$\sin ^{2} x+\cos ^{2} x=1$
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$

$$
\frac{d}{d x} \sin x=\cos x \quad \frac{d}{d x} \tan x=\sec ^{2} x
$$

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}
$$

$\sin ^{2} x=\frac{1-\cos 2 x}{2} \quad \frac{d}{d x} \cos x=-\sin x \quad \frac{d}{d x} \sec x=\sec x \tan x$
$\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$
$\int \tan u d u=\ln |\sec u|+C \quad \int \sec u d u=\ln |\sec u+\tan u|+C$

$$
\int \tanh u d u=\ln (\cosh u)+C \quad \int \operatorname{sech} u d u=\tan ^{-1}|\sinh u|+C \quad \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}
$$

$\sinh x=\frac{e^{x}-e^{-x}}{2} \quad \tanh x=\frac{\sinh x}{\cosh x}$
$\cosh x=\frac{e^{x}+e^{-x}}{2} \quad \operatorname{sech} x=\frac{1}{\cosh x}$

$$
\begin{array}{llll}
\cosh ^{2} x-\sinh ^{2} x=1 & \cosh ^{2} x=\frac{\cosh 2 x+1}{2} & \frac{d}{d x} \sinh x=\cosh x & \frac{d}{d x} \tanh x=\operatorname{sech}^{2} x \\
\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x & \sinh ^{2} x=\frac{\cosh 2 x-1}{2} & \frac{d}{d x} \cosh x=\sinh x & \frac{d}{d x} \operatorname{sech} x=-\operatorname{sech} x \tanh x
\end{array}
$$

Newton's method for solving $f(x)=0: \quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \quad \int u d v=u v-\int v d u$
MVT: if f is continuous on $[a, b]$ and differentiable on (a, b), there is a $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

$$
\begin{array}{lc}
L_{n}=\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x, \quad R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad S_{n}=\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \frac{\Delta x}{3} \\
M_{n}=\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x, \quad \Delta x=\frac{b-a}{n}, \quad \bar{x}_{i}=\frac{x_{i-1}+x_{i}}{2} \quad T_{n}=\left[\frac{1}{2} f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n-1}\right)+\frac{1}{2} f\left(x_{n}\right)\right] \Delta x
\end{array}
$$

$$
E_{T}=\int_{a}^{b} f(x) d x-T_{n}, \quad\left|E_{L}\right| \leq \frac{K_{1}(b-a)^{2}}{2 n}, \quad\left|E_{R}\right| \leq \frac{K_{1}(b-a)^{2}}{2 n}, \quad\left|E_{T}\right| \leq \frac{K_{2}(b-a)^{3}}{12 n^{2}}, \quad\left|E_{M}\right| \leq \frac{K_{2}(b-a)^{3}}{24 n^{2}}, \quad\left|E_{S}\right| \leq \frac{K_{4}(b-a)^{5}}{180 n^{4}} \quad K_{j}=\max _{x}\left|f^{(j)}(x)\right|
$$

Comparison theorem: Suppose $f(x) \geq g(x) \geq 0$ for $x \in(a, b)$.
(1) if $\int_{a}^{b} f(x) d x$ is convergent, then $\int_{a}^{b} g(x) d x$ is convergent.
(2) if $\int_{a}^{b} g(x) d x$ is divergent, then $\int_{a}^{b} f(x) d x$ is divergent. ($a=-\infty$ and/or $b=\infty$ are allowed.)
$\int_{1}^{\infty} \frac{1}{x^{p}} d x$ is convergent if $p>1$ and divergent if $p \leq 1$.
$\int_{0}^{1} \frac{1}{x^{p}} d x$ is convergent if $p<1$ and divergent if $p \geq 1$.

Partial Fractions:

$$
\frac{3 x^{5}+2 x+7}{\left(x^{2}+x+1\right)^{2} x^{3}(x-2)}=\frac{A x+B}{x^{2}+x+1}+\frac{C x+D}{\left(x^{2}+x+1\right)^{2}}+\frac{E}{x}+\frac{F}{x^{2}}+\frac{G}{x^{3}}+\frac{H}{x-2}
$$

Trig Substitution

$$
\begin{array}{ll}
\sqrt{a^{2}-x^{2}} & x=a \sin \theta \\
\sqrt{a^{2}+x^{2}} & x=a \tan \theta \quad \text { or } \quad x=a \sinh \theta \\
\sqrt{x^{2}-a^{2}} & x=a \sec \theta \quad \text { or } \quad x= \pm a \cosh \theta
\end{array}
$$

$$
\begin{aligned}
& \sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right) \quad x \in \mathbb{R} \quad \frac{d}{d x} \sinh ^{-1} x=\frac{1}{\sqrt{1+x^{2}}} \\
& \cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right) \quad x \geq 1 \quad \frac{d}{d x} \cosh ^{-1} x=\frac{1}{\sqrt{x^{2}-1}} \\
& \tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \quad-1<x<1 \\
& \frac{d}{d x} \tanh ^{-1} x=\frac{1}{1-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x} x^{n}=n x^{n-1}, \quad \frac{d}{d x} e^{x}=e^{x}, \quad \frac{d}{d x} \ln |x|=\frac{1}{x} \quad\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \\
& (f g)^{\prime}=f^{\prime} g+g^{\prime} f, \quad(f / g)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}} \quad \frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x) \\
& \sin ^{-1} x=y \quad \Leftrightarrow \quad \sin y=x \quad \text { and } \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \\
& \cos ^{-1} x=y \quad \Leftrightarrow \quad \cos y=x \quad \text { and } \quad 0 \leq y \leq \pi \\
& \tan ^{-1} x=y \quad \Leftrightarrow \quad \tan y=x \quad \text { and } \quad-\frac{\pi}{2}<y<\frac{\pi}{2}
\end{aligned}
$$

