Math 1B, Fall 2008, Wilkening

Midterm 2, version 1,3,5

0 . (1 point) write your name, your GSI's name, and your section number at the top of your exam.

1. (3 points or 0 points) Suppose $|\cos x| \neq 1$. Evaluate $\sum_{n=0}^{\infty}(\cos x)^{2 n}$.
a. $\cot x$
b. $\csc ^{2} x$
c. $\cosh x$
d. $\frac{x}{\sqrt{1-x^{2}}}$
e. none of the above
2. (3 points or 0 points) Describe the behavior of the sequence $a_{1}=0, \quad a_{n+1}=\frac{a_{n}^{2}+3}{4}$
a. a_{n} increases monotonically and converges to 1
b. a_{n} increases monotonically and converges to 3
c. a_{n} increases monotonically to ∞
d. a_{n} decreases monotonically to $-\infty$
e. a_{n} is not monotonic
3. (3 points or 0 points) Supppose $0<a_{n}<1, a_{n}<b_{n}$, and $\sum b_{n}$ is convergent. Circle all the statements that are necessarily true:
a. $\sum b_{n}^{2}$ converges and $\sum b_{n}^{2}<\sum b_{n}$
b. $\sum \sqrt{b_{n}}$ converges and $\sum \sqrt{b_{n}}<\sum b_{n}$
c. $\sum a_{n}^{2}$ converges and $\sum a_{n}^{2}<\sum a_{n}$
d. $\sum \sqrt{a_{n}}$ converges and $\sum \sqrt{a_{n}}<\sum a_{n}$
e. if $p>0$ then $\sum(-1)^{n} a_{n}^{p}$ is convergent

4a. (3 points) Let $f(x)=e^{-x^{2}}$.
Write down the Maclaurin series for $f(x)$ and evaluate $f^{(99)}(0)$ and $f^{(100)}(0)$.
4b. (4 points) Find all x that satisfy the equation $\sum_{n=1}^{\infty} n x^{n}=\frac{1}{2}$.
5. (2 points each) For each of the following series, determine whether the series is absolutely convergent (AC), conditionally convergent (CC), or divergent (D). Show some work, but do not spend excessive time justifying all your steps.
$\sum_{n=1}^{\infty}(-1)^{n}\left[\sin \left(1 / n^{2}\right)\right]^{2 / 3}$
$\sum_{n=1}^{\infty} \ln \cos \frac{1}{n}$
$\sum_{n=1}^{\infty} \frac{(2 n)!}{3^{n}(n!)^{2}}$
$\sum_{n=0}^{\infty}\binom{5}{n} 3^{n}$
6a. (2 pts) Is the following statement True or False? Justify your answer with a proof or counterexample. (Obviously it's true if $a_{n} \geq 0$ and $b_{n} \geq 0$, so don't assume this).

If $\sum a_{n}$ is divergent and $\sum b_{n}$ is divergent, then $\sum\left(a_{n}+b_{n}\right)$ is also divergent.
6b. (3 points) Suppose $\sum c_{n} x^{n}$ has radius of convergence 2 while $\sum d_{n} x^{n}$ has radius of convergence 5 . What is the radius of convergence of the series $\sum\left(c_{n}+d_{n}\right) x^{n}$? Explain.

7a. (3 points) Prove that $e \geq\left(1+\frac{1}{k}\right)^{k}$ for $k \geq 1$. (Hint: $\left.\ln (1+x)=x-\frac{x^{2}}{2}+\cdots\right)$
7b. (3 points) Use part (a) and mathematical induction to prove the following crude version of Stirling's approximation:

$$
e^{n} n!\geq n^{n} \quad \text { for all } n \geq 1
$$

Math 1B, Fall 2008, Wilkening

Midterm 2, version 2,4,6

0 . (1 point) write your name, your GSI's name, and your section number at the top of your exam.

1. (3 points or 0 points) Suppose $|\sin x| \neq 1$. Evaluate $\sum_{n=0}^{\infty}(\sin x)^{2 n}$.
a. $\tan x$
b. $\sec ^{2} x$
c. $\sinh x$
d. $\frac{x}{\sqrt{1-x^{2}}}$
e. none of the above
2. (3 points or 0 points) Describe the behavior of the sequence $a_{1}=2, \quad a_{n+1}=\frac{a_{n}^{2}+3}{4}$
a. a_{n} increases monotonically and converges to 3
b. a_{n} decreases monotonically and converges to 1
c. a_{n} increases monotonically to ∞
d. a_{n} decreases monotonically to $-\infty$
e. a_{n} is not monotonic
3. (3 points or 0 points) Supppose $0<a_{n}<1, a_{n}<b_{n}$, and $\sum b_{n}$ is convergent. Circle all the statements that are necessarily true:
a. $\sum a_{n}^{2}$ converges and $\sum a_{n}^{2}<\sum a_{n}$
b. $\sum \sqrt{a_{n}}$ converges and $\sum \sqrt{a_{n}}<\sum a_{n}$
c. $\sum b_{n}^{2}$ converges and $\sum b_{n}^{2}<\sum b_{n}$
d. $\sum \sqrt{b_{n}}$ converges and $\sum \sqrt{b_{n}}<\sum b_{n}$
e. if $p>0$ then $\sum(-1)^{n} a_{n}^{p}$ is convergent

4a. (3 points) Let $f(x)=e^{-x^{3}}$.
Write down the Maclaurin series for $f(x)$ and evaluate $f^{(99)}(0)$ and $f^{(100)}(0)$.
4b. (4 points) Find all x that satisfy the equation $\sum_{n=1}^{\infty} n x^{n}=1$.
5. (2 points each) For each of the following series, determine whether the series is absolutely convergent (AC), conditionally convergent (CC), or divergent (D). Show some work, but do not spend excessive time justifying all your steps.
$\sum_{n=1}^{\infty}\left[\sin \left(1 / n^{2}\right)\right]^{1 / 3}$
$\sum_{n=1}^{\infty}(-1)^{n} \ln \cos \frac{1}{n}$
$\sum_{n=1}^{\infty} \frac{(2 n)!}{5^{n}(n!)^{2}}$
$\sum_{n=0}^{\infty}\binom{5}{n}(-3)^{n}$
6a. (2 pts) Is the following statement True or False? Justify your answer with a proof or counterexample. (Obviously it's true if $a_{n} \geq 0$ and $b_{n} \geq 0$, so don't assume this).

If $\sum a_{n}$ is divergent and $\sum b_{n}$ is divergent, then $\sum\left(a_{n}+b_{n}\right)$ is also divergent.
6b. (3 points) Suppose $\sum c_{n} x^{n}$ has radius of convergence 2 while $\sum d_{n} x^{n}$ has radius of convergence 1 . What is the radius of convergence of the series $\sum\left(c_{n}+d_{n}\right) x^{n}$? Explain.

7a. (3 points) Prove that $e \geq\left(1+\frac{1}{k}\right)^{k}$ for $k \geq 1$. (Hint: $\left.\ln (1+x)=x-\frac{x^{2}}{2}+\cdots\right)$
7b. (3 points) Use part (a) and mathematical induction to prove the following crude version of Stirling's approximation:

$$
e^{n} n!\geq n^{n} \quad \text { for all } n \geq 1
$$

results of second midterm:
\# students: 345

total possible:	36 points
max score:	32 points
average:	14.09
standard dev:	5.93

rough grading scale (worry about +/- later)

raw score	grade	$\#$ of students
$19-32$	A	88
$14-18$	B	88
$10-13$	C	81
$6-9$	D	71
$1-5$	F	17

curve for comparison to other midterm and final:
curved score $=35+2.75$ * raw score
histogram:

raw score	\# students	running to	
1	1	1	\#
2	0	1	
3	5	6	\#\#\#\#\#
4	5	11	\#\#\#\#\#
5	6	17	\#\#\#\#\#\#
6	19	36	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
7	18	54	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
8	16	70	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
9	18	88	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
10	14	102	\#\#\#\#\#\#\#\#\#\#\#\#\#\#
11	21	123	\#
12	27	150	\#
13	19	169	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
14	21	190	\#
15	17	207	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
16	15	222	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
17	18	240	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
18	17	257	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
19	18	275	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
20	21	296	\#
21	13	309	\#\#\#\#\#\#\#\#\#\#\#\#\#
22	5	314	\#\#\#\#\#
23	9	323	\#\#\#\#\#\#\#\#\#
24	9	332	\#\#\#\#\#\#\#\#\#
25	5	337	\#\#\#\#\#
26	1	338	\#
27	1	339	\#
28	2	341	\#\#
29	2	343	\#\#
30	0	343	
31	1	344	\#
32	1	345	\#

the answers below were written up by Peter Mannisto and James Tener.
$1,3,5$

Name:
GSI's Name: Solution
Section:

Midterm 2
Math 1B, Fall 2008
Wilkening

0	1	
1	3	
2	3	
3	3	
4	7	
5	8	
6	5	
7	6	
total	36	

0. (1 point) write your name, your GSI's name, and your section number at the top of your exam.
1. (3 points or 0 points) Suppose $|\cos x| \neq 1$. Evaluate $\sum_{n=0}^{\infty}(\cos x)^{2 n}$.
a. $\cot x$
b. $\csc ^{2} x$
c. $\cosh x$
d. $\frac{x}{\sqrt{1-x^{2}}}$
e. none of the above

$$
\begin{aligned}
\sum_{0}^{\infty}\left(\cos ^{2} x\right)^{n} & =\frac{1}{1-\cos ^{2} x} \\
& =\frac{1}{\sin ^{2} x} \\
& =\csc ^{2} x
\end{aligned}
$$

2. (3 points or 0 points) Describe the behavior of the sequence $a_{1}=0, \quad a_{n+1}=\frac{a_{n}^{2}+3}{4}$
a. a_{n} increases monotonically and converges to 1
b. a_{n} increases monotonically and converges to 3
c. a_{n} increases monotonically to ∞
d. a_{n} decreases monotonically to $-\infty$
e. a_{n} is not monotonic

$$
L=\frac{L^{2}+3}{4}
$$

$$
4 L=L^{2}+3
$$

$$
\begin{aligned}
& a_{n}<a_{n+1}<1 \\
& \Rightarrow a_{n}^{2}<a_{n+1}^{2}<1 \\
& \Rightarrow a_{n}^{2}+3<a_{n+1}^{2}+3<4 \\
& \Rightarrow \frac{a_{n}^{2}+3}{4}<\frac{a_{n+1}^{2}+3}{4}<1 \\
&(\text { increasing.) } \\
& \text { (bounded above by 1) } \\
& L^{2}-4 L+3=0 \\
&(L-3)(L-1)=0
\end{aligned}
$$

3. (3 points or 0 points) Suppose $0 \leq a_{n}<1, a_{n}<b_{n}$, and $\sum b_{n}$ is convergent. Circle all the statements that are necessarily true:
a. $\sum b_{n}^{2}$ converges and $\sum b_{n}^{2}<\sum b_{n}$
b. $\sum \sqrt{b_{n}}$ converges and $\sum \sqrt{b_{n}}<\sum b_{n}$
c. $\sum a_{n}^{2}$ converges and $\sum a_{n}^{2}<\sum a_{n}$
d. $\sum \sqrt{a_{n}}$ converges and $\sum \sqrt{a_{n}}<\sum a_{n}$

$$
\begin{aligned}
& \text { e. if } p>0 \text { then } \sum(-1)^{n} a_{n}^{p} \text { is convergent } \\
& \text { Counterexample for (e): } \quad a_{n}
\end{aligned}=\left\{\begin{array}{ll}
1 / n^{2} & n \text { even } \\
1 / n^{4} & n \text { odd }
\end{array} \quad \begin{array}{ll}
1 / n \text { n even }
\end{array} \quad \begin{array}{ll}
1 / 2 & (-1)^{n} a_{n}^{p}=\left\{\begin{array}{l}
1 / n^{2} \\
n \text { odd }
\end{array}\right.
\end{array}\right.
$$

4a. (3 points) Let $f(x)=e^{-x^{2}}$.
Write down the Maclaurin series for $f(x)$ and evaluate $f^{(99)}(0)$ and $f^{(100)}(0)$.

$$
\begin{aligned}
e^{x} & =\sum_{0}^{\infty} \frac{x^{n}}{n!} \\
\Rightarrow e^{-x^{2}} & =\sum_{0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!} \\
\sum_{0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!} & =\sum_{0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}
\end{aligned}
$$

match up coefficients 99,100
(no odd coefficients on left, so $f^{(99)}(0)=0$)

$$
\frac{f^{(100)}(0)}{100!}=\frac{(-1)^{50}}{50!} \Rightarrow f^{(100)}(0)=\frac{100!}{50!}
$$

4b. (4 points) Find all x that satisfy the equation $\sum_{n=1}^{\infty} n x^{n}=\frac{1}{2}$.

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{0}^{\infty} x^{n} \\
\frac{1}{(1-x)^{2}} & =\sum_{1}^{\infty} n x^{n-1} \Rightarrow \frac{x}{(1-x)^{2}}=\sum_{1}^{\infty} n x^{n}
\end{aligned}
$$

So set $\frac{x}{(1-x)^{2}}=\frac{1}{2}$

$$
\begin{gathered}
x=\frac{1}{2}(1-x)^{2}=\frac{1}{2}-x+\frac{x^{2}}{2} \\
\frac{x^{2}}{2}-2 x+\frac{1}{2}=0 \\
x=\frac{2 \pm \sqrt{3}}{2 \cdot 1 / 2}=2 \pm \sqrt{3} \\
n \text { end }|x|<1 \text {, so } \\
x=2-\sqrt{3}
\end{gathered}
$$

5. (2 points each) For each of the following series, determine whether the series is absolutely convergent (AC), conditionally convergent (CC), or divergent (D). Show some work, but do not spend excessive time justifying all your steps.

$$
\sum_{n=1}^{\infty}(-1)^{n}\left[\sin \left(1 / n^{2}\right)\right]^{2 / 3}
$$

check for absolute convergence:

$$
\sum_{1}^{\infty}\left(\sin \frac{1}{n^{2}}\right)^{2 / 3} \quad \sin \frac{1}{n^{2}} \approx \frac{1}{n^{2}} \text { for large }(\sin a l l x)
$$

\lim comparison to $\left(1 / n^{2}\right)^{2 / 3}: \lim _{n \rightarrow \infty} \frac{\left(\sin 1 / n^{2}\right)^{2 / 3}}{\left(1 / n^{2}\right)^{2 / 3}}=\frac{1}{n}$

$$
\text { to }\left(1 / n^{2}\right) \sum_{1}^{\infty} 1 / n^{4 / 3} \operatorname{conv} \text { abs, } \sum_{1}^{\infty}(-1)^{n} \sin \left(\frac{1}{n^{2}}\right)^{2 / 3} \text { AC }
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \ln \cos \frac{1}{n} \\
& \ln (\cos (1 / n)) \sim \ln \left(1-1 / n^{2}\right) \\
& \sim-1 / n^{2} \text { (asymptotically) }
\end{aligned}
$$

more precisely, $\lim _{n \rightarrow \infty} \frac{\ln (\cos (1 / n))}{-1 / n^{2}}=1$ (check by l'Hospital's)
\therefore since $\sum_{1}^{\infty}-1 / n^{2}$ converges absolutely/ $\sum_{1}^{\infty} \ln (\cos 1 / n)$ is AC

$$
\sum_{n=1}^{\infty} \frac{(2 n)!}{3^{n}(n!)^{2}} \quad \text { Ratio test: } \frac{a_{1}-1 n^{2} \text { convergesabsolvect }}{a_{n}}=\frac{(2 n+2)^{(2 n+1)}}{3(n+1)^{2}} \longrightarrow 4 / 3>1
$$

$\sum_{n=0}^{\infty}\binom{5}{n} 3^{n} \quad$ Note: $\binom{5}{n}=0$ for $n \geq 5$
so this is a finite sum \Rightarrow AC

6a. (2 pts) Is the following statement True or False? Justify your answer with a proof or counterexample. (Obviously it's true if $a_{n} \geq 0$ and $b_{n} \geq 0$, so don't assume this). If $\sum a_{n}$ is divergent and $\sum b_{n}$ is divergent, then $\sum\left(a_{n}+b_{n}\right)$ is also divergent.
False

Countoex: $a_{n}=1$
(for all n)

$$
b_{n}=-1
$$

6b. (3 points) Suppose $\sum c_{n} x^{n}$ has radius of convergence 2 while $\sum d_{n} x^{n}$ has radius of convergence 5 . What is the radius of convergence of the series $\sum\left(c_{n}+d_{n}\right) x^{n}$? Explain.
It must be 2. For $|x|<2, \sum\left(n+d_{n}\right) x^{n}$ is the sum of 2 convergent series, hence convergent. For $2<|x|<5, \sum\left(c_{n}+d_{n}\right) x^{n}$ is the sum of a convergent series and a divergent series, hence divergent. This is enough to force $R=2$.

Ta. (3 points) Prove that $e \geq\left(1+\frac{1}{k}\right)^{k}$ for $k \geq 1$. (Hint: $\ln (1+x)=x-\frac{x^{2}}{2}+\cdots$)

$$
\begin{aligned}
& e \geq\left(1+\frac{1}{k}\right)^{k} \\
& \Leftrightarrow \ln (e)=1 \geq k \ln \left(1+\frac{1}{k}\right) \\
&=k\left[\frac{1}{k}-\frac{1}{2 k^{2}}+\frac{1}{3 k^{3}}-\ldots\right] \\
&=1-\frac{1}{2 k}+\frac{1}{3 k^{2}}-\ldots
\end{aligned}
$$

this is an alternating series with decreasing absolute value of terms. Hence $1 \geqslant 1-\frac{1}{2 k}+\frac{1}{3 k^{2}}-\ldots$, completing the proof.
Tb. (3 points) Use part (a) and mathematical induction to prove the following crude version of Stirling's approximation:

$$
e^{n} n!\geq n^{n} \quad \text { for all } n \geq 1
$$

Base case $n=1: e^{\prime} 1!\geq ? 1^{\prime}$

$$
(e \geq 1)
$$

induction step: suppose $e^{k} k!\geq k^{k}$. Then

$$
e^{k+1}(k+1)!=e \cdot e^{k} \cdot(k+1)!
$$

(by induction hyp.) $\geqslant e \cdot \frac{k^{k}}{k!}(k+1)!$
(by (a)

$$
\begin{aligned}
& \geq(1+1 / k)^{k} k^{k} \frac{(k+1)!}{k!} \\
& =(k+1)^{k}(k+1) \\
& =(k+1)^{k+1}
\end{aligned}
$$

$2,4,6$

Name: GSI's Name: Solution
 Section:

Midterm 2
Math 1B, Fall 2008
Wilkening

0	1	
1	3	
2	3	
3	3	
4	7	
5	8	
6	5	
7	6	
total	36	

0 . (1 point) write your name, your GSI's name, and your section number at the top of your exam.

1. (3 points or 0 points) Suppose $|\sin x| \neq 1$. Evaluate $\sum_{n=0}^{\infty}(\sin x)^{2 n}$.
a. $\tan x$
(b) $\sec ^{2} x$
c. $\sinh x$
d. $\frac{x}{\sqrt{1-x^{2}}}$
$\sum^{\infty} x^{2 n} \approx \frac{1}{1-x^{2}}$ when $|x|<1$. When
e. none of the above

$$
\begin{aligned}
& |\sin x| \neq 1 \text {, we must have }|\sin x|<1, \text { so } \\
& \sum_{n=0}^{\infty}(\sin x)^{2 n}=\frac{1}{1-\sin ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

2. (3 points or 0 points) Describe the behavior of the sequence $a_{1}=2, \quad a_{n+1}=\frac{a_{n}^{2}+3}{4}$
a. a_{n} increases monotonically and converges to 3
(b.) a_{n} decreases monotonically and converges to 1
c. a_{n} increases monotonically to ∞
d. a_{n} decreases monotonically to $-\infty$
e. a_{n} is not monotonic
3. (3 points or 0 points) Suppose $0 \leq a_{n}<1, a_{n}<b_{n}$, and $\sum b_{n}$ is convergent.

Circle all the statements that are necessarily true:
(a.) $\sum a_{n}^{2}$ converges and $\sum a_{n}^{2}<\sum a_{n}$
b. $\sum \sqrt{a_{n}}$ converges and $\sum \sqrt{a_{n}}<\sum a_{n}$
c. $\sum b_{n}^{2}$ converges and $\sum b_{n}^{2}<\sum b_{n}$
d. $\sum \sqrt{b_{n}}$ converges and $\sum \sqrt{b_{n}}<\sum b_{n}$
e. if $p>0$ then $\sum(-1)^{n} a_{n}^{p}$ is convergent

4a. (3 points) Let $f(x)=e^{-x^{3}}$.
Write down the Maclaurin series for $f(x)$ and evaluate $f^{(99)}(0)$ and $f^{(100)}(0)$.

$$
\begin{aligned}
e^{x} & =\sum_{0}^{\infty} \frac{x^{2}}{n!} \\
e^{-x^{3}} & =\sum_{0}^{\infty} \frac{(-1)^{n} x^{3 n}}{n!} \\
\sum_{0}^{\infty} \frac{(-1)^{n} x^{3 n}}{n!} & =\sum_{0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}
\end{aligned}
$$

match like coefficients:

$$
\frac{f^{(99)}(0)}{99!}=\frac{(-1)^{33}}{33!}, \frac{f^{(100)}(0)}{100!}=0
$$

4b. (4 points) Find all x that satisfy the equation $\sum_{n=1}^{\infty} n x^{n}=1$.

$$
\begin{aligned}
& \sum_{0}^{\infty} x^{n}=\frac{1}{1-x} \\
& \sum_{1}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}} \Rightarrow \sum_{1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}
\end{aligned}
$$

Solve $\quad \frac{x}{(1-x)^{2}}=1$

$$
\begin{aligned}
& x=(1-x)^{2} \\
& x=1-2 x+x^{2} \\
& x^{2}-3 x+1=0 \\
& x=\frac{3 \pm \sqrt{5}}{2} \quad \text { only } \frac{3-\sqrt{5}}{2} \text { has }|x|<1, \\
& x=\frac{3-\sqrt{5}}{2}
\end{aligned}
$$

5. (2 points each) For each of the following series, determine whether the series is absolutely convergent (AC), conditionally convergent (CC), or divergent (D). Show some work, but do not spend excessive time justifying all your steps.
$\sum_{n=1}^{\infty}\left[\sin \left(1 / n^{2}\right)\right]^{1 / 3} \quad \sin 1 / n^{2} \sim 1 / n^{2}$ for large n.
More precisely, $\lim _{n \rightarrow \infty} \frac{\left(\sin 1 / n^{2}\right)^{1 / 3}}{\left(1 / n^{2}\right)^{1 / 3}}=1$
since $\sum_{0}^{\infty} \frac{1}{n^{2 / 3}}$ diverges, $\sum_{1}^{\infty}\left(\sin \frac{1}{n^{2}}\right)^{1 / 3}$ is D

$$
\begin{aligned}
\sum_{n=1}^{\infty}(-1)^{n} \ln \cos \frac{1}{n} \quad \ln \cos \frac{1}{n} & \sim \ln \left(1-1 / n^{2}\right) \\
& \sim-1 / n^{2}, \text { so }
\end{aligned}
$$

$\left|(-1)^{n} \ln \cos \frac{1}{n}\right| \sim \frac{1}{n^{2}}$ in the sense that $\lim _{n \rightarrow \infty} \frac{(-1)^{n}\left|n \cos ^{1} / n\right|}{1 / n^{2}}=1$. Since $\sum_{\infty}^{\infty} 1 / n^{2}$ converges,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(2 n)!}{5^{n}(n!)^{2}} \\
& \text { ratio test: } \quad \frac{a_{n+1}}{a_{n}}=\frac{(2 n+2)(2 n+1)}{5(n+1)^{2}} \rightarrow \frac{4}{5}<1
\end{aligned}
$$

$$
\sum_{n=0}^{\infty}\binom{5}{n}(-3)^{n} \quad\binom{5}{n}=0 \text { for } n \geq 5
$$

\because the sum is finite

Ga. (2 pts) Is the following statement True or False? Justify your answer with a proof or counterexample. (Obviously it's true if $a_{n} \geq 0$ and $b_{n} \geq 0$, so don't assume this).

If $\sum a_{n}$ is divergent and $\sum b_{n}$ is divergent, then $\sum\left(a_{n}+b_{n}\right)$ is also divergent.
False. If $a_{n}=\frac{1}{n}$ and $b_{n}=-\frac{1}{n}$, then both
$: \sum a_{n}$ and $\sum b_{n}$ diverge, but $a_{n}+b_{n}=0$ so $\sum\left(a_{n}+b_{n}\right)$ converges.
bb. (3 points) Suppose $\sum c_{n} x^{n}$ has radius of convergence 2 while $\sum d_{n} x^{n}$ has radius of convergence 1. What is the radius of convergence of the series $\sum\left(c_{n}+d_{n}\right) x^{n}$? Explain.

If $|x|<1$, then $\sum c_{1} x^{n}$ and $\sum d_{1} x^{n}$ converge, so

$$
\sum\left(c_{1}+d_{n}\right) x^{n} \text { converges. }
$$

If $\left|<|x|<\alpha\right.$, then $\sum c_{n} t^{n}$ convoger and $\sum d_{n} x^{n}$ diverges, so

$$
\sum\left(c_{n}+d_{n}\right) x^{n} \text { divages. }
$$

Because $\sum\left(c_{1}+d_{n}\right) x^{n}$ is a power series, and it dimvegor for $1\langle x|<2$, it must diverge for $1<|x|$.

So $R=1$.

7a. (3 points) Prove that $e \geq\left(1+\frac{1}{k}\right)^{k}$ for $k \geq 1$. (Hint: $\left.\ln (1+x)=x-\frac{x^{2}}{2}+\cdots\right)$

$$
\begin{aligned}
e & \geq\left(1+\frac{1}{k}\right)^{k} \\
\Leftrightarrow \ln e=1 & \geq k \ln (1+1 / k) \\
& =k\left[1 / k-1 / k^{2}+1 / 3 k^{3}-\cdots\right] \\
& =1-1 / 2 k+1 / 3 k^{2}-\ldots
\end{aligned}
$$

Since $1-1 / 2 t+1 / 3 k^{2}-\cdots$ is an alternating series with decreasing abs value of terms,

$$
1 \geq 1-1 / 2 k+1 / 3 k^{2}-\cdots \text {, completing the proof. }
$$

7b. (3 points) Use part (a) and mathematical induction to prove the following crude version of Stirling's approximation:
$e^{n} n!\geq n^{n} \quad$ for all $n \geq 1$.
Base case $n=1: \quad e^{1} 1!\stackrel{?}{2}^{\geq} 1^{\prime}$,

$$
(e \geq 1)
$$

Induction step: suppose $e^{k} k!\geqslant k^{k}$.
Then $e^{k+1}(k+1)!=e^{k} \cdot e \cdot k!\cdot(k+1)$
(by induction hyp) $\geqslant k^{k} \cdot e \cdot(k+1)$
(by (a))

$$
\begin{aligned}
& \geq k^{k}(1+1 / k)^{k}(k+1) \\
& =(k+1)^{k}(k+1) \\
& =(k+1)^{k+1}
\end{aligned}
$$

