Math 1A, Spring 2008, Wilkening

Sample Midterm 1

1. (2 points) What is the domain of the function $f(x)=\frac{\sqrt{x-2}+\sqrt{7-x}}{x-5}$?

Answer:
$[2,5) \cup(5,7]$
x must be ≥ 2 for $\sqrt{x-2}$ to be defined. It must be ≤ 7 for $\sqrt{7-x}$ to be defined, and it must $\neq 5$ so that $x-5 \neq 0$
2. (3 points) Compute the following derivative:

$$
\left.\frac{d}{d \theta}\right|_{\theta=0} \tan \theta \cos \theta
$$

Answer:

$$
\left.\frac{d}{d \theta}\right|_{\theta=0} \tan \theta \cos \theta=\left.\frac{d}{d \theta}\right|_{\theta=0} \frac{\sin \theta}{\cos \theta} \cos \theta=\left.\frac{d}{d \theta}\right|_{\theta=0} \sin \theta=\cos 0=1
$$

3. (5 points) Find the equation of the tangent line to the curve $y=1 /\left(1+x^{2}\right)$ at the point $\left(3, \frac{1}{10}\right)$.

Answer:

$$
\frac{d y}{d x}=\frac{-2 x}{\left(1+x^{2}\right)^{2}}
$$

so at $\left(3, \frac{1}{10}\right)$, the slope of the tangent line is $\frac{-2 * 3}{\left(1+3^{2}\right)^{2}}=\frac{-3}{50}$.
Putting the line into point-slope format gives $y-\frac{1}{10}=\frac{-3}{50}(x-3)$ or $y=\frac{-3}{50} x+\frac{7}{25}$
4. $\left(5\right.$ points) Compute $\lim _{x \rightarrow \infty} \frac{(x-1)(2 x-3)}{(4 x+1)(7 x+1)}$

Answer:

$$
\lim _{x \rightarrow \infty} \frac{(x-1)(2 x-3)}{(4 x+1)(7 x+1)}=\lim _{x \rightarrow \infty} \frac{(1-1 / x)(2-3 / x)}{(4+1 / x)(7+1 / x)}=\frac{(1-0)(2-0)}{(4+0)(7+0)}=\frac{1}{14}
$$

5. (5 points) Prove that $f(x)=1-x^{5}$ has a fixed point (i.e. there is a number c such that $f(c)=c$).

Answer:
Let $g(x)=f(x)-x=1-x^{5}-x$
Then, $g(0)=1>0$ and $g(1)=-1<0$, so by the Intermediate Value Theorem, there is some c in $(0,1)$ such that $g(c)=0$, and therefore, for that same $\mathrm{c}, f(c)=c$
6. (5 points) Evaluate the limit

$$
\lim _{\theta \rightarrow 0^{-}} \frac{\sin \theta}{\sqrt{1-\cos \theta}}
$$

Answer:
Note first that when $\theta<0$ but θ is close to $0, \sin \theta<0$
so $\sin \theta=-\sqrt{\sin ^{2} \theta}=-\sqrt{1-\cos ^{2} \theta}$, thus we get
$\lim _{\theta \rightarrow 0^{-}} \frac{\sin \theta}{\sqrt{1-\cos \theta}}=\lim _{\theta \rightarrow 0^{-}} \frac{-\sqrt{1-\cos ^{2} \theta}}{\sqrt{1-\cos \theta}}=\lim _{\theta \rightarrow 0^{-}}-\sqrt{\frac{1-\cos ^{2} \theta}{1-\cos \theta}}=\lim _{\theta \rightarrow 0^{-}}-\sqrt{1+\cos \theta}=-\sqrt{2}$
7. (5 points) Use the $\delta-\varepsilon$ definition of the limit to prove one of the following:
(a) $\lim _{x \rightarrow 2} 1 / x=1 / 2$.

Answer:
Let $\varepsilon>0$. Choose $\delta=\min (2 \varepsilon, 1)$. Then, if $0<|x-2|<\delta$, then $|1 / x-1 / 2|=|(2-x) / 2 x|=|x-2| /|2 x|<\delta /|2 x|<{ }^{1} \delta / 2 \leq \varepsilon$
${ }^{1}$: note that $\delta \leq 1$, so if $0<|x-2|<\delta$ then $x>1$ so $\delta /|2 x|<\delta / 2$
(b) Suppose $\lim _{x \rightarrow 0} f(x)=L$. Define $g(x)=f(-x)$. Then $\lim _{x \rightarrow 0} g(x)=L$.

Answer:

Let $\varepsilon>0$. Choose δ so that if $0<|x-0|<\delta$ then $|f(x)-L|<\varepsilon$ (such a δ exists because $\lim _{x \rightarrow 0} f(x)=L$)
Then, for the chosen δ, if $0<|x-0|<\delta$ then $0<|(-x)-0|<\delta$ so $|g(x)-L|=|f(-x)-L|<\varepsilon$

Another Sample Midterm 1

1. (2 points) Determine whether f is even, odd or neither: $f(x)=\frac{x}{1+x^{2}}$.

Answer:
f is odd.
$f(-x)=\frac{(-x)}{1+(-x)^{2}}=-\frac{x}{1+x^{2}}=-f(x)$
2. (3 points) Let $f(x)=\frac{x^{3 / 2}+2 \sqrt{x}}{x^{5}}$. Evaluate $f^{\prime}(1)$.

Answer:
$f(x)=\frac{x^{3 / 2}+2 \sqrt{x}}{x^{5}}=x^{-7 / 2}+2 x^{-9 / 2}$ so $f^{\prime}(x)=(-7 / 2) x^{-9 / 2}-9 x^{-11 / 2}$
3. (5 points) Find all the points on the curve $y=x^{3}+3 x^{2}+3 x+1$ where the tangent line is horizontal.

Answer:
The tangent line is horizontal whenever the derivative is zero. $y^{\prime}=3 x^{2}+6 x+3=3(x+1)^{2}$ so $y^{\prime}=0$ when $x=-1$, also, when $x=-1, y=(-1)^{3}+3(-1)^{2}+3(-1)+1=0$, so the only point with a horizontal tangent line is $(-1,0)$
4. (5 points) Find the value a such that the following limit exists and evaluate the limit:

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}
$$

Answer: As $x \rightarrow-2$, the denominator $\rightarrow 0$, so for the limit to exist, the numerator must also $\rightarrow 0$, so we must have $0=3(-2)^{2}+a(-2)+a+3=15-a$, ie $a=15$

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+15 x+15+3}{x^{2}+x-2}=\lim _{x \rightarrow-2} \frac{3(x+2)(x+3)}{(x+2)(x-1)}=\lim _{x \rightarrow-2} \frac{3(x+3)}{x-1}=\frac{3((-2)+3)}{(-2)-1}=-1
$$

5. (5 points) Compute $\lim _{x \rightarrow \infty} x \tan \left(\frac{\pi}{x}\right)$. Hint: $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow 0^{+}} f(1 / x)$.

Answer:
$\lim _{x \rightarrow \infty} x \tan \left(\frac{\pi}{x}\right)=\lim _{x \rightarrow 0^{+}} \frac{1}{x} \tan \left(\frac{\pi}{1 / x}\right)=\lim _{x \rightarrow 0^{+}} \frac{\tan (\pi x)}{x}=\lim _{x \rightarrow 0^{+}} \pi \frac{\sin (\pi x)}{\pi x} \frac{1}{\cos (\pi x)}=\pi$
6. (5 points) Evaluate the limit

$$
\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}+1}\right)
$$

Answer:

$$
\begin{gathered}
\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}+1}\right)=\lim _{x \rightarrow-\infty} \frac{\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}+1}\right)\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}\right)}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}}= \\
\lim _{x \rightarrow-\infty} \frac{\left(x^{2}+x+1\right)-\left(x^{2}+1\right)}{\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}\right)}=\lim _{x \rightarrow-\infty} \frac{x}{\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}\right)}= \\
\lim _{x \rightarrow-\infty} \frac{x / \sqrt{x^{2}}}{\left(\sqrt{1+1 / x+1 / x^{2}}+\sqrt{1+1 / x^{2}}\right)}=\frac{-1}{(\sqrt{1+0+0}+\sqrt{1+0})}=-\frac{1}{2}
\end{gathered}
$$

7. (5 points) A stone is dropped from height H on a planet with gravitational constant g. The equation of motion of the stone is $y(t)=H-\frac{1}{2} g t^{2}$. Show that the instantaneous velocity of the stone when it hits the ground is twice the average velocity during its fall.

Answer:

Let T be the time that the stone hits the ground. Then $0=y(T)=H-\frac{1}{2} g T^{2}$, so $H=\frac{1}{2} g T^{2}$ and thus $T=\sqrt{2 H / g}$
The average velocity, $v_{\text {avg }}$ is (the total distance traveled)/(the total time traveled), $v_{\text {avg }}=-H / T=-H /(\sqrt{2 H / g})=-\sqrt{H g / 2}$
(the velocity is negative because the stone traveled down)
The velocity at time t is given by $y^{\prime}(t)=-g t$, therefore the final velocity $v_{f i n}$ is $y^{\prime}(T)$ $v_{f i n}=-g T=-g \sqrt{2 H / g}=-\sqrt{2 H g}=-2 \sqrt{H g / 2}=2 v_{\text {avg }}$

