Homework for Quiz 4 (on October 1)

1. Use the product rule to show that $\frac{d}{d x} x^{n}=n x^{n-1}$ for $n \geq 1$.
(Here $x^{0}=1$ even when $x=0$.)
2. Suppose $f(x)$ is odd. Prove that $g(x)=f(x)^{n}$ is $\left\{\begin{array}{l}\text { odd if } n \text { is odd } \\ \text { even if } n \text { is even }\end{array}\right\}$ for $n \geq 1$.
3. Use the fact that $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$ to prove that

$$
\frac{d}{d x}\left(\sum_{i=1}^{n} f_{i}(x)\right)=\sum_{i=1}^{n} f_{i}^{\prime}(x), \quad(n \geq 1)
$$

4. (\#39 p. 193) Prove that $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty$ for $n \geq 1$.
5. (\#55 p. 196) Show that if $f(x)=x e^{x}$, then $f^{(n)}(x)=(x+n) e^{x}$ for $n \geq 1$.
6. (\#52 p. 219) Prove that $e^{x} \geq 1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}$ for every real number $x \geq 0$ and integer $n \geq 1$.
7. Show that $2^{n} \geq n^{2}$ for $n \geq 4$.
8. (\#31(c) p. 309) Show that for $n \geq 1, \int_{0}^{\pi / 2} \sin ^{2 n+1} x d x=\frac{2 \cdot 4 \cdot 6 \cdots \cdot 2 n}{3 \cdot 5 \cdot 7 \cdots \cdots(2 n+1)}$
