Math 1A, Spring 2008, Wilkening

Another Sample Midterm 2

1. (1 point) write your name, section number, and GSI's name on your exam and write your name on your sheet of notes.
2. (3 points) Suppose f is twice differentiable on the interval $[0,4]$ and satisfies

$$
\begin{aligned}
f^{\prime}(0) & =1 & f^{\prime}(1) & =0 & f^{\prime}(2) & =0 \\
f^{\prime \prime}(0) & =-1 & f^{\prime \prime}(1) & =-2 & f^{\prime \prime}(2) & =0
\end{aligned} \quad f^{\prime}(3)=-1 \quad(3)=1 \quad f^{\prime}(4)=0
$$

At the endpoints $x=0$ and $x=4$, these are one-sided derivatives. Fill in the following table with YES, NO, or CBT (cannot be determined).

$c=$	0	1	2	3	4
f has a local max at c	No	Yes, $f^{\prime \prime}(1)<0$	CBT	No, $f^{\prime}(3) \neq 0$	No
f has a local min at c	Yes, $f^{\prime}(0)>0$	No	CBT	No, $f^{\prime}(3) \neq 0$	Yes, $f^{\prime \prime}(4)>0$

3. (5 points) Let $f(x)=x^{x}$. Compute $f^{\prime}(2), f^{\prime}(4)$ and $(f \circ f)^{\prime}(2)$. Note that $4^{4}=256$.

$$
\begin{aligned}
& y=f(x)=x^{x} \Longrightarrow \\
& \frac{1}{y} \frac{d y}{d x}=\ln (x)+\frac{x}{x} \Longrightarrow \quad \frac{1}{\ln (y)=\ln \left(x^{x}\right) \Longrightarrow} \begin{array}{l}
\ln (y)=x \ln (x) \\
\Longrightarrow f^{\prime}(x)=x^{x}(\ln (x)+1) \\
(f \circ f)^{\prime}=(f(f(x)))^{\prime}=f^{\prime}(f(x)) \cdot f^{\prime}(x) \\
f^{\prime}(2)=2^{2}(\ln (2)+1)=4(\ln (2)+1) \\
(f \circ f)^{\prime}(2)=f^{\prime}(f(2)) \cdot f^{\prime}(2)=f^{\prime}(4) \cdot f^{\prime}(2)=1024(\ln (2)+1)(\ln (4)+1)
\end{array}
\end{aligned}
$$

4. (5 points) Use a linear approximation to estimate: $\frac{1}{\pi} \tan ^{-1}\left(1+\frac{\pi}{100}\right)$.

$$
\begin{aligned}
& f(a+h) \approx f(a)+h \cdot f^{\prime}(a) \\
& f(x)=\frac{1}{\pi} \tan ^{-1}(x), \quad a=1, \quad h=\frac{\pi}{100} \\
& \tan \left(\frac{\pi}{4}\right)=1 \quad \Longrightarrow \quad \tan ^{-1}(1)=\frac{\pi}{4} \quad \Longrightarrow \quad f(1)=\frac{1}{4} \\
& f^{\prime}(x)=\frac{1}{\pi} \frac{1}{1+x^{2}} \quad \Longrightarrow \quad f^{\prime}(1)=\frac{1}{2 \pi} \\
& f\left(1+\frac{\pi}{100}\right) \approx \frac{1}{4}+\frac{\pi}{100} \cdot \frac{1}{2 \pi}=\frac{51}{200}
\end{aligned}
$$

5. (6 points) Two carts are connected by a 35 foot rope that passes over a pulley 12 feet above the floor. Cart A is being pulled to the left at a speed of $2 \mathrm{ft} / \mathrm{sec}$. How fast is cart B moving at the instant cart A is 9 feet from the point on the floor beneath the pulley?

Let x_{A}, x_{B} be the distance that carts A and B are from the point under the pulley.
Let L_{A}, L_{B} be the length of rope on from the pulley to cart A and B respectively.

$$
\begin{array}{lll}
x_{A}^{2}+12^{2}=L_{A}^{2} & x_{B}^{2}+12^{2}=L_{B}^{2} & L_{A}+L_{B}=35 \\
2 x_{A} \frac{d x_{A}}{d t}=2 L_{A} \frac{d L_{A}}{d t} & 2 x_{B} \frac{d x_{B}}{d t}=2 L_{B} \frac{d L_{B}}{d t} & \frac{d L_{A}}{d t}+\frac{d L_{B}}{d t}=0 \\
\frac{x_{A} \frac{d x_{A}}{d t}}{L_{A}}=\frac{d L_{A}}{d t} & \frac{x_{B} \frac{d x_{B}}{d t}}{L_{B}}=\frac{d L_{B}}{d t} & \frac{d L_{A}}{d t}=-\frac{d L_{B}}{d t} \\
\Longrightarrow \frac{x_{A} \frac{d x_{A}}{d t}}{L_{A}}=-\frac{x_{B} \frac{d x_{B}}{d t}}{L_{B}} & &
\end{array}
$$

Plugging in the numbers from the problem

$$
\frac{9 \cdot 2}{15}=-\frac{16 \frac{d x_{B}}{d t}}{20} \Longrightarrow \frac{d x_{B}}{d t}=-1.5 \mathrm{ft} / \mathrm{sec}
$$

6. (5 points) Show that there is exactly one $x \in \mathbb{R}$ satisfying

$$
x^{5}+e^{x}-2=0
$$

Let $f(x)=x^{5}+e^{x}-2 . f(0)=0^{5}+e^{0}-2=-1<0, f(2)=2^{5}+e^{2}-2>2^{5}-2>0$
Since $f(x)$ is continuous on $[0,2]$ and $f(0)<0<f(2)$ by the intermediate value theorem there is some $c \in(0,2)$ so that $f(c)=0$. Hence there is at least one x satisfying the equation.

Now suppose that $f(a)=f(b), a \neq b$. Since $f(x)$ is continuous and differentiable on \mathbb{R} it is continuous on $[a, b]$ and differentiable on (a, b) so by Rolle's theorem there is some $c \in(a, b)$ with $f^{\prime}(c)=0$.

But this is impossible since $f^{\prime}(x)=5 x^{4}+e^{x}>0$ for every x. Hence f is one-to-one and there is exactly one solution.
7. (5 points) Do one of the following:
(a) Show that

$$
\tanh \left(\sinh ^{-1} x\right)=\frac{x}{\sqrt{1+x^{2}}} \quad(x \in \mathbb{R})
$$

$\tanh \left(\sinh ^{-1} x\right)=\frac{\sinh \left(\sinh ^{-1} x\right)}{\cosh \left(\sinh ^{-1} x\right)}=\frac{x}{\cosh \left(\sinh ^{-1} x\right)}$
Let $y=\sinh ^{-1}(x) \Longrightarrow \sinh (y)=x$ we want to $\operatorname{simplify} \cosh (y)$.
Use identity $\cosh ^{2}(y)-\sinh ^{2}(y)=1$ to get $\cosh ^{2}(y)=1+x^{2}$
Hence $\tanh \left(\sinh ^{-1} x\right)=\frac{x}{\sqrt{1+x^{2}}}$
(b) If $g(x)=1+x+e^{x}$, find $g^{-1}(2)$ and $\left(g^{-1}\right)^{\prime}(2)$.

$$
\begin{aligned}
g(0)= & 1+0+e^{0}=2 \text { so } g^{-1}(2)=0 . \\
& \left(g^{-1}\right)^{\prime}(2)=\frac{1}{g^{\prime}\left(g^{-1}(2)\right)} \\
& g^{\prime}(x)=1+e^{x} \\
& \left(g^{-1}\right)^{\prime}(2)=\frac{1}{1+e^{0}}=\frac{1}{2}
\end{aligned}
$$

