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Abstract

I classify the cohomological 2D field theories based on a semi-simple complex Frobe-
nius algebra A. They are controlled by a linear combination of κ-classes and by an
extension datum to the Deligne-Mumford boundary. Their effect on the Gromov-
Witten potential is described by Givental’s Fock space formulae. This leads to the re-
construction of Gromov-Witten (ancestor) invariants from the quantum cup-product at
a single semi-simple point, confirming Givental’s higher-genus reconstruction con-
jecture. This in turn implies the Virasoro conjecture for manifolds with semi-simple
quantum cohomology. The classification uses the Mumford conjecture, proved by
Madsen and Weiss [MW].

Introduction

This paper studies structural properties of topological field theories (TFT’s), a notion introduced
by Atiyah and Witten [W] and inspired by Segal’s axiomatisation of Conformal Field Theory. A
TFT extracts the topological information which is implicit in quantum field theories defined over
space-time manifolds more general than Euclidean space. The first non-trivial example is in 2
dimensions, a setting which has been the focus of much interest in relation to Gromov-Witten the-
ory: the latter captures the expected count of pseudo-holomorphic curves in a compact symplectic
target manifold. The result proved here, the classification of semi-simple theories, shows that an
important property of these invariants is a formal consequence of the underlying structure, rather
than a reflection of geometric properties of the target manifold. Loosely stated, the property in
question is that a count of rational curves with three marked points, encoded in the quantum coho-
mology of the target, determines the answer to enumerative questions about curves of all genera,
when the quantum cohomology ring is semi-simple.1

(0.1) A 2-dimensional topological field theory over a ring k is a strong symmetric monoidal functor
Z from the 2-dimensional oriented bordism category to the tensor category of finitely generated
projective k-modules. This means that Z assigns to every closed oriented 1-manifold X a k-module
Z(X), and to any compact oriented surface Σ, with independently oriented boundary ∂Σ, a linear
“propagator”

Z(Σ) : Z(∂−Σ)→ Z(∂+Σ).

The sign ± of a boundary component compares the orientation induced from Σ with the inde-
pendent one on ∂Σ; we call ∂−Σ the incoming boundary and ∂+Σ the outgoing one. The above
definition requires that

1To be precise, this is true of the ancestor Gromov-Witten invariants. The complete, descendent invariants require
some additional genus zero information (the J-function).
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(i) Z is multiplicative under disjoint unions, Z(X1 q X2) = Z(X1)⊗ Z(X2);
(ii) Sewing boundary components leads to the composition of maps;

(iii) The cylinder “=” with an incoming and an outgoing end represents the identity.

Pat (i) is the “monoidal” condition, while (ii) is the functorial poperty. Condition (iii) compen-
sates for the absence of identity morphisms in (the most naı̈ve definition of) the bordism category.
Without it, Z(=) would only need to be a projector: Z(=) ◦ Z(=) = Z(=).

(0.2) A folk theorem (with non-trivial proof, see [A1]) ensures that Z is equivalent to the datum
of a commutative Frobenius k-algebra structure on the space A := Z(S1). This last notion comprises
a commutative k-algebra structure on A, together with an A-module isomorphism ι : A ∼−→ A∗ :=
Homk(A, k). The Frobenius structure on Z(S1) can be read from the functor Z as follows:

• the multiplication map A⊗ A → A is defined by the trinion with two incoming circles and
an outgoing one;
• the unit in A is defined by the disk with outgoing boundary, Z(⊃) : k→ A;
• the disk ⊂ with incoming boundary determines the vector θ := ι(1) ∈ A∗.

The pictures represent the outlines of surfaces, with their boundaries omitted. (Also, the reader
will have noticed that incoming boundaries are on the right and outgoing ones on the left, match-
ing the ordering convention for operator composition.) The form θ, in turn, determines a sym-
metric pairing β : A × A → k, β(a × b) = θ(ab), which is the partial adjoint to ι in one of the
variables. Non-degeneracy of β — equivalently, the isomorphy condition on ι — is enforced by
Zorro’s lemma: a diagram wherein a “Z”-shaped identity cylinder is factored into a “right elbow”
c, a cylinder with two outgoing ends, sewed on to a left elbow b at one of its outputs: Z(b)
represents β, and Z(c) provides an inverse co-form.

(0.3) An easy but important special case concerns semi-simple algebras A over k = C. As algebras,
these are isomorphic to

⊕
i C · Pi for projectors Pi, uniquely determined up to reordering. From

the definition and non-degeneracy of β, the projectors are β-orthogonal and their θ-values θi =
θ(Pi) must be non-zero complex numbers. Up to isomorphism, A is classified by the (unordered)
collection of the θi. The TFT is easy to describe in the normalised canonical basis of rescaled projectors
pi := θ−1/2

i Pi, as follows. For a connected surface Σ with m incoming and n outgoing boundaries,

the matrix of Z(Σ) has entry θ
χ(Σ)/2
i linking p⊗m

i to p⊗n
i , while all entries involving mixed tensor

monomials in the pi are null.

(0.4) Key definition and example. A Frobenius algebra contains a distinguished vector, the Euler class
α, defined as the output of a torus with one outgoing boundary. When A is the cohomology ring
of a closed oriented manifold with coefficients in a field, and β the Poincaré duality pairing, α
is the usual Euler class. (Of course, A will be a skew-commutative Frobenius algebra if there is
odd cohomology.) By contrast, in the semi-simple case, α is the invertible element ∑i θ−1

i Pi. The
endomorphism of A defined by a two-holed surface of genus g is the multiplication by αg: in
matrix form, diag[θ−g

i ]. This observation will allow the recovery of low-genus Z from high genus,
and will play a key role in the paper.

There is actually a converse: invertibility of α implies semi-simplicity of A. (The trace on
A of the operator of multiplication by x is θ(αx), so TrA defines a non-degenerate bilinear form
on A; it follows that, over any residue field of the ground ring k, A is a sum of separable field
extensions.) This, and the importance of an invertible α may have been first flagged by Abrams,
also in connection with quantum cohomology; the reader is referred to the nice paper [A2].
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(0.5) In this paper, I give an algebraic classification for family TFTs (FTFTs), in which the surfaces
vary in families and the functor Z takes values in the cohomology of the parameter spaces, with
coefficients in tensor powers of A. These theories are variants of the Cohomological Field Theories
(CohFT’s) introduced by Kontsevich and Manin [KM1]. “Families” consisting of single surfaces
recover the previous TFT notion and detect the underlying Frobenius algebra A. My classification
applies whenever A is semi-simple and k is a field of characteristic zero; I use C for simplicity.

(0.6) The theories of greatest interest involve nodal surfaces, the stable curves of algebraic geome-
try, and come from Gromov-Witten invariants. In this setting, I provide a structure formula for the
Gromov-Witten invariants of manifolds whose quantum cohomology is generically semi-simple.
Such theories have additional structure, the grading that stems from the fact that spaces of sta-
ble maps have topologically determined (expected) dimensions. This structure limits the freedom
of choice considerably: the full FTFT is determined by the Frobenius algebra and the grading
information. This affirms a conjecture of Givental’s [G1] on the reconstruction of higher-genus
invariants, and in particular, as pointed out in [G3], the Virasoro conjecture for such manifolds.
Verification of this conjecture involves tracing through Givental’s construction, with an improve-
ment to the formulation which (I think) is originally due to M. Kontsevich, reviewed in §6.

(0.7) With different starting hypotheses, a vast extension of my classification has been reached
by Kontsevich and collaborators in the framework of open-closed FTFTs (see [KKP] and sequels
in preparation). From that perspective, I show that any semi-simple (closed string) CohFT may
be assumed to come from an open-closed FTFT with a semi-simple category of boundary states.
In Gromov-Witten theory, this statement would even follow from a sufficiently optimistic for-
mulation of Homological Mirror Symmetry: semi-simplicity of quantum cohomology suggests a
Landau-Ginzburg B-model mirror with isolated Morse critical points of the potential, since (in
the case of isolated singularities) the quantum cohomology ring is meant to be isomorphic to the
Jacobian ring of the potential. In this situation, the mirror category of boundary states (B-branes)
is also semi-simple. Assuming all this, we could then invoke Kontsevich’s classification.

However, while it seems clear that the open-closed framework (or some related 2-categorical
approach) is the right setting, Gromov-Witten theory is not quite ready for it, as the requisite
assumptions on the Fukaya category of boundary states have only been checked in special cases;
whereas the CohFT axioms are well-established. Examples of varieties with generically semi-
simple quantum cohomology include: toric manifolds, most Fano three-folds with no odd Betti
numbers [Ci], as well as blow-ups of such varieties at any number of points [B]. Of these, only
for the toric ones does the open-closed theory seem to be in convincing shape, thanks to work by
Fukaya and collaborators [FOOO].
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1. Summary of definitions and results

This section outlines the definition and classification of the various versions of FTFT’s used through-
out the paper, as well as the background of the two key results, Theorems 1 and 2. It is not possible
to cover all the details in the space suited to an opening section, and the reader will often be re-
ferred to later paragraphs for clarification. For instance, a classifying spaces of surface bundles
are discussed in §2; a refresher on κ− and ψ−classes is found in §2.15; and the list of axioms for a
DMT is only truly completed by spelling out the ‘nodal relations’ in §4.4.

(1.1) Functorial definition. Family TFT’s admit a categorical definition in the style described in the
introduction. I give it here for logical completeness; its meaning and use, in the several variants
outlined in §1.3 below, will be spelt out in more detail in Section 2.

Consider the following two contra-functors C and F , defined over the category of topological
spaces and continuous maps, and taking values in symmetric monoidal categories. At a topolog-
ical space X, the first category C(X) has as objects bundles of closed oriented 1-manifolds over
X, and as morphisms bundles of compact oriented 2-bordisms, modulo homeomorphisms over X
(which fix the boundaries). Objects of the second category F (X) are flat complex vector bundles
over X, while

HomF (X)(V, W) = H• (X; HomX(V, W)) .

A FTFT is a symmetric monoidal transformation Z from C to F . Variants of this notion are ob-
tained by varying the defining features of C: we can require all circles in C(X) to be parametrised
(§1.3.i) or not (§1.3.ii), allow Lefschetz fibrations as morphisms (§1.3.iii), and finally, impose the
Deligne-Mumford stability condition on such fibrations (§1.3.iv).

1.2 Remark. The objects of C and F form sheaves over the site of topological spaces, but the mor-
phisms do not. Morphisms of F are the cohomologies of a differential-graded version of F , in
which the objects are complexes of local coefficient systems over X and the morphisms are co-
chains. There is a similar enhancement of C to a sheaf of categories enriched over topological
spaces: the 1-morphisms are classifying spaces of the groupoids of surface bundles and their
homeomorphisms. A (symmetric monoidal) natural transformation between these sheaves of cat-
egories is a possible definition of chain-level FTFT’s, and is closely related to Segal’s definition of
topological conformal field theory [S, Ge]; but we will not use this notion in the paper.
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(1.3) FTFT variants and their classification. We will consider several versions of family field theories,
and their classification increases in complexity. All four variants below are relevant to the eventual
focus of interest, semi-simple cohomological field theories.

(i) In the simplest model, the surfaces have parametrised boundaries. These theories are con-
trolled by a single, group-like class Z̃+ in the A-valued cohomology of the stable mapping
class group of surfaces (§2.20). Such a class has the form exp{∑j>0 ajκj}, with elements aj ∈ A
coupled to the Morita-Mumford classes κj. The class Z̃ associated to a surface bundle with
acts diagonally on tensor monomials of the normalised canonical basis: if aj = ∑ aijPi, aij ∈ C,
then the entry θ

χ/2
i of the propagator matrix (0.3) of a stationary connected surface is now

multiplied by the factor exp{∑j>0 aijκj}. Since χ = −κ0, we can account for the θi by includ-
ing in the sum a term j = 0, with a0 = 1

2 log α.

(ii) Allowing the boundaries to rotate freely introduces a new classification datum, a C-linear
map E : A → A[[z]] with E ≡ Id (mod z). Within the functorial definition 1.1, this is a triv-
ialization of the local system A = Z(S1) over CP∞ defined by the universal circle bundle.
Here, (−z) ∈ H2(CP∞) is the universal Euler class.2 Thus, if A is the cohomology of a space3

X with an action of the circle T, then the inputs and outputs at free boundaries belong natu-
rally to the T-equivariant cohomology of X, and E is here to enforce a splitting of the latter
as A⊗C[[z]]. A free boundary theory is determined by E and the earlier Z̃+, as follows: twist
the incoming states by E−1 and the outputs by E, with z specialised to the sign-changed Euler
classes of the respective boundary circle bundles. In-between, the fixed-boundary propagator
of (i) applies.

(iii) Next in line are the Lefschetz theories, where surfaces are allowed to degenerate nodally into
the Lefschetz fibrations of algebraic geometry. Now, a nodal surface can be deformed uniquely
to a smooth one; the cohomological nature keeps Z unchanged under this deformation, so
single nodal surfaces carry no new information. Things are different in a family: up to homo-
topy, the automorphism group of the “nodal propagator” ⊃⊂, an incoming-outgoing pair of
crossing disks, is the product T×T of the two independent circle rotation groups. This pro-
vides a new datum Z(⊃⊂), an End(A)-valued formal series D(−ω+, ω−) in the Euler classes
ω± of the two universal disk bundles.
Keeping only the diagonal rotation, we can deform the node ⊃⊂ into a rotating cylinder.
Since Z(=) = Id for a fixed cylinder, and it must remain a projector when the cylinder
rotates, we conclude that D = Id mod (ω+ − ω−). In addition, we will find a symmetry
constraint relating D and E; see §4. These are all the data and constraints: an involved, but
explicit formula for the Lefschetz theory classes is given in §4.7 from Z̃, E and D, as a kind of
“time-ordered exponential integral” along the surfaces in any family.

(iv) Lastly, we are interested in Deligne-Mumford theories (DMT’s): these are Lefschetz theories in-
volving only stable nodal surfaces, the Deligne-Mumford stable curves of algebraic geometry.
Excluding cylinders and disks (which are unstable) brings about the need for two additional
axioms, the nodal factorisation rules and vacuum axiom (see §2.4), which come for free in a Lef-
schetz theory.
The best-known DMT’s are the Cohomological Field theories à la Kontsevich and Manin,
which satisfy D = Id. It is more customary to state their structure in terms of surfaces with

2The awkward sign is reluctantly adopted here to avoid worse later; it stems from a sign mismatch between Euler
and ψ classes for inbound circles.

3Or a complex: in an open-closed field theory the Hochschild complex of the category of boundary states.
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inputs only, but that is a matter of convenience. In CohFT’s, the compatibility constraint
on E becomes Givental’s symplectic constraint E(z) ◦ E∗(−z) = Id. The main examples of
CohFT’s are the Gromov-Witten cohomology theories of compact symplectic manifolds, see
§1.5 below. Those carry even more structure and constraints (§1.7).

Functors of the types (i), (ii) and (iii,iv) shall be denoted by Z̃, Z and Z̄, respectively.

(1.4) Idea of proof. For the first two types of FTFTs, the classification is an easy consequence of the
Mumford conjecture, proved by Madsen and Weiss [MW]. (We will also use an older result of
Looijenga’s on ψ-classes, [L].) In the limit of large genus surfaces, the sewing axiom becomes an
equation in the complex cohomology of the stable mapping class group. The latter is a power
series ring in the tautological classes (see §2.15), and we solve the equation there. Semi-simplicity
of A lets us retrieve the low-genus answer from high genus thanks to invertibility of the Euler
class α, as in §0.4.

DMT’s require an additional argument. The universal families of stable nodal surfaces are
classified by orbifolds with a normal-crossing stratification. The argument above determines the
classes Z on each stratum, but there could be ambiguities and obstructions in patching these
classes together. However, the Euler classes of certain boundary strata involving large-genus
surfaces are not zero-divisors in low-degree cohomology. This ensures the unique gluing of coho-
mology classes over suitably chosen strata. We find enough strata to cover all Deligne-Mumford
moduli orbifolds, and prove the unique patching of the Z-classes to a global class Z. This obser-
vation is the key contribution of the paper; the remainder falls in the “known to experts” category.

A more natural resolution of the gluing ambiguity involves the use of chains, instead of ho-
mology classes. This point of view, pioneered by Kontsevich in the context of homological mirror
symmetry, fits naturally with the notion of open-closed field theories and their A∞-categories, and
was successfully developed by Costello, leading to a beautiful classification result [C]. It also ties
in nicely with the string topology example of Chas and Sullivan [Su]. From this angle, my result
shows that the semi-simple case is considerably easier: open strings and chain-level structures are
not needed.

(1.5) Example: Gromov-Witten theory. Here, A is the quantum cohomology of a compact symplectic
manifold X at some chosen point u ∈ Hev(X). To apply the classification, we must assume the
existence of a u where this ring is semi-simple. This can be the generic point, which may be the
only choice, if the series defining the quantum cup-product turn out to diverge. Semi-simplicity
confines H•(X) to even degrees, because odd classes are necessarily nilpotent. (More is true: it
turns out that semi-simplicity of the even part Hev of the quantum cohomology ring forces the
vanishing of odd cohomology, see [HMT].)

The Gromov-Witten theory of X is constructed as follows. Denote by Xn
g,δ the space of Kontse-

vich stable maps to X with genus g, degree δ ∈ H2(X), and n marked points. We obtain maps

GWn
g,δ : H•(X)⊗n → H•

(
Mn

g
)

to the cohomology of Deligne-Mumford spaces Mn
g by pulling back cohomology classes on X via

the evaluation map Xn
g,δ → Xn, and then integrating along the forgetful map Xn

g,δ → Mn
g . This last

step uses the virtual fundamental class of Xn
g,δ, and the degree of each map GWδ, in the natural

grading on H•(X), is determined by the relative (virtual) dimension of moduli spaces:

deg GWg,δ = 2(dimC Mn
g − dimC Xn

g,δ) = 2(g− 1) dimC X− 2〈c1(X)|δ〉. (1.6)
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Summing over homology degrees δ yields a class

GWn
g := ∑

δ

GWn
g,δ · eδ,

with coefficients in (a completion of) the group ring Q[H2], called the Novikov ring of X. For a
fixed u ∈ H2(X; C), sending eδ 7→ exp 〈u|δ〉 furnishes a ring homomorphism Q[H2] → C, and
subject to convergence we get a u-dependent family of complex cohomology classes GWn

u,g. We
recall in Section 2 below why this is equivalent to a family of DMT’s GWu, in the sense of 1.3.iv. It
is no accident that we obtain an entire family of DMT’s: a deformation construction (Definition 7.1
below) produces a family parametrised by all u in (an open, or possibly formal subset of) Hev(X).
Example 7.17 spells this out in Gromov-Witten cohomology.

(1.7) Gromov-Witten cohomology constraints. The theories GW just described meet three additional
constraints. They are specifically traced to the use of ordinary cohomology (for instance, they do
not apply in this form to the exotic Gromov-Witten theories of Coates and Givental [CG]).

(i) The Cohomological Field Theory (CohFT) condition D = Id;

(ii) The flat vacuum condition: inserting the identity 1 ∈ A as the first input in GWn
u leads to the

pull-back of GWn−1
u along the first forgetful morphism Mn

g → Mn−1
g ;

(iii) Homogeneity of the family GWu (u ∈ Hev) under the Euler vector field ξ. We will discuss this
in §7.15 below (see also [M, §I.3]); along H2(X), ξ is the constant vector field c1(X), but in
general

ξu := c1(X) + ∑(i− 1)u2i at u = ∑ u2i ∈
⊕

i
H2i(X).

In GW theory, condition (i) reflects the factorisation of the (virtual) fundamental class of Xn
g,δ at the

boundary of Deligne-Mumford space [G2]. Condition (ii) is the base change formula in the square
of forgetful morphisms4

Xn
g → Xn−1

g
↓ ↓

Mn
g → Mn−1

g

Readers may know that (ii) implies the flatness of the identity in the associated Frobenius manifold
[M, III]. Finally, (iii) encodes the degrees (1.6) of the maps GWn

g,δ (Example 7.17).

These constraints can be axiomatised in the setting of abstract DMT’s, and imposing them nar-
rows down the classification of semi-simple theories. In CohFT’s, the operator E of §1.3.ii satisfies
E(z) ◦ E∗(−z) = Id. The flat vacuum condition determines the Z̃+ of §1.3.i from E (Proposi-
tion 3.14). Confirming a prediction of Givental’s [G1], we will see that semi-simple CohFT’s are
determined by their genus-zero part, the restriction to families of genus zero curves, save for an
ambiguity related to the Hodge bundle. (See §8.6 for the precise statement.) Homogeneous theo-
ries (iii) have no such ambiguity, and we can then give an explicit reconstruction procedure from
the Frobenius algebra A alone and the homogeneity constraint, as we explain after reviewing the
following example.

(1.8) Example: the Manin-Zograf conjecture. A simple illustration of the classification concerns the
cohomological field theories of rank one5: dim A = 1, so A is necessarily semi-simple. In this

4This is not altogether trivial, because the square is not Cartesian, due to the contractions of the universal curve.
5There is a tensor structure on the category of CohFT’s for which rank one theories are the units.
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case, my classification affirms an older conjecture of Manin and Zograf [MZ]: Z is an exponen-
tiated linear combination of κ- and µ-classes, the latter being the Chern character components of
the Hodge bundle. The coefficients of the µ-classes are easily related to those of log E(z): This
illustrates nicely the ambiguities in reconstruction. Genus zero CohFT’s of rank one are described
using κ-classes alone, [M, §III.6]: the Hodge bundle is trivial in genus zero and so the µ-classes are
invisible. On the other hand, the flat vacuum CohFT’s are precisely those involving µ-classes only
(Proposition 8.10). Imposing all three conditions in §1.7 leads to Z̃+ = 1 and E = Id, leaving only
one choice: the Frobenius algebra structure on A, determined by the single complex number θ(1).

(1.9) Reconstruction from genus zero. We now outline the reconstruction result of semi-simple ho-
mogeneous CohFTs from their underlying Frobenius algebra; full details are given in §7 and §8.

For any a CohFT Z, a formal construction (Definition 7.1) produces a family Zu of CohFT’s,
parametrised by u ∈ U, an open (or formal) nieghbourhood of 0 ∈ A. In Gromov-Witten theory,
the H2 part of this family was described in §1.5. The Frobenius algebra structure on A varies in
this family and leads to a so-called Frobenius manifold structure on U; see §7.3 below, or [D, M, LP]
for an extensive discussion. A reconstruction theorem [M] determines the genus-zero part of the
CohFT from this Frobenius manifold. This fact has no known analogue for the higher-genuspart
of the theory.

However, for semi-simple theories, Givental [G1] conjectured a formula for the classifying
datum E from genus-zero information.6 Specifically, he characterised E by a system of linear
ODE’s on U (Dubrovin’s first structure connection), and the the homogeneity constraint §1.7.iii led
to a unique solution. In the final sections of this paper, I verify the ODE’s for E in the abstract
setting of CohFT’s (along with a companion ODE for Z̃) and conclude

Theorem (1). A semi-simple cohomological Field theory satisfying the homogeneity constraint 1.7.iii is
uniquely and explicitly reconstructible from genus zero data. For homogeneous theories with flat vacuum,
the Euler vector field and the Frobenius algebra structure suffice for reconstruction.

Reconstruction takes the form of a recursion for the Taylor coefficients of E(z) = ∑k Ekzk. We spell
this out in Gromov-Witten cohomology, when A = H•(X) with the quantum cup-product at some
point u ∈ Hev(X), assumed to be semi-simple. Denote by µ the linear operator (deg−dimC(X))/2
on A, and by (ξ·u) that of quantum multiplication by the Euler vector ξu at u. Then, the recursion

[(ξ·u), Ek+1] = (µ + k) · Ek

determines E(z) uniquely form E0 = Id. (See the proof of Theorem 8.15.) Thus, all Gromov-Witten
classes GWn

g,δ ∈ H•(Mn
g) are constructible from c1(X) and the quantum multiplication operator

(ξ·u) at a single point u.

1.10 Remark. The series E(z) has an interpretation already flagged by Dubrovin [D]. Namely, the
formal expression E(z) · exp(−ξ ·u /z) gives the asymptotics at z = 0 of solutions of an ODE with
irregular (quadratic) singularities there (see §8.1). In the case of quantum cohomology, genuine
solutions have unipotent, but non-trivial monodromy around 0. (The monodromy logarithm is the
operator of classical multiplication by c1(X), cf. [D], and this does not vanish for manifolds with
semi-simple quantum cohomology.) Because the asymptotic formula is single-valued, it cannot
represent a genuine solution and so the series E(z) cannot converge. This makes the prospect of
expressing E in terms of immediate geometric data of the symplectic manifold problematic, and
this last question is open.

6The conjecture was framed in the sightly different setting of potentials, described in §1.11 below.
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(1.11) Potential of a DMT. Let Zn
g : A⊗n → H•(Mn

g) be the class associated by the DMT to the uni-
versal stable curve over the Deligne-Mumford space Mn

g . The primary invariants are the integrals
of the Z’s on the Mn

g’s. However, Mn
g also carries the Euler classes ψ1, . . . , ψn of the cotangent lines

to the universal curve at the marked points. More information about Z is recovered by including
ψ’s before integration; the resulting numbers are encoded in a generating series, the potential, a
function of a series x(z) = x0 + x1z + · · · ∈ A[[z]]:

A(x) = exp

{
∑
g,n

h̄g−1

n!

∫
Mn

g

Zn
g (x(ψ1), . . . , x(ψn))

}
; (1.12)

the sum excludes the values (g, n) = (0, 0), (0, 1), (0, 2) and (1, 0) for which M is not an orbifold.
While the series in (1.12) need not converge analytically, it is at least formally convergent as a
power series in {h̄, x3/h̄}; so its exponential is well-defined in some space of functions.

1.13 Example. The trivial 1-dimensional theory has A = C and Z = 1 for all g and n; the integrand
is x(ψ1) ∧ · · · ∧ x(ψn) and A is the τ-function of Kontsevich and Witten.

More generally, any Frobenius algebra A can be coupled to the trivial cohomological field
theory, by letting each qZp

g be the degree zero class specified by any single curve of that type. The
potential is then expressible in terms of Kontsevich integrals.

The potentials Au corresponding to the family GWu of Gromov-Witten cohomology theories
of a compact symplectic manifold are parametrised by u ∈ A = Hev(X) (or a formal version
thereof, since the convergence question seems open in general). They are known as the ancestor
GW potentials of X. Their relation to the more customary descendent potential, defined using the
ψ-classes and integration over the spaces Xn

g,δ, was determined7 by Kontsevich and Manin [KM2].
The ancestor-descendent relation was reframed by Givental in the setting of loop group actions,
which we now recall.

(1.14) Givental’s loop group conjecture. For clarity, let us focus here on Cohomological Field Theories
(D = Id), postponing discussion of the general case until §6. Let F((h̄)) be the space of (C((h̄))-
valued) polynomials on A[[z]]; the potentials A in (1.12) live in a completion of this. (The choice
of completion is not important, as our constructions reduce to recursively defined operations on
power series coefficients; see §6.) Define a symplectic form on the space A((z)) of formal Laurent
series,

Ω(x, y) =
∮

β (x(−z), y(z)) dz,

using the Frobenius bilinear form β. We view F((h̄)) as a Fock representation of the Heisenberg
group H built on {A((z)), h̄Ω}. The symplectic group Sp on A((z)) acts (projectively) on (com-
pletions of) F((h̄)) by the intertwining metaplectic representation. The Laurent series loop group
GL(A)((z)) acts point-wise on A((z)). Consider the following subgroups of Sp:

• SpL := Sp ∩GL(A)((z)), the symplectic part of GL(A)((z));

• Sp+
L := Sp ∩ (Id + z · End(A)[[z]]).

The term “symplectic loop group” is sometimes used for SpL, but it really is the twisted form of
the loop group of GL(A). The subgroup Sp+

L contains the matrix series E(z) of §1.7. In [G1, G3],
Givental described the Kontsevich-Manin relation between descendent and ancestor potentials

7For clarification, I recall that the descendent potential carries additional information from the 1-point, or J- function,
which is not contained in the CohFT, as defined.
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of Gromov-Witten cohomology theory in terms of the action of SpL (without assuming semi-
simplicity). In addition, he proposed (and proved, for toric Fano manifolds) a formula for the
value of the GW ancestor potential Au at a semi-simple point u of quantum cohomology. This
was formulated in terms of the action Sp+

L , using ingredients from Dubrovin’s isomonodromy
description [D] of semi-simple Frobenius manifolds.

Call ADM the subspace of those vectors in the cohomology ∏g,n H•(Mn
g ; (A∗)⊗n) of all Deligne-

Mumford spaces which are invariant under the symmetric groups. A DM field theory Z defines
a vector in ADM, and is in turn completely determined by it. There is a vector IA ∈ ∏ H0 repre-
senting the trivial theory based on A. Let H+, H++ denote the subspaces zA[[z]] and z2A[[z]] in the
Heisenberg group H, acting on F((h̄)) by translation. In §6, we describe an action of Sp+

L n H+ on
ADM, which lifts the metaplectic and translation actions on potentials. (A construction along simi-
lar lines was alluded to in [CKS].) Let Tx denote the translation by x ∈ H+, (TxF )(y) = F (y− x),
and write Tz short for Tz1, for the unit 1 ∈ A. The classification of DMT’s will imply the following.

Theorem (2). The CohFT’s with underlying semi-simple Frobenius algebra A constitute the Sp+
L n H++-

orbit of the trivial theory IA. The theories with flat vacuum form the orbit of the subgroup Tz ◦ Sp+
L ◦ T−1

z .

The element of Sp+
L n H++ taking IA to the theory with data {A, E(z), Z̃+} in the classification of

§1.3 is E(z) · ζ, with
ζ = z exp

(
−∑j>0 ajzj

)
− z ∈ H++.

This formula is closely related to the coordinate changes studied by Kabanov and Kimura8 [KK].
Note that our ζ contains no z-linear term. Adding a term ζ1z, with ζ1 = ∑i ζi1Pi turns out to

change the structure constants θi of A, scaling them by (1 + ζi1)2 (Proposition 6.13). Every complex
semi-simple Frobenius algebra can be obtained in this way from a sum of copies of the trivial one,
C with θ(1) = 1. It is tempting to say that all semi-simple CohFT of the same rank constitute a
single Sp+

L n H+-orbit, except that there is trouble when some ζi1 = −1: in other words, the action
of the linear modes zA ∈ H+ on ADM has some singularities, so this re-formulation of the first
part of Theorem 2 requires some care.

Translation by z is the dilaton shift of the literature; it encodes the expression of ζ from E in
flat vacuum theories. With a general vacuum v(z) (as in §3.12), we are instead looking at the set
Tzv(z) ◦ Sp+

L ◦ T−1
z (IA); cf. §6.18. Even more generally, abandoning the CohFT condition to allow

D 6= Id enlarges the space of DM theories to the orbit of a larger subgroup Sp+ ⊂ Sp; this requires
a slightly different setup and will be discussed in §6, where the proof of Theorem 2 is completed.

1.15 Remark. The translation action of H+ on the space of CohFT’s has an analogue for the zero-
modes A ∈ A[[z]]: this leads to the Frobenius manifold mentioned in §1.9. The interaction with
the group Sp+

L n H+ is rather complicated, given by a system of ODE’s we derive in §7.4. For
instance, A-translations and H+-translations do not commute. In the setting of open-closed theo-
ries, translation along the Frobenius manifold and that by H+ correspond to deformations of the
TFT coming from independent sources: to wit, deformation of the category of boundary states,
versus deformation of the cyclic trace.

2. Field Theories from universal classes

We now review the definitions of FTFTs and reframe them from the point of view of moduli spaces
of oriented surfaces. In discussing the latter, we may switch between topological, smooth, metric

8I am grateful to V. Tonita for pointing this out.
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and Riemann surfaces as convenience dictates, because these structures are related by contractible
spaces of choices (the spaces of Riemannian metrics, or metrics up to conformal equivalence), so
their classifying spaces — the bases of universal surface bundles — are homotopy equivalent.
Similarly, we can describe boundary circles (parametrised or not) more economically as follows.

(2.1) Points versus boundaries. Call a surface (m, n)-pointed if it carries a set of m + n distinct un-
ordered points, separated into m incoming and n outgoing ones. Given a vector space A, the base X
of an (m, n)-pointed surface bundle ΣX carries local systems A(m), A(n) with fibres A⊗m, A⊗n, per-
muted by the monodromy in the base. Removing open disks centred at the special points shows
that, up to homotopy in the family X, the points contain the same information as un-parametrised
boundary circles. Moreover, since Diff+(S1) is homotopy equivalent to its subgroup of rigid rota-
tions, we may capture the parametrisation information, up to a contractible space of choices, by
specifying unit tangent vectors. More precisely, there is a torus bundle X̃� X with fibre Tm×Tn,
the product of unit tangent spaces at the special points.9 Up to homotopy, X̃ parametrises the
surfaces in the family ΣX, together with all parametrisations of their boundary circles.

(2.2) FTFT’s reviewed. Let us spell out the functorial definition of FTFT’s. We will then convert
the information to a collection of cohomology classes of the classifying spaces of surface bundles.
This is especially necessary for DMT’s, since we have yet to formulate the two additional axioms
mentioned in §1.3.iv, the nodal factorisation and vacuum axioms.

• A family TFT with fixed boundaries and coefficients in A assigns to each family ΣX 7→ X of
closed oriented (m, n)-pointed surfaces a class

Z̃(ΣX) ∈ H•(X̃; Hom(A(m), A(n))).

This must be functorial in X̃ and subject to the condition that sewing together any collection
of incoming-outgoing boundary pairs gives the corresponding composition of linear maps.
• In a free boundary FTFT, the class Z(ΣX) lives in H•(X; Hom(A(m), A(n))), is functorial in

X, and the sewing condition must hold for any given identification over X of an incoming-
outgoing boundary pair.
• A Lefschetz FTFT assigns such Z’s functorially to (chiral) Lefschetz fibrations of closed ori-

ented pointed surfaces.
• Finally, a Deligne-Mumford FTFT is a Lefschetz FTFT for stable surfaces, satisfying a nodal

factorisation rule and a vacuum axiom, which we describe in §2.9 and §2.13 below, after intro-
ducing the universal classes pZq.

2.3 Remark. (i) Single surfaces define a commutative Frobenius algebra structure on A.
(ii) “Sewing” of pointed surfaces in a family is well-defined, up to homotopy, from an identifica-

tion of tangent spaces at the matched points.
(iii) As usual, nodes and special points must avoid each other.
(iv) Stability of surfaces is needed for an orbifold description of the moduli of nodal surfaces. We

include it mainly to connect with the standard Cohomological Field Theory approach. The
classification of semi-simple theories remains unchanged for Lefschetz theories, which allow
pre-stable curves. The benefit of including pre-stable curves is unclear, except as a conceptual
bridge between smooth surface theories and DMT’s.

9X̃ is a principal bundle only if there is no monodromy, that is, the special points can be ordered over X.
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(2.4) Nodal factorisation rule. Every Lefschetz theory carries a nodal factorisation rule, which de-
scribes the class Z for the nodal surface family obtained by attaching two surfaces at marked
points. This rule is a consequence of the smooth surface sewing condition: simply cut out the pair
of crossing disks near the node. For a pair of marked points of opposite type, the relevant operator
in the universal family is the nodal propagator Z(⊃⊂) = D(−ω+, ω−) of §1.3.iii. Similarly, the
effect of attaching two marked points of the same type into a node is controlled by a bilinear form
B on A with values in k[[ω±]] (outgoing disks case), respectively by a co-form C ∈ (A⊗ A)[[ω±]]
(incoming case). See §2.7 below for the factorisation rules spelt out. The tensors B, C and D are not
independent: a formal game with connecting elbows shows in fact that each of them determines
the other two; we will write out the formulae in §4.4 below.

The pair of crossing disks is an unstable surface, so the cutting argument above is not permitted
in a DMT. Therefore, the nodal factorisation rules form an additional axiom for a DMT: B, C and D
must be specified, and must determine each other by the formulae in §4.4. We spell out the axiom
for B in terms of Deligne-Mumford spaces in (2.11) below.

(2.5) Reformulation using universal classes. Let q Mp
g denote the classifying space of the universal sur-

face with p + q distinct ordered points, and denote by q M̃p
g (or alternatively, q Mg,p, as is common

in the literature) the principal torus bundle defined by the choices unit tangent vectors at those
points. Functoriality reduces a fixed-boundary FTFT to the specification of universal classes

qZ̃p
g ∈ H•Sp×Sq

(q M̃p
g ; Hom(A⊗p; A⊗q)

)
,

where the symmetric groups Sp, Sq act on q Mp
g by permuting marked points and simultaneously

on A⊗p,q by permuting the factors. Over C, equivariance under finite groups simply means in-
variance. With free boundary theories, we obtain classes qZp

g over q Mp
g , and in the case of DM

theories, qZp
g over the Deligne-Mumford compactifications q Mp

g . The FTFT axioms translate into
the sewing, or nodal factorisation rules for these classes, described in a moment.
2.6 Remark. The classifying space for the universal Lefschetz fibration has a less familiar model
of a finite-dimensional Artin stack q Ap

g of infinite type, classifying nodal curves with arbitrary
chains and trees of rational curves. This has an infinite descending normal-crossing stratification,
reflecting the unlimited bubbling that can occur in families.

(2.7) Sewing condition. Sewing two specified boundary components together defines maps (with
x = x′ + x′′ for x = g, p, q)

s : q′ M̃p′

g′ ×
q′′ M̃p′′

g′′ →
q−1M̃p−1

g , (2.8)

and similar maps where several pairs of boundaries are simultaneously identified. (There are also
self-sewing maps for single surfaces, but these can be expressed by sewing on elbows.) The FTFT
sewing condition is

s∗
(

q−1Z̃p−1
)

= q′ Z̃p′ ◦ q′′ Z̃p′′ ,

with composition of the appropriate entries.
Free boundary FTFT’s are different, in that the sewing maps (2.8) does not descend to the base

moduli spaces M, M′, M′′ for surfaces with free boundaries: sewing requires an identification of
the boundaries. A natural circle bundle π : ∂N � M′ × M′′ represents the space of possible
identifications. This ∂N is also (the pull-back to M′ × M′′ of) the circular neighbourhood of the
divisorial boundary stratum b2(M′ ×M′′) in in M. Functoriality stipulates now that the pull-back
class π∗(q′Zp′

g′ × q′′Zp′′

g′′ ), after contracting the A ⊗ A∗ factor from the two sewing indices, agrees

with the restriction of q−1Zp−1
g to ∂N. There is a matching condition for b1.
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(2.9) Deligne-Mumford factorisation rules. On Deligne-Mumford spaces, a composition law similar
to the maps (2.8) is provided by the following boundary morphisms, defined by identifying two
marked points on distinct surfaces (respectively, on the same surface) into a node:

b2 : q′Mp′

g′ × q′′Mp′′

g′′ → q−1Mp−1
g , b1 : q Mp

g → q−1Mp−1
g+1,

b′2 : q′Mp′

g′ × q′′Mp′′

g′′ → q Mp−2
g , b′1 : q Mp

g → q Mp−2
g+1, (2.10)

b′′2 : q′Mp′

g′ × q′′Mp′′

g′′ → q−2Mp
g , b′′1 : q Mp

g → q−2Mp
g+1.

The morphisms differ from each other only in the types of attaching points. DMT’s must satisfy
a twisted nodal factorisation rule for the Z, which involves contraction with D(ψ′, ψ′′), C(ψ′, ψ′′),
respectively B(ψ′, ψ′′), with the two ψ-classes at the node. Thus, for b′′2 : 1Mn′

g′ × 1Mn”
g” → Mn

g ,

b′′∗2 Zn
g = B(ψ′, ψ”)

(
1Zn′

g′ ⊗ 1Zn”
g”

)
, (2.11)

and similarly for the other maps. Such factorisation rules appear in generalised-cohomology
Gromov-Witten theory [CG], although the dependence on ψ′, ψ′′ has a very special form there
(B, C and D are scalars). In the more familiar case of CohFT’s, we impose D = Id, B = β, and C is
the inverse co-form.

2.12 Remark. (i) This discussion also applies to the stacks A classifying Lefschetz fibrations.
(ii) The nodal factorisation law, when lifted from M′ ×M′′ to ∂N, becomes precisely the smooth
surface sewing axiom, by virtue of the identity D(−ω, ω) = Id. In particular, Lefschetz theories
restricted to smooth surfaces give free boundary FTFT’s.

(2.13) Vacuum axiom. The final DMT axiom is the existence of a “vacuum” vector v(z) ∈ A[[z]]; in
a Lefschetz theory, this is defined by the universal sphere with a single output. This vector must
satisfy the following condition: let ϕ : Mn+1

g → Mn
g be the morphism of Deligne-Mumford spaces

forgetting the last marked point.

Zn+1
g
(
x1, . . . , xn, v(ψn+1)

)
= ϕ∗Zn

g .

We will concentrate later on the special class of theories with flat vacuum, when v = 1.

(2.14) PROP description. The sewing maps (2.8) assemble to a so-called PROP structure on the
spaces q M̃p

g , which carries over to their homology. In this language, an FTFT structure Z̃ on A is
equivalent to that an algebra structure over the homology PROP. Similarly, the Deligne-Mumford
boundary morphisms (2.10) give a PROP structure on H∗(Mg); self-sewing of single surfaces en-
hances this to a wheeled PROP (a notion introduced in [MMS]). Cohomological field theories are
algebras over the associated homology PROP of DM spaces; to capture the entire CohFT structure,
we must add a cyclic structure, permuting inputs and outputs. (We lack the ability to switch inputs
and outputs by means of elbows.) DMT’s with general D are algebras over a twisted form of the
DM homology PROP.

Free boundary FTFT’s do not fit into PROP language, for the reason explained earlier.

(2.15) Tautological classes. The classification will describe the various field theories in terms of the
tautological classes on the moduli of surfaces. We briefly recall the generating tautological classes
on Mn

g ; those on Mn
g , M̃n

g are obtained by restriction. Let ϕ : Mn+1
g → Mn

g be the map forgetting
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the last marked point. The marked points define n sections σi of ϕ, with smooth divisors [σi] as
their images. Let T∗ϕ be the relative cotangent complex of ϕ and define

ψi := σ∗i c1(T∗ϕ), κj = ϕ∗
(
ψ

j+1
n+1

)
,

(where ψn+1 on Mn+1
g is defined using σn+1 and Mn+2

g ). These classes satisfy the relations

[σi] · ψi =[σi] · ψn+1 = 0,

ψk
i = ϕ∗ψk

i + σi∗(ψk−1
i ), κj = ϕ∗κj + ψ

j
n+1.

The correction term σi∗(ψk−1
i ) in the first relation is only visible on Mn

g , but the one for κ also
appears on Mn

g . Thus defined, the κj are primitive: that is, under the boundary maps (2.10),

b∗2(κj) = κ′j + κ′′j , b∗1(κj) = κj.

Additional tautological classes on Deligne-Mumford spaces arise by the recursive pushing for-
ward polynomials in the κ− and ψ−classes from boundary divisors.

(2.16) The stability theorems. The key to the classification are two stability theorems, due to Harer
[H] (later improved by Ivanov [I]), and to Madsen and Weiss [MW], respectively. For the first
theorem, let Mn

g,m be the base family of the universal surface of genus g with m + n ordered points,
equipped with unit tangent vectors at the first m special points.

2.17 Theorem (“Harer stability” [H, I]). The maps Mn
g,m → Mn

g,m−1 and Mn
g,m → Mn

g+1,m, defined by
sewing in a disk, respectively by sewing on a two-holed torus, induce homology isomorphisms in degree less
than (g− 1)/2.

An important consequence describes the homological effect of adding marked points:

2.18 Corollary (Looijenga, [L]). In the stable range of total degree < (g− 1)/2, we have

H•(Mn
g ; Q) ∼= H•(Mg; Q)[ψ1, . . . , ψn].

We reproduce the easy proof. The circle bundle π : Mg,1 � M1
g presents H•(Mg,1; Q) as the

cohomology of the differential graded ring {H•(M1
g; Q)[η], d}, with deg η = 1 and dη = ψ1.

Now, thanks to Harer, π∗ : H•(M1
g; Q) → H•(Mg,1; Q) must surject in the stable range, since

the forgetful pull-back H•(Mg; Q) → H•(M1
g; Q) splits it there. But then, ψ1 is not a zero-divisor

in that range: if ψ1x = 0, then ηx is a class and is not in the image of π∗. Repeat for the other ψ.

2.19 Theorem (“Mumford conjecture” [MW]). In the stable range, we have

H•(Mg; Q) = Q[κj], j = 1, 2, . . . .

(2.20) Primitive and group-like classes. We conclude by spelling out the role of κ-classes in our con-
text. Genus-stabilisation Mn

g,m → Mn
g+1,m defines a limiting homotopy type Mn

∞,m. This agrees
with the classifying space of the stable mapping class group Γn

∞,m of a surface with m fixed and n
free boundaries. Harer stability makes the fixed boundaries invisible in the homology of the clas-
sifying space, while the homological effect of free boundaries is described by Corollary 2.18; so
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we focus on M∞,1. Sewing two surfaces, with one fixed boundary each, into a fixed pair of pants
defines a map

m : Mg,1 ×Mh,1 → Mg+h,1, (2.21)

which gives a homotopy-commutative monoidal structure on äg Mg,1 and, in the limit, on M∞,1.
The latter becomes a group-like topological monoid, and its cohomology H•(M∞,1; Q) acquires a
(commutative and co-commutative) Hopf algebra structure. By the Milnor-Moore theorem, this
must be the free power series algebra in the primitive cohomology classes, that is, the classes x
satisfying m∗(x) = x ⊗ 1 + 1 ⊗ x. The κ’s do have that property (§2.15), so the Madsen-Weiss
theorem has the following important consequence.

2.22 Corollary. All primitive rational cohomology classes on M∞,1 are linear combinations of the κ’s.

2.23 Remark. Corollary 2.22 is equivalent to the rational Mumford conjecture. Madsen and Weiss
prove an integral version, identifying the homotopy type of the group completion of the topologi-
cal monoid qMg with the infinite loop space Ω∞CP∞

−1 of the Madsen-Tillmann spectrum [MT]. An
integral, in fact spectrum version of Looijenga’s theorem was found earlier by Bödigheimer and
Tillmann [BT].

Another important notion is that of a group-like class X ∈ H•(M∞,1; Q), a non-zero class for
which m∗X = X ⊗ X. It is easy to see that the group-like classes are precisely those of the form
exp(x), with primitive x.

3. Smooth surface theories

Armed with the boundary maps between the Mg and the tautological classes, we proceed to clas-
sify FTFT’s of the first two types, involving smooth surfaces with parametrised or with free bound-
aries. This might be the place to confess to a minor gap in the classification: the definitions do not
seem to determine the value of the universal Z̃g without marked points, although a valid choice
can always be made from my data. For free boundaries, the same ambiguity applies to Z0

1 . The
genus one problem persists for Lefschetz theories, but not for DMT’s, since M1 does not exist.

(3.1) Fixed boundary theories. With g = g′ + g′′, consider the effect on the class 1Z̃g′ ∈ H•(1M̃g′ ; A)
of the operation of sewing onto the general surface of genus g′ a fixed 2-holed surface of genus g′′:

1Z̃g = αg′′ · 1Z̃g′ on 1M̃g′

where α ∈ A is the Euler class of §0.4 and the left-side class has been restricted to 1M̃g′ . When
α is invertible, it follows that α−g · 1Z̃g stabilises, as g → ∞, to a class Z̃+ ∈ H•(M∞; A). (The
superscript “+” is here to flag the fact that we have omitted the κ0-contribution to Z̃, as in §1.3.i.)
The sewing axiom, applied to the multiplication map (2.21) and corrected by the same power
α−(g+h) on both sides, implies that Z̃+ is group-like. It follows that

Z̃+ = exp
{
∑j>0 ajκj

}
, for certain aj ∈ A.

3.2 Remark. Integrally, Z̃+ would be a group-like class in the A-valued cohomology of Ω∞CP∞
−1.

Additively, there exist additional primitive classes, the Dyer-Lashof descendants of the κ’s [T];
quite likely, the analogue holds for group-like classes as well. The new classes could be ruled out
by imposing the FTFT axioms at chain level; then, Z̃+ would be a class in the cohomology of the
spectrum CP∞

−1 with generalized coefficients (GL1 of cohomology with values in A).
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Clearly, 1Z̃g is the restriction to 1Mg of αg · Z̃+; let us find mZ̃n
g . Sewing on large genus surfaces

to one boundary lets us assume g is large without loss of information. Map now 1M̃g to m M̃n
g by

sewing on to the universal surface a fixed sphere with n + 1 inputs and m outputs. This sphere
represents the map mSn+1 : A⊗(n+1) → A⊗m, multiplication to A followed by co-multiplication
A → A⊗m. Thanks to Harer, the map 1M̃g → m M̃n

g is a homology equivalence in a range, so we
detect mZ̃n

g by pulling back to 1M̃g, where we see the result of feeding 1Z̃g as one of the inputs in
mSn+1: thus,

mZ̃n
g = mS1(αg · Z̃+ · 1Sn)

and we conclude the desired classification, with aj = ∑i aijPi:

3.3 Proposition. If m and n do not both vanish, then, in the tensor monomials of the normalised canonical
basis, mZ̃n

g is diagonal, with all entries null save for the ones relating p⊗n
i to p⊗m

i , which are

θ
χ/2
i · exp

{
∑j>0 aijκj

}
.

3.4 Remark. The argument fails when m = n = 0, and the axioms don’t seem to determine Z̃g for
closed surfaces, except in the stable range of homology (we can detect that by lifting to Mg,1). One
valid choice is given by summing the classes in (3.3) over i.

(3.5) Free boundaries and E. Restricting to surfaces with fixed boundaries determines a Z̃ as above.
Let now 1Zg,1 denote the lift of 1Z1

g to 1Mg,1. Recall that the latter is a circle bundle over 1M1
g and

classifies surfaces with a fixed incoming boundary and a free outgoing one. Sewing a fixed surface
of genus g′′ into the fixed incoming boundary of the general surface over 1Mg′,1 tells us that

1Zg,1 ∈ H•
(

1Mg,1; End(A)
)

restricts to 1Zg′,1 ◦ (αg′′ · ) ∈ H•
(

1Mg′,1; End(A)
)

,

with (x· ) denoting the operator of multiplication by x ∈ A. Again, we get a stable class

1Z+
1 (κ, ψ+) := 1Zg,1 ◦ (α−g· ) ∈ H•

(
1Mg,1; End(A)

)
as g→ ∞, (3.6)

minding that the cohomology ring is freely generated by the κj (j > 0) and the class ψ+ at the
outgoing point. Similarly, switching the roles of the boundary circles defines a stable class

1Z+,1(κ, ψ−) := lim
g→∞

(α−g· ) ◦ 1Z1
g (3.7)

Setting the κ’s to 0 in (3.6) defines a formal Taylor series E(−ψ) := 1Z+
1 (0, ψ) ∈ End(A)[[ψ]].

3.8 Lemma. We have

1Z+
1 (κ, ψ+) = E(−ψ+) ◦ (Z̃+(κ)· ) and 1Z+,1(κ, ψ−) = (Z̃+(κ)· ) ◦ E(ψ−)−1.

More generally, in any genus g,

1Z1
g = E(−ψ+) ◦ (Z̃+(κ) · αg· ) ◦ E−1(ψ−).

Proof. Modify the sewing above by letting both surfaces vary, while the sewing circle rotates freely.
This takes place over

∂N = 1Mg′,1 ×
T

1M1
g′′
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where the circle T simultaneously rotates the two boundaries being sewn together. The sewn
surface is classified by a map ∂N → 1M1

g. Pull-backs to ∂N being understood, we have

1Z1
g′ ◦ 1Z1

g′′ =
1Z1

g. (3.9)

In a moment, we will proceed by fixing the incoming or outgoing boundaries, as convenient. In
any case, ∂N → 1M1

g′ × 1M1
g′′ is a circle bundle with Chern class−(ψ′+ ψ′′), using the ψ-classes at

the node. On the total space ∂N, ψ′′ = −ψ′, the common value representing the Euler class of the
sewing circle. The Leray sequence and our knowledge of stable cohomology show that H•(∂N),
below degree g′′/2, is freely generated over H•(1M1

g′) by the κ′′j . Similarly, it is freely generated
over H•(1M1

g′′) by the κ′j, below degree g′/2. Let now both g′ and g′′ be as large as needed, and
lift (3.9) to 1Mg,1; we obtain from (3.6) and (3.7), after cancelling powers of α:

1Z+,1(κ′, ψ′) ◦ 1Z+
1 (κ′′,−ψ′) = Z̃+(κ). (3.10)

Using the relation κ = κ′ + κ′′ and the algebraic independence of κ′, κ′′, ψ′, we obtain the second
formula in the lemma by setting κ′′ = 0, and from there, the first formula by setting κ′ = 0.

For the final and more general formula, return to (3.9) and let only g′′ be large. Fixing the
incoming circle leads to

1Z1
g′ =

1Zg,1 ◦
(1Zg′′,1

)−1

with both factors on the right now known. Minding that ψ′ = −ψ′′ gives the formula.

3.11 Proposition. For (g, m, n) 6= (1, 0, 0), we obtain nZm
g as follows: each input is transformed by

E−1(ψ), with the respective ψ class; the product of these is multiplied by αg · Z̃+(κ), the result is co-
multiplied out to A⊗n, where each factor is transformed by the respective E(−ψ). The unit 1 substitutes
for the empty of inputs, and the Frobenius trace θ is applied if there is no output.

Proof. If there is at least one marked point, repeat the final argument above: for each output or
input point, compose with a large-genus 1Z1

G or 1ZG,1, respectively, to arrive at the known operator
mZ>G,n. Since 1Z1

G is invertible and known, we are done. The case m = n = 0 needs an extra
argument. Pull back Zg along the forgetful map ϕ : M1

g → Mg. The closed surface bundle splits
over M1

g into an open surface and a disk sewed along their common (moving) boundary, and we
can compute ϕ∗Zg from the known formulae to get the desired

ϕ∗Zg = θ
(
αg · Z̃+(ϕ∗κ)

)
,

from the primitivity of κ-classes. (More precisely, the κ-classes of the unpointed disk precisely
undo the ϕ∗κ-correction of §2.15; see the discussion of the vacuum below for more help). Now, for
any g 6= 1, ϕ∗ is split in rational cohomology by integration down to Mg against ψ, so we recover
Zg as hoped.

(3.12) The vacuum. The universal disk with outgoing boundary defines the vacuum vector v(z) ∈
A[[z]], where we take z to be the opposite of the boundary Euler class (and of the ψout at the output,
in the pointed sphere model). Capping a boundary in the universal surface with a disk shows that

mZn+1
g (v(ψ), . . . ) = ϕ∗mZn

g (. . . ), (3.13)

for the map ϕ : p Mq+1
g → p Mq

g forgetting the first input point, and with the ψ-class there.
Fixing the disk shows that v ≡ 1 (mod z). We say that that Z has flat vacuum if in fact v = 1.
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3.14 Proposition. In a semi-simple free boundary FTFT, the vacuum is given by

v(z) = E(z)
(

exp{−∑j>0 ajzj}
)

,

and so Z has a flat vacuum precisely when exp
{
−∑j>0 ajzj

}
= E(z)−1(1).

Proof. This is the formula in Lemma 3.8 together with the equality κj = −(−ψout)j on 1M0. One
way to see the latter is to use the correction formula in §2.15 for the pull-back to 1M1

0, on which
space all κ’s vanish and the two ψ-classes are opposite.

3.15 Remark. (i) If we limit ourselves to stable surfaces, the discussion in this section continues
to apply, except for the definition of the vacuum and the consequent determination of Z0

g.
In semi-simple theories, we can recover the value of v from large-genus surfaces, using the
contraction formula (3.13) and invertibility of Z̃+. This helps explain why there will be no
classification distinction later between semi-simple Lefschetz and DM theories.

(ii) Unlike Harer stability and Looijenga’s result on ψ-classes, the Mumford conjecture has not
seriously been used: the κ’s could have been replaced by the primitives in the Hopf algebra
H•(M∞,1). However, later on, unknown primitive classes would break the argument for
reconstruction from genus 0.

4. Lefschetz theories: construction

Restricting a Lefschetz theory to the open moduli spaces Mn
g gives a free-boundary theory and

determines Z̃+ and E as before, but a new parameter D arises from the universal pair of crossing
disks; this controls the behaviour of classes at the boundaries of Mn

g , and the analogous boundary
strata of the stacks An

g . In addition to the Frobenius algebra A, we thus have

(i) the class Z̃+ = exp
{

∑j>0 ajκj
}

of §3.1,

(ii) the Taylor series E(z) = Id + zE1 + z2E2 + · · · ∈ End(A)[[z]] of §3.5,
(iii) the “nodal propagator” Z(⊃⊂) = D(−ω+, ω−) of §2.4.

Ingredients (ii) and (iii) are subject to constraints we will spell out in a moment.
I will construct a Lefschetz theory based on these parameters. Of course, restriction to stable

curves gives a DMT. Unlike the proof of uniqueness in the next section, the construction does not
assume the semi-simplicity of A. We switch from the use of Euler classes ω of boundary circles to
the ψ-classes at the node, and must mind the signs: ω = −ψ for an outgoing disk, but ω = ψ at an
incoming one. We use z’s to denote universal ψ classes.

(4.1) Constraints on D and E. We have seen in §1.3.iii that D(z+, z−) = Id when z+ + z− = 0. In
addition, the pairing

B : A⊗ A→ k[[z1,2]]

defined by two disks with incoming boundaries and crossing at their centres, must be symmetric
under simultaneous swap of the A factors and nodal ψ-classes z1,2. This pair of crossing disks
can be constructed from b and ⊃⊂, so B can be expressed from D, E and β. To simplify notation,
use the Frobenius quadratic form β to express quadratic tensors in terms of endomorphisms and
define B′ by β(a1, B′(a2)) = B(a1 ⊗ a2). We then have

B′(z1, z2) = E−1(−z1)∗ ◦ E−1(z1) ◦ D(z1, z2), (4.2)
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and this must satisfy B′(z2, z1) = B′(z1, z2)∗. The same symmetry constraint applies to the co-
form C ∈ (A ⊗ A)[[z1,2]] defined by the outgoing crossing disks, but in fact this is equivalent to
symmetry of B: C is expressed from B and two factors of Z(c), symmetrically applied to the two
arguments. At any rate, defining C′ by β(a1, C′(a2)) = β⊗2(a1 ⊗ a2, C) leads to

C′(z1, z2) = D(z2, z1) ◦ E(−z1) ◦ E∗(z1). (4.3)

Note that, while E is only defined in a semi-simple theory, the composition E−1(z)∗ ◦ E−1(−z) is
always defined in terms of Z(b) and the Frobenius bilinear form β.

(4.4) Relating B, C and D. In a Lefschetz theory, B, C and D determine each other without reference
to E, which can be eliminated from (4.2) and (4.3) by means of the following identities:

E−1(−z)∗ ◦ E−1(z) = D∗(0, z) ◦ D−1(z, 0) = B′(z,−z) = C′(−z, z)−1.

To see these relations, set one of the arguments to 0 and the other to z in (4.2), to get

B′(0, z) = D(0, z), B′(z, 0) = E−1(−z)∗E−1(z)D(z, 0).

The first relation now comes from the symmetry of B. For the second, set z = z2 = −z1 in (4.2).
The third identity arises from the same specialization of (4.3).

In a Deligne-Mumford theory, this argument is disallowed because the elbows relating B, C
and D are unstable surfaces. Therefore, the relations between B, C, D (with E eliminated) must be
imposed as axioms of the theory.

(4.5) Alternative parameters. The following description will be useful in our second construction of
Lefschetz theories, in §6. Since D(z,−z) ≡ Id, we can write

C′(z1, z2) = E
(
z2) ◦ (Id + (z1 + z2)W ′(z1, z2)

)
◦ E∗(z1) (4.6)

for a uniquely determined W ′ satisfying the more straight-forward constraint

W ′(z1, z2)∗ = W ′(z2, z1),

corresponding to a symmetric W ∈ (A⊗ A)[[z1,2]]. Then, the triple (Z̃+, W, E) is an alternative set
of parameters for the DMT, with symmetry of W as the only constraint.

(4.7) Construction of the theory. Given Z̃, E and B, here is a way to produce a field theory with
these data. For a single curve, the smooth-surface and nodal factorisation rules leave no choice
for Z: we resolve the surface, viewing all nodal points as outgoing say, apply the free boundary
formula to each component, and use B to contract the two factors of A at each node as prescribed
by formula (2.11). Clearly, this method works in any family which does not vary the topological
type of the curve, in particular over any stratum of Mn

g . However, gluing strata together requires
more comment.

The recipe for any boundary stratum also applies to a nearby smoothing of our nodal surface:
we can cut the handle smoothing out the node and use the Euler class of the cutting circle, with
the two choices of sign, in lieu of the two nodal ψ-classes. Let us call this the nodal recipe. This
nodal recipe is unavailable as we move farther into the bulk of Deligne-Mumford space, where
the cutting circle is lost; the smooth recipe, based on the true topology of the surface, must take over.
Now, Condition 4.10 ensures that the smooth and nodal recipes agree at the level of cohomology
where they are both defined, because of the smooth-surface sewing rule.
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However, to ensure that we get a well-defined cohomology class on the Mn
g , we must produce

cocycle-level representatives, such as differential forms, for the local Z-classes, and we must check
their agreement on overlaps. For this purpose, choose differential forms representing the ψ’s over
Mn+1

g such that:

(i) ψn+1 vanishes near the [σi] and near the nodes of the universal curve

(ii) The two ψ-classes at a node are defined on a tubular neighbourhood of the node, disjoint
from the support of ψn+1, and they agree near the boundary of that neighbourhood.

This is possible because the line bundle det σ∗n+1T∗ϕ is trivial near the [σi] and flat near the nodes,
so the curvature forms in any metric will do.

We can now apply the nodal recipe for Z with differential forms, using
∫

ϕ ψ
j+1
n+1 for every oc-

currence of κj in the formula. The vanishing of ψn+1 near the nodes ensures that equation (4.10)
gives the algebraic cancellation that ensures a match on overlaps.

Another prescription for the classes Z will be given in §6, in terms of a group action on coho-
mology of the Deligne-Mumford spaces.

(4.8) The CohFT condition. Because of the relations of §4.4, D = Id ⇔ B′ = Id ⇔ C′ = Id. In
addition, (4.2) implies the symplectic condition

E∗(z) = E−1(−z).

This says that the action of E(z) on A((z)) preserves the symplectic form

Ω(a1, a2) := Resz=0 β (a1(−z)a2(z)) dz.

In terms of W, the CohFT constraint is

W ′(z1, z2) =
E−1(z2)E−1(z1)∗ − Id

z1 + z2
,

which can be met precisely for symplectic E.

4.9 Remark. If, instead, we fix a general symmetric B, then E falls subject to the constraint

B′(z,−z) = E−1(−z)∗E−1(z), (4.10)

which determines E up to left multiplication by an End(A)-valued Taylor series F(z) = Id + O(z)
preserving the symplectic form on A((z))

ΩB(a1, a2) = Resz=0 B(−z, z) (a1(−z), a2(z)) dz.

(4.11) The vacuum. Existence of a vacuum as in §2.13 follows from the Lefschetz theory sewing
rule. In the theory constructed in §4.7, v(z) is given by the formula of Proposition 3.14, derived
from the restricted free boundary theory. The flat vacuum condition v(z) = 1 then amounts to

exp
{
−∑j>0 ajzj

}
= E−1(z)(1). (4.12)

In the semi-simple case, large genus surfaces detect the vacuum (Remark 3.15.i), so the restricted
Deligne-Mumford theory will also have a flat vacuum precisely when (4.12) holds.

The final Gromov-Witten homogeneity condition in §1.7.iii requires a digression on Frobenius
manifolds, and will be discussed in §7.
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5. Deligne-Mumford theories: uniqueness

This section contains the key argument of the paper: we show that semi-simple DMT’s are uniquely
determined by the nodal propagator D and by the associated free-boundary theory on smooth
curves.10 The argument also applies to Lefschetz theories, but we focus on the DM case. A refor-
mulation of the main result, suggested by one of the referees, is found in the appendix.

(5.1) Extending Z-classes over Deligne-Mumford strata. Let j : S ↪→ M be the divisor parametrising
a (locally versal) nodal degeneration of a family ΣM → M of marked Riemann surfaces. The
normal bundle νS to S in M is the tensor product L′ ⊗ L′′ of the complex tangent lines at the two
exceptional points p′, p′′ of the resolved surface Σ̃ over S.

Since p′ and p′′ may be switched by the monodromy over S, we view them both as outgo-
ing. Over S, and hence over a tubular neighbourhood N, Z(Σ) is the contraction of Z(Σ̃) ∈
H•(∂N; A(2)) by B(ψ′, ψ′′). The Mayer-Vietoris sequence

· · · → H•−1(∂N) δ−→ H•(M)→ H•(M \ N)⊕ H•(N)→ H•(∂N) δ−→ · · · ,

shows that cohomology classes over M \ S and N patch into one over M, if they agree over the
circular neighbourhood ∂N; but an ambiguity arises from the δ-image of H•−1(∂N). More pre-
cisely, if η is a connection form on the circle bundle ∂N → S, then H•(∂N) is computed as the
cohomology of the DGA H•(S)[η], with differential dη = eul(νS), the normal bundle Euler class.
For a ∈ H•−1(∂N), δ(a) is given by the differential of any extension of a to N as a co-chain. This
kills classes pulled back from S, while a class bη, with b from S, is sent to j∗(b). Now, bη is a
co-cycle iff b · eul(νS) = 0, so the patching ambiguity is precisely the Thom push-forward j∗ of the
annihilator of eul(νS) in H•−2(S).

This observation applies to Deligne-Mumford strata S of any co-dimension c: a class in H•(M)
with known restrictions to M \ S and S is ambiguous only up to addition of some j∗(b), with
b ∈ H•−2c(S) annihilated by eul(νS). We see this from the long exact cohomology sequence

· · · → H•−2c(S)
j∗−→ H•(M)→ H•(M \ S) δ−→ H•−2c+1(S)→ . . . ,

(we have used the Thom isomorphism j∗ : H•−2c(S) ∼= H•(M, M \ S)) and from the fact that
j∗(b)|S = eul(νS) · b. Note that eul(νS) is the product of Euler factors for the Deligne-Mumford
divisors containing S.

(5.2) Uniqueness for large genus: the main idea. If M \ S is the universal family of smooth surfaces of
large genus and S a boundary divisor in its DM compactification, Looijenga’s theorem (2.18) en-
sures that eul(νS) = −ψ′−ψ′′ is not a zero-divisor within a range of degrees, as one component of
Σ̃ must have large genus. Classes then patch uniquely. This applies to strata of any co-dimension,
and even if the family M includes nodal and reducible surfaces, the only requirement being that
each node defining the degeneration to S should belong to at least one large genus component.
This is the germ of an inductive proof of unique extension of Z(ΣM) to the Deligne-Mumford
boundary. The induction requires a careful stratification of the Deligne-Mumford spaces Mn

g .

(5.3) Stratification of Mn
g . Assume that n > 0, and call the irreducible component of the universal

curve containing the marked point n special. We now decompose Mn
g following the topological type

10In the context of chain-level theories, this fact is true without the semi-simplicity assumption; but in that situation,
it can be made obvious with the right definitions.
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τ of the special component. A partial ordering on the resulting strata is defined by stipulating that
higher types can only degenerate to lower ones (plus extra components, which cease to be special).
We extend this to some complete ordering; an example is the dictionary order on geometric genus,
number of nodes and total number of marked points of the special component. (Nodes linking
the special component to other components should be counted for this purpose as marked points,
not nodes.) The smooth stratum Mn

g is by itself. Every stratum in the decomposition is isomor-
phic to (Mν

γ ×M)/F, where γ and ν pertain to the special component, while M parametrises the
complementary components, and F is the group of symmetries of the modular graph describing
the topological type our curves.

5.4 Example. With g > 2 and n = 1, if we split off an elliptic curve crossing the special component
at two nodes, γ = g− 2, ν = 2, M = M2

1 and F = Z/2, switching the two crossings.

Our decomposition Mτ of Mn
g is not a stratification in the strict sense: it is not compatible with

the dimensional ordering. However, we have the following:

(i) Each Mτ is a union of Deligne-Mumford strata.

(ii) Every descending union qτ′≥τ Mτ′ of strata is open.

(iii) Each Mτ is a closed sub-orbifold of qτ′≥τ Mτ′ .

(iv) The normal bundle to Mτ is (locally) a sum of lines L′ ⊗ L” for tangent line pairs at the nodes
which belong to the special component (and possibly one other component).

Parts (i) and (ii) are clear by construction. To see (iv), choose a surface Σ in Mτ. It belongs to a
DM stratum MΣ, which is wholly contained within Mτ. The deformation space of Σ is smooth,
and its tangent space is the sum of the lines L′ ⊗ L′′, over all nodes, with the tangent space to
MΣ. The nodes which lie on the special component give deformations which change the topology
of the special component, hence they represent normal directions to Mτ; whereas the other nodes
correspond to deformations of the complement of the special component, which are tangent to Mτ.
Since an automorphism of Σ preserves the special component, it cannot interchange tangent and
normal lines. This shows that the symmetry group F, acting on the tubular neighbourhood of Mτ,
preserves the decomposition into tangent and normal directions; so Mτ has no self-intersections,
proving smoothness in (iii).

(5.5) Unique patching. Let us now prove uniqueness of the patched class on every Mn
g (n > 0).

Attach to the marked input point n a moving smooth surface ΣG of large genus G with an incoming
point marked “−′′ and an outgoing one marked “+′′ (the latter attached to n). This embeds S :=
Mn

g × 1M1
G as part of the boundary of Mn

g+G. Let, as before, N be a tubular neighbourhood of S
and ∂N its boundary.

5.6 Lemma. The projection ∂N → Mn
g ×M1

G forgetting the point + gives the following isomorphism in
degree less than (G− 1)/2: H•(∂N) ∼= H•(Mn

g)⊗ H•(MG)[ψ−].

Proof. The description of ∂N as a circle bundle over S gives the description of H•(∂N) in the stable
range as the cohomology of the differential graded algebra

H•(Mn
g)⊗ H•(MG)[ψ+, ψ−, η] with dη = ψn + ψ+,

which implies our statement.

22



Now, S parametrises nodal degenerations at n = + of those surfaces corresponding to the
open union of U of DM strata in Mn

g+G which meet ∂N. We carry over our type decomposition
of §5.3 to U ⊂ Mn

g+G with special point −, and observe that properties (i)–(iv) continue to hold.
In addition, the special component now has geometric genus G or higher. All the normal Euler
classes in (iv) are then products of free generators of the cohomology ring. The classes Z over the
Uτ then patch uniquely. But each Uτ factors as Mν

G+γ ×M, and M parametrises surfaces whose
type is strictly lower than that of geometric genus g, with n marked points. We can inductively
assume their Z-classes to be known; the factorisation rule gives the Z-class on each Uτ, therefore
on all of U and then also on S. The class on S is Zn

g ◦ D(−ψn, ψ+) ◦ 1Z1
G, with D fed into the nth

entry of Zn. Lifting to ∂N recovers Zn
g , by Lemma 5.6.

(5.7) Pre-stable surfaces. Restriction to stable surfaces may seem unnatural from the axiomatic point
of view. There are Artin stacks An

g parametrising all pre-stable curves, nodal curves with no con-
dition on the rational components: they arise from stable curves by inserting chains of P1’s at a
node (leading to semi-stable curves) and trees of P1’s at smooth points. However, these stacks also
have normal-crossing stratifications à la Deligne-Mumford, and the inductive argument applies
as before, ensuring uniqueness of the extension to An

g .

(5.8) Appendix: An infinite-genus Deligne-Mumford space. One referee observed that the splitting re-
sult of this section has a re-formulation in the guise of a homological splitting of a certain “infinite-
genus Deligne-Mumford space” Mn

n·∞ into its constituent strata. This space is a partial completion
of the classifying space BΓn

∞ of the infinite-genus mapping class group, and can be obtained by the
addition of certain boundary strata. Roughly speaking, Mn

n·∞ parametrizes infinite-genus nodal
surfaces with n marked points such that each irreducible component which carries one of the
marked points has infinite genus, but the other components have finite genus.

A geometric construction of the requisite DM space, as well as its moduli interpretation, re-
quire some effort; so I shall only outline the story here. While it is true that we need the spaces
only up to homotopy in order to know their cohomology, we need to describe Mn

n·∞ as a stratified
homotopy type, with normal structure at the strata. In this format, the space can be assembled
from its constituent strata, which are products of various Mk

g and factors of BΓl
∞, in the manner

in which Mn
g is assembled from its Deligne-Mumford strata, and with the same normal-crossing

structure. Readers familiar with the structure of Deligne-Mumford boundary divisors should have
no trouble supplying the details for this case.

A point in Mn
n·∞ represents a nodal curve C; to this, we associate its stable graph γ̃(C) in the

usual way (a genus-labeled vertex for each component, an edge for each node, a labeled external
edge for each marked point), and the modified graph γ(C) which collapses all the edges which
link vertices of finite genus. We now stratify Mn

n·∞ according to the modified graph. (For this
purpose, one must take care that the ‘infinite’ genera of components of the curve are really very
large numbers, to be stabilized later; for instance, splitting of some finite genus piece from a large
genus surface changes the graph. This book-keeping must be built into the construction of Mn

n·∞.)
For a single marked point, we recover the stratification of §5.3 by topological type of the special
component (now stabilised to infinite genus). Call cγ the complex co-dimension of Mγ.

There is a partial ordering on strata, compatible with degeneration of the infinite-genus com-
ponents: γ ≥ γ′ if the closure of the stratum Mγ contains Mγ′ . (This happens as soon as the former
meets the latter.) This gives an increasing filtration of Mn

n·∞ by the open subsets Fγ := äγ′≥γ Mγ′ .
The following proposition, suggested by the referee, has the same proof as Lemma 5.6.
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5.9 Proposition. (i) The cohomology spectral sequence associated to the filtration Fγ collapses at the first
page:

grH•(Mn
n·∞) =

⊕
H•(Mγ)[2cγ].

(ii) Every cohomology class of Mn
n·∞ is uniquely determined by its restrictions to all the strata Mγ.

6. A group action on DM field theories

This section reformulates the classification of semi-simple DMT’s in terms of the action of a sub-
group of the symplectic group on the cohomology of Deligne-Mumford spaces. This construction,
which lifts some of Givental’s quadratic Hamiltonians, was perhaps first flagged by Kontsevich
[CKS] (see also the recent [KKP]), and plays a substantial role in his study of deformations of
open-closed field theories. Here, it is merely a convenient way to rephrase the classification. The
context is more general than the Introduction: we allow D 6= Id, so we must review the notation.

(6.1) Definitions. Let ∆ be the completed second symmetric power of A[[z]]; we may view it as the
space of (symmetric) 2-variable Taylor series in A⊗2[[z1,2]]. The group GL(A)[[z]] acts on V ∈ ∆
by Adg(V) = (g(z1)⊗ g(z2)) ◦ V(z1,2). Let GL+ ⊂ GL(A)[[z]] be the congruence subgroup ≡ Id
(mod z), and define Sp+ := GL+ n exp(∆), the second factor denoting the vector Lie group with
Lie algebra ∆. Call F the space polynomial functions on A[[z]], introduce a formal parameter h̄ and
consider, on the space F((h̄))

• the translation action of A[[z]]: (TxF )(y) = F (y− x);

• the geometric action of GL+: (gF )(x) = F (g−1x);

• the action of exp(∆), exponentiating the quadratic-differentiation action of h̄∆.

They assemble to an action of Sp+ n A[[z]]. When A[[z]] is doubled to a symplectic vector space
and F is regarded as the Fock representation of its Heisenberg group H, Sp+ is a subgroup of
the symplectic group Sp acting on H and ∆ is the “upper right corner” of the Lie algebra of Sp.
The (projective) metaplectic representation of Sp on F induces on F((h̄)) the action of Sp+ that
we have just described. However, we are not yet committed to an identification of the symplectic
space A[[z]]⊕ A[[z]]∗ with (A((z)), h̄Ω) as in §1.14. The geometric action of g ∈ GL+ does not agree
with the metaplectic one coming from its point-wise action on A((z)), as in §1.14: rather, the latter
comes from a different embedding of (part of) GL+ in Sp+, see Proposition 6.17 below.

A Deligne-Mumford theory defines, and is determined by, a vector in the space of Sn-invariant
cohomologies

ADM := ∏
g,n

H•
(

Mn
g ; (A∗)⊗n

)
Sn .

There is a distinguished IA ∈ ADM, representing the trivial theory based on A. To any vector
Z ∈ ADM, not necessarily one defining a DMT, we now assign as in §1.11 its “potential” A,

A(x) = exp

{
∑
g,n

h̄g−1

n!

∫
Mn

g

Zn
g (x(ψ1), . . . , x(ψn))

}
, (6.2)

in a completion of F((h̄)). It is a formal power series in h̄ and x3/h̄, but of a restricted kind, thanks to
the dimensions of the Mn

g : for instance, the exponent is polynomial in the z2A[[z]] directions. These
facts explain why the translation action of z2A[[z]], as well as that of h̄∆, can be exponentiated to
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these potentials (but this will also be a consequence of the next construction). Let H+ and H++ be
the lifts of zA[[z]], z2A[[z]] in H. I will define an action of Sp+ n H++ on ADM which lifts the action
on potentials, and verify that the semi-simple DM theories of §4 constitute the Sp+ n H++-orbit
of the trivial theory based on A.

The action extends infinitesimally to the larger group Sp+ n H+, but we will see (from the
case of of semi-simple DMT’s) that the exponentiated action of the linear modes zA ⊂ H+ has
singularities. In addition, these linear modes will vary the algebra structure of A, scaling the
projectors. The translation by zero-modes is more complicated and does not commute with the
rest of H+, see §8.

(6.3) Translation. Let Z ∈ ADM be any class. For a(z) ∈ z · A[[z]], define a new class aZ by setting

aZn
g(x1, . . . , xn) =: ∑

m≥0

(−1)m

m!

∫ Mn
g

Mn+m
g

Zn+m
g (x1, . . . , xn, a(ψn+1), . . . , a(ψn+m)).

All ψ-classes are on Mn+m
g . With a = 0, we recover Z. For dimensional reasons, the sum is finite

if a ∈ z2 · A[[z]], but linear components zA can cause convergence problems and should a priori be
treated formally. We will compute their effect explicitly below, for semi-simple DMT’s.

We claim that a
(

bZ
)

= a+bZ: indeed, the second-order infinitesimal variation, capturing the
linear effect of b-translation followed by that of a-translation, is

δ2Zn
g

δaδb
(x1, . . . , xn) =

∫ Mn
g

Mn+1
g

∫ Mn+1
g

Mn+2
g

Zn+2
g (x1, . . . , xn, a(ϕ∗ψn+1), b(ψn+2)) , (6.4)

where ϕ is the morphism forgetting the point n + 2. The difference a(ψn+1) − a(ϕ∗ψn+1) is a
multiple of [σn+1] (cf. §2.15), so it is killed by ψn+2, therefore also by b(ψn+2); so the right-hand
side is symmetric in a, b.

The same argument, using the presence of ψ-classes in a, gives the expected binomial expan-
sion ∫

Mn
g

Zn
g (x + a(ψ1), . . . , x + a(ψn)) = ∑k

(
n
k

) ∫
Mk

g
aZk

g (x, . . . , x) ;

defining a potential Aa from aZ as in (1.12) leads to

Aa(x) = A(x− a) for a ∈ zA[[z]].

In other words, Z 7→ aZ lifts to DMT classes the translation action of a on Fh̄.

(6.5) The Sp+-action. It is clear how the action of elements g(z) ∈ GL(A)[[z]] lifts to ADM: the ith
input of Z is transformed by g−1(ψi). The quadratic differentiations of ∆ can be implemented by
the addition of boundary terms, as I now describe.

Recall first that Mn
g has one boundary divisor parametrising irreducible nodal curves of genus

g− 1, and additional divisors corresponding to reducible nodal curves. These latter divisors are
labelled by tuples (g′, g′′, n′, n′′, σ), where (g′, n′)+ (g′′, n′′) = (g, n) and the partitions σ of marked
points range over co-sets in Sn/(Sn′ ×Sn′′). As usual, unstable degenerations with forbidden
values of (g′, n′) or (g′′, n′′) are excluded. Our labelling double-counts the boundaries because of
the interchange (g′, n′) ↔ (g′′, n′′); in the case g′ = g′′ and n′ = n′′, this becomes an involution
of the respective boundary stratum, interchanging the local components of the curve at the node.
In other words, a label determines a boundary stratum together with an ordering of the two local
components at the node. Denote by ψ′, ψ′′ the two ψ-classes at the node. Call Λ the set of labels
for reducible degenerations and Θλ the Thom class of the boundary λ ∈ Λ.
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6.6 Definition. The infinitesimal action of δV = v′zp ⊗ v′′zq + v′′zq ⊗ v′zp ∈ ∆ on Z ∈ ADM is
given by

δZn
g(x1, . . . , xn) =− ∑

λ∈Λ
Θλ ∧ Zn′+1

g′ (xσ(1), . . . , xσ(n′), v′) ∧ ψ′p

∧ Zn′′+1
g′′ (xσ(n′+1), . . . , xσ(n), v′′) ∧ ψ′′q

−Θ(g−1,n+2) ∧ Zn+2
g−1(x1, . . . , xn, v′, v′′) ∧ ψ′p ∧ ψ′′q.

To see that this gives an action of ∆, we must check that the effects of any two δV, δW commute.
Now, the second variation, in either order, is a sum over all boundary strata of co-dimension 2 in
Mn

g . These strata are labelled by stable curves with two nodes, and a stratum S contributes the
following term: the Thom class of S, times the product of Z-classes, one factor for each irreducible
component of the curve, and with the pair of entries at each of the two nodes contracted with δV,
respectively with δW. We are using the fact that the Thom classes and nodal ψ-classes of boundary
strata restrict to their obvious counterparts on second boundaries. This is the desired symmetry
of the second variation.

Let us now show that the actions just defined on ADM assemble to an action of Sp+ n H+.

6.7 Proposition. The action of GL(A)[[z]] intertwines naturally with those of H+ and ∆, which commute
with each other. Moreover, the resulting action of Sp+ n H+ lifts the metaplectic action on potentials.

Proof. The statement about GL is clear, because it twists the input fields. Commutation of H+ with
∆ can be checked infinitesimally. By definition, the derivative ∂aZn

g in the direction a ∈ H+ is the
integral along the universal curve of the a-contraction of Zn+1

g . Omitting the obvious symbols in
Definition 6.6, we therefore have

δ2Z
δaδV

= ∑
(
Θλ ∧ ∂a

(
Z′ψ′p

)
∧ Z′′ψ′′q + Z′ψ′p ∧ ∂a

(
Z′′ψ′′q

))
+ Θ(g−1,n+2) ∧ ∂a

(
Zg−1ψ′

p
ψ′′

q),
δ2Z

δVδa
= ∑

(
Θλ ∧ ∂a

(
Z′
)
ψ′

p ∧ Z′′ψ′′q + Z′ψ′p ∧ ∂a
(
Z′′
)
ψ′′

q)+ Θ(g−1,n+2) ∧ ∂a
(
Zg−1

)
ψ′

p
ψ′′

q;

and the first and second expression differ only through the meanings of ψ′, ψ′′: as the ψ-classes at
the node on the universal curve, versus the lifts of the same from the base. However, the positive
powers of ψn+1 which are present in a kill the difference between the two.

Finally, let us compare this action with the metaplectic one. Translation was checked earlier.
It is clear that the GL-action lifts the geometric action on F((h̄)). The analogue for the metaplec-
tic action of ∆ is seen in the following interpretation of A: it is the integral over the moduli of
all, possibly disconnected stable nodal surfaces, with individual components of the moduli space
weighted down by the automorphisms of their topological type. In this expansion of the potential
A, differentiation in the input x involves replacing one x-entry in a Z-factor in each term by the
direction of differentiation, and summing over all choices of doing so. Quadratic differentiation is
the same procedure, applied to all pairs of entries. Thanks to the Thom classes in formula (6.6), we
can re-interpret the integral of δZn

g there over Mn
g as a sum of integrals over the relevant bound-

aries instead. Book-keeping confirms that we thus supply all requisite terms for the quadratic
differentiation in the expansion of A.

6.8 Proposition. If Z defines a DMT, then so does any of its transforms under Sp+ n H+.
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Proof. For the action of GL+, this is clear from first definitions. For ∆ and H+, we will check that
the infinitesimal action gives a first-order deformation of a field theory; we will also spell out its
effect on the co-form C, and will do so first in the more delicate case of ∆.

More precisely, we claim that for the variation δZ resulting from δV, Z + ε · δZ is a DMT
over the ground ring k[ε]/ε2, with nodal co-form C + εδC, where δC(z1,2) = (z1 + z2) · δV(z1,2).
Writing the DMT factorisation rule (2.10) at a splitting node corresponding to a boundary divisor
Dλ0 (labelled by λ0 ∈ Λ) as

b∗2 Z = Z′ a C(ψ′, ψ′′) ` Z′′,

where the two contractions a and ` absorb the left and right factors of C into the nodal slots of
Z′, Z′′, shows that the ε-linear part becomes the “Leibniz rule”

b∗2δZ = δZ′ a C(ψ′, ψ′′) ` Z′′ + Z′ a δC(ψ′, ψ′′) ` Z′′ + Z′ a C(ψ′, ψ′′) ` δZ′′. (6.9)

To verify this identity for our δZ, restrict formula (6.6) to Dλ0 . Noting that b∗2Θλ0 is the Euler class
−(ψ′ + ψ′′) of Dλ0 , the term λ = λ0 in the sum becomes

ε(ψ′ + ψ′′) ∧ Zn′+1
g′ (xσ(1), . . . , xσ(n′), v′) ∧ ψ′p ∧ Zn′′+1

g′′ (xσ(n′+1), . . . , xσ(n), v′′) ∧ ψ′′q.

This is precisely the contribution to (6.9) of the variation δC posited above. On the other hand,
using the nodal factorisation rule for Z shows that the λ 6= λ0 and last terms in (6.6) restrict by b∗2
to give the Z a C ` δZ + δZ a C ` Z terms in the Leibniz factorisation (6.9). A similar discussion
applies to the boundary divisor Mn+2

g−1, proving our claim.

For an infinitesimal translation by a(z), the first variation δZ is the integral of a(ψ) a Z along
the universal curve, with the insertion and ψ-class at the new marked point. Restricting δZn

g to
Dλ0 , we can split the integral into two terms, for the two irreducible components, to get Z′ a
C(ψ′, ψ′′) ` δZ′′ + δZ′ a C(ψ′, ψ′′) ` Z′′, and there is no term to account for a δC contribution.

This very last argument argument conceals a subtlety: thanks to the presence of a ψ-factor,
contraction with a(ψ) kills the difference between the nodal ψ′, ψ′′-classes pulled back from Dλ0

and those on the universal curve, over which integration is taking place.

6.10 Remark. If a(z) contains a constant term, and the co-form C carries a dependence on ψ′, ψ′′,
there would be a δC-term accounting for the difference between nodal ψ′, ψ′′-classes on the curve
and their pull-backs from Dλ0 . We will exploit this argument again in §7.4 below.

6.11 Scholium. Upon transforming by eV(z1,2) ∈ exp(∆), the nodal co-form C of a DMT is changed to
C(z1,2) + (z1 + z2)V(z1,2), whereas H+-translation does not change C.

It is clear, on the other hand, that GL+ has the obvious effect on C, via its action on ∆.

(6.12) The action on semi-simple DMT’s. Let us now determine the action of a general group element
g · eV · ζ ∈ GL+ n (exp ∆×H+) on semi-simple DMT’s, in terms of their classification. The natural
description involves the alternative parameters (Z̃, W, E) of (4.6). We will meet a restriction on the
z-linear term of ζ.

Write ζ = ∑j>0 ζ jzj. If ζ1 = 0, we will not change the algebra structure on A, and the reader can
skip straight to the statement of the Proposition below, ignoring the primes. However, if ζ1 6= 0,
let A′ be the Frobenius algebra which is identified with A as a vector space with quadratic form β,
but with the multiplication re-defined in such a way that the new projectors are P′i = (1 + ζ1)Pi.
Thus, x′ ·′ y′ := x · y · (1 + ζ1)−1, the new identity is 1′ = 1 + ζ1, and the Euler class is now
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α′ = α · (1 + ζ1)−1. However, note that (α′)1/2, with the square root in the prime algebra, agrees
with the old α1/2. The construction breaks down when (1 + ζ1) is not a unit in A, so we must
exclude that case.

6.13 Proposition. The trivial DMT IA transforms under g · eV · ζ ∈ GL+ n (exp(∆)×H+) into the
semi-simple theory based on the algebra A′, with alternative parameters

Z̃ = exp′
{
∑j≥0 a′jκj

}
, E(z) = g(z), W(z1,2) = V(z1,2).

Here, ∑j≥0 a′jz
j is the Taylor expansion of log′ α1/2 − log′(1 + ζ/z) ∈ A′[[z]], and the logarithm and

exponential are computed in A′.

6.14 Remark. Since log′(1 + ζ1) = log′(1′) = 0, we have exp′ a′0 = α1/2. In the original algebra A,
we can expand log α1/2 − log(1 + ζ/z) = ∑j≥0 ajzj; the relation exp′ x′ = (1 + ζ1) · exp x for x′ =
(1 + ζ1) · x shows that the Taylor coefficients are then related by a′j = (1 + ζ1)aj. The operators of
multiplication by exp

{
∑j≥0 ajκj

}
on A and by exp′

{
∑j≥0 a′jκj

}
on A′ coincide, when we identify

the two vector spaces as above. (However, the customary relation a0 = log α1/2 is broken if ζ1 6= 0
since involves the ‘wrong’ log.)

Proof. Note that E and W do not change the Frobenius algebra structure, which is determined by
β and by the tensor Z3

0 : A⊗3 → C. The effect of ζ will be checked in a moment. In particular,
semi-simple theories remain semi-simple and we are merely looking for the change in parameters.

The effect of E is clear from its definition, while that of eV was explained in (6.11) above: on
a theory with E = Id, W 7→ W + V. To understand ζ, note first that translation cannot affect the
E and W parameters of a DMT, because of the group law in Sp+ n H+. To find its effect on Z̃,
it suffices to take n = 1 and compute its first-order variation over M̃1

g under δζ. This leads to
a differential equation governing the action of ζ, which we solve. We omit the ζ-subscript from
the notation for tidiness (so Z̃ should really be ζ Z̃, etc.) and let Cg,1 → Mg,1 denote the universal
curve.

δZ̃(κj) = −
∫ Mg,1

Cg,1

α−1/2 · Z̃(κj) · δζ(ψ2) = −α−1/2Z̃(κj)
∫ Mg,1

Cg,1

Z̃(ψ
j
2)δζ(ψ2),

where Z̃(κj) = exp
{

∑j≥0 cjκj
}

with the cj as yet unknown, Z̃(ψ
j
2) = exp

{
∑j cjψ

j
2

}
and we have

used the fact that κj inside the integral is κj outside plus ψ
j
2. Integration converts ψ

j+1
2 to κj. Clearly,

quadratic and higher terms in δζ do not give rise to κ0 and so do not affect the multiplication in
A. Assuming first that ζ1 = 0, we specialise to κj 7→ zj:

δZ̃(zj) = −α−1/2Z̃(zj)2 · δζ(z)/z ,

solved by

ζ Z̃(zj) =
α1/2

1 + ζ(z)/z

since we know the initial value Z̃ = α1/2. Now, log Z̃ is linear homogeneous in the κj, so we re-
cover the true Z̃ from our specialisation by substituting zj 7→ κj in log Z̃, and then exponentiating.

Finally, the effect of ζ1-translation on the trivial A-theory can be determined directly from the
formula ∫ M1

g

Mn+1
g

ψ1 ∧ · · · ∧ ψn = (2g + n− 2) · · · · · (2g− 1),
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giving

1
ζ Z̃g = αg ∑

n

(−ζ1)n

n!

∫ M1
g

Mn+1
g

ψ1 ∧ · · · ∧ ψn = αg ∑
n

(
1− 2g

n

)
ζn

1 =
αg

(1 + ζ1)2g−1 .

This introduces no higher κ-classes, but changes the multiplication on A in the manner claimed.

(6.15) Cohomological Field theories. We now deduce Theorem 1 from Proposition 6.13 by identifying
the subgroup of Sp+ n H+ which preserves the Cohomological Field theory constraint (1.7.i).
Recall from §4.8 that this constraint takes the equivalent forms B′ = Id, C′ = Id and D = Id. In
terms of E and W, we need the symplectic condition E(z)∗E(−z) ≡ Id of §4.8, together with

W(z1, z2) = WE :=
E(z2)−1E(−z1)− Id

z1 + z2
, (6.16)

In §1.14, we denoted the subgroup of symplectic matrix series E ∈ Id + zA[[z]] by Sp+
L . It follows

from Scholium 6.11 that the group homomorphism E(z) 7→ E(z) · eWE(z1,2) identifies Sp+
L with the

stabiliser of C′ = Id in Sp+. We now use the symplectic form Ω of §1.14 to identify the symplectic
double of A[[z]] with A((z)). The group GL+ acts on A((z)), point-wise in z; its subgroup Sp+

L
preserves Ω and thus lies in Sp. We write E 7→ Ê for this embedding of Sp+

L . We must compare
the two resulting actions of Sp+

L on F((h̄)).

6.17 Proposition. The two embeddings of Sp+
L into Sp agree: Ê = E · eWE .

Proof. We verify this on Lie algebras. Let δE = ∑n>0 δEnzn; then,

δWE(z1,2) =
δE(−z1)− δE(z2)

z1 + z2
= −∑

p,q
δEp+q+1(−z1)pzq

2.

In the monomial decomposition {zn · A}n∈Z of A((z)) ∼= A[[z]]⊕ A[[z]]∗, the geometric action of δE
is given by the operator with (p, q) blocks

Op,q =


−δEp−q for p > q ≥ 0
(−1)p+q−1δE∗p−q for 0 > p > q
0 otherwise

The symplectic condition is (−1)p+qδE∗p−q = δEp−q. On the other hand, the operator corre-
sponding via the symplectic form Ω to the quadratic differentiation operator δWE(z1,2) has blocks
−δEp−q for q < 0 ≤ p. This supplies precisely the missing p ≥ 0 > q blocks for the metaplectic
action of the multiplication operator δE(z) : A((z))→ A((z)). Our statement follows.

(6.18) Flat vacuum. Let us identify the vacuum vector (§2.13) of the theory in terms of the group
element Ê · ζ. In particular, we will identify the subgroup of Sp+

L n H+ whose action on IA pre-
serves the flat vacuum condition (1.7.ii) with the conjugate of Sp+

L by the translation Tz by z1. This
will conclude the proof of Theorem 2.

By equation (4.12) and Proposition 6.13,

E−1(z)(v) = exp′
{
−∑j>0 a′jz

j
}

= 1 + ζ/z
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so ζ = z(E−1(z)(v)− 1). Clearly, the CohFTs with vacuum v constitute the set Tzv(z) · Ê · T−1
z (IA),

with E ranging over the symplectic End(A)-valued series considered. In particular, notice that
changing the vacuum of a theory with fixed underlying algebra and E-parameter is accomplished
by H++-translation.

7. Frobenius manifolds and homogeneity

We now enrich a given DMT Z into a family of DMT’s parametrised by a (possibly formal) neigh-
bourhood U of 0 ∈ A. When starting with a cohomological field theory, the genus zero part of
this family defines on U the structure of a Frobenius manifold, a notion introduced by Dubrovin
[D]. The family of DMT’s will allow us to incorporate the grading information of Gromov-Witten
theory in the form of a homogeneity condition under a vector field on U. The reader may consult
[M, §I] or [LP] for a broader account of the subject.

7.1 Definition. Given a DMT Z, define for u ∈ U

uZn
g(x1, . . . , xn) := ∑

m≥0

(−1)m

m!

∫ Mn
g

Mn+m
g

Zn+m
g (x1, . . . , xn, u, . . . , u).

Restriction to U may be required for convergence, but for convenience we will treat u as a genuine
parameter in our formulae. It is straightforward to verify the DMT axioms for uZ from those for Z;
the construction is formally similar to the translation of §6.3, but in this case we are using the sub-
space A ⊂ A[[z]] of the Heisenberg group. However, while the effect of translation by zA[[z]] was
easily expressed in terms of κ-classes, the structure resulting now is more complicated, because
the new translation interacts with the boundary terms, and in fact fails to commute with H+. Mi-
croscopically, the absence of a ψ-factor in u breaks the calculations in the proof of Proposition 6.8.
Conceptually, in the case of open-closed field theories, which are controlled by linear categories
with a cyclic trace, the u-parameter is related to deformations of the category of boundary states,
whereas translation by H+ is tied to the (easier) deformation of the trace.11 There is, however, one
easy fact to state.

7.2 Proposition. If the DMT Z is actually a CohFT, then so is every uZ; moreover, the Frobenius bilinear
form β remains unchanged.

Sketch of proof. We must show that the nodal contraction form B, equal to the (ψ-independent)
form β at u = 0, remains unchanged. The argument for this was given at the end of the proof
of Proposition 6.8 (see also Remark 6.10): but this time, the co-form C has no dependence on the
nodal ψ-classes, so that no correction terms appear under their forgetful pull-backs.

(7.3) Frobenius manifold of a CohFT. The previous proposition does conceal something: the product
and the Frobenius trace θ on A will vary with u. We obtain a u-dependent family of Frobenius
algebra structures on A, viewed as a fixed vector space with bilinear form β. Spelt out, we get for
g = 0, n = 3 a map

uZ3
0 : A⊗3 → C.

Converted to a map A⊗2 → A by means of β, this gives a u-dependent multiplication ·u on A. This
multiplication is commutative, because of the symmetry of Z, but turns out to be associative as
well. (The requisite relation arises by applying the nodal factorisation rule to the several boundary

11Unfortunately, the author does not know of a written reference detailing this point of view.

30



restrictions of the map uZ4
0 : A⊗4 → H∗

(
M4

0
)
. Since M4

0 = P1 is connected, these restrictions
define the same map A⊗4 → C, so that β(a ·u b, c ·u d) is unchanged under permutation of the four
variables. Of course, this is all implicit in the CohFT structure.)

We write Au when referring to the algebra structure at u, and identify each Au with the tangent
space TuU using the linear structure. The multiplications satisfy an integrability condition, which
is captured by the observation that uZ3

0 is the third total partial derivative of a function uZ0
0. This

function, the potential of the Frobenius manifold, is expressed by the series in definition 7.1 with
g = n = 0, after omitting the m ≤ 2 terms. This integrable family of Frobenius algebras on U,
together with the (flat) metric β, is called a Frobenius manifold structure. The linear structure on
U ⊂ A is characterized by the flat coordinates under β.

We say that the Frobenius manifold has flat identity if the unit vector field 1 is flat in the metric
(constant in flat coordinates). It is shown in [M, III] that this is implied by the flat vacuum con-
dition on Z; we will also verify that as part of Proposition 7.13 below. A Frobenius manifold is
in fact equivalent to the datum of a genus-zero CohFT (the collection of classes Zn

0 , satisfying the
CohFT axioms), by a fairly explicit reconstruction [M].

(7.4) The basic differential equations. Semi-simplicity of A ensures that of the nearby Au, so nearby
theories are classified by u-dependent data Z̃u, Eu, Bu. Assuming that Z is a CohFT, I describe the
changes in Z̃ and E by means of differential equations.

To isolate the effect of the varying multiplication, we will express it in the (moving) normalised
canonical basis pi = θ−1/2

i Pi, in which the product can be computed entry-wise. Let Πu : A0 →
Au be the map identifying the normalised canonical bases in the two spaces. In the normalised
canonical identification CN ∼= A0, this gives the normalised canonical framing of TU. Let ∗ denote
the entry-wise multiplication of column vectors, and ·u the multiplication in Au; we have

Πu(x ∗ y) = α−1/2
u ·u Πu(x) ·u Πu(y). (7.5)

Also define the following column vector depending on u and on the κ-classes,

Yu = Yu(κ) := Π−1
u (α1/2Z̃u),

whose entries are the eigenvalues of multiplication by Z̃u: that is, Π ◦ (Yu∗) ◦Π−1 = (Z̃u·). (The
ith entry of Y is exp{∑j≥0 aijκj}, with u-dependent coefficients aij.) Write Yu(z) for the result of
the substitution κj 7→ zj. Since log Y(κ) is linear homogeneous in the κ’s, Y(z) determines Y(κ).
We can now write the propagator 1

uZn
g : A⊗n

u → Au for smooth curves of genus g, with incoming
points {1, . . . , n} and one outgoing point labelled by 0, as follows:

1
uZn

g (x1, . . . , xn) = Eu(−ψ0)Πu

(
Yu(κ) ∗Π−1

u E−1
u (ψ1)(x1) ∗ · · · ∗Π−1

u E−1
u (ψn)(xn)

)
. (7.6)

The contribution of n to κ0 = 2g + n− 1 gives a factor of αn/2 in uZ̃ and has the virtue of correcting
the n operations ∗ into the multiplication ·u, cf. (7.5). We now differentiate in u.

7.7 Proposition. Eu and Yu verify the following systems of ODE’s in u, ∀v ∈ TuU:

∂(EuΠu)
∂v

(z) ◦Π−1
u =

[
Eu(z),

(v·u)
z

]
; (7.7.a)

∂Yu(z)
∂v

∗Yu(z)−1 = −Yu(z) ∗Π−1
u Eu(z)−1

(v
z

)
+ Yu(0) ∗Π−1

u

(v
z

)
. (7.7.b)

31



Before turning to the proof, the following comments might be helpful.

7.8 Remark. (i) We use the flat structure of TU to differentiate Πu and Eu.
(ii) Since E = Id (mod z), the commutator in equation (7.7.a) is regular at z = 0, where we obtain,
with Eu,1 denoting the z-linear term of Eu,

∂vΠu ◦Π−1
u = [Eu,1, (v·u)] .

By substituting this for the derivative of Π, (7.7.a) can be expressed as a non-linear ODE system in
E alone; Π can then be recovered from E.
(iii) The second term on the right in equation (7.7.b) removes the pole present in the first term.

(iv) Let C1
g := M1

g ×Mg M1
g be the universal curve over M1

g and note that
∫ M1

g

C1
g

ψj = κj−1, or zero if

j = 0. Because ∂vY(κ) ∗ Y−1 is linear homogeneous in the κ’s, we can write the ODE’s for Yu(κ)
explicitly:

∂Yu(κ)
∂v

∗Yu(κ)−1 = −
∫ M1

g

C1
g

Yu(ψ) ∗Π−1E−1(ψ)(v). (7.7.c)

Indeed, we will prove the equation in this form.
(v) A cleaner form of equation (7.7.b) is found in Proposition 7.13 below.

Proof. Proving the proposition will require us to find the variation of (7.6) with n = 1. However,
to keep the formulas simple, we first write out the variation with n = 0. It will then be straight-
forward to describe the additional terms for general n. We also drop the u-subscript from the
notation when no confusion arises.

From (7.6),
∂v(1Z) = ∂v(EΠ)(−ψ0) (Y(κ)) + E(−ψ0)Π (∂vY(κ)) . (7.9)

This same variation is also, by definition, an integral along the universal curve:

−
∫ M1

g

C1
g

E(−ψ0)Π
(

Y(κ) ∗Π−1E−1(ψ)(v)
)
− v ·u

1− E(−ψ0)
ψ0

Π (Y(κ)) ;

the second term is the boundary correction to Z on the diagonal section σ0 of M1
g×Mg M1

g. The req-
uisite picture for this correction attaches a three-pointed P1 to C1

g at its output σ0; this P1 absorbs
v at the second input, and the output is read at the third point.

Using the familiar formula upstairs, κj = ϕ∗κj + ψj, the integral above (without sign) becomes

E(−ψ0)Π
(

Y(κ) ∗
∫

Y(ψ) ∗Π−1E−1(ψ)(v)
)

+
E(−ψ0)− 1

ψ0
(v ·u Π(Y(κ))) ;

the second term comes from the correction to ψ0 on the diagonal σ0, and all the κ’s now live on the
base M1

g. All in all, we get

∂v(1Z) =
[
(v·u),

E(−ψ0)
ψ0

]
◦Π (Y(κ))− E(−ψ0) ◦Π

(
Y(κ) ∗

∫
Y(ψ) ∗Π−1E−1(ψ)(v)

)
, (7.10)

and comparing with formula (7.9) suggests a separation into two identities, namely (7.7.a), with
z = −ψ0, and (7.7.c). However, in order to prove the proposition, we must:
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• consider n = 1 in the variation of (7.6), in order to allow the insertion of arbitrary arguments
in the first operator, in place of Π(Y);
• justify the splitting of the one resulting identity into two pieces.

Taking n = 1 changes (7.10) as follows: Y(κ) is replaced by Y(κ) ∗Π−1E−1(ψ1)(x1), and an addi-
tional term,

E(−ψ0)
(

Z̃ ·u
[

E−1(ψ1)
ψ1

, v·u
])

,

appears from the correction of ψ1 along σ1 and from the boundary contribution of σ1 to Z, just as
explained in the case of ψ0. Likewise, (7.9) changes by inserting ∗Π−1E−1(ψ1)(x1) after Y(κ) and
∂vY(κ), and by the addition of

E(−ψ0)Π
(

Y(κ) ∗ ∂v(EΠ)−1(ψ1)(x1)
)

.

Splitting the identity into separate ones will now complete the proof. This is accomplished by
setting the κ’s or ψ’s, which are now independent variables, selectively to zero. A priori, this
leaves a constant term ambiguity; that, however, is resolved by noting that the constant term of
the first ODE, ∂vΠ ◦Π−1, is a skew matrix, whereas the operator ∂vY∗ is purely diagonal; so there
is no possible mixing of constant terms.

(7.11) Flat vacuum preserved. If Z verifies the flat vacuum condition (1.7.ii), then the identity vector
1 ∈ A0 remains the identity in the algebra structure at all u: indeed, in the formula for uZ3

0(1, a, b)
in Def. 7.1, all integrals with m 6= 0 vanish, because the integrand is lifted from the lower moduli
space missing the first marked point:

Z3+m
0 (1, a, b, u, . . . ) = ϕ∗Z2+m

0 (a, b, u, . . . ).

Moreover, each uZ then satisfies the flat vacuum condition ϕ∗uZn
g(x1, . . . ) = uZn+1

g (1, x1, . . . ),
because of the “base change” identity

ϕ∗
∫ Mn

g

Mn+m
g

Zn+m
g (x1, . . . , xn, u, . . . , u) =

∫ Mn+1
g

Mn+1+m
g

ϕ∗Zn+m
g (x1, . . . , xn, u, . . . , u)

=
∫ Mn+1

g

Mn+1+m
g

Zn+1+m
g (1, x1, . . . , xn, u, . . . , u)

confirming condition (1.7.ii) term-by-term in the sum (7.1). Note that it is the absence of ψ in u
which carries the argument here: the vacuum, of course, is not preserved by H+-translations.

(7.12) Vacuum differential equation. The ODE’s for Y(z) have a cleaner, equivalent form in terms of
the vacuum vector v(z) of the theory (§3.12).

7.13 Proposition.
∂v(z)

∂v
=

v
z
·u (1− v(z)).

Proof. Y(z) and v(z) are related by v(z) = E(z)Π
(
Y(z)−1) (Proposition 3.14). Direct computation
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gives (omitting the argument z, when not set to zero):

∂EΠ(Y−1)
∂v

=
∂EΠ
∂v

(Y−1) +
v− EΠ

(
Y−1 ∗Y(0) ∗Π−1(v)

)
z

=
∂EΠ
∂v

(Y−1) +
v− E

(
Π(Y−1) · v

)
z

=
E
(
v ·Π(Y−1)

)
− v · EΠ(Y−1) + v− E

(
Π(Y−1) · v

)
z

=
v− v · v

z
,

having used (7.5) and the relation Π(Y(0)) = α to convert ∗ to the product in Au.

Proposition 7.13 provides the following formula for v(z) in terms of derivatives of 1. Let ∂1 be
the operator of differentiation, in flat coordinates, along the vector field 1.

7.14 Corollary. v(z) = (1 + z∂1)−1(1) = ∑k(−1)kzk · ∂k
1(1).

In particular, v is determined by the Frobenius manifold, and the latter has flat identity iff the
CohFT has flat vacuum, v(z) ≡ 1.

(7.15) Homogeneity and the Euler vector field. Assume that we are given a vector field ξ on our Frobe-
nius manifold U ⊂ A, whose Lie derivative action on TuU we denote by L. We call U homogeneous
(or conformal) of weight d with Euler vector field ξ if the (u-dependent) multiplication operator on
TuU and the quadratic form β are homogeneous with weights 1 and 2− d, respectively.

In flat coordinates xj on A, ξ must be affine-linear,

ξ = ξ0 − µi
j · xj∂i + (1− d/2)xj∂j;

the matrix µi
j contributes an infinitesimal rotation about 0 in A, and the last term is the conformal

scaling. The action of L on the flat frame of vector fields, commonly denoted adξ , is given by

µ +
(

d
2 − 1

)
Id.

Following Dubrovin, we can reformulate this by viewing the space of sections Γ(U; TU) as a
Frobenius algebra over the ring C[U] of functions on U. Differentiation by ξ gives a derivation
of C[U], and the shifted operator L+ := L + Id defines a compatible derivation of the algebra
Γ(U; TU). The metric has L+-weight (−d), and in general the L+-weights of the basic objects in
A are eminently more reasonable than their L-weights, cf. Table 1.

Viewing the uZn
g ∈ H•

(
Mn

g ; (A∗)⊗n) as tensors on U with values in H•(Mn
g) and using the

action of L+, we can lift the notion of homogeneity to the entire CohFT:

7.16 Definition. The CohFT uZ is homogeneous of weight d under ξ if each Zn
g : (TU)⊗n → H2•(Mn

g)
is L+-homogeneous with weight (g− 1)d. (The cohomology of M is weighted by half-degree.)

7.17 Example. In the Gromov-Witten theories of §1.5, the series

GWn
g,u := ∑

δ∈H2(X;Z)
e〈u|δ〉 · GWn

g,δ (7.18)
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object L-weight L+-weight reason
product 1 0 definition

β 2− d −d definition
1 ∈ A −1 0 1 · x = x

projector P −1 0 P · P = P
θi −d −d β(P, P)

θ : A→ C 1− d −d β(1, .)
αu d− 1 d θ(x · α) = TrA(x·)

(αu·) d d

Table 1: Some basic weights

gives a (possibly formal) function on the group H2(X; C×), expressed in the Fourier modes eu.
This group is a disjoint union of tori, each labelled by a character of the torsion subgroup of
H2(X; Z). The divisor equation (see for instance [LP, G2])∫

GWn+1
δ (. . . , u) = −〈u|δ〉 · GWn

δ (. . . ), for u ∈ H2(X),

where we integrate along the last forgetful map, ensures that the family uZ := GWu is its own u-
variation along the H2 torus directions, in the sense of Definition 7.1. Near any chosen base-point,
H2(X; C×) can be identified with U ∩ H2(X; C) ⊂ A by means of a translated exponential map.
Subject to convergence, we can extend the family GWu to an open set U of A = Hev(X), starting
from our base point. If convergence fails, we treat H2(X; C×)× Hev, 6=2(X) as a formal Frobenius
manifold. The dimension formula (1.6) for the spaces of stable maps ensures that the family GWu
obtained from (7.18) is homogeneous of weight d = dimC X with respect to the Euler field

ξGW = c1(X) + ∑j

(
1− deg(xj)

2

)
∂

∂xj

in a homogeneous basis xj of H•(X). Thus, µ = (deg−d)/2.

We conclude by describing the homogeneity condition in terms of the data Eu, Z̃u.

7.19 Proposition. In a homogeneous semi-simple CohFT, Eu(z), Z̃+
u and v(z) are invariant under the

shifted Lie action L+ of the Euler field ξ.

Recall that z has weight 1, so we are saying that the zjth Taylor coefficient in Eu has weight (−j).
The same applies to the coefficient aj of κj in log Z̃+. It is not difficult to show that, for a vector
field ξ of the form in §7.15, these conditions are also sufficient for homogeneity of Z, but we will
not use that fact.

Proof. The operator 1
uZ1

g for smooth surfaces must have weight gd = (g− 1)d + 2 + (d− 2), the
last term being the added weight of replacing an input by an output. In particular, 1Z̃1

g = (αgZ̃+·)
has weight gd, whereas (α·) has weight d; this settles (Z̃+

u ·). Next, since 1
uZg,1 = E(−ψ0) ◦ 1Z̃1

g,

L(1
uZg,1) = L(E(−ψ0)) ◦ 1Z̃1

g + E(−ψ0) ◦ L(1Z̃1
g),
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showing that the first term vanishes, so L(E(−ψ0)) = 0. The final statement follows from the
relation

E(z)−1(v(z)) = (Z̃+)−1
∣∣∣
κj=zj

.

8. Reconstruction

I now explain the reconstruction of semi-simple cohomological field theories from genus zero
information, confirming a conjecture of Givental’s for Gromov-Witten theory [G1]. In the case
of homogeneous theories with flat vacuum, I also give a concrete variant which uses less input:
the Euler vector field plus the Frobenius algebra at a single semi-simple point of the Frobenius
manifold (Theorem 1). This more economical recipe is implicit in Dubrovin’s paper [D]. The
present section is largely a review and adaptation of Givental’s relevant work.

(8.1) Reconstruction from the Frobenius manifold: Givental’s conjecture. Let u be the vector of canonical
coordinates, for which the associated vector fields ∂/∂ui are the projectors Pi in the multiplication at
the respective point. The existence of such coordinates, shown in [D], follows from the integrabil-
ity conditions of §7.3. Clearly, the ui are unique up to constant shifts. In the case of homogeneous
Frobenius manifolds, a distinguished choice of canonical coordinates is given by the eigenvalues
of multiplication by the Euler vector field ξ.

8.2 Proposition. (i) The linear map du : TuU → CN is given by Π−1
u ◦ (α−1/2

u ·).
(ii) The system of ODE’s in (7.7.a) is equivalent to

∂F
∂v

= − (v·)
z
◦ F, with F(z) = Eu(z) ◦Πu ◦ exp

(
−u∗

z

)
.

Proof. The first part merely rewrites the defining property of u: du takes the projector frame to
the standard frame of CN . For the second claim, use the chain rule and the relation Π ◦ ( ∂u

∂v ∗) =
(v·) ◦Π, which in turn is a consequence of part (i) and of formula (7.5).

8.3 Remark. (i) Usually, E(z) does not converge, so F(z) does not really belong to a “symplectic
loop group”, but to a thickened version of it.
(ii) Letting ξ = ∑i ui∂/∂ui, in canonical coordinates, an alternative expression for F is

F(z) = Eu(z) ◦ exp
(
− (ξ·u)

z

)
◦Πu.

In the homogeneous case, ξ is the Euler vector field.

The system of ODE’s in Proposition 8.2.ii is that of [G1, pp.1269–1270], with the change of
notation Ψ = Π, R(z) = Π−1E(z)Π. Recall:

8.4 Proposition ([D, G1]). The system of Proposition 8.2.ii has solutions in which R ≡ Id (mod z)
satisfies the symplectic condition Ru(z)R∗u(−z) = Id. These solutions are unique up to right multiplication
by a matrix series H(z) = exp

(
H1z + H3z3 + . . .

)
with constant diagonal matrices H2i+1. In the

homogeneous case, there is a unique solution with R invariant under the Euler field.
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The proof of the proposition, for which we refer to Givental [G1], is closely related to the recon-
struction procedure we will give below, in the homogeneous case. The ambiguity in R reflects the
possibility of a z-dependent shift in the canonical coordinates, the parity constraint coming from
the symplectic condition. In terms of E, this ambiguity is the right composition with the opera-
tor of multiplication by a “symplectic” unit in A[[z]]. Note that Euler invariance of R and E are
equivalent because of the relation L(Π) = (d/2− 1)Π.

8.5 Corollary. A semi-simple homogeneous CohFT is determined from its Frobenius manifold by the unique
Euler-invariant solution E of the ODE (7.7.a) and the vacuum (7.14).

Of course, in a flat vacuum theory, v(z) and Z̃ are already determined by E, cf. (4.12), §6.18.

(8.6) Ambiguity for inhomogeneous theories. The various inhomogeneous theories for given semi-
simple Frobenius manifold are related geometrically by Hodge bundle twists. More precisely, let
µj = chjΛ be the Chern components of the Hodge bundle Λ, with fibre the global fibre-wise
differentials on the universal curve, with simple poles allowed along the marked sections σi. Recall
that the classes µj vanish for even j. We can form a Hodge-twisted theory CohFT based on A from
any odd series h(z) := ∑j h2j−1z2j−1 in A[[z]] by setting

nZg[h] = h(ψ1) ∧ · · · ∧ h(ψn) ∧ exp
{

∑j h2j−1
(2j)!
B2j
· µ2j−1

}
,

with the Bernoulli numbers B2j. In genus zero, this class is identically 1, because the Hodge bundle
Λ is trivial. The other Z-classes are determined from the CohFT axioms. The fact that this does
give a CohFT with flat vacuum can be checked directly from the basic properties of the Hodge
bundle: Λ is primitive12 under restriction to boundaries of Mn

g , and changes under forgetful pull-
back only by the addition of a trivial line. Givental’s calculation in [G1, §2.3], summarised in Part
(i) of the proposition below, identifies the theory for us.

8.7 Proposition. (i) The theory Z[h] is the transform of the trivial A-theory by T−1
z ◦ exp h(z) ◦ Tz.

(ii) All cohomological Field theories with flat vacuum based on the same semi-simple Frobenius manifold
are classified by matrices E ◦ exp h(z), with arbitrary h but the same E. That is, they all are the transforms
of a general Hodge-twisted theory based on A by the same group element E.

It is amusing to revisit the flat vacuum condition (4.12). Restricting to Mg, we obtain from state-
ment (i)

∑
j

h2j−1
(2j)!
B2j
· µ2j−1 = ∑

j
h2j−1κ2j−1,

which of course follows from the Riemann-Roch identities µ2j−1 = B2j
(2j)! · κ2j−1 over Mg.

(8.8) Rank one theories: a conjecture of Manin and Zograf. When A has rank 1, CohFT’s are necessarily
semi-simple. Moreover, GL(A)[[z]] is abelian and we can give closed formulae for all possible Z.

Taking logarithms converts the FTFT factorisation axiom for the classes Zn
g into a primitivity

condition. Manin and Zograf conjectured in [MZ] that the κj, j ≥ 0 and the µj (j > 0, odd) of the
Hodge bundle were the only primitive classes on the Mn

g ; consequently, they proposed that any
rank 1 theory should have the form

Zn
g = exp

{
∑j≥0 ajκj + ∑j>0 hjµj

}
(8.9)

12When there are no marked points, we ought to normalise the bundle to Λ−C.
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with constants aj, f j ∈ C. This is also the ‘matrix’ form of Z in the canonical basis p = log a0.

8.10 Proposition. Formula (8.9) describes all possible rank one CohFT’s. Flat vacuum theories are those
with aj = 0 for j > 0.

Proof. The symplectic condition says that the classifying element E(z) has the form Eh above.
Allowing for general translation ζ inserts an arbitrary κ-class combination as in (8.9), but the flat
vacuum condition fixes the aj to be zero, as per Proposition 8.7.i (but with redefined hj’s).

(8.11) Classification of homogeneous CohFT’s. Since the family uZ of theories is constructed from the
theory at u = 0, we can describe the homogeneity condition in terms of the Euler field ξ and the
classification datum E. As before, let ξ = ξ0 − µi

jx
j∂i + (1− d/2)xi∂i, with the constant vector

field ξ0. As always, (ξ0·) denotes the operator of multiplication by ξ0 in A. We focus on the
important special case of flat vacuum theories, and show that they are completely determined by
the Frobenius algebra structure and the Euler field.

8.12 Proposition. The CohFT Z with flat vacuum defined by E is homogeneous of weight d for ξ iff

µ(1) = −d
2
· 1 and [(ξ0·), Ek+1] + (µ + k)Ek = 0.

8.13 Remark. (i) Without the flat vacuum assumption, the first equation must be replaced by(
µ +

d
2

)
v(z) =

ξ0

z
· (v(z)− 1) .

At a generic point where ξ0 is invertible in the algebra (away from the canonical coordinate axes),
the Taylor coefficients of v are recursively determined by this equation.
(ii) The second recursion is equivalent to an ODE for the expression F(z) of Remark 8.3.ii,

dF
dz

+
µ

z
◦ F =

(ξ·)
z2 ◦ F.

(iii) For k = 0, we find µ = [E1, (ξ·)]. When (ξ·) has repeated eigenvalues (on the big diagonal
in canonical coordinates), solvability of this equation places constraints on µ. In a general Frobe-
nius manifold, one can expect semi-simplicity to fail on the big diagonal. However, the requisite
constraint on µ must hold at all semi-simple diagonal points of the Frobenius manifold, because the
solution Eu exists there.

Proof. First, 1 = −L(1) = −∂(1)/∂ξ − µ(1) + (1− d/2) · 1; flatness of 1, ∂(1)/∂ξ = 0, gives the
first relation. Next, L(Ek) = −kEk from Proposition 7.19. But

L(Ek) =
∂Ek

∂ξ
+ µ ◦ Ek − Ek ◦ µ,

whereas according to equation (7.7.a),

∂Ek

∂ξ
= [Ek+1, (ξ·)]− Ek ◦

∂Π
∂ξ
◦Π−1.

The normal canonical frame Π scales with weight (d/2− 1) under the Euler flow; since

L(Π) =
∂Π
∂ξ

+ µ ◦Π + (d/2− 1)Π,
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we have ∂ξΠ ◦Π−1 = −µ and combining the equations proves necessity of the conditions:

−kEk = [Ek+1, (ξ·)]− Ek ◦ ∂ξ(Π) ◦Π−1 + µ ◦ Ek − Ek ◦ µ = [Ek+1, (ξ·)] + µ ◦ Ek.

Conversely, the same calculations show that the two conditions imply the L-homogeneity of
uZn

g at u = 0,

L(uZn
g)
∣∣∣
u=0

= (gd− d + n)Zn
g .

We now check that Euler homogeneity at any other point is a formal consequence. Recall from
§7.15 the action adξ of L on the flat frame of TU and its multi-linear extension to tensors. Also,
denote by ∆ half the degree operator on H•(M); it was implicit in Definition 7.16. At a point u, ξ
has the value ξu = ξ0 − adξ(u) and

(L− ∆)(uZn
g) = ∂ξu(uZn

g)− uZn
g ◦ adξ =

∫ Mn
g

Mn+1
g

ι(ξ0 − adξ(u))uZn+1
g − uZn

g ◦ adξ .

Substitute now formula (7.1) for uZ, this becomes

−∑
m

(−1)m

m!

∫ Mn
g

Mn+m+1
g

(
ι(u)mι(ξ0)Zn+m+1

g − ι(u)mι(adξ(u))Zn+m+1
g

)
− uZn

g ◦ adξ ,

and shifting the summation index m 7→ m + 1 in the second term of the sum converts this into

∑
m

(−1)m

m!

∫ Mn
g

Mn+m
g

ι(u)m
(

∂ξ0 Zn+m
g − Zn+m

g ◦ adξ

)
By homogeneity at u = 0, the integrand is ι(u)m(L− ∆)Zn+m

g = ι(u)m(gd− d + n + m− ∆)Zn+m
g .

Pulling ∆ through the integral gives (gd− d + n− ∆)uZn
g , proving homogeneity at u.

(8.14) GW invariants from quantum cohomology. As we now explain, Proposition 8.12 determines E
from A, ξ0 and µ. In Gromov-Witten theory, we have:

8.15 Theorem. The Gromov-Witten classes GWn
g,d ∈ Hev(Mn

g) of a compact symplectic manifold are
uniquely determined by its first Chern class and by the quantum multiplication law at any single semi-
simple point.

Proof. Assume first that the quantum multiplication operator (ξ·) has distinct eigenvalues. Work-
ing in the normal canonical basis, the second equation in Proposition 8.12 supplies the off-diagonal
entries of Ek, once Ek−1 is known. Next, since (ξ·) is a diagonal matrix, the diagonal entries of the
commutator [(ξ·), Ek+1] = (µ + k)Ek must vanish; since those of the skew matrix µ vanish as well,
this fact determines the diagonal part of Ek from its off-diagonal part. Finally, E0 = Id.

In the general case, consider the block-decompositions of µ and of the Ek corresponding to the
eigenspaces of (ξ·). The first equation [(ξ·), E1] = µ implies the vanishing of the diagonal blocks
of µ. This is a constraint which must hold if A is semi-simple. Given that, the off-diagonal blocks
of E1 are determined from those of µ. The diagonal blocks are determined from the vanishing of
those of (µ + Id)E1 — which must equal [(ξ·), E2] — and in this way, the recursive determination
of the Ek proceeds as before.
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