Midterm 1, Version A

Please write your <u>name</u>, <u>section number</u>, <u>GSI's name</u>, and <u>version of your exam</u> on your blue book, and write your <u>name</u> on your sheet of notes.

1. (2 points) Interpret the following limit as a derivative and evaluate the limit using the appropriate differentiation rule.

$$\lim_{x \to 1} \frac{x^{50} - 1}{x - 1}$$

2. (4 points) Compute the following derivative:

$$\frac{d}{dx}\Big|_{x=1} \frac{x^{7/3}}{x^{1/3} + x^{4/3}}$$

3. (4 points) Suppose f is even and g is odd. Determine whether each of the following functions is even, odd or neither. If the function is even or odd, prove it. If neither, give an example of f and g such that the new function is neither even nor odd.

(i)
$$f \circ g$$
 (ii) $g \circ f$ (iii) fg (iv) $f + g$

4. (5 points) Let $f(x) = x \cos x$. Show that there is a point c between 0 and $\pi/2$ such that the tangent line to the curve at the point (c, f(c)) is horizontal.

5. (5 points) Suppose $\lim_{x\to\infty} [f(x) - 2x] = 3$. Evaluate $\lim_{x\to\infty} \frac{f(x)}{x}$. Justify your answer.

6. (5 points) Evaluate the limit

$$\lim_{t \to 0} \frac{t^2}{1 - \cos 5t}$$

7. (5 points) Use the δ - ε definition of the limit to prove that $\lim_{x \to 1} \sqrt{x} = 1$.

Midterm 1, Version B

Please write your <u>name</u>, <u>section number</u>, <u>GSI's name</u>, and <u>version of your exam</u> on your blue book, and write your <u>name</u> on your sheet of notes.

1. (2 points) Interpret the following limit as a derivative and evaluate the limit using the appropriate differentiation rule.

$$\lim_{x \to 1} \frac{x^{75} - 1}{x - 1}$$

2. (4 points) Compute the following derivative:

$$\frac{d}{dx}\Big|_{x=1} \frac{x^{4/3}}{x^{1/3} + x^{7/3}}$$

3. (4 points) Suppose f is even and g is odd. Determine whether each of the following functions is even, odd or neither. If the function is even or odd, prove it. If neither, give an example of f and g such that the new function is neither even nor odd.

(i)
$$f \circ g$$
 (ii) $g \circ f$ (iii) fg (iv) $f + g$

4. (5 points) Let $f(x) = x \cos x$. Show that there is a point c between 0 and $\pi/2$ such that the tangent line to the curve at the point (c, f(c)) is horizontal.

5. (5 points) Suppose $\lim_{x \to \infty} [f(x) - 4x] = 3$. Evaluate $\lim_{x \to \infty} \frac{f(x)}{x}$. Justify your answer.

6. (5 points) Evaluate the limit

$$\lim_{t \to 0} \frac{t^2}{1 - \cos 3t}$$

7. (5 points) Use the δ - ε definition of the limit to prove that $\lim_{x \to 1} \sqrt{x} = 1$.