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Introduction This is a slightly revised version of the report, written in the
early part of 2007 at the request of the Learning Processes Task Group of the
National Mathematics Advisory Panel (NMP), on the curricular aspects of the
teaching and learning of fractions.1 For a reason to be explained presently, my

1(June 1, 2014.) It is a pleasure for me to thank David Collins for a large number of corrections.

1



decision was to focus the report on the difficulties of teaching fractions and ra-
tional numbers in grades 5–7. It contains a detailed description of the most
essential concepts and skills together with comments about the pitfalls in teach-
ing them. What may distinguish this report from others of a similar nature
is the careful attention given to the logical underpinning and inter-connections
among these concepts and skills. It is in essence a blueprint for a textbook se-
ries in grades 5–7. It would serve equally well as the content of an extended
professional development institute on fractions, decimals and rational numbers.

The concluding section on Comments on fractions research, beginning on
p. 33, discusses the research literature on the teaching of fractions, decimals, and
rational numbers. Because the learning of these topics is integral to the learning
of algebra, to be explained presently, I will make a few comments on the teaching
of algebra as well. It may be that, for some readers, reading these Comments
should precede the reading of the main body of this report.

The teaching of fractions in the U.S. is spread roughly over grades 2–7. In the
early grades, grades 2–4 more or less, students’ learning is mainly on acquiring
the vocabulary of fractions and using it for descriptive purposes. It is only in
grades 5 and up that serious learning of the mathematics of fractions takes place.
In those years, students begin to put the isolated bits of information they have
acquired into a mathematical framework and learn how to compute extensively
with fractions. This learning process may be likened to the work of a scientist in
studying a new phenomenon. The initial exploration of fractions may be taken
to be the “data-collecting phase”: just take it all in and worry about the meaning
later. In time, however, the point will be reached where, unless the data are put
into a theoretical framework and organized accordingly, they would get out of
control. So it is that when students reach the fifth or sixth grade, they have to
learn a precise mathematical concept of a fraction and make logical sense of the
myriad skills that come with the territory.

Students’ fear of fractions is well documented (cf. [Ashcraft]), but to my knowl-
edge, there is no such pervasive fear in the early vocabulary-acquiring stage. In
the second stage, however, this fear is real and seems to develop around the time
they learn how to add fractions using the least common denominator. From a
curricular perspective, this fear can be traced to at least two sources. The first is
the loss of a natural reference point when students work with fractions. In learn-
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ing to deal with the mathematics of whole numbers in grades 1–4, children always
have a natural reference point: their fingers. The modeling of whole numbers on
one’s finger is both powerful and accurate. But for fractions, the curricular deci-
sion in the U.S. is to use a pizza or a pie as the reference point. Unfortunately,
while pies may be useful in the lower grades to help with the vocabulary-learning
aspect of fractions, they are a very awkward model for fractions bigger than 1 or
for any arithmetic operations with fractions. For example, how do you multiply
two pieces of pie? ([Hart]). Such difficulties probably cause classroom instruc-
tions as well as textbooks to concentrate on those fractions which are less than
1 and have single digit numerators and denominators. Needless to say, such
artificial restrictions are a distraction to the learning of fractions in general. A
second source that contributes to the fear of fractions is the inherent abstract
nature of the concept of a fraction. Fractions are in fact a child’s first excursion
into abstract mathematics. A hard-won lesson in mathematics research of the
past two centuries is that when dealing with abstractions, precise definitions and
precise reasoning are critical to the prevention of errors and to the clarification of
one’s thoughts. Because the generic U.S. K-12 mathematics curriculum has not
been emphasizing definitions or reasoning for decades, the teaching of fractions
in grades 5–7 is almost set up for failure. Students’ morbid fear of the subject is
the inevitable consequence.

The fear of fractions would be of little concern to us were it not for the fact
that, for many reasons, fractions are crucial for the learning of algebra (see,
for example, [Wu1]). Because algebra is the gateway to the learning of higher
mathematics and because learning algebra is now considered to be the new civil
right in our technological age, the goal of NMP is to improve the learning of
algebra in our nation. With this in mind, removing the two sources of the fear of
fractions then becomes a national mandate. It is for this reason that this report
is focussed on the teaching and learning of fractions in grades 5–7. There is
another curricular reason that makes this topic fully deserving of our full atten-
tion. For almost all school students — the exceptions being future math majors
in college — what they learn about fractions and decimals in grades 5–7 is all
they will ever learn about these numbers for the rest of their lives. When one
considers the role these numbers play in the life of the average person, it is noth-
ing short of our basic civic duty to eliminate this fear from our national discourse.
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The following exposition in (A)–(Q) describes a way to teach fractions that
meets the minimum mathematical requirements of precision, accuracy, providing
a definition for every concept, and sequencing topics in a way that makes rea-
soning possible. More importantly, it is also placed in a context that is suitable
for use in grades 5 and up. I try to navigate a course that is at once mathe-
matically correct and pedagogically feasible. For example, the number line is
used as a natural reference point for fractions, in the same way that fingers serve
as a reference point for whole numbers. I believe that the comparison of the
number line to fingers is apt in terms of efficacy and conceptual simplicity. It
will be noted that the use of the number line has the immediate advantage of
conferring coherence on the study of numbers in school mathematics: decimals
are rightfully restored as fractions of a special kind, and positive and negative
fractions all become points on the number line. In particular, whole numbers
are now points on the number line too and the arithmetic of whole num-
bers, in this new setting, is now seen to be entirely analogous to the
arithmetic of fractions. We hope this will lay to rest the idea that “Chil-
dren must adopt new rules for fractions that often conflict with well-established
ideas about whole number” ([Bezuk-Cramer], p. 156). Such coherence provides
a more effective platform for learning these numbers, because simplicity is easier
to learn than unnecessary complexities. It must be said that this coherence has
been largely absent from school mathematics for a long time.

(A) Definition Mathematics requires that every concept has a precise def-
inition. In the informal and exploratory stage of learning (roughly grades K-4),
such precision may not be necessary for the learning of fractions. For grades 5
and up, there is no choice: there has to be a definition of a fraction. By and
large, school mathematics (if textbooks are any indication, regardless of whether
they are traditional or reform) does not provide such a definition, so that teachers
and students are left groping in the dark about what a fraction is. A fraction, to
almost all teachers or students, is a piece of a pie or pizza. This is not helpful in
the learning of mathematics unless one can figure out how to multiply or divide
two pieces of a pie, or how a pie can help solve problems about speed or ratio.

A usable definition of a fraction, say those with denominator 3, can be given
as follows. We begin with the number line. So on a line which is (usually chosen
to be) horizontal, we pick a point and designate it as 0. We then choose another
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point to the right of 0 and, by reproducing the distance between 0 and this
point, we get an infinite sequence of equi-spaced points to the right of 0. Next
we denote all these points by the nonzero whole numbers 1, 2, 3, . . . in the usual
manner. Thus all the whole numbers N = {0, 1, 2, 3, . . .} are now displayed on
the line as equi-spaced points increasing to the right of 0, as shown:

0 1 2 3

A horizontal line with an infinite sequence of equi-spaced points identified
with N on its right side is called the number line. By definition, a number
is just a point on the number line. In sections (A)–(K), we will use only the
number line to the right of 0. We will make use of the complete number line
starting in (L) when we get to negative numbers.

Fractions are a special class of numbers constructed in the manner below. If
a and b are two points on the number line, with a to the left of b, we denote
the segment from a to b by [a, b]. The points a and b are called the endpoints
of [a, b]. The special case of the segment [0, 1] occupies a distinguished position
in the study of fractions; it is called the unit segment. The point 1 is called
the unit. As mentioned above, 0 and 1 determine the points we call the whole
numbers. So if 1 stands for an orange, 5 would be 5 oranges, and if 1 stands for
5 pounds of rice, then 6 would be 30 pounds of rice. And so on.

We take as our “whole” the unit segment [0, 1]. The fraction 1
3 is therefore

one-third of the whole, i.e., if we divide [0, 1] into 3 equal parts, 1
3 stands for one

of the parts. One obvious example is the thickened segment below, and we use
the right endpoint of this segment as the standard representation of 1

3

0 1 2 3

1
3

We next divide, not just [0, 1], but every segment between two consecutive
whole numbers — [0, 1], [1, 2], [2, 3], [3, 4], etc. — into three equal parts. Then
these division points, together with the whole numbers, form an infinite sequence
of equi-spaced points, to be called the sequence of thirds. In general, a fraction
m
3 for some whole number m, which intuitively stands for “m copies of thirds”,
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has the standard representation consisting of m adjoining short segments
abutting 0, where a short segment refers to a segment between consecutive points
in the sequence of thirds. Since we may identify this standard representation of
m
3 with its right endpoint, we denote the latter simply by m

3 . The case of m = 10
is shown below:

0 1 2 3

10
3

Having identified each standard representation of m
3 with its right endpoint,

each point in the sequence of thirds now acquires a name, as shown below. These
are exactly the fractions with denominator equal to 3.

0 1 2 3 4

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
3

10
3

11
3

12
3

If we consider all the fractions with denominator equal to n, then we would
be led to the sequence of n-ths, which is the sequence of equi-spaced points
resulting from dividing each of [0, 1], [1, 2], [2, 3], . . . , into n equal parts. The
fraction m

n is then the m-th point to the right of 0 in this sequence. For example,
the fractions with denominator equal to 5 are now displayed as shown:

0 1 2

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

10
5

11
5

This definition of a fraction, compared with the usual one as a piece
of pie, is in fact simpler: we have replaced a round pie by a segment
(the unit segment), and every student will tell you that it is far easier
to divided a segment into 5 parts of equal length than to divide a circle
into 5 congruent parts. It is also far more flexible, in the sense that by
specifying the unit 1 to be an apple, 1

3 will be a third of the apple, and
if we designate the unit 1 to be a mile, 54 will be 54 miles. Finally,
and this is most important, all fractions, proper or improper, can be
displayed with ease on the number line, thereby affording a platform for
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all fractions to be treated equally. One can speculate, and this is some-
thing researchers can work on, that the reason students’ conception of
fractions is limited to proper fractions with single digit numerators and
denominators is because the pie model compels teachers and textbooks
to work within one single pie. It is a mathematical judgment, which
can be amply justified, that such a limited conception of fractions auto-
matically limits students’ conceptual understanding of the subject. The
superiority of this definition in every aspect related to the teaching of
fractions will be borne out in the rest of this article.

Those fractions whose denominators are all positive powers of 10, e.g.,

1489

100
,

24

100000
,

58900

10000
,

are called decimal fractions, but they are better known in a different notation.
It has been recognized for a long time that, with the number 10 understood,
there is no reason to write it over and over again so long as we can keep track of
zeros, namely 2, 5, and 4, respectively, in this case. These fractions are therefore
abbreviated to

14.89, 0.00024, 5.8900

respectively. The rationale of the notation is clear: the number of digits to
the right of the so-called decimal point keeps track of the number of zeros
in the respective denominators, 2 in 14.89, 5 in 0.00024, and 4 in 5.8900. In
this notation, these numbers are called finite or terminating decimals. In
context, we usually omit any mention of “finite” or “terminating” and just say
“decimals”. Notice the convention that, in order to keep track of the 5 zeros in

24
100000 , three zeros are added to the left of 24 to make sure that there are 5 digits
to the right of the decimal point in 0.00024. Note also that the 0 in front of the
decimal point is only for the purpose of clarity, and is optional.

One would like to think that 5.8900 is the same as 5.89. For this we have to
wait for the next section.

(B) Equivalent fractions This is the single most important fact about frac-
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tions. It says that for all whole numbers k, m, and n (so that n 6= 0 and k 6= 0),

m

n
=
km

kn

This fact can be proved very simply now that a precise definition of a fraction is
available. The reasoning for the special case

5× 4

5× 3
=

4

3

will be seen to hold in general. First locate 4
3 on the number line:

0 1

6 6 6 6 666 6

4
3

We divide each of the segments between consecutive points in the sequence of
thirds into 5 equal parts. Then each of the segments [0, 1], [1, 2], [2, 3], . . . is
now divided into 15 equal parts and, in an obvious way, we have obtained the
sequence of fifteenths on the number line:

0 1

6 6 6 6 6 666

4
3

The point 4
3 , being the 4-th point in the sequence of thirds, is now the 20-th

point in the sequence of fifteenths (20 being equal to 5 × 4). The latter is by
definition the fraction 20

15 , i.e., 5×4
5×3 . Thus 4

3 = 5×4
5×3 .

The first application of equivalent fractions is to bring closure to the discussion
in the last section about the decimal 5.8900. Recall that we had, by definition,

58900

10000
= 5.8900

We now show that 5.8900 = 5.89 and, more generally, one can add or delete
zeros to the right end of the decimal point without changing the decimal. Indeed,

5.8900 =
58900

10000
=

589× 100

100× 100
=

589

100
= 5.89
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where the next to the last equality makes use of equivalent fractions. The rea-
soning is of course valid in general, e.g.,

12.7 =
127

10
=

127× 10000

10× 10000
=

1270000

100000
= 12.70000

Another useful consequence of equivalent fractions is the following Funda-
mental Fact of Fraction-Pairs (FFFP):

Any two fractions may be symbolically represented as two fractions with
the same denominator.

The reason is simple: if the fractions are m
n and k

` , then because of equivalent
fractions, we have

m

n
=
m`

n`
and

k

`
=
nk

n`
Now they share the denominator n`.

Why should we pay attention to FFFP? If any two fractions can be written
as fractions with the same denominator, e.g., a

n and b
n , then they are put on the

same footing, in the sense that in the sequence of n-ths, these two fractions are
in the a-th and b-th positions. For example, one can tell right away that a

n is to
the left of b

n if a < b. Such considerations will play an important role below.

Equivalent fractions naturally brings up the issue of whether students should
always reduce each fraction to lowest terms. Implicit in this statement is the
assumption that every fraction is equal to a unique fraction in lowest terms.
(While this assumption is true and believable, it is nonetheless the case that
its proof is quite nontrivial, depending as it does on the Euclidean algorithm.)
What is more pertinent is the fact that, as a fraction, 12

9 is every bit as good as
4
3 , and in general nk

n` is every bit as good as k
` . An insistence on always having a

fraction in its lowest terms is thus a preference but not a mathematical necessity.
Moreover, it is sometimes not immediately obvious whether a fraction is in low-
est terms or not, e.g., 68

51 . A more flexible attitude towards unreduced fractions
would consequently make for a better mathematics education for school students.

(C) Fraction as division For any two whole numbers m and n, with n 6= 0,
we define the division of m by n as follows:
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m÷ n is the length of one part when a segment
of length m is partitioned2 into n equal parts.

Why this definition? Because students coming into fifth grade or thereabout only
know about the meaning of “9 divided by 3”, “28 divided by 7”, or in general,
“m divided by n when m is a multiple of n”. But now we are talking about the
division of arbitrary positive integers such as “5 divided by 7” or “28 divided by
9”. Such divisions are conceptually distinct from fifth graders’ previous encoun-
ters with the concept of “division”. A major weakness in the school mathematics
literature is the failure to draw attention to this sharp distinction between these
two kinds of division and give a precise definition of the general case (see above).

With this definition understood, a critical point in the development of the
concept of a fraction is the proof of the following

Theorem For any two whole numbers m and n, n 6= 0,

m

n
= m÷ n

This is called the division interpretation of a fraction. The proof is
simplicity itself. To partition [0,m] into n equal parts, we express m = m

1 as

nm

n

That is, [0,m] is equal to nm copies of 1
n , which is also n copies of m

n . So 1 part
in a partitioning of [0,m] into n equal parts is m

n .

This theorem allows for the solutions of problems such as, “Nine students chip
in to buy a 50-pound sack of rice. They are to share the rice equally by weight.
How many pounds should each person get?” More importantly, this theorem is
the reason we can now retire the division symbol ÷ and use m

n exclusively to
denote “m divided by n” when m, n are whole numbers.

(D) Adding fractions The addition of fractions cannot be different, con-
ceptually, from the addition of whole numbers because every whole number is a

2To avoid the possibly confusing appearance of the word “divide” at this juncture, we have intentionally used
“partition” instead.
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fraction. So how do we add whole numbers when whole numbers are considered
points on the number line? Consider, for example, the addition of 4 to 7. In
terms of the number line, this is just the total length of the two segments joined
together end-to-end, one of length 4 and the other of length 7, which is of course
11, as shown.

4 7

0 4 11

We call this process the concatenation of the two segments. Imitating this
process, we define, given fractions k

` and m
n , their sum k

`
+ m

n
by

k

`
+
m

n
= the length of two concatenated segments, one

of length k
` , followed by one of length m

n

k
`

m
n︸ ︷︷ ︸

k
` +m

n

It is an immediate consequence of the definition that

k

`
+
m

`
=
k +m

`

because both sides are equal to the length of k +m copies of 1
` . More explicitly,

the left side is the length of k copies of 1
` combined with m copies of 1

` , and is
therefore the length of k+m copies of 1

` , which is exactly the right side. Because
of FFFP, the general case of adding two fractions with unequal denominators is
immediately reduced to the case of equal denominators, i.e., to add

k

`
+
m

n

where ` 6= n, we use FFFP to rewrite k
` as kn

`n and m
n as `m

`n . Then

k

`
+
m

n
=
kn

`n
+
lm

`n
=
kn+ `m

`n
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The first application of fraction addition is the explanation of the addition
algorithm for (finite) decimals. For example, consider

4.0451 + 7.28

This algorithm calls for

(α) lining up 4.0451 and 7.28 by their decimal point,

(β) adding the two numbers as if they are whole numbers and get a
whole number, to be called N , and

(γ) putting the decimal point back in N to get the answer of 4.0451 +
7.28.

We now supply the reasoning for the algorithm. First of all, we use equivalent
fractions3 to rewrite the two decimals as two with the same number of “decimal
digits”, i.e., 4.0451 + 7.28 = 4.0451 + 7.2800. This corresponds to (α). Then,

4.0451 + 7.28 =
40451 + 72800

104

=
113251

104
(corresponds to (β))

= 11.3251 (corresponds to (γ))

The reasoning is of course completely general and is applicable to any other pair
of decimals.

A second application is to get the so-called complete expanded form of a
(finite) decimal. For example, given 40.1297, we know it is the fraction

401297

104

But

401297 = (4× 105) + (1× 103) + (2× 102) + (9× 101) + (7× 100)

3A little reflection would tell you that we are essentially using FFFP here.
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We also know that, by equivalent fractions, 4×105

104 = 40, 1×103

104 = 1
10 , etc. Thus

40.1297 = 40 +
1

10
+

2

102
+

9

103
+

7

104

This expression of 40.1297 as a sum of descending powers4 of 10, where the co-
efficients of these powers are the digits 4, 1, 2, 9, and 7, is called the complete
expanded form of 40.1297.

A third application of fraction addition is to introduce the concept of mixed
numbers. We observe that, in order to locate fractions on the number line, it
is an effective method to use division-with-remainder on the numerator. For
example, we have

187

14
=

(13× 14) + 5

14
=

13× 14

14
+

5

14
= 13 +

5

14

and therefore 187
14 is beyond 13 but not yet 14, because the sum 13 + 5

14 , as a
concatenation of two segments of lengths 13 and 5

14 , clearly exhibits the fraction
187
14 as a point on the number line about one-third beyond the number 13. The
sum 13 + 5

14 is usually abbreviated to 13 5
14 by omitting the + sign and, as such,

it is called a mixed number.

(E) Comparing fractions By definition, given two fractions k
` and m

n , we
say m

n is less than k
` or k

` is bigger than m
n , if the point m

n is to the left of the

point k
` on the number line. In symbols: m

n
< k

`
.

m
n

k
`

It is a rather shocking realization that in the usual presentation of fractions,
one that does not use the number line, there is no definition of what it means
for one fraction to be bigger than another.

To tell which of two given fractions is bigger, the following is useful.

4Here we use the exponential notation for convenience. “Descending” if you think of 1
10 as 10−1, etc.
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Cross-multiplication algorithm Given fractions k
` and m

n , k
` > m

n is
equivalent to kn > `m.

Here is the formal proof. By FFFP, we can rewrite k
` and m

n as kn
`n and `m

`n ,
respectively. The algorithm can be read off from this observation. It should
be pointed out that exactly the same reasoning proves a similar algorithm for
equality:

k

`
=
m

n
is equivalent to kn = `m

This is also referred to as the cross-multiplication algorithm.

We can also compare decimals. For example, which of 0.0082 and 0.013 is
bigger? By definition, we need to compare 82

10000 and 13
1000 . By FFFP, we compare

instead 82
10000 and 130

10000 . Clearly, 130 copies of 1/10000 is more than 82 copies of
1/10000, so 0.013 > 0.0082.

Note that this is far from a mindless algorithm that minimizes students’ num-
ber sense or their understanding of place value. Decimals such as 0.0082 or 0.013
are merely symbols, and the first priority in doing mathematics is to inquire
about the meanings of the symbols in question. Therefore going back to the
original fractions 82

10000 and 13
1000 serves exactly the purpose of finding out the

meanings of 0.0082 and 0.013. The fact that this reduces the comparison of
decimals to the comparison of whole numbers is precisely what the subject of
decimals should be about: decimals are nothing but whole numbers in disguise.

(F) Subtracting fractions Suppose k
` >

m
n , then a segment of length k

` is

longer than a segment of length m
n . The subtraction k

`
− m

n
is by definition the

length of the remaining segment when a segment of length m
n is taken from one

end of a segment of length k
` .

The same reasoning as in the case of addition, using FFFP, then yields

k

`
− m

n
=
kn− `m

`n

Consider the subtraction of 172
5−73

4 . One can do this routinely by converting
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the mixed numbers into fractions:

17
2

5
− 7

3

4
=

85 + 2

5
− 28 + 3

4
=

87

5
− 31

4
=

87× 4− 31× 5

5× 4
=

193

20
.

However, there is another way to do the computation:

17
2

5
− 7

3

4
= (16 + 1

2

5
)− (7 +

3

4
)

= (16− 7) + (1
2

5
− 3

4
)

= 9 +
13

20

= 9
13

20

(G) Multiplying fractions The colloquial expression two-thirds of a 9.5
fluid oz. of juice can be given a precise meaning: it is the totality of two parts
when 9.5 fluid oz. of juice is divided into three equal parts (by volume). In
general, we define m

n
of a number to mean the totality of m parts when that

number is partitioned into n equal parts according to this unit. More explicitly,
if the number is a fraction k

` , then we partition the segment [0, k` ] into n parts

of equal length, and m
n of k

` is the length of the concatenation of m of these

parts. Then we define the product or multiplication of two fractions by

k

`
× m

n
=

k

`
of a segment of length

m

n

This definition justifies what we do everyday concerning situations such as
drinking “two-thirds of a 9.5 fluid oz. of juice”: we would compute the amount
as 2

3 × 9.5 fluid oz. This number, as we know by habit, is equal to

2× 9.5

3
=

19

3
= 6

1

3

fluid oz. But now, we have to give the reason behind this computation: this is
what we call the product formula:

k

`
× m

n
=
km

`n
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Here is the proof: Let us partition [0, mn ] into ` equal parts. By the definition of
the product k

` ×
m
n , it suffices to show that the length of k concatenated parts is

km
`n . By equivalent fractions,

m

n
=
`m

`n
=
m+ · · ·+m

`n
=

m

`n
+ · · ·+ m

`n︸ ︷︷ ︸
`

This directly exhibits m
n as the concatenation of ` parts, each part of length m

`n .
The length of k concatenated parts is thus km

`n , as desired.

As a logical consequence of the product formula, one shows that the area of a
rectangle whose sides have fractional lengths is the product of the lengths. This
fact, together with the original definition of fraction multiplication, are the two
principal interpretations of fraction multiplication.

The product formula explains the multiplication algorithm of decimals. Con-
sider for example

1.25× 0.0067

The algorithm calls for

(α) multiply the two numbers as if they are whole numbers by ignoring
the decimal points,

(β) count the total number of decimal digits of the two decimal num-
bers, say p, and

(γ) put the decimal point back in the whole number obtained in (α) so
that it has p decimal digits.

We now justify the algorithm using this example, noting at the same time that
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the reasoning in the general case is the same.

1.25× 0.0067 =
125

102
× 67

104

=
125× 67

102 × 104
(product formula)

=
8375

102 × 104
(corresponding to (α))

=
8375

102+4
(corresponding to (β))

= 0.008375 (corresponding to (γ))

(H) Dividing fractions We teach children that 36
9 = 4 because 4 is the

whole number so that 4× 9 = 36. This then is the statement that 36 divided by
9 is the whole number which, when multiplied by 9, gives 36. In symbols, we may
express the foregoing as follows: 36

9 is by definition the number k which satisfies
k × 9 = 36. Similarly, 72

24 is the whole number which satisfies 72
24 × 24 = 72. In

general,

Given whole numbers a and b, with b 6= 0 and a being a multiple of b,
then the division of a by b, in symbols a

b , is the whole number c so
that the equality cb = a holds.

The preceding definition of division among whole numbers is important for
the understanding of division among fractions, because once we replace “whole
number” by “fraction”, this will be essentially the definition of the division of
fractions. However, there is a caveat. In the definition in case a and b are whole
numbers, the division a

b makes sense only when a is a multiple of b. Our first task
in approaching the division of fractions is to show that, if a and b are fractions, a

b

always makes sense so long as b is nonzero. The following theorem accomplishes
this goal.

Theorem Given fractions A and B (B 6= 0), there is a fraction C, so that
A = CB. Furthermore, there is only one such fraction.
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The proof is simplicity itself. Let A = k
` and B = m

n , then the fraction C
defined by C = kn

`m clearly satisfies A = CB. (Since B is nonzero, m is nonzero.
Therefore `m 6= 0 and this fraction C makes sense.) This proves that such a C
exists. If there is another fraction C ′ that also satisfies A = C ′B, then

k

`
= C ′ × m

n

Multiply both sides by n
m yields kn

`m = C ′. So C ′ = C, as desired.

The proof of the theorem shows explicitly how to get the fraction C so that
CB = A: If A = k

` and B = m
n , then the proof gives C as

C =
kn

`m
=

k

`
× n

m

Now we are in a position to define fraction division:

If A, B, are fractions (B 6= 0), then the division of A by B, or the
quotient of A by B, denoted by A

B
, is the unique fraction C (as

guaranteed by the Theorem) so that CB = A.

If the given fractions are k
` and m

n , then the preceding comment implies that

k
`
m
n

=
k

`
× n

m

This is the famous invert and multiply rule for the division of fractions. Ob-
serve that it has been proved as a consequence of the precise definition of division.

We now bring closure to the discussion of the arithmetic of decimals by taking
up the division of decimals. The main observation is that the division of decimals
is reduced to the division of whole numbers, e.g., the division

21.87

1.0925

becomes, upon using invert and multiply,

21.8700

1.0925
=

218700
104

10925
104

=
218700

10925
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This reasoning is naturally valid for the division of any two decimals. We did
not obtain the desired answer to the original division, however, because it is
understood that we should get a decimal for the answer, not a fraction. It turns
out that in almost all cases, the answer is an infinite decimal.

(J) Complex fractions Further applications of the concept of division
cannot be given without introducing a certain formalism for computation about
complex fractions, which are by definition the fractions obtained by a division
A
B of two fractions A, B (B > 0). We continue to call A and B the numerator
and denominator of A

B , respectively. Note that any complex fraction A
B is just

a fraction (more precisely, the fraction C in the Theorem), so all that we have
said about fractions apply to complex fractions, e.g., if A

B and C
D are complex

fractions, then (see section (G)),

A
B ×

C
D is A

B of (the quantity) C
D

Such being the case, why then do we single out complex fractions for a separate
discussion? It is not difficult to give the reason. Consider, for example, an
addition of fractions of the following type:

1.2

31.5
+

3.7

0.008

First of all, such an addition is not uncommon, and secondly, this is an addition
of complex fractions because 1.2 = 12

10 , 31.5 = 315
10 , etc. Now, the addition can

be handled by the usual procedures for fractions, but school students are taught
to do the addition by treating the decimals as if they were whole numbers, and
directly apply the addition algorithm for fractions to get the same answer:

(1.2× 0.008) + (3.7× 31.5)

31.5× 0.008
=

116.5596

0.252
=

1165596
10000
2520
10000

=
1165596

2520

What this does is to make use of the formula k
` + m

n = kn+m`
`n , by letting k = 1.2,

` = 31.5, m = 3.7, and n = 0.008. However, this formula has only been proved
to be valid for whole numbers k, `, m, and n, whereas 1.2, 31.5, etc., are not
whole numbers. On the face of what has been proved, such an application of
k
` + m

n = kn+m`
`n is illegitimate. But the simplicity of the above computation is
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so attractive that it provides a strong incentive to extend this formula to any
fractions k, `, m, n. Similarly, we would like to be able to multiply the following
complex fractions as if they were ordinary fractions by writing

0.21

0.037
× 84.3

2.6
=

0.21× 84.3

0.037× 2.6

regardless of the fact that the product formula k
` ×

m
n = km

`n has only been proved
for whole numbers k, `, m, n.

It is considerations of this type that force us to take a serious look at complex
fractions.

Almost all existing textbooks allow computations with complex fractions to
be performed as if they were ordinary fractions without a word of explanation.
The situation demands improvement.

Here is a brief summary of the basic facts about complex fractions that figure
prominently in school mathematics: Let A, . . . , F be fractions, and we assume
further that they are nonzero where appropriate in the following. Then, using
“⇐⇒” to denote “is equivalent to”, we have:

(a) If C 6= 0, then
AC

BC
=
A

B

(b)
A

B
>
C

D
(resp.,

A

B
=
C

D
) ⇐⇒ AD > BC (resp., AD = BC).

(c)
A

B
± C

D
=

(AD)± (BC)

BD

(d)
A

B
× C

D
=
AC

BD

(e)
A

B
×
(
C

D
± E

F

)
=

(
A

B
× C

D

)
±
(
A

B
× E

F

)
The proofs of (a)–(e) are straightforward, but the important thing is to iden-

tify the concept of a complex fractions and make students aware of it. It should
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not be assumed that (a)–(e) are needed only to make certain computations eas-
ier. On the contrary, when students come to algebra, they would recognize that
almost all the arguments related to division or rational expressions make use of
complex fractions (a fact which, again, is almost never mentioned in textbooks).

(K) Percent, ratio, and rate At this point, students should be able to
handle any word problem about fractions. However, textbooks and the educa-
tion literature do not supply them with the requisite definitions so that they are
left to navigate in the dark as to what they are dealing with. As a consequence,
the problems related to percent, ratio, and rates become notorious in school
mathematics for being difficult. The following gives explicit definitions of these
concepts.

Note that every single one of these definitions requires the concept of a com-
plex fraction.

A percent is a complex fraction whose denominator is 100. By tradition, a
percent N

100 , where N is a fraction, is often written as N%. By regarding N
100 as

an ordinary fraction, we see that the usual statement N% of a quantity m
n is

exactly N%× m
n (see the discussion in (G)).

Now, the following are three standard questions concerning percents that
students traditionally consider to be difficult:

(i) What is 5% of 24?
(ii) 5% of what number is 16?
(iii) What percent of 24 is equal to 9?

The answers are simple consequences of what we have done provided we follow
the precise definitions. Thus, (i) 5% of 24 is 5%× 24 = 5

100 × 24 = 6
5 . For (ii), let

us say that 5% of a certain number y is 16, then again strictly from the definition
given above, this translates into (5%)y = 16, i.e., y× 5

100 = 16. By the definition
of division, this says

y =
16
5

100

= 16× 100

5
= 320

Finally, (iii). Suppose N% of 24 is 9. This translates into N% × 24 = 9, or
N

100 × 24 = 9, which is the same as N × 24
100 = 9. By the definition of division
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again, we have

N =
9
24
100

= 9× 100

24
= 37.5

So the answer to (iii) is 37.5%.

Next we take up the concept of ratio, and it is unfortunately one that is en-
crusted in excessive verbiage. By definition, given two fractions A and B, where
B 6= 0 and both refer to the same unit (i.e., they are points on the same number
line), the ratio of A to B, sometimes denoted by A : B, is the complex
fraction A

B
.

In connection with ratio, there is a common expression that needs to be made
explicit. To say that the ratio of boys to girls in a classroom is 3 to 2 is
to say that if B (resp., G) is the number of boys (resp., girls) in the classroom,
then the ratio of B to G is 3

2 .

In school mathematics, the most substantial application of the concept of di-
vision is to problems related to rate, or more precisely, constant rate. The precise
definition of the general concept of “rate” requires more advanced mathematics,
and in any case, it is irrelevant whether we know what a rate is or not. What is
relevant is to know the precise meaning of “constant rate” in specific situations,
and the most common of these situations are enumerated in the following. The
most intuitive among the various kinds of rate is speed, and we proceed to define
constant speed without giving a detailed discussion in order to save space.

A motion is of constant speed v if the distance traveled, d, from time 0 to
any time t is d = vt. Equivalently, in view of (H), a motion is of constant speed
if there is a fixed number v, so that for any positive number t, the distance d
(feet, miles, etc.) traveled in any time interval of length t (seconds, minutes,
etc.) starting from time 0 satisfies

d

t
= v

In the language of school mathematics, speed is the “rate” at which the work
of moving from one place to another is done. Other standard “rate” problems
which deserve to be mentioned are the following. One of them is painting (the
exterior of) a house. The rate there would be the number of square feet painted
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per day or per hour. A second one is mowing a lawn. The rate in question
would be the number of square feet mowed per hour or per minute. A third is
the work done by water flowing out of a faucet, and the rate is the number of
gallons of water coming out per minute or per second. In each case, the concept
of constant rate can be precisely defined as in the case of constant speed. For
example, a constant rate of lawn-mowing can be defined as follows: if A is
the total area that has been mowed after T hours starting from time 0, then
there is a constant r (with unit square-feet-per-hour) so that A = rT , and this
equality is valid no matter what T is.

For example, assume that water from a faucet flows at a constant rate. If a
tub with a capacity of 20 gallons can be filled with water in 3 minutes, how long
does it take to fill a container of 26 gallons? Let us say the rate of water flow is
r gallons per minute and it takes t minutes to fill the container. By definition
of constant rate, we have 20 = r × 3 and 26 = r × t. From the first equation,
we get r = 20

3 , and from the second, 26 = 20
3 t. Therefore t = 26 × 3

20 = 3.9
minutes, or 3 minutes and 54 seconds. Notice that there is absolutely no mention
of “setting up a proportion” in this solution; there is no such concept as “setting
up a proportion” in mathematics.

(L) Negative numbers Recall that a number is a point on the number
line. We now look at all the numbers as a whole. Take any point p on the
number line which is not equal to 0; such a p could be on either side of 0 and, in
particular, it does not have to be a fraction. Denote its mirror reflection on the
opposite side of 0 by p∗, i.e., p and p∗ are equidistant from 0 and are on opposite
sides of 0. If p = 0, let

0∗ = 0

Then for any points p, it is clear that

p∗∗ = p

This is nothing but a succinct way of expressing the fact that reflecting a nonzero
point across 0 twice in succession brings it back to itself (if p = 0, of course
0∗∗ = 0). Here are two examples of reflecting two points p and q in the manner
described:
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0 pp∗ q∗q

Because the fractions are to the right of 0, the numbers such as 1∗, 2∗, or
(9

5)∗ are to the left of 0. Here are some examples of the reflections of fractions
(remember that fractions include whole numbers):

3∗(23
4
)∗ 2∗ 1∗ (1

3
)∗ 0 1

3
1 2 23

4
3

The set of all the fractions and their mirror reflections with respect to 0, i.e.,
the numbers m

n and (kl )
∗ for all whole numbers k, l, m, n (l 6= 0, n 6= 0), is

called the rational numbers. Recall that the whole numbers are a sub-set of
the fractions. The set of whole numbers and their mirror reflections,

. . . 3∗, 2∗, 1∗, 0, 1, 2, 3, . . .

is called the integers. Then, using “⊂” to denote “is a subset of”, we have:

whole numbers ⊂ integers ⊂ rational numbers

We now extend the order among numbers from fractions to all numbers: for
any x, y on the number line, x < y means that x is to the left of y. An
equivalent notation is y > x.

x y

Numbers which are to the right of 0 (thus those x satisfying x > 0) are called
positive, and those which are to the left of 0 (thus those that satisfy x < 0)
are negative. So 2∗ and (1

3)∗ are negative fractions, while all nonzero
fractions are positive. The number 0 is, by definition, neither positive
nor negative.

As is well-known, a number such as 2∗ is normally written as −2 and (1
3)∗

as − 1
3 , and that the “−” sign in front of −2 is called the negative sign. The

reason we employ this ∗ notation and have avoided mentioning the negative
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sign up to this point is that the negative sign, having to do with the operation
of subtraction, simply will not figure in our considerations until we begin to
subtract rational numbers. Moreover, the terminology of “negative sign” carries
certain psychological baggage that may interfere with learning rational numbers
the proper way. For example, if a = −3, then there is nothing “negative” about
−a, which is 3. It is therefore best to hold off introducing the negative sign until
its natural arrival in the context of subtraction in the next section.

(M) Adding rational numbers A fact not mentioned in the brief discussion
of fractions up to this point is that the addition and multiplication of fractions
satisfy the associative and commutative laws (of addition and multiplication,
respectively) and the distributive law. For the arithmetic operations on rational
numbers, these laws come to the forefront. The rational numbers are simply
“expected” to satisfy the associative, commutative, and distributive laws. With
this in mind, we make three fundamental assumptions about the addition of
rational numbers. The first two are entirely noncontroversial:

(A1) Given any two rational numbers x and y, there is a way to add
these to get another rational number x+y so that, if x and y are frac-
tions, x+y is the same as the usual sum of fractions. Furthermore, this
addition of rational numbers satisfies the associative and commutative
laws.

(A2) x+ 0 = x for any rational number x.

The last assumption explicitly prescribes the role of all negative fractions:

(A3) If x is any rational number, x+ x∗ = 0.

On the basis of (A1)–(A3), we can prove in succession how addition can be
done. Let s and t be any two positive fractions. By (A1),

s+ t = the old addition of fractions.

In general, (A1)–(A3) imply that

s∗ + t∗ = (s+ t)∗, e.g., 3∗ + 8∗ = 11∗.

s+ t∗ = (s− t) if s ≥ t, e.g., 7 + 4∗ = (7− 4)∗ = 3.

s+ t∗ = (t− s)∗ if s < t, e.g., 2 + 8∗ = (8− 2)∗ = 6∗.
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Because s∗+ t = t+ s∗, by the commutative law of addition, we have covered all
possibilities for the addition of rational numbers.

The second equality above becomes especially interesting if we write it back-
wards:

s− t = s+ t∗ when s ≥ t

The fraction subtraction s − t now becomes the addition of s and t∗. Because
the sum s + t∗ makes sense regardless of whether s is bigger than t or not,
this equality prompts us to define, in general, the subtraction between any two
rational numbers x and y to mean:

x− y
def
= x + y∗

Note the obvious fact that, when x, y are fractions and x > y, the meaning
of x − y coincides with the meaning of subtracting fractions as given in section
(F). This concept of subtraction between two rational numbers is therefore an
extension of the old concept of subtraction between two fractions.

As a consequence of the definition of x− y, we have

0− y = y∗

because 0 + y∗ = y∗. Common sense dictates that we should abbreviate 0− y

to −y. So we have
−y = y∗

It is only at this point that we can abandon the notation of y∗ and replace
it by −y. Many of the preceding equalities will now assume a more familiar
appearance, e.g., from x∗∗ = x for any rational number x, we get

−(−x) = x

and from x∗ + y∗ = (x+ y)∗, we get

−(x+ y) = −x− y

In the school classroom, it would be a good idea to also teach a more concrete
approach to adding rational numbers. To this end, define a vector to be a seg-
ment on the number line together with a designation of one of its two endpoints
as a starting point and the other as an endpoint. We will continue to refer
to the length of the segment as the length of the vector, and call the vector

26



left-pointing if the endpoint is to the left of the starting point, right-pointing
if the endpoint is to the right of the starting point. The direction of a vec-
tor refers to whether it is left-pointing or right-pointing. We denote vectors by
placing an arrow above the letter, e.g., ~A, ~x, etc., and in pictures we put an
arrowhead at the endpoint of a vector to indicate its direction. For example, the
vector ~K below is left-pointing and has length 1, with a starting point at 1∗ and
an endpoint at 2∗, while the vector ~L is right-pointing and has length 2, with a
starting point at 0 and an endpoint at 2.

3∗ 1 32∗ 1∗ 0 2
� -

~K ~L

Observe that two vectors being equal means exactly that they have the same
starting point, the same length, and the same direction.

For the purpose of discussing the addition of rational numbers, we can further
simplify matters by restricting attention to a special class of vectors. Let x be a
rational number, then we define the vector ~x to be the vector with its starting
point at 0 and its endpoint at x. It follows from the definition that, if x is a
nonzero fraction, then the segment of the vector ~x is exactly [0, x]. Here are two
examples of vectors arising from rational numbers:

4∗ 3∗ 12∗ 1∗ 0 2
-�

1.5

−→
1.5

−→
3∗

In the following, we will concentrate only on those vectors ~x where x is a
rational number, so that all vectors under discussion will be understood to have
their starting point at 0. We now describe how to add such vectors. Given ~x

and ~y, where x and y are two rational numbers, the sum vector ~x + ~y is, by
definition, the vector whose starting point is 0, and whose endpoint is obtained
as follows:
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slide ~y along the number line until its starting point (which is 0) is
at the endpoint of ~x, then the endpoint of ~y in this new position is by
definition the endpoint of ~x+ ~y.

For example, if x and y are rational numbers, as shown:

0
� -

~x~y

Then, by definition, x+ y is the point as indicated,

x+ y

0
� -

~x

We are now in a position to define the addition of rational numbers. The sum
x + y for any two rational numbers x and y is by definition the endpoint of the
vector ~x+ ~y. In other words,

x+ y = the endpoint of ~x+ ~y

Put another way, x+ y is defined to be the point on the number line so that its

corresponding vector
−→

(x+y) satisfies:
−→

(x+y)= ~x + ~y

Suffice it to say that at this point, the exact computation of the addition of
rational numbers can be carried out and the previous information about s + t,
s∗ + t, s+ t∗, and s∗ + t∗ can be retrieved.

(N) Multiplying rational numbers We take the same approach to mul-
tiplication as addition, namely, we make the fundamental assumptions that

(M1) Given any two rational numbers x and y, there is a way to mul-
tiply them to get another rational number xy so that, if x and y are
fractions, xy is the usual product of fractions. Furthermore, this mul-
tiplication of rational numbers satisfies the associative, commutative,
and distributive laws.

(M2) If x is any rational number, then 1× x = x.
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We note that (M2) must be an assumption because, for instance, we do not know
as yet what 1× 5∗ means. The equally “obvious” fact that

(M3) 0× x = 0 for any rational number x.

turns out to be provable.

We want to know explicitly how to multiply rational numbers. Thus let x, y
be rational numbers. What is xy? If x = 0 or y = 0, we have just seen from
(M3) that xy = 0. We may therefore assume both x and y to be nonzero, so that
each is either a fraction, or the negative of a fraction. Letting s, t be nonzero
fractions, then the following can be proved:

(−s)t = −(st)

s(−t) = −(st)

(−s)(−t) = st

Since we already know how to multiply s and t, we have exhausted all the
possibilities of the product of rational numbers.

The last item, that if s and t are fractions then (−s)(−t) = st, is such a
big part of school mathematics education that it is worthwhile to go over at
least a special case of it. When students are puzzled by this phenomenon, the
disbelief centers on how anything like this could be true. The pressing need in
such a situation is to win the psychological battle, e.g., use a simple example to
demonstrate that this phenomenon has to happen. With this in mind, we will
give the reasoning of why

(−1)(−1) = 1

Now, even the most hard-nosed skeptic among students would concede that a
number x is equal to 1 if it satisfies x− 1 = 0. We will therefore prove that

(−1)(−1) − 1 = 0

Recall that, by definition of subtraction, (−1)(−1)− 1 = (−1)(−1) + (−1). By
the distributive law,

(−1)(−1)− 1 = (−1)(−1) + 1× (−1) = [(−1) + 1](−1) = 0× (−1) = 0

This then shows that, if we believe in the distributive law for rational numbers,
it must be that (−1)(−1) = 1. Therefore the critical issue behind the fact of
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negative × negative = positive is that the distributive law holds for rational
numbers.

(P) Dividing rational numbers The concept of the division of rational
numbers is the same as that of dividing whole numbers or dividing fractions.
As before, we begin such a discussion with the proof of a theorem that is the
counterpart of the theorem in section (H).

Theorem Give rational numbers x, y, with y 6= 0. Then there is one and
only one rational number z such that x = zy.

The proof is similar. What does this theorem really say? It says that if we
have a nonzero rational number y, then any rational number x can be expressed
as a unique (rational) multiple of y, in the sense that x = zy for some rational
number z. This number z is what is called the division of x by y, written as

x

y

x
y is also called the quotient of x by y. In other words, for two rational numbers
x and y, with y 6= 0,

x
y is by definition the unique rational number z so that x = zy.

We can now clear up a standard confusion in the study of rational numbers.
The following equalities are tacitly assumed to be true in pre-algebra or algebra,

3

−7
=
−3

7
= − 3

7

We now supply the explanation. First we claim that, if C = − 3
7 , then dividing

3 by −7 yields C, i.e.,
3

−7
= C

This would be true, by definition, if we can prove 3 = C × (−7), and this is so
because

C × (−7) = (− 3

7
)× (−7) = (

3

7
)(7) = 3
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where we have made use of (−a)(−b) = ab for all fractions. This then proves
3
−7 = − 3

7 . In a similar manner, we can prove −3
7 = − 3

7 . More generally, the
same reasoning supports the assertion that if k and ` are whole numbers and
` 6= 0, then

−k
`

=
k

−`
= − k

`

and
−k
−`

=
k

`

We may also summarize these two formulas in the following statement: for any
two integers a and b, with b 6= 0,

−a
b

=
a

−b
= − a

b

These equalities are well-nigh indispensable in everyday computations with ra-
tional numbers. In particular, it implies that

every rational number can be written as the quotient of two integers.

We can further refine this to read:

every rational number can be written as the quotient of two integers so
that the denominator is a whole number.

Thus, the rational number − 9
7 is equal to −9

7 or 9
−7 , and the former is the

preferred choice for ease of computation.

(Q) Comparing rational numbers Recall the definition of x < y between
two rational numbers x and y: it means x is to the left of y on the number line.

x y

In this section, we mention several basic inequalities that are useful in school
mathematics. We begin with a basic observation about numbers. Given any two
numbers x and y, then either they are the same point, or if they are distinct, one
is to the left of the other, i.e., x is to the left of y, or y is to the left of x. These
three possibilities are obviously mutually exclusive. In symbols, this becomes:
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Given two numbers x and y, then one and only one of the three possi-
bilities holds: x = y, x < y, or x > y.

This is called the trichotomy law. It is sometimes useful for determining how
two numbers stand relative to each other, e.g., if we can eliminate x < y or
x > y, then necessarily, x = y.

The basic inequalities we are after are as follows. Here, x, y, z are rational
numbers and the symbol “ ⇐⇒” stands for “is equivalent to”:

(i) For any x, y, x < y ⇐⇒ −x > −y.

(ii) For any x, y, z, x < y ⇐⇒ x+ z < y + z.

(iii) For any x, y, x < y ⇐⇒ y − x > 0.

(iv) For any x, y, z, if z > 0, then x < y ⇐⇒ xz < yz.

(v) For any x, y, z, if z < 0, then x < y ⇐⇒ xz > yz.

(vi) For any x, x > 0 ⇐⇒ 1
x > 0.

Of these, (v) is the most intriguing. We give an intuitive argument of “z < 0
and x < y imply xz > yz” that can be refined to be a correct proof. Consider
the special case where 0 < x < y and z = −2. So we want to understand why
(−2)y < (−2)x. By section (N), (−2)y = −2y and (−2)x = −2x. Thus we
want to see, intuitively, why −2y < −2x. From 0 < x < y, we get the following
picture:

0 x y

Then 2x will continue to be to the left of 2y, but both are pushed further to the
right of 0:
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0 2x 2y

If we reflect this picture across 0, we get the following:

0 2x 2y−2y −2x

We see that −2y is now to the left of −2x, so that −2y < −2x, as claimed.
Obviously, this consideration is essentially unchanged if the number −2 is re-

placed by any negative number z.
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Comments on fractions research These comments attempt to
put in perspective the preceding detailed description of the basic skills and con-
cepts in the subject of fractions. Why give such details? This has to do with the
state of mathematics education in year 2007.

The difficulty with the research on the learning of fractions is that students’
learning cannot be divorced from the instruction they receive. If they are taught
fractions in a mathematically incorrect way, then it stands to reason that their
understanding of fractions would be faulty. Garbage in, garbage out. This law of
nature cannot be denied. Which of the following should then be blamed for stu-
dents’ underachievement in subsequent assessments of their mathematics learn-
ing: students’ own misconceptions or the defective instruction they received?
Any research that does not attempt to decouple the two cannot lay claim to a
whole lot of validity. Because this is an important point that has been tradition-
ally overlooked in education research, we will try to make it absolutely clear by
way of an analogy.

Suppose a university in a foreign country has designed a program to train
English interpreters, and it decided at some point to have an evaluation of the
effectiveness of this program. The evaluator discovered that all the students
coming out of the program spoke English with an unacceptably heavy accent, and
he was determined to uncover the flaws in the program itself. He looked through
the admissions criteria, the courses offered, the requirements for graduation, the
availability of language lab facilities, the credentials of the instructors, and so on.
He found not a few glitches and made his recommendations accordingly. All the
recommendations were duly implemented, but five years later the same evaluator
found no improvement in the outcome: the graduates continued to speak with
the same heavy accent. He was about to admit defeat, until he attended a few
training sessions and found that all the instructors themselves spoke English with
the same objectionable accent.

Our claim is that research on the improvement of student learning in fractions
has to be built on a foundation of mathematically correct instructions. Otherwise
such research would become one on “the effects of handicapped learning”, in the
sense that it would be a study on how students fail to learn fractions when they
are given defective information on this subject. One hesitates to declare such a
study to be worthless, but for the good of the nation, it may be more profitable
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to first focus our energy on teaching fractions correctly before launching any such
research.

As I mentioned at the outset, this report is not about the teaching and learning
of fractions per se, only about what happens in grades 5–7. It is critically impor-
tant to keep this restricted objective in mind in the following discussion of the
research literature. What I will be looking for is not the quality of the research—
I am not competent to pass judgment on education research—only whether any
research has been done that seems relevant to improving the teaching and learn-
ing of fractions in grades 5–7. With this understood, then at least the following
articles and monographs on fractions, [Behr et al.], [Lamon], [Litwiller-Bright],
[Morrow-Kenny], and [Sowder-Schappelle] do not seem to have a direct bearing
on the objective I have in mind, because they appear not to be aware of the need
to teach fractions correctly. I hasten to amplify on the latter judgment, which
would undoubtedly seem excessively harsh to some. Fractions have been taught
probably for as long as school mathematics has been taught. Except for a brief
period in the New Math era when some mathematicians did take a close look at
fractions (cf. [NCTM1972]), the subject has been taught more or less the same
way, defining a fraction as a piece of a pie and over-using single digit numbers,
but never attempting to treat the subject as part of mathematics. Due to the
long separation of educators from mathematicians in the past decades, educators
have had no access to valid mathematical input for a very long time (Cf. [Wu4]).
Under the circumstances, educators’ lack of awareness of how fractions could
be taught as mathematics is perfectly understandable. As of year 2007, the
idea is still a novelty in mathematics education that school mathematics can
be taught with due attention to the need of precision, the support by logical
reasoning for every assertion, the need of clear-cut definition for each concept
introduced, and a coherent presentation of concept and skills in the overall con-
text of mathematics. It should not be a surprise, therefore, that the education
research literature reflects such a lack of awareness.

Instead of trying to give a summary of the articles in the cited sources, not to
mention numerous others, let me concentrate on the fairly representative article
by T. E. Kieren on pp. 31-65 of [Sowder-Schappelle]. The conception of a math-
ematical presentation of fractions in Kieren’s article is that of a “static definition
followed by given algorithms” (p. 36). And what of this definition? It is not
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clear that he has any definition of a fraction in the sense of section (A) above5

beyond partitioning a given geometric figure into parts of equal size.6 The need
of presenting fractions as a precisely defined concept and explaining each skill
logically is not part of his pedagogical picture. What Kieren proposes instead
is lots of story-telling and lots of activities for students to engage in so that,
through them, students gain experiential and informal knowledge of fractions.
In this way of teaching, informal knowledge replaces mathematical knowledge per
se. The alternative, according to Kieren, is “to develop an algorithm and spec-
ify the practice”, without intuitive understanding (p. 40). This is of course the
old skill-versus-understanding dichotomy, but we know all too well by now that
such a dichotomy is not what mathematics is about. See sections (A)–(Q) above.

As mentioned in the Introduction, fractions are young kids’ first excursion
into abstractions: they face the bleak future of no longer having the good old
standby of counting-on-fingers to help them learn fractions as this practice used
to help them learn whole numbers. They need extra support, and they won’t get
it so long as we try to duck the issue of what a fraction is and fail to supply ample
reasoning for every skill in addition to picture-drawing and allied activities. But
if a student’s conception of a fraction is just a piece of a pie or part of a square,
learning about multiplying and dividing pieces of pies and squares can be an
excruciating experience. The unending anecdotal data together with results from
standardized tests should be sufficient evidence that, to many, the experience is
indeed excruciating.

It is an intriguing question how to judge students’ learning processes if they
are fed extremely defective information. For example, students generically do
not know what it means to multiply two fractions, except to operationally mul-
tiply the numerators and denominators. Indeed, in the way the multiplication
of fractions is taught — by traditional or reform methods — in schools (again
to judge by textbooks and the educational literature), they are never told what
multiplication is. Consequently, when a word problem comes along that calls
for multiplying fractions, they do not recognize it unless they resort to the rote
process of “watching for key words”. The fact that multiplication can be pre-
cisely defined and then the formula a

b ×
c
d = ac

bd rigorously explained (see section

5Recall once again that we are now discussing the teaching and learning of fractions beyond grade 4.
6It is not clear what “size” means. Area? So we have a problem right away with imprecision of language.
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(G)) is, up to this point, news in school mathematics. In the absence of such an
understanding of the mathematics underlying fractions, the multiplication and
division of fractions are concepts that are difficult to teach, and therefore much
more difficult to learn. The struggle in the education literature to cope with these
issues is partially recorded in, e.g., [Litwiller-Bright] and [Sowder-Schappelle]. So
again, how to judge students’ learning processes in critical topics such as these?

The most sustained, and also one of the best-known research projects about
the learning of fractions is the Rational Numbers Project, partly summarized in
[Behr et al.]. Its main goal seems to be to address the fragmented picture of a
fraction (with all its multifaceted “personalities” that float in and out of a given
mathematical discussion on fractions) by promoting cognitive connections among
these personalities through the appropriate use of problems, hands-on activities,
and contextual presentations. This project, like others, was unaware of the exis-
tence of a coherent mathematical presentation of fractions that provides a logical
framework to accommodate all these personalities as part of the mathematical
structure ([Jensen], [Wu2], [Wu5]). In a sense, the purpose of the long and de-
tailed description of such a logical development in sections (A) to (Q) above is
to counteract the implicit message in the education research literature that such
a mathematical structure does not exist. I hope the education community will
begin to accept the fact that one cannot promote the learning of fractions by
addressing only the pedagogical, cognitive, or some other learning issues because,
above all else, the mathematical development of the subject must be accorded its
position of primacy. Our students must be taught correct mathematics before
we can begin to consider their learning processes ([Wu4]).

As an illustration of how teaching affects learning, consider a popular example
of students’ non-learning in the subject of decimals: many believe that 0.0009 >
0.002 because 9 > 2. Now a common way to teach students about decimals is to
say that the decimal notation is an extension of the base-ten system of writing
whole numbers to the writing of other numbers, including numbers between 0 and
1, between 1 and 2, and so on. Thus 1.26 is 1 and two-tenths and 6 hundredths.
Students are then asked to see that 0.002 is 2 thousandths while 0.0009 is 9 ten-
thousandths, and since 2 thousandths is surely greater than 9 ten-thousandths,
they should see that 0.0009 < 0.002. This is correct as far as it goes, but let us
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consider the cognitive load overall. There are at least two issues.
First, there is the problem of unnecessary complexity. Students are familiar

with whole numbers, but fractions are pieces of a pie and are therefore different.
Into this mix we introduce decimals as yet a third kind of number because attach-
ing tenths, hundredths, etc., to whole numbers makes a decimal neither a whole
number nor a piece of pie. This is not even mentioning the fact that “tenths”,
“hundredths”, and “thousandths” are very unpleasant words to school students.
Such unnecessary confusion throws students off: how to deal with three kinds
of numbers? In the way we introduced decimals in section (A), we already put
whole numbers and fractions on the number line. So when decimals are singled
out as a special class of fractions, there is no added cognitive load at all.

A second issue is the chasm that exists between the world of verbal descrip-
tions of tenths, hundredths, thousandths, etc., and the world of exact compu-
tations and symbolic representations. The words “hundredths”, “thousandths”,
etc., used in the verbal definition of a decimal, are hardly the right vehicle to
convey precision and clarity. Take 1.26 for example. There is a big difference
between

1.26 is 1 and 2 tenths and 6 hundredths

and

1.26 = 1 +
2

10
+

6

100
The verbal definition of 1.26 masks the fact that fraction addition
is involved in the seemingly user-friendly description . In particular,
we see from the symbolic representation that the common way of treating dec-
imals separately from fractions does not make any sense: one must know what
fractions are and how to add fractions before a decimal can be defined. With
this understood, we now gain a new appreciation of the definition of a decimal
given in section (A) and come to recognize that it is indeed the correct one.
(Historically, that was in fact how decimals were introduced.)

Now suppose students are taught that a decimal is a fraction with a denomi-
nator that is a power of 10, as in section (A). Then for the comparison of 0.0009
and 0.002, they would learn to first write down the definitions of these numbers:

9

10000
and

2

1000
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Then knowing FFFP, they rewrite them as

9

10000
and

20

10000

So the comparison becomes one between 20 parts and 9 parts of the same thing
(in fact, 1

10000 , to be precise). Obviously, 20 parts is larger, i.e., 0.0009 < 0.002.

Research should be conducted to confirm or refute the anecdotal evidence that
students find such a conception of a decimal much more accessible.

There is one aspect of the learning of fractions that is unquestionably impor-
tant from a mathematical standpoint, but which to my limited knowledge has
not received adequate research attention. It is the hypothesis that by gradually
teaching students to freely use symbols in their discussion of rational numbers,
we can improve their achievement in algebra (cf. [Wu1] and [Wu3]). Because
beginning algebra is just generalized arithmetic, this hypothesis is valid not only
from the mathematical perspective, but from the historical perspective as well. In
teaching fractions, the opportunity to make use of letters to stand for numbers
is available at every turn, starting with the statement of equivalent fractions
(section (B)), to the formula for adding fractions (section (D)), to the cross-
multiplication algorithm (section (E)), to the formula for subtracting fractions
(section (F)), to the product formula (section (G)), to the correct definition of
dividing fractions (section (H)), to the rules on complex fractions (section (J)),
etc., etc. What I would like to advocate is that we capitalize on the opportunity
to make students feel at ease with symbols. Some would object to this kind of
teaching because it “confuses” algebra with arithmetic. However, such a “confu-
sion” is a deliberate mathematical and pedagogical decision. Students cannot be
thrust into the symbolic environment cold and be expected to perform, and the
present failure in the learning of algebra bears eloquent witness to the futility of
such an expectation. It would be of some value to obtain data on this hypothesis.

Considerations of the use of symbols lead us naturally to the concept of a
“variable” in algebra. Using a “variable” is supposed to mark students’ rite of
passage in the learning of algebra, but when a “variable” is presented to students
as “a quantity that varies”, then this passage can be rough going. Informal
surveys among students and teachers of algebra reveal that they are all mystified
by the concept of something that varies. We should therefore make it very
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clear that, in mathematics, there is no such concept as “a quantity that varies”
and, moreover, a “variable” is an informal piece of terminology rather than a
formally defined concept. The crux of the matter is not about terminology but
about correct usage of symbols, and this is why teaching the use of symbols in
fractions bears on the learning of algebra.

The basic protocol in the use of symbols is that the meaning of each symbol
must be clearly quantified (specified ). An equality such as “xy − yx = 0” has no
meaning when it stands alone. Such an equality is sometimes solemnly analyzed
in algebra textbooks as an “open sentence”, but in fact it is simply a mistake
in mathematics. Each symbol must be quantified, period. For example, if x
and y are complex numbers, then xy − yx = 0 is always true. If x and y are
matrices, then this sentence is meaningless because the multiplication xy or yx
may not even be defined. If x and y are n × n square matrices where n > 1,
then xy − yx = 0 is sometimes true and sometimes false. And so on. The
quantification of a symbol is therefore of critical importance. In the context of
school algebra, if a symbol stands for a collection of numbers and this collection
has more than one element, then it would be permissible to refer to this symbol
as a “variable”. In other words, while there is no formal concept with this name,
at least in this case most mathematicians would informally use “variable” to refer
to such a symbol. If a symbol stands for a specific number, then that symbol
would be called a constant. Both kinds of symbols come up naturally in the
discussion of fractions. Students who are carefully guided through the use of
symbols when learning fractions would therefore have the advantage of getting
to know what a “variable” really means and will not be subject to the fruitless
soul-searching regarding “a quantity that varies” when they come to algebra.
This will not be a small advantage.

It was reported in the 1970s and 1980s that incoming algebra students had
trouble interpreting “variables” as letters (cf. [Küchemann]), and some of them
were quoted as saying “letters are stupid; they don’t mean anything” ([Booth]).
It seems likely that these students’ teachers did not have a clear conception of
what a “variable” really means or how symbols (letters) should be properly used.
We recall the dictum stated at the beginning of this section that learning cannot
be divorced from instruction.

A correct use of symbols would also eliminate a standard misconception of
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what solving an equation means. Consider the problem of solving a linear
equation such as

4x− 1 = 7− 3x

As we said, every symbol must be quantified. So what is the quantification that
comes with this equality? It is this: find all numbers x so that 4x− 1 = 7− 3x.
The most important aspect of this quantification is that, since x is a number,
4x and −3x are simply numbers and, as such, we can apply to them the usual
arithmetic operations without any second thoughts. For example, suppose there
is such an x so that 4x − 1 = 7 − 3x. Then since the numbers 4x − 1 and
7 − 3x are equal, adding the same number 3x to both of them would produce
two numbers that are also equal. Thus (4x − 1) + 3x = (7 − 3x) + 3x, and
doing arithmetic as usual, we immediately obtain 7x−1 = 7. Still with the same
number x, adding 1 to both 7x− 1 and 7 gives 7x = 8. Multiply 7x and 8 by 1

7

then leads to x = 8
7 .

What we have proved is this:

(†) if a number x satisfies 4x− 1 = 7− 3x, then x = 8
7 .

We arrived at this conclusion by performing ordinary arithmetic operations on
numbers, no more and no less, and we could do that because knowing x is a
specific number, we are entitled to apply all we know about arithmetic to the
task. This is one illustration of why we want to carefully quantify each symbol.

One may believe that we have already “solved” the equation. After all, did
we not get x = 8

7 ? But no, we have not solved the equation at all because all
we have done, to repeat the statement (†), is merely to show that if a number x
satisfies 4x− 1 = 7− 3x, then x = 8

7 . What we mean by getting a solution of
the equation 4x− 1 = 7− 3x is in fact the converse statement:

(♦) if x = 8
7 , then 4x− 1 = 7− 3x.

Some would consider the distinction between (†) and (♦) to be the worst kind
of pedantic hair-splitting. After all, once we know x = 8

7 , isn’t the verification
of 4x− 1 = 7− 3x automatic? Yes and no. It is trivial to verify that 4(8

7)− 1 =
7 − 3(8

7), but to confuse these two statements would be to commit one of the
cardinal sins in mathematics. One cannot afford, under any circumstance, to
conflate a theorem with its converse. If school mathematics education is to
realize its potential, then it must try to instill in students the ability to think
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clearly and logically. Therefore learning algebra should include knowing what
it means to solve an equation, and the difference between obtaining a solution
(statement (♦)) and proving the uniqueness of a solution (statement (†)). In a
well taught algebra class, students should be made aware that the usual symbol
manipulations which lead to x = 8

7 need an extra step, a simple step to be sure,
to complete the solving of this linear equation. Of course, they should also be
taught that the whole solution method depends only on routine applications of
arithmetic operations, and that none of the “balancing” arguments associated
with operations on both sides of an equation that sometimes creep into textbooks
or classroom instructions is necessary.

Finally, one message comes out of the preceding discussion loud and clear. It
is that arithmetic is the foundation of algebra. Without a totally fluent command
of arithmetic operations, it is impossible to access the most basic part of algebra
such as solving a linear equation.
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