Math 1A, Spring 2008, Wilkening

Sample Final Exam 2

You are allowed one 8.5×11 sheet of notes with writing on both sides. This sheet must be turned in with your exam. Calculators are not allowed.

0 . (1 point) write your name, section number, and GSI's name on your exam.

1. (3 points) give precise definitions of the following statements or expressions:
(a) $f(x)$ is neither even nor odd
(b) $\int f(x) d x$
(c) $\int_{a}^{b} f(x) d x$

Solution:

(a) There exist numbers x_{1} and x_{2} such that $f\left(-x_{1}\right) \neq f\left(x_{1}\right)$ and $f\left(-x_{2}\right) \neq-f\left(x_{2}\right)$.
(b) $\int f(x) d x$ is any antiderivative of $f(x)$, i.e. a function $F(x)$ such that $F^{\prime}(x)=f(x)$.
(c) the definite integral is defined as

$$
\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

where the limit is over all partitions $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$ of the interval $[a, b]$ into subintervals of length $\Delta_{i}=x_{i}-x_{i-1}$, and x_{i}^{*} is a sample point in the i th interval $\left[x_{i-1}, x_{i}\right]$.
2. (4 points) Show that the tangent lines to the curves $y=x^{3}$ and $x^{2}+3 y^{2}=1$ are perpendicular where the curves intersect.

Solution:

The slope of the tangent line of the first curve is $m_{1}=y^{\prime}=3 x^{2}$.
For the second, differentiate implicitly:

$$
2 x+6 y y^{\prime}=0 \quad \Rightarrow \quad y^{\prime}=-\frac{x}{3 y}
$$

When the curves intersect, we have $y=x^{3}$, so $m_{2}=y^{\prime}=-1 /\left(3 x^{2}\right)$. Since $m_{2}=$ $-1 / m_{1}$, these tangent lines are perpendicular.
3. (3 points) Evaluate $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$.

Solution:
Let $u=\tan ^{-1} x$. Then $d u=\frac{d x}{1+x^{2}}$ and the limits of integration become

$$
x=0 \quad \rightarrow \quad u=0, \quad x=1 \quad \rightarrow \quad u=\frac{\pi}{4} .
$$

(The latter condition comes from solving $\tan u=\frac{\sin u}{\cos u}=1$ for u). So

$$
\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x=\int_{0}^{\pi / 4} u d u=\left.\frac{u^{2}}{2}\right|_{0} ^{\pi / 4}=\frac{\pi^{2}}{32}
$$

4. If f is continuous and $\int_{0}^{4} f(x) d x=6$, find $\int_{0}^{2} f(2 x) d x$.

Solution: Let $u=2 x$. Then $d u=2 d x$ so

$$
\int_{0}^{2} f(2 x) d x=\int_{0}^{4} f(u)\left(\frac{d u}{2}\right)=\frac{1}{2} \int_{0}^{4} f(u) d u=3
$$

5. (5 points) A right circular cone of height h and base radius R has a hole of radius r drilled through its center (from the tip to the center of the base). Find the volume of the solid that remains.

Solution:

$$
\begin{aligned}
V & =\int_{r}^{R} 2 \pi x\left(h-\frac{h}{R} x\right) d x \\
& =2 \pi h\left\{\left.\frac{x^{2}}{2}\right|_{r} ^{R}-\left.\frac{x^{3}}{3 R}\right|_{r} ^{R}\right\} \\
& =2 \pi h\left(\frac{R^{2}}{2}-\frac{r^{2}}{2}-\frac{R^{3}}{3 R}+\frac{r^{3}}{3 R}\right) \\
& =\pi h\left(\frac{R^{2}}{3}-r^{2}+\frac{2 r^{3}}{3 R}\right) .
\end{aligned}
$$

6. (5 points) Let $f(x)=\tanh ^{-1}(\sin x)$ and $g(x)=\ln |\sec x+\tan x|$. Compute $f^{\prime}(x)$, $g^{\prime}(x), f(n \pi)$ and $g(n \pi)$ with n an integer. What do you conclude?

Solution: $\frac{d}{d x} \tanh ^{-1} x=\frac{1}{1-x^{2}}$ and $\frac{d}{d x} \ln |x|=\frac{1}{2} \frac{d}{d x} \ln x^{2}=\frac{1}{2} \cdot \frac{2 x}{x^{2}}=\frac{1}{x}$. So by the chain rule:

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\cos x}{1-\sin ^{2} x}=\sec x, \quad g^{\prime}(x)=\frac{\sec x \tan x+\sec ^{2} x}{\sec x+\tan x}=\sec x, \\
& f(n \pi)=\tanh ^{-1}(\sin n \pi)=\tanh ^{-1}(0)=0 \\
& g(n \pi)=\ln |\sec (n \pi)+\tan (n \pi)|=\ln | \pm 1+0|=\ln (1)=0
\end{aligned}
$$

Consider one of the intervals (a, b) on which f and g are defined (i.e. let $a=\left(n-\frac{1}{2}\right) \pi$ and $b=\left(n+\frac{1}{2}\right) \pi$ for some integer $\left.n\right)$. Since $f^{\prime}(x)=g^{\prime}(x)$ on this interval, the mean value theorem implies that there is a constant C such that $f(x)-g(x)=C$. Since $f(n \pi)=g(n \pi), C=0$. So $f(x)=g(x)$ for all x in their domains.
7. (5 points) A boat leaves a dock at 2:00 PM and travels due south at a speed of $20 \mathrm{~km} / \mathrm{h}$. Another boat has been heading due east at $10 \mathrm{~km} / \mathrm{h}$ and reaches the same dock at 3:00 PM. At what time were the two boats closest together? Verify that the distance was minimized using one of the derivative tests.

Solution:

Let y be the distance from the first boat to the dock.
Let x be the distance from the second boat to the dock.
Let s be the distance from the first boat to the second boat.
Let t be the time (in hours) since 2:00 PM. Then

$$
\begin{aligned}
& y=20 t, \quad x=10-10 t, \quad s^{2}=x^{2}+y^{2} \\
& 2 s \frac{d s}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2(10-10 t)(-10)+2(20 t)(20)=0 \text { at a minimum. }
\end{aligned}
$$

Now we divide by 200 and solve for t :

$$
(1-t)(-1)+(2 t)(2)=-1+5 t=0, \quad t=1 / 5
$$

The first derivative test is easier here since the sign of $\frac{d s}{d t}$ is the same as that of $s \frac{d s}{d t}=200(-1+5 t)$, which changes from negative to positive as t crosses $1 / 5$, indicating that s achieves a minimum at $t=1 / 5$.
8. (6 points) Let $f(x)=\frac{x^{2}\left(\sqrt{x^{2}+3}-x-1\right)}{x^{2}-1}$.
(a) find all vertical and horizontal asymptotes of f.
(b) show that $y=-2 x-1$ is a slant asymptote, i.e. $\lim _{x \rightarrow-\infty}[f(x)-(-2 x-1)]=0$.

Hint for (b): first show that $\lim _{x \rightarrow-\infty}\left[\sqrt{x^{2}+3}+x\right]=0$, then manipulate $[f(x)+2 x+1]$ to make use of this.
(a) vertical asymptotes: candidates are $x=1, x=-1$
at $x=1$, numerator if $(1)(\sqrt{4}-1-1)=0 . \frac{0}{0}$ form. use l^{\prime} Hospital.

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1} \frac{2 x\left(\sqrt{x^{2}+3}-x-1\right)+x^{2}\left(\frac{2 x}{2 \sqrt{x^{2}+3}}-1\right)}{2 x} \\
& =\frac{2(0)+(1)\left(\frac{1}{2}-1\right)}{2}=-\frac{1}{4} \neq \infty
\end{aligned}
$$

so f does not have in vertical asymptote at $x=1$.
at $x=-1$, numerator is $(1)(\sqrt{4}+1-1)=2$

$$
\begin{aligned}
& \text { lenterner i: }(x-1)(x+1)=(-2)(0)=0 \\
& \left.\lim _{x \rightarrow-1^{+}} f(x)=\frac{2}{(-2)\left(0^{+}\right)}=-\infty\right\rangle_{\quad \text { fha }} \\
& \lim _{x \rightarrow-1^{-}} f(1)=\frac{2}{(-1)\left(0^{-}\right)}=+\infty \quad \text { ayin } x=-1 \text {. }
\end{aligned}
$$

hoorzited asper: $\quad x^{2}+2 x+1$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+3}\right)^{2}-(x+1)}{\left(1-\frac{1}{x}\right)\left(\sqrt{x^{2}+3}+x+1\right)}=\lim _{x \rightarrow \infty} \frac{2-2 x}{\left(1-\frac{1}{x^{2}}\right)\left(\sqrt{x^{2}+3}+x+1\right)} \\
& =\lim _{x \rightarrow \infty} \frac{(2 / x)-2}{\left(1-\frac{1}{x^{2}}\right)\left(\sqrt{1+\frac{3}{x}}+1+\frac{1}{x}\right)}=\frac{0-2}{(1-1(\sqrt{1+0}+11)}=\frac{-2}{2}=-1
\end{aligned}
$$

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+3}-x-1}{1-1 / x^{2}}=\frac{+\infty}{1-0}=\infty
$$

So $y=-1$ is the ant buan aympte
(b)

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \sqrt{x^{2}+3}+x=\lim _{x \rightarrow-\infty} \frac{\left(x^{2}+3\right)-x^{2}}{\sqrt{x^{2}+3}-x}=\lim _{x \rightarrow-\infty} \frac{3 /|x|}{\sqrt{1+\frac{3}{x^{2}}}-\frac{x}{|x|}} \\
& =\lim _{x \rightarrow-\infty} \frac{3 /|x|}{\sqrt{1+\frac{3}{x^{2}}}+1}=\frac{0}{2}=0 \\
& \lim _{x \rightarrow-\infty}\left[\frac{x^{2}\left(\sqrt{x^{2}+3}-x-1\right)}{x^{2}-1}-(-2 x-1)\right] \\
& =\lim _{x \rightarrow-\infty}\left[\frac{\left(\sqrt{x^{2}+3}+x\right)-2 x-1}{1-1 / x^{2}}+2 x+1\right] \\
& =\lim _{x \rightarrow-\infty}\left[\frac{\left(\sqrt{x^{2}+3}+x\right)-\frac{0}{-2 x-1+2 x+1}-\frac{2}{x}-\frac{1}{x^{2}}}{1-1 / x^{2}}\right] \\
& =\frac{0-0-0-0}{1-0}=0
\end{aligned}
$$

9. (9 points) A model rocket is fired vertically upward from rest. Its acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) for the first two seconds is $a(t)=24 t$, at which time the fuel is exhausted and it becomes a freely "falling" body (with constant acceleration $a(t)=-8 \mathrm{~m} / \mathrm{s}^{2}$; the earth's gravity was unusually weak that day.) 10 seconds later, the parachute opens and the velocity v (which is negative at this point) slows according to the differential equation

$$
\begin{equation*}
\frac{d v}{d t}=-\left(v-v_{s}\right), \quad v_{s}=-5 \mathrm{~m} / \mathrm{s}^{2} \tag{1}
\end{equation*}
$$

until it hits the ground.
(a) Determine the position $s(t)$, velocity $v(t)$, and acceleration $a(t)$ for $0 \leq t \leq 12$. (The parachute opens at $t=12$).
(b) At what time does the rocket reach its maximum height, and what is that height?
(c) Find $v(t)$ for $t \in[12, T]$, where T is the time when the rocket hits the ground. (you don't have to compute T, which turns out to be very close to 29).
(d) sketch the graphs of $a(t), v(t)$ and $s(t)$ from $0 \leq t \leq T$. Be sure your curves are qualitatively correct even though you did not work out the formulas for $s(t)$ or $a(t)$ for $t>12$.

$$
\text { (a) } \begin{aligned}
0 \leq t \leq 2: a(t) & =24 t \\
v(t) & =v(0)+\int_{0}^{t} a(v) d u=0+\left.12 u^{2}\right|_{0} ^{t}=12 t^{2} \\
s(t) & =110+\int_{0}^{t} v\left(u d u=0+\left.4 u^{3}\right|_{0} ^{t}=4 t^{3}\right. \\
v(2) & =48 \\
5(2) & =32 \\
2 \leq t \leq 12: \quad a(t) & =-8 \\
v(t) & =v(2)+\int_{2}^{t}(u) d u=48-\left.8 u\right|_{2}=64-8 t \\
5(t) & =5(2)+\int_{2}^{t} v(u) d u=32+64(t-2)-4\left(t^{2}-4\right) \\
v(12) & =64-8(12)=8(-4)=-32 \\
s(12) & =-80+64(12)-4(144)=112
\end{aligned}
$$

(b) max hight: $v\left(t_{\text {max }}\right)=0 \quad S\left(t_{\text {max }}\right)=-80+64(8)-4(64)$

$$
\begin{aligned}
& 64-8 t_{\text {max }}=0 \\
& t_{\text {max }}=8
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \frac{d v}{d t}=-(v+5), v(12)=-32 \\
& w=v+5 \\
& \frac{d w}{d t}=\frac{d v}{d t}=-(v+5)=-w \\
& w(t)=\left(e^{-t}\right. \\
& w(12)=v(12)+5=-27=C e^{-12} \Rightarrow C=-27 e^{12} \\
& v(t)=w(t)-5=-27 e^{12} e^{-t}-C \\
& v(t)=-5-27 e^{-(t-12)}
\end{aligned}
$$

Shock: $v^{\prime}+1=27 e^{-(t-1-)}=-(v+5)$
(d)

