Math 1A, Spring 2008, Wilkening

Sample Midterm 1

You are allowed one 8.5×11 sheet of notes, one side only. This sheet must be turned in with your exam. Calculators are not allowed.

1. (2 points) What is the domain of the function $f(x)=\frac{\sqrt{x-2}+\sqrt{7-x}}{x-5}$?
2. (3 points) Compute the following derivative:

$$
\left.\frac{d}{d x}\right|_{\theta=0} \tan \theta \cos \theta
$$

3. (5 points) Find the equation of the tangent line to the curve $y=1 /\left(1+x^{2}\right)$ passing through the point $\left(3, \frac{1}{10}\right)$.
4. (5 points) Compute $\lim _{x \rightarrow \infty} \frac{(x-1)(2 x-3)}{(4 x+1)(7 x+1)}$
5. (5 points) Prove that $f(x)=1-x^{5}$ has a fixed point (i.e. there is a number c such that $f(c)=c)$.
6. (5 points) Evaluate the limit

$$
\lim _{\theta \rightarrow 0^{-}} \frac{\sin \theta}{\sqrt{1-\cos \theta}}
$$

7. (5 points) Use the $\delta-\varepsilon$ definition of the limit to prove one of the following:
(a) $\lim _{x \rightarrow 2} 1 / x=1 / 2$.
(b) Suppose $\lim _{x \rightarrow 0} f(x)=L$. Define $g(x)=f(-x)$. Then $\lim _{x \rightarrow 0} g(x)=L$.

Another Sample Midterm 1

1. (2 points) Determine whether f is even, odd or neither: $f(x)=\frac{x}{1+x^{2}}$.
2. (3 points) Let $f(x)=\frac{x^{3 / 2}+2 \sqrt{x}}{x^{5}}$. Evaluate $f^{\prime}(1)$.
3. (5 points) Find all the points on the curve $y=x^{3}+3 x^{2}+3 x+1$ where the tangent line is horizontal.
4. (5 points) Find the value a such that the following limit exists and evaluate the limit:

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}
$$

5. (5 points) Compute $\lim _{x \rightarrow \infty} x \tan \left(\frac{\pi}{x}\right)$. Hint: $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow 0^{+}} f(1 / x)$.
6. (5 points) Evaluate the limit

$$
\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}+1}\right)
$$

7. (5 points) A stone is dropped from height H on a planet with gravitational constant g. The equation of motion of the stone is $y(t)=H-\frac{1}{2} g t^{2}$. Show that the instantaneous velocity of the stone when it hits the ground is twice the average velocity during its fall.
