” so their educational commentaries on the 
school mathematics curriculum, by their implicit or explicit 
reference to TSM, become an unwitting affirmation of TSM. And 
so TSM lives on.

As a mathematician surveying this catastrophic educa-
tion mess, I have to admit that, when all is said and 
done, the mathematics community has to take the bulk 
of the blame. We think school mathematics is too 

trivial,6 and we think the politics of education is a bottomless pit 
not worthy of our attention. So we take the easy way out by ignor-
ing all the goings-on in the schools and simply declare that if we 
teach high school teachers good mathematics, the rest is up to 
them. In other words, we hide behind the Intellectual Trickle-

we are forced to use 
no more than one 

position (place) to be 
able to count to large 

numbers.‡ Given the too 
frequent absence of reasoning 

in school mathematics, how can we 
ask students to solve problems if 
teachers have not been prepared to 
engage students in logical reasoning 
on a consistent basis?

4. Mathematics is coherent; it is a 
tapestry in which all the concepts and 
skills are logically interwoven to form 
a single piece. The professional 
development of math teachers 

usually emphasizes either 
procedures (in days of yore) 

or intuition (in modern 
times), but not the coherent 

structure of mathematics. This 
may be the one aspect of mathemat-
ics that most teachers (and, dare I 
say, also math education professors) 
find most elusive. For instance, the 
lack of awareness of the coherence 
of the number systems in K–12 
(whole numbers, integers, fractions, 
rational numbers, real numbers, and 
complex numbers) may account for 
teaching fractions as “different 
from” whole numbers such that the 
learning of fractions becomes almost 
divorced from the learning of whole 
numbers. Likewise, the resistance 
that some math educators (and 
therefore teachers) have to explicitly 
teaching children the standard 
algorithms may arise from not 
knowing the coherent structure that 
underlies these algorithms: the 
essence of all four standard algo-

rithms is the reduction of any whole 
number computation to the compu-
tation of single-digit numbers.

5. Mathematics is goal oriented, and 
every concept or skill has a purpose. 
Teachers who recognize the purpose-
fulness of mathematics gain an extra 
tool to make their lessons more 
compelling. For example, when 
students see the technique of complet-
ing the square merely as a trick to get 
the quadratic formula, rather than as 
the central idea underlying the study 
of quadratic functions, their under-
standing of the technique is superfi-
cial. Mathematics is a collection of 
interconnecting chains in which each 
concept or skill appears as a link in a 
chain, so that each concept or skill 
serves the purpose of supporting 
another one down the line. Students 
should get to see for themselves that 
the mathematics curriculum moves 
forward with a purpose.

–H.W.

‡For a thorough explanation of place value, please see 
“What’s Sophisticated about Elementary Mathemat-
ics?,” which I wrote for the Fall 2009 issue of 
American Educator, available at www.aft.org/pdfs/
americaneducator/fall2009/wu.pdf.
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Down Theory, even though we are daily confronted with evidence 
that it is not working.

Of course, some mathematicians have tried to make a contri-
bution to school mathematics. But most of them have not devoted 
enough time to investigating the problem. They tend to be 
unaware of the sorry state of TSM and end up writing books that 
encourage teachers to build on their knowledge of TSM to solve 
problems or learn new mathematics.* This is akin to helping a 
starving person by buying him new clothes to make him look bet-
ter without trying to address the malnutrition problem. With the 
opportunity provided by the CCSMS hovering over us, it is time 
that we mathematicians make amends.

In March of 2008, I was passing through London’s Heathrow 
Airport and happened to catch sight of an ad by IBM:

Stop selling what you have.
Start selling what they need.

If we let “they” be our math teachers and math education profes-
sors, then this would be a pointed directive on what mathemati-
cians need to do for school mathematics education:

Get to know what they need, and teach it.

The advent of the CCSMS sends out the signal, for the first time 
from within the education community, that TSM has no place in 
the school curriculum. TSM is incompatible with the CCSMS, and 
now colleges and universities are duty-bound to provide future 
mathematics teachers with a replacement of TSM. Would that those 

A University-Level Look at Adding Fractions and  
Multiplying Negative Numbers
In the main article, I argue that university-
level mathematics courses tend to provide 
content that is mathematically sound but 
not relevant to the K–12 classroom. It may 
not be apparent that devising content 
knowledge that is both relevant and 
sound is a severe challenge, so let us 
consider Examples 1 and 2 (from the 
beginning of the main article) again to 
see how a typical university-level math-
ematics course would handle both 
problems.

What does the abstract mathematics 
of fractions have to say about adding 1⁄8 
to 5⁄6? First of all, a fraction m⁄n (for whole 
numbers m and n, n ≠ 0) is just a symbol 
consisting of an ordered pair of whole 
numbers with m preceding n. It is just a 
symbol, with no mention of “parts of a 
whole” or “division.” Two such ordered 
pairs m⁄n and k⁄l are considered to be equal 
if ml = nk. (In other words, the cross-
multiplication algorithm is “declared” to 
be true.) In this context, how to add two 
such symbols becomes a matter of 
definition: we have to fashion a defini-
tion that will be consistent not only with 
the above meaning of equality but also 
with associative and commutative laws  
of addition. It was found that the 
definition of

m 
+

 k 
=

  ml + nk
––     ––      ————
n     l        nl

is satisfactory. So addition now becomes a 
concept created in a context of formal 
abstract mathematics. Then, of course, 

1  
+

 5 
=

 (6 × 1) + (8 × 5) 
=

 46
 – –        – –        ————————              –––      
8      6              48                 48

as before. As to the problem of why  
(-2)(-3) = 2 × 3, the mathematical 
approach is to ignore integers but to 
prove once and for all that (-x)(-y) = xy  
for all numbers x and y. Here is the proof:

We first prove that (-x)z = -(xz) for any 
numbers x and z. Observe that if a 
number A satisfies w + A = 0, then  
A = -w. Now if A = (-x)z, the distribu-
tive law implies xz + A = xz + [(-x)z] = 
(x + (-x))z = 0 ∙ z = 0. So indeed (-x)z = 
-(xz). If we let z = -y for a given y, this 
implies (-x)(-y) = -(x(-y)).

Now let B = (-x)(-y). To prove B = xy, it 
suffices to prove xy − B = 0. This is so 
because xy − B = xy – [-(x(-y))] = xy + 
x(-y) = x[y + (-y)] = x ∙ 0 = 0, as desired.

Neither of the above solutions would be 
usable in school classrooms. 
Teaching this kind of 
mathematics to teachers may 
serve some purpose, but not 
the purpose of helping them 
to teach their lessons. Take 
the mathematical proof of 
(-x)(-y) = xy for all numbers  
x and y, for example. It is not 
suitable for school use, either 
by teachers or students, 
because students in middle 
school are still fully 
immersed in arithmetic; their 
natural habit is to find out 
what a number is by direct 
computations. This proof of 
(-x)(-y) = xy is all about 
abstract, indirect reasoning. 
At their stage of mathemati-
cal development, middle 

school students are not yet used to 
thinking in such abstract generality. Such 
a proof, therefore, simply fails to make 
contact with their mathematical sensibili-
ties. For this reason, the approach 
described in the main article to first prove 
it for (-2)(-3), and then (-m)(-n) for whole 
numbers m and n, is nothing more than 
an attempt to narrow the gap between 
students’ background in arithmetic and 
the abstraction inherent in the reasoning. 
It changes the discourse about arbitrary 
fractions to whole numbers—a subject 
students are comfortable with—and it 
makes use of the familiar skill of counting 
as part of the reasoning, e.g., -3 = (-1) + 
(-1) + (-1). Thus the abstraction has been 
modified for students’ consumption.

–H.W.

*Unfortunately, this statement appears to hold true for almost all education writings in 
which mathematicians are involved.
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institutions were aware of their duties! Teachers of all levels now 
must learn to teach mathematics, not just with analogies and meta-
phors, and not just with incomprehensible pseudo-explanations 
and decrees, but with precision, reasoning, and coherence.

Mathematical Engineering
It will not be enough for institutions of higher learning to teach 
future teachers rigorous advanced mathematics, because the 
topics in school mathematics are not part of advanced mathe-
matics. Nor will it suffice to pass off pedagogy-laden courses as 
mathematics courses, because the mathematical difficulties that 
lead to nonlearning cannot be cured with pedagogical tech-
niques. That said, the pressing need now is to provide all future 
mathematics teachers with content knowledge that satisfies both 
of the following requirements:

A. It is relevant to teaching—i.e., does not stray far from the mate-
rial they teach in school.

B. It is consistent with the following five fundamental principles 
of mathematics: precise definitions are the basis for logical 
deductions; precise statements clarify what is known and what 
is not known; every assertion can be backed by logical reason-
ing; all the concepts and skills are woven together like a tapes-
try; and each concept and skill has a purpose. (I briefly explain 
each of these in the box on pages 8–9.)

Currently, TSM satisfies requirement A, at least in the sense 
that it attempts to “cover” all of the mathematics needed in K–12 
(however, it is also riddled with unnecessary topics—but that is 
another article). But TSM does not satisfy requirement B at all. 
University-level mathematics satisfies B, but not A. (Those who 
are not convinced should read the box on page 10.) What we are 
witnessing, therefore, is two extremes in the presentation of math-
ematics, each one satisfying one of the two conditions but not the 
other.

The middle ground—which must be both accessible to chil-
dren and mathematically correct—is a modified or customized 
version of university-level mathematics. Examples 1 and 2 above 
provide illustrations of such customization.

This brings us to a clearer conception of what K–12 mathemat-
ics education is all about: mathematical engineering, in the sense 
that it is a customization of abstract, university-level mathematics 
for the consumption of school students. Let us put this in context. 
Engineering is the discipline of customizing abstract scientific 
principles into processes and products that safely realize a human 

objective or function. So, chemical engineering begins with chem-
istry and results in Plexiglas tanks in aquariums, the gas you pump 
into your car, shampoo, Lysol, etc. Electrical engineering trans-
forms the abstract theory of electromagnetism into computers, 
iPods, lights in your hall, hybrid motors, etc. And in the same vein, 
mathematical engineering takes abstract, university-level math-
ematics and customizes it into school mathematics (distinct from 
TSM) that can be correctly taught, and learned, in K–12 
classrooms.

My hope is that the CCSMS will usher in mathematical engi-
neering, drive out TSM, and replace TSM with school mathemat-
ics proper.7 But if our mathematical engineering work is limited 
to standards and large-scale assessments (which, sadly, seems to 
be where we are currently headed), then nothing will be accom-
plished. Proper school mathematics textbooks for teachers and 

students, model lesson plans, diagnostic assessments, 
and professional development are absolutely neces-
sary. These things are often discussed as instructional 
“supports,” implying that only weak teachers would 
need them. That is absurd. Is it only the weak chemists 
who need proper lab equipment or only the weak bas-
ketball players who work with coaches?

To do all the necessary mathematical engineering 
work well, mathematicians, mathematics education 
professors, and mathematics teachers must work 
together. These groups’ history of working indepen-
dently has given us inadequate TSM for students, 
pedagogy-focused math-light courses for future ele-
mentary teachers, and irrelevant university-level math 

courses for future high school math teachers. If these groups came 
together, they would finally have the knowledge of mathematics, 
children, pedagogy, and classroom realities necessary to replace 
TSM with proper school mathematics, and to create rigorous and 
relevant math courses for future (and current) teachers. (The 
federal agencies that have followed the development of the 
CCSMS should take note of this need and provide financial incen-
tives for the reconciliation.)

There are two major impediments to this work: a shortage of 
willing mathematicians, and a shortage of teachers and math-
ematics education professors who realize that TSM is inade-
quate. As a mathematician who has worked with K–12 teachers 
for more than a decade, I believe the latter shortage will be much 
easier to address than the former. Most of the hundreds of teach-
ers I have worked with are eager to improve, and they are 
relieved to discover that their own difficulties with mathematics 
are a result of the TSM they have been taught. In addition, once 
we have made progress in our mathematical engineering, 
teacher preparation can be completely overhauled, and the 
vicious cycle that perpetuates TSM will be broken. But first, we 
must address the shortage of willing mathematicians. I have a 
radical proposal: professional mathematics organizations, espe-
cially the American Mathematical Society, should sponsor train-
ing for a new corps of competent mathematicians to get to know 
the school mathematics curriculum and then dedicate them-
selves to mathematical engineering. Like chemical and electrical 
engineering, mathematical engineering ought to become an 
established interdisciplinary discipline.

Assuming the work of mathematical engineering gets going, 

Preparing to teach proper school 
mathematics is not about learning a 
craft but, rather, a discipline that is 
cognitively complex and hierarchical. 
Each topic, no matter how basic, is 
essential to some future topic.
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we will still face a few additional obstacles. First, district leader-
ship will have to comprehend that teaching this new proper 
school mathematics to in-service teachers requires a long-term 
commitment. Learning mathematics, and unlearning TSM, will 
take effort and time. Two or three half-day sessions each semester 
will not be sufficient. In mathematics, the most difficult part of a 
teacher’s professional development is the acquisition of solid 
content knowledge. Preparing to teach proper school mathemat-
ics is not about learning a craft; rather, it is about learning a dis-
cipline that is cognitively complex and very hierarchical. Each 
topic, no matter how basic, is essential to some future topic. For 
example, understanding place value is essential to understanding 
multidigit addition, and understanding multiplication of fractions 
is essential to understanding algebra, etc.

Second, although I would like nothing more than for all of the 
nation’s elementary-grades teachers to be immersed in the inten-
sive school mathematics education that they should have received 

Knowing that most K–12 teachers do not 
receive adequate professional development 
(either pre-service or in-service) on the 
mathematics content that they must teach, 
Hung-Hsi Wu has spent more than a decade 
conducting intensive, three-week summer 
institutes for teachers. Now, he has taken 
what he has learned from his students (i.e., 
hundreds of teachers) and written a math-
ematics textbook for teachers in grades K–6. 
It’s not an instructional guide or a suggested 
curriculum or a set of model lesson plans; it’s 
a mathematics textbook. Although it requires, 
as Wu writes, “serious effort,” it delivers the 
mathematical knowledge that elementary-
grades teachers need—starting with place 
value (literally, “How to Count”) and ending 
with decimal expansions of fractions. To 
provide an overview of the textbook, and of 
the volumes to come for middle and high 
school teachers, the following is an excerpt 
from the preface.

–EDITORS

How does this textbook differ from 
textbooks written for students in K–6? 
The most obvious difference is that, 
because adults have a longer attention 
span and a higher level of sophistication, 
the exposition of this book is more 
concise; it also offers coherent logical 
arguments instead of sound bites. 
Because the present consensus is that 
math teachers should know the math-
ematics beyond the level they are 
assigned to teach,* this book also 
discusses topics that may be more 
appropriate for grades 7 and 8. Because 

teachers also have to answer questions 
from students, some of which can be 
quite profound, their knowledge of what 
they teach must go beyond the minimal 
level. Ideally, they should know math-
ematics in the sense that mathematicians 
use the word “know”: knowing a concept 
means knowing its precise definition, its 
intuitive content, why it is needed, and in 
what contexts it plays a role, and knowing 
a skill means knowing precisely what it 

does, when it is appropriate to apply it, 
how to prove that it is correct, the 
motivation for its creation, and, of course, 
the ability to use it correctly in diverse 
situations. For this reason, this book tries 
to provide such needed information so 
that teachers can carry out their duties in 
the classroom. 

The most noticeable difference 
between this book and student texts is, 
however, its comprehensive and system-
atic mathematical development of the 
numbers that are the bread and butter of 
the K–12 curriculum: whole numbers, 
fractions, and rational numbers. Such a 

Understanding Numbers in Elementary School Mathematics
A New Textbook for Teachers

in college, two things work against that: the fact that there are 
more than 1.5 million elementary teachers, and the fact that they 
are required to teach all subjects. Expecting any one person to 
expertly teach reading, mathematics, and all other subjects is just 
wishful thinking masquerading as national policy. A more sen-
sible approach would be to have mathematics teachers in elemen-
tary school.8 (To read more about this idea, please see “What’s 
Sophisticated about Elementary Mathematics? Plenty—That’s 
Why Elementary Schools Need Math Teachers,” which I wrote for 
the Fall 2009 issue of American Educator, available at www.aft.
org/pdfs/americaneducator/fall2009/wu.pdf.)

A third potential obstacle is the assessment that comes with 
the CCSMS. State officials should be vigilant in safeguarding their 
students from being overtested. They must remember that while 
some standardized assessment is necessary and healthy, several 
assessments a year would be counterproductive to learning. 
Another concern is about the mathematical quality of test items. 

*See Recommendation 19 on page xxi in Foundations 
for Success: The Final Report of the National 
Mathematics Advisory Panel, www2.ed.gov/about/
bdscomm/list/mathpanel/report/final-report.pdf.
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development acquires significance in light 
of the recent emphasis on mathematical 
coherence in educational discussions. 
Coherence in mathematics is not some-
thing ineffable like Mona Lisa’s smile. It is 
a quality integral to mathematics with 
concrete manifestations affecting every 
facet of mathematics. If we want a 
coherent curriculum and a coherent 

progression of mathematics learning, we 
must have at least one default model of a 
logical, coherent presentation of school 
mathematics that respects students’ 

learning trajectory. It is unfortunately the 
case that, for a long time, such a presen-
tation has not been readily available. The 
mathematics community has been derelict 
in meeting this particular social 
obligation.

This book does not call attention to 
coherence per se, but tries instead to 
demonstrate coherence by example. Its 

systematic mathematical development 
makes it possible to point out the careful 
logical sequencing of the concepts and 
the multiple interconnections, large and 
small, among the concepts and skills.† 
Thus, it points out the fact that the usual 

algorithm for converting a 
fraction to a decimal by long 
division, if done correctly, is in 
fact a consequence of the 
product formula for fractions, 

m⁄n × k⁄l = mk⁄nl. It also points out the 
overwhelming importance of the theorem 
on equivalent fractions (i.e., m⁄n = cm⁄cn) for 
the understanding of every aspect of 
fractions. On a larger scale, one sees in 
this systematic development the continu-
ity in the evolution of the concepts of 
addition, subtraction, multiplication, and 
division from whole numbers to fractions, 
to rational numbers, and finally—in the 
context of school mathematics—to real 
numbers. Although each arithmetic 
operation may look superficially different 
in different contexts, this book explains 
why it is fundamentally the same concept 
throughout. Thus, with a systematic 
development in place, one can step back 
to take a global view of the entire subject 
of numbers and gain some perspective on 
how the various pieces fit together to 
form a whole fabric. In short, such a 
development is what gives substance to 
any discussion of coherence.

This book is one mathematician’s 
attempt at a systematic presentation of 
the mathematics of K–6. It is the product 
of more than 10 years of experimentation 
in my effort to teach mathematics to 
elementary and middle school teachers. 
The starting point was the workshop on 
fractions that I conducted in March of 
1998. Subsequent volumes written for 
middle school and high school teachers 
will round out the curriculum of the 
remaining grades. My fervent hope is that 
others will carry this effort further so that 
we can achieve an overhaul of the 
mathematical education of teachers as we 
know it today. Our teachers deserve 
better, and our children deserve no less.

–H.W.
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This is a textbook for pre-service elementary school teachers and for 

current teachers who are taking professional development courses. By 

emphasizing the precision of mathematics, the exposition achieves a 

logical and coherent account of school mathematics at the appropriate 

level for the readership. Wu provides a comprehensive treatment of all 

the standard topics about numbers in the school mathematics curric-

ulum: whole numbers, fractions, and rational numbers. Assuming no 

previous knowledge of mathematics, the presentation develops the 

basic facts about numbers from the beginning and thoroughly covers 

the subject matter for grades K through 7.Every single assertion is established in the context of elementary 

school mathematics in a manner that is completely consistent with 

the basic requirements of mathematics. While it is a textbook for pre-

service elementary teachers, it is also a reference book that school 

teachers can refer to for explanations of well-known but hitherto 

unexplained facts. For example, the sometimes-puzzling concepts of 

percent, ratio, and rate are each given a treatment that is down to earth 

and devoid of mysticism. The fact that a negative times a negative is a 

positive is explained in a leisurely and comprehensible fashion.
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If we want a coherent curriculum, we 
must have at least one default model of a 
logical, coherent presentation of school 
mathematics that respects students’ 
learning trajectory.

At the moment, students’ need of a mathematically valid assess-
ment is undercut by the presence of flawed and mathematically 
marginal items in standardized tests, including those from NAEP.9 
To minimize such errors in the future, we need assurance from 
both of the assessment consortia that they are committed to get-
ting substantive and continuing input from competent 
mathematicians. 

Our nation has been known to overcome greater obsta-
cles than these, provided the cause is worthy. Because 
failure in math education has far-reaching conse-
quences,10 the worthiness of successfully implement-

ing the CCSMS is clear. Furthermore, the CCSMS are likely our 
last hope of breaking the vicious cycle of TSM for a long time to 
come. Can we all contribute our share to make sure that the 
CCSMS will stay the course?

Our children are waiting for an affirmative answer. ☐
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