Math 115. Equivalence of Three Types of Induction

This handout discusses three types of induction, given below, and shows that they are equivalent. These types are:

Principle of Induction. Let P(n) be a statement (proposition) depending on a number $n \in \mathbb{N}$. Assume that

- (i). (basis statement) P(0) is true, and
- (ii). (inductive step) for all $n \in \mathbb{N}$, if P(n) is true, then P(n+1) is also true.

Then P(n) is true for all $n \in \mathbb{N}$.

- **Principle of Strong Induction.** Let P(n) be a statement (proposition) depending on a number $n \in \mathbb{N}$. Assume that
 - (i). (basis statement) P(0) is true, and
 - (ii'). (inductive step) for all $n \in \mathbb{N}$, if P(k) is true for all k = 0, 1, ..., n, then P(n+1) is also true.

Then P(n) is true for all $n \in \mathbb{N}$.

Well-Ordering of \mathbb{N} . Every nonempty subset of \mathbb{N} has a smallest element.

A. Strong Induction implies Induction

Since $n \ge 0$, we have

P(k) is true for all k = 0, 1, ..., n implies P(n) is true.

Therefore condition (ii) implies condition (ii'). This is because if (ii) is true and if P(k) is true for all k = 0, 1, ..., n, then P(n) is true, and therefore by (ii) P(n+1) is true. This verifies (ii').

By a similar argument, the Principal of Strong Induction implies the Principle of Induction, because hypothesis (ii') is weaker.

B. Induction implies Strong Induction

Let Q(n) be the statement "P(k) is true for all k = 0, 1, ..., n." Then condition (i) for P implies condition (i) for Q. Also, assume that condition (ii') holds for P. Then condition (ii) holds for Q(n), because the truth of Q(n) implies that P(n+1)is true (by (ii')), and then Q(n+1) is true because both Q(n) and P(n+1) are true.

By induction, it then follows that Q(n) is true for all n, so P(n) is also true for all n.

C. Well-Ordering of \mathbb{N} implies Induction

We will prove this by contradiction. (This is called the "method of the minimal counterexample.")

Let P be a proposition as in the statement of the Principle of Induction. Let S be the set of all $n \in \mathbb{N}$ such that P(n) is false, and assume by way of contradiction that S is nonempty.

Then S has a smallest element by the well ordering property; call it m. We know by assumption (i) that $m \neq 0$. Then $m - 1 \in \mathbb{N}$, and since m is the smallest element of S, we have $m - 1 \notin S$. Therefore P(m - 1) is true; therefore P(m) is also true by assumption (ii). This implies that $m \notin S$, which gives a contradiction.

Thus, if P(n) is a proposition depending on $n \in \mathbb{N}$, and if P satisfies assumptions (i) and (ii) of the Principle of Induction, then P(n) is true for all $n \in \mathbb{N}$.

D. Strong Induction implies Well-Ordering of \mathbb{N}

Suppose that the Principle of Strong Induction is true.

In order to prove that \mathbb{N} is well ordered, we prove the following statement P(n) by strong induction on n: If S is a subset of \mathbb{N} and $n \in S$, then S has a smallest element.

The basis step is true, because if $0 \in S$ then 0 is the smallest element of S, because there are no smaller elements of \mathbb{N} .

For the inductive step, suppose that P(k) is true for all k = 0, 1, ..., n. To show that P(n+1) is true, let S be a subset of N that contains n+1. If n+1 is the smallest element of S, then we're done. Otherwise, S has a smaller element k, and P(k) is true by the inductive assumption, so again S has a smallest element.

Therefore, by strong induction, P(n) is true for all $n \in \mathbb{N}$. This implies the well-ordering of \mathbb{N} , because if S is a nonempty subset of \mathbb{N} , then pick $n \in S$. Since $n \in \mathbb{N}$, P(n) is true, and therefore S has a smallest element.

Comments

1. Parts C and D make part A redundant.

2. Part D is not really relevant, since well-ordering of \mathbb{N} is an axiom, but induction is a theorem. However, it may be useful if one has an axiom system in which induction is an axiom instead of well-ordering on \mathbb{N} . It is also useful for understanding why induction may or may not be valid for sets other than \mathbb{N} .

3. We also have principles of induction with \mathbb{N} replaced by $\mathbb{Z}_{>0}$. Moreover, for any $n_0 \in \mathbb{Z}$, we can do induction on the set of all integers $n \ge n_0$, merely by letting P(k) be the proposition that whatever is true for $k + n_0$.

4. In the statement of Strong Induction, (i) and (ii') can be combined into the following statement:

(ii''). (inductive step) for all $n \in \mathbb{N}$, if P(k) is true for all $k \in \mathbb{N}$ with k < n, then P(n) is also true.

Indeed, when n = 0 the hypothesis is vacuously true, which gives (i), and when n > 1 the condition is equivalent to (ii') for n - 1.