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Abstract

We prove global existence and scattering for the wave-maps equation in n + 1
dimensions, n = 2, 3, for initial data which is small in the scale-invariant homogeneous
Besov space Ḃ2,1

n/2 × Ḃ2,1
n/2−1. This result was proved in an earlier paper [15] for n ≥ 4.

1 Introduction

Let (M, g) be a compact Riemmanian manifold without boundary. A wave map is a function
from the Minkovski space Rn × R into M ,

φ : Rn × R →M,

which is locally a critical point for the functional

F (φ) =

∫
Rn+1

< ∂iφ, ∂iφ >g dtdx .

Using local coordinates in M , the equations for φ can be written as

2φα + Γαjk(φ)Q0(φ
j, φk) = 0 (1)

where the quadratic form Q0 is given by

Q0(u, v) = ∂iu∂iv = −utvt + uxvx.
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This quadratic form exhibits certain cancellation properties in estimates and is called a
null-form. One simple way to see this cancellation is in the following decomposition of Q0:

2Q0(u, v) = 2(uv)− u2v − v2u, (2)

which will be used later in this article. As long as the solutions stay continuous it suffices to
work in local coordinates; hence, in the sequel we shall work on the vector valued equation

2φ+ Γ(φ)Q0(φ, φ) = 0. (3)

with Cauchy data at time t = 0,

φ(0) = f0, φt(0) = f1 (4)

Normally one chooses the initial data in a Sobolev space, (f0, f1) ∈ Hs(Rn) × Hs−1(Rn).
The solutions φ to (3) are dimensionless, i.e. the equation is invariant with respect to the
transformation φ(t, x) → φ(λt, λx). Hence, within the above family of initial data spaces,
the scale-invariant one is Ḣ

n
2 ×Ḣ n

2
−1. For s > n

2
the equation (3) (4) was shown to be locally

well-posed by Klainerman-Machedon [8] for n ≥ 3 and later by Klainerman-Selberg [10] for
n = 2. One should note that the difficulty decreases with the dimension, so the problem in
2 dimensions is the hardest. The special case n = 1 is also considered in [4].

On the global well-posedness side, global solutions were proved to exist for small smooth
data decaying at infinity; see Klainerman [6] for n ≥ 3, and Sideris [13] for related results,
including the case n = 2. Recently counterexamples to global well-posedness for large data
in dimension n ≥ 3 were also found, see [12], [2]. In dimension n = 2 the conjecture is
that there is no blow-up and the problem is globally well-posed even for large data (under
reasonable assumptions on the target manifold). For spherically symmetric initial data this
was proved in [3].

Consequently, the interesting remaining problem is to understand what happens in the
scale invariant setting s = n

2
. However, since H

n
2 does not embed into L∞, the problem

is not local with respect to the target space M ; hence, any positive result should take into
account the geometry of M . One way to avoid this difficulty is to substitute Ḣ

n
2 × Ḣ n

2
−1 by

a Besov space Ḃ2,1
n
2
× Ḃ2,1

n
2
−1 which is slightly smaller but has the same scaling. This space

has the advantage that it embeds into L∞, which makes the problem local and independent
of the geometry.

In [15] we proved that in dimension n ≥ 4 the wave maps equation is globally well-posed
for initial data which is small in the above Besov space. Here we prove that the same result
holds in dimensions n = 2, 3.

The main well-posedness result for the wave-maps equation is

Theorem 1. a) There exist C,D > 0 so that for any initial data satisfying

‖(f0, f1)‖Ḃ2,1
n
2
×Ḃ2,1

n
2−1

< C, (5)
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there exists a global solution φ to (3), (4) satisfying

‖(φ(t), φt(t))‖Ḃ2,1
n
2
×Ḃ2,1

n
2−1

≤ D,

which is the unique limit of smooth solutions. Furthermore, the solution depends smoothly
on the initial data.

b) If we assume in addition that (f0, f1) ∈ Ḣs × Ḣs−1, s > n
2
, then

‖(φ(t), φt(t))‖Ḣs×Ḣs−1 ≤ c‖(f0, f1)‖Ḣs×Ḣs−1 . (6)

For large data we can take advantage of the finite speed of propagation and observe that
the data is in effect small if restricted to a ball of sufficiently small radius. Consequently, we
get local existence, but with a lifespan that fully depends on the initial data, and not only
on its size.

Remark 1.1. This result shows that in order for blowup to occur, a solution to the wave-
maps equation needs to concentrate in a light cone with respect to the Ḃ2,1

n
2
× Ḃ2,1

n
2
−1 norm.

The scattering result is exactly what one would expect:

Theorem 2. Given any sufficiently small initial data (f0, f1) ∈ Ḃ2,1
n
2
×Ḃ2,1

n
2
−1 there exist unique

functions (f+
0 , f

+
1 ), (f−0 , f

−
1 ) ∈ Ḃ2,1

n
2
× Ḃ2,1

n
2
−1 so that the solutions φ+, φ− to the homogeneous

wave equation with initial data (f+
0 , f

+
1 ), respectively (f−0 , f

−
1 ) satisfy

lim
t→∞

‖φ+(t)− φ(t)‖Ḃ2,1
n
2

+ ‖φ+
t (t)− φt(t)‖Ḃ2,1

n
2−1

= 0

lim
t→−∞

‖φ−(t)− φ(t)‖Ḃ2,1
n
2

+ ‖φ−t (t)− φt(t)‖Ḃ2,1
n
2−1

= 0

Furthermore, the map from (f0, f1) into (f+
0 , f

+
1 ), respectively (f−0 , f

−
1 ) is a local diffeomor-

phism both in Ḃ2,1
n
2
× Ḃ2,1

n
2
−1 and in Ḣs × Ḣs−1, s > n

2
.

To prove Theorem 1 we follow the same procedure as in [15]. We set up the problem as
a fixed point problem and use a fixed point argument in appropriate function spaces. Below
we sketch the fixed point argument and collect the properties which our function spaces are
required to satisfy. The rest of the article is devoted to the construction of these spaces.

In [15] the function spaces are constructed by putting together the appropriate Xs,θ and
“classical” solutions1 to the inhomogeneous wave equation. This approach no longer works
in dimensions 2 and 3. Instead, here we work with classical solutions to the inhomogeneous
wave equation with respect to characteristic directions. Thus, in Section 3 we do some
preparatory work on the wave equation in characteristic coordinates. In Section 4 we prove
the multiplicative estimates for solutions to the homogeneous wave equation. In Section 5

1i.e. with L1(L2) inhomogeneous term
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we use a technique we call the ”trace method” to extend this estimates to the Xs,θ spaces.
In Section 6 we introduce the dyadic components of the function spaces F, F s and we prove
the appropriate multiplicative estimates. Finally, in Section 7 we put together the dyadic
estimates and prove (iii),(iv),(iii)’, (iv)’ (stated below).

First set up the problem so that we can use a fixed point argument. Let V be the
parametrix for the wave equation with zero Cauchy data at time 0, i.e. u = V f iff u solves

2u = f, u(0) = 0, ut(0) = 0

Denote by φ0 the solution to the wave equation with the same initial data as φ. Then the
equation (3) can be rewritten as

φ = φ0 + V N(φ) (7)

where N represents the nonlinear term in (3).
Suppose we want to use a fixed point argument in some translation invariant space F of

distributions to solve (7). To start with, we need to know that φ0 ∈ F , i.e.
(i) F contains the solutions to the homogeneous wave equation with Ḃ2,1

n/2× Ḃ
2,1
n/2−1 initial

data.
Then we want the solutions we get to have the right regularity, i.e.

(ii) F ⊂ C(Ḃ2,1
n/2) ∩ Ċ1(Ḃ2,1

n/2−1).

Finally, we want V N to map F into F . We will split this into two. Define the space
2F as 2 applied to functions in F , with the induced norm. Then the properties (i), (ii)
immediately imply that

V : 2F → F

Hence we still need to know that N maps F into 2F . By (2) the nonlinearity N has the
form

N(u) = f(u)2u+ g(u)2u2

This special nonlinearity has the correct mapping properties if
(iii) F is an algebra.
(iv) F ·2F ⊂ 2F .
If the properties (i)-(iv) above hold, then the fixed point argument yields a unique solution

for small initial data. To study solutions with more regular initial data one needs to find a
similar space F s with the following properties:

(i)’ F s contains the solutions to the homogeneous wave equation with Ḣs × Ḣs−1 initial
data.

(ii)’ F s ⊂ C(Ḣs) ∩ Ċ1(Ḣs−1).
(iii)’ F ∩ F s is an algebra.
Using a simple scaling argument, one can show that this is equivalent to the estimate

‖uv‖F s ≤ c(‖u‖F‖v‖F s + ‖u‖F s‖v‖F ) (8)

(iv)’ (F ∩ F s) ·2(F ∩ F s) ⊂ 2(F ∩ F s).

4



Given (iv), this is equivalent to the estimate

‖uv‖2F s ≤ c(‖u‖F‖v‖2F s + ‖u‖F s‖v‖2F ) (9)

The proof of Theorem 1 is concluded if we find spaces F , F s with the above properties.
This is done in the following sections.

The scattering result, in this setup, is a straightforward consequence of our choice of
spaces. The group S(t) associated to the homogeneous wave equation

S(t)(u(0), ut(0)) = (u(t), ut(t)), 2u = 0

is given by

S(t) =
1

2
Q−1

(
eit|D| 0

0 e−it|D|

)
Q, Q =

(
i|D| 1
−i|D| 1

)
Hence, for an arbitrary function u, the limit of S(−t)(u(t), ut(t)) exists in Ḃ2,1

n/2 × Ḃ2,1
n/2−1,

respectively Ḣs × Ḣs−1 iff the following four limits exist in Ḃ2,1
n/2−1, respectively Ḣs−1:

lim
t→±∞

e−it|D|(i|D|u(t)− ut(t)), lim
t→±∞

eit|D|(i|D|u(t) + ut(t)) (10)

Using Proposition 6.2 we shall prove that these limits exist for all functions in F , respec-
tively F s. Since the fixed point argument yields a solution which depends smoothly on
the initial data, it follows that the maps from (f0, f1) into (f+

0 , f
+
1 ), respectively (f−0 , f

−
1 ),

are smooth. Since the nonlinearity is quadratic, the linearisation of both maps at 0 is the
identity, therefore they are local diffeomorphisms in the appropriate spaces.

2 Notations

Coordinates. We denote by X = (t, x) the usual coordinates in R×Rn and by Ξ = (τ, ξ)
the corresponding Fourier variable. The symbol of 2 is

2(Ξ) = τ 2 − ξ2.

Its characteristic set is the cone
K = {τ 2 = ξ2}

Alternatively we introduce characteristic coordinates with respect to arbitrary characteristic
directions. Given a length 1 covector Θ on the cone K,

Θ =
1√
2
(1, ζ), |ζ| = 1

we define the associated orthogonal coordinates (tΘ, xΘ) = (tΘ, x
1
Θ, x

′
Θ) by

tΘ = X ·Θ =
1√
2
(t+ x · ζ), x1

Θ =
1√
2
(t− x · ζ)

The corresponding Fourier variables are called (τΘ, ξΘ) = (τΘ, ξ
1
Θ, ξ

′
Θ) and the symbol of 2

has the form
2(Ξ) = 2τΘξ

1
Θ − ξ′Θ

2
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Sets. Now we describe the way we partition the Fourier space. Start with an overlapping
dyadic decomposition,

Aλ = {λ
4
≤ |Ξ| ≤ 4λ}

and the corresponding balls
Ãλ = {|Ξ| ≤ 4λ}

A second decomposition is based on the size of the symbol of 2,

Bν = {ν
4
≤ |2(Ξ)| ≤ 4ν}

respectively
B̃ν = {|2(Ξ)| ≤ 4ν}

Combining these two partitions yields a decomposition of the sets Aλ with respect to the
distance to the cone. More precisely, for µ ≤ λ the sets

Aλ,µ = Aλ ∩Bλµ, Ãλ,µ = Aλ ∩ B̃λµ

represent the dyadic region at frequency λ and distance µ from the cone, respectively the
region at frequency λ and within distance µ from the cone.

Finally, the third partition we consider is a conical partition with respect to the angular
variable. To decide what is the right scale for this partition, observe that a sector on the cone
of angle α fits between two hyperplanes at angle O(α2). Consequently, given α we consider
an overlapping partition of an α2 conical neighborhood of the cone into roughly α1−n angle
α sectors Cj

α, which have angular dimension αn−1 × α2:

{∠(Ξ, K) ≤ α2} =
⋃
j∈Jα

Cj
α

Here |Jα| ≈ α1−n and for i, j ∈ Jα we define

|i− j| := [α−1 · angular distance(Ci
α, C

j
α)]

The intersection of such an α-sector with a dyadic region Aλ is denoted by

Ajλ,α = Aλ ∩ Cj
α

and has roughly the shape of a parallelepiped of size λ× (αλ)n−1 × α2λ.

Multipliers. Here we define multipliers corresponding to the sets defined above. Given
s ∈ C∞

0 ((1/2, 2)) so that ∑
j∈Z

s
( x

2j

)
= 1
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set
s̃(x) =

∑
j≤0

s
( x

2j

)
.

Then define the standard Paley-Littlewood operators Sλ, S̃λ with symbols

sλ = s

(
|Ξ|
λ

)
, s̃λ = s̃

(
|Ξ|
λ

)
supported in Aλ, respectively Ãλ. We also need truncation operators with respect to the
distance to the characteristic cone K. Start with the operators Qν , Q̃ν with symbols

qν(Ξ) = s(
2(Ξ)

ν
), q̃ν(Ξ) = s̃(

2(Ξ)

ν
)

supported in Bν , respectively B̃ν . Then the operators

Sλ,µ = SλQλµ, S̃λ,µ = SλQ̃λµ

have symbols supported in Aλ,µ, respectively Ãλ,µ.
Finally, corresponding to the decomposition of an α2 conical neighborhood of the cone

K into α-sectors we consider a decomposition on the operator level,

s̃(4α−2∠(Ξ, K)) =
∑
j∈Jα

Rj
α

where for each j the symbol rjα of the multiplierRj
α is supported in the α-sector Cj

α. Localizing
these multipliers to frequency λ we define the operators

Sjλ,α = SλR
j
α

whose symbol is supported in Ajλ,α.

Function spaces. Denote by
◦
Xs the space of solutions to the homogeneous wave equation

with Ḣs× Ḣs−1 initial data. The Fourier transform of such functions are weighted L2 distri-
butions supported on the characteristic cone. The homogeneous Xs,θ spaces are multiplier
weighted L2 spaces, with norms

‖u‖s,θ = ‖û(τ, ξ)||ξ|+ |τ ||s||τ | − |ξ||θ‖L2

Inhomogeneous versions of these spaces have been introduced earlier in the study of the KdV
equation in [1, 5], nonlinear Schröedinger in [1] and the wave equation in [7].

Next we want to define dyadic counterparts of these spaces. Within a given dyadic
region Aλ the index s is superfluous since it only adds a factor of λ−s to the norm. Hence
we dispense with it and set

◦
Xλ= {u ∈

◦
X0; û is supported in Aλ}
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Xθ
λ = {u ∈ X0,θ; û is supported in Aλ}

However, the spaces Xθ
λ are not good enough for our purposes. Consequently, we modify

them by changing the way we do the summation with respect to dyadic pieces relative to
the distance to the cone. Thus define the spaces Xθ,p

λ of functions with Fourier transform
supported in Aλ and norm

‖u‖p
Xθ,p
λ

=
∑

µ dyadic

µθp‖Qλµu‖pL2

These spaces are well-defined as spaces of distributions only if θ < 1
2

or (θ, p) = (1
2
, 1). It

is the latter case we are interested in. Observe that the functions in the space X
1
2
,1

λ are

uniquely defined modulo
◦
Xλ, i.e. modulo L2 solutions to the homogeneous wave equation.

This ambiguity is fixed if we think of X
1
2
,1

λ functions as the sum of their dyadic parts and

include
◦
Xλ as one such (limiting) dyadic part.

3 Characteristic coordinates and energy estimates

Given a characteristic covector Θ we use the characteristic coordinates (tΘ, x
1
Θ, x

′
Θ) intro-

duced in the previous section. The Fourier variable is denoted by (τΘ, ξ
1
Θ, ξ

′
Θ) and the corre-

sponding differentiation operators are DtΘ , Dx1
Θ
, Dx′Θ

.

Our first result shows how to measure the L2 solutions for the wave equation with respect
to characteristic coordinates.

Proposition 3.1. Let u ∈
◦
X0 be an L2 solution to the homogeneous wave equation. Then

D
x1
Θ

|DxΘ |
u ∈ L∞(L2) and

‖u‖ ◦
X0
≈ ‖

Dx1
Θ

|DxΘ
|
u‖L∞tΘ (L2

ξΘ
)

Proof. If u ∈
◦
X0 then we can represent its Fourier transform as

û = fdσ, f ∈ L2(dσ)

where dσ is the surface measure on the characteristic cone K. We need to write dσ in terms
of dξΘ. The cone has the equation

τΘ =
|ξ′Θ|

2

2ξ1
Θ

therefore

dσ = (1 +
|ξ′Θ|2

ξ1
Θ

2 +
|ξ′Θ|4

4ξ1
Θ

4 )
1
2dξΘ =

2|ξ1
Θ|2 + |ξ′Θ|2

2|ξ1
Θ|2

dξΘ (11)
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Hence the Fourier transform of the trace of u at time tΘ satisfies

|û(tΘ, ξΘ)| = f(ξΘ)
2|ξ1

Θ|2 + |ξ′Θ|2

2|ξ1
Θ|2

which, by (11), further gives

‖(2|ξ
1
Θ|2 + |ξ′Θ|2

2|ξ1
Θ|2

)−
1
2 û(tΘ, ξΘ)‖L2

ξΘ
= ‖f‖L2(dσ)

4
To look at solutions to the inhomogeneous wave equation we define the forward parametrix

2−1
f for the wave equation, which is a multiplier with symbol

2−1
f (τ, ξ) =

1

2(τ + i0, ξ)

Due to the choice of the characteristic coordinates, the symbol of 2−1
f in these coordinates

is simply

2−1
f (τΘ, ξΘ) =

1

2(τΘ + i0, ξΘ)
=

1

2τΘξ1
Θ − (ξ′Θ)2

Then its kernel is defined by

K(tΘ, ξΘ) =
i

2ξ1
Θ

e
itΘ

(ξ′Θ)2

2ξ1
Θ χ{tΘ≥0}

Consequently, we obtain the representation formula

̂(2−1
f f)(tΘ, ξΘ) =

∫ tΘ

−∞

i

2ξ1
Θ

e
i(tΘ−t̄Θ)

(ξ′Θ)2

2ξ1
Θ f̂(t̄Θ, ξΘ)dt̄Θ (12)

whenever the right hand side integral is well defined. To avoid distracting technicalities, here
and in the sequel we assume that f is supported away from {ξ1

Θ = 0}. In particular this
yields

Proposition 3.2. The following estimate holds for 2−1
f :

‖
Dx1

Θ

|Dx′Θ
|
2−1
f f‖L∞tΘ (L2

xΘ
) . ‖|Dx′Θ

|−1f‖L1
tΘ

(L2
xΘ

)

Later we will not need the global form of these energy estimates. Instead we need
frequency localized versions of these estimates. More precisely, we consider functions which
are frequency localized in an α-sector Ajλ,α which is at angle α from Θ. Then for (τΘ, ξΘ) ∈
Ãjλ,α we estimate the weights in the estimates. For small α we clearly get |τΘ| ≈ λ. Then in
a section τΘ = const the geometry looks like in the following picture:

Hence
|ξ1

Θ| ≈ α2λ, |ξ′Θ| ≈ αλ

Thus, we obtain
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          1

ξ

α λ

α  λ

        ,

         2

Figure 1: Section of an α sector at angle α from a characteristic direction.

Corollary 3.3. Let u, f be functions whose Fourier transform is supported in an α sector
Ajλ,α at angle α with respect to Θ. Then

a) If u is an L2 solution to the homogeneous wave equation then u ∈ L∞tΘ(L2
xΘ

) and

‖u‖ ◦
X0
≈ α‖u‖L∞tΘ (L2

xΘ
)

b) If u is the forward solution for 2u = f , i.e. u = 2−1
f f , then

α‖u‖L∞tΘ (L2
xΘ

) . (αλ)−1‖f‖L1
tΘ

(L2
xΘ

)

Another consequence of the same arguments is

Proposition 3.4. Let u be a solution to 2u = f whose Fourier transform is supported in
an α sector Ajλ,α at angle α with respect to Θ. Then u can be represented as

u(tΘ, xΘ) = v +

∫ ∞

−∞
ut̄Θ(tΘ, xΘ)χ{tΘ≥t̄Θ}dt̄Θ

where v, ut̄Θ are L2 solutions to the homogeneous wave equation, frequency localized in an
enlargement of Ajλ,α, and satisfying

‖v‖ ◦
Xλ

+

∫ ∞

−∞
‖ut̄Θ‖L1

t̄Θ
(
◦
Xλ)

dt̄Θ . (αλ)−1‖f‖L1
tΘ

(L2
xΘ

) + α‖u‖L∞tΘ (L2
xΘ

) (13)

Here χ stands for the characteristic function of the indicated set.

In other words, this says that the solutions u to 2u = f which are frequency localized in
an α-sector Ajα can be represented as a superposition of L2 solutions for the homogeneous
wave equation, truncated across the hyperplanes tΘ = const. This simple observation will
be very useful later on, in order to reduce estimates for solutions to the inhomogeneous wave
equation to the corresponding estimates for solutions to the homogeneous wave equation.
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Proof. Set
v = u−2−1

f f

Then v solves the homogeneous wave equation and, by Corollary 3.3,

‖v‖ ◦
Xλ

≈ α‖v‖L∞tΘ (L2
xΘ

)

. α‖u‖L∞tΘ (L2
xΘ

) + (αλ)−1‖f‖L1
tΘ

(L2
xΘ

)

By (12), on the other hand, the function 2−1
f f can be represented as

2−1
f f =

∫ ∞

−∞
ut̄Θ(tΘ, xΘ)χ{tΘ≥t̄Θ}dt̄Θ

where

ût̄Θ(tΘ, ξΘ) =
i

2ξ1
Θ

e
i(tΘ−t̄Θ)

(ξ′Θ)2

2ξ1
Θ f̂(t̄Θ, ξΘ)

Then ˆu¯
Θ
t is supported in the τΘ projection of Ajα on the cone and satisfies

‖ut̄Θ‖ ◦
Xλ

≈ α‖ut̄Θ‖L∞tΘ (L2
xΘ

)

. (αλ)−1‖f(t̄Θ)‖L2
xΘ
.

Thus (13) follows. 4
Next we relate these frequency localized solutions to the inhomogeneous wave equation

to the X
1
2
,∞

λ spaces.

Proposition 3.5. Let u be a function solving 2u = f whose Fourier transform is supported
in an α-sector Ajλ,α at angle α with respect to Θ. Then

‖u‖
X

1
2 ,∞
λ

. (αλ)−1‖f‖L1
tΘ

(L2
xΘ

) (14)

Proof. Compute

|û(τΘ, ξΘ)| = |f̂(τΘ, ξΘ)|
|2(τΘ, ξΘ)|

≤ |g(ξΘ)|
|2(τΘ, ξΘ)|

where

g(ξΘ) =

∫ ∞

−∞
|f̂(tΘ, ξΘ)|dt

satisfies
‖g‖L2

ξΘ
. ‖f‖L1

tΘ
(L2
xΘ

)

Then it remains to show that

d
1
2‖qλd(τΘ, ξΘ)

|g(ξΘ)|
|2(τΘ, ξΘ)|

‖L2 . (αλ)−1‖g‖L2
ξΘ
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uniformly in d > 0. (Here d stands for the distance to the cone.) This reduces to the
following estimate for fixed ξΘ:∫

|2(τΘ,ξΘ)|≈dλ

d

22(τΘ, ξΘ)
dτΘ . (αλ)−2

The dyadic interval {2(τΘ, ξΘ) ≈ dλ} has size dλξ1
Θ
−1

(in τΘ) therefore the above estimate
is equivalent to

dλξ1
Θ
−1 d

λ2d2
. (αλ)−2

and further to
α2λ . ξ1

Θ

which is true within the α sector Ajλ,α.

We conclude this section with a result which shows that the Xs,θ spaces behave well with
respect to truncation across characteristic hyperplanes.

Proposition 3.6. Let Θ ∈ char 2. Then

χ{X ·Θ>γ} ·Xs,θ ⊂ Xs,θ

for |s|, |θ|, |s− θ| < 1
2
.

Proof. Without any restriction in generality we can take γ = 0. The weight corresponding
to Xs,θ in our coordinates is

(|τΘ|+ |ξΘ|)s−θ|2τΘξ1
Θ − ξ′Θ

2|θ

and the truncation function is χ{tΘ≥0}. We can take the Fourier transform in ξΘ and reduce
the problem to the one-dimensional problem for fixed ξΘ. After redenoting the constants
and switching the roles of the physical and Fourier variable, we need to prove that

H : L2
φ → L2

φ

where H is the Hilbert transform and

φ
1
2 (x) = (|x|+ a)s−θ|x− b|θ, a ≥ 0, b ∈ R

By duality we can take s− θ ≥ 0. Rescaling we can set b = 4. Then

(|x|+ a)s−θ|x− 4|θ ≈ |x|s−θ|x− 4|θ + as−θ|x− 4|θ

therefore the problem reduces to the case a = 0. Now ( see Stein [14], chapter 5 ) it suffices
to verify that φ2 = |x|s−θ|x− 4|θ is an A2 weight. But this is a simple exercise which is left
for the reader.
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4 Product estimates for solutions to the homogeneous

wave equation

In this section we prove the dyadic multiplicative estimates for solutions to the homogeneous
wave equation. The estimates below are the sharp dyadic counterparts of estimates proved
in [9] and in earlier papers of Klainerman-Machedon. However, the proof here is different.
Our main estimate is

Theorem 3. The following multiplicative estimates hold for solutions to the homogeneous
wave equation:

a) Let µ� λ. Then
◦
Xλ ·

◦
Xµ⊂ µ

n+1
4 X

3−n
4

λ (15)

b) Let ε > 0. Then

◦
Xλ ·

◦
Xλ⊂ λ

1
2
+εX−n−1

4
−ε, 3−n

4
+2ε (16)

Remark 4.1. Observe that the product with a frequency µ function increases the support of
the Fourier transform roughly by µ. Hence, the first estimate above is strictly speaking not
true unless we enlarge the allowed support of the Fourier transform of the product. This can

be achieved by adding to X
3−n

4
λ the similar spaces corresponding to frequencies 2λ and λ/2.

We shall neglect such harmless imprecisions here and in the sequel.

Remark 4.2. The estimate (16) follows easily by summation from the sharp dyadic estimate

Sµ,d(
◦
Xλ ·

◦
Xλ) ⊂ λ

1
2µ

n−1
4 X

3−n
4

µ (17)

which is proved below.

Proof. a) Let u ∈
◦
Xλ, v ∈

◦
Xµ. They are L2 solutions to the homogeneous wave equation

therefore their Fourier transforms are L2 distributions on the characteristic cone K at fre-
quency λ, respectively µ. Then the Fourier transform of uv is supported at frequency λ,
within distance µ of the cone.

Given two vectors Ξ1,Ξ2 on the cone K so that

|Ξ1| ≈ λ, |Ξ2| ≈ µ, ∠(Ξ1,Ξ2) ≈ α

their sum Ξ1 + Ξ2 will be roughly at distance

d = d(Ξ1 + Ξ2, K) ≈ α2µ (18)

from the cone. This shows that the output at distance d from the cone comes from α-sectors
on the cone, at angle α. Furthermore, if we look at all such possible sums,

Aiλ,α + Ajµ,α, |i− j| ≈ 2

13



then they have the finite intersection property, i.e. there exists N which depends only on the
dimension so that each such sum intersects at most N others. This property is referred to
below as “angular orthogonality”.

The first step in the proof is to use the orthogonality with respect to d and the angular
orthogonality to reduce the problem to the case when u, v have Fourier transform supported
in α sectors. More precisely, we claim that (15) follows from the following dyadic estimate

‖u · v‖L2 . µ
n−1

2 α
n−3

2 ‖u‖ ◦
Xλ
‖v‖ ◦

Xµ
, (19)

for û, v̂ supported in α-sectors Aiλ,α, A
j
µ,α at angle α (i.e. with |i− j| ≈ 2).

Indeed, if (19) holds then

‖Sλ(u · v)‖2

X
3−n

4
λ

≈
∑

d dyadic

d
3−n

2 ‖Sλ,d(u · v)‖2
L2 (orthogonality)

=
∑

d dyadic

d
3−n

2 ‖Sλ,d(
α2µ=d∑
|i−j|=2

Siλ,αu · Sjµ,αv)‖2
L2 (distance estimate in (18))

.
∑

d dyadic

d
3−n

2

α2µ=d∑
|i−j|=2

‖Siλ,αu · Sjµ,αv‖2
L2 (angular orthogonality)

.
∑

d dyadic

d
3−n

2 µn−1αn−3

α2µ=d∑
|i−j|=2

‖Siλ,αu‖2
◦
Xλ

‖Sjµ,αv‖2
◦
Xµ

(use (19))

≈ µ
n+1

2

∑
α dyadic

∑
|i−j|=2

‖Siλ,αu‖2
◦
Xλ

‖Sjµ,αv‖2
◦
Xµ

(use(18))

≈ µ
n+1

2 ‖u‖2
◦
Xλ

‖v‖2
◦
Xµ

It remains to prove (19). Now the supports of û, v̂ are contained in α-sectors on the
cone of size λ × (αλ)n−1, respectively µ × (αµ)n−1. One could easily prove this directly by
interpreting it as a convolution estimate in the Fourier space. However, anticipating the
arguments used later in the paper, we choose to do it differently. The idea is to represent v
as a superposition of traveling waves and then to combine this with the characteristic energy
estimates for u proved in Corollary 3.3(a). The first step is carried out in the following
lemma:

Lemma 4.3. Let v ∈
◦
Xµ, with Fourier transform supported in Ajµ,α. Then v can be repre-

sented as a superposition of traveling waves,

v(X ) =

∫
Cjα∩K∩S(0,1)

vΘ(X ·Θ)dΘ

where
‖vΘ‖L2

Θ(L2) . µ
n−1

2 ‖v‖ ◦
Xµ
, ‖vΘ‖L1

Θ(L2) . (αµ)
n−1

2 ‖v‖ ◦
Xµ

(20)

14



To prove this, represent v as

v(X ) =

∫
eiXΞf(Ξ)δK , f ∈ L2(δK)

where δK is the surface measure on the cone. In polar coordinates this becomes

v(X ) =

∫
Cjα∩K∩S(0,1)

∫ ∞

0

eirX·Θf(rΘ)rn−1drdΘ

Then it suffices to set

vΘ(s) =

∫ ∞

0

eirsf(rΘ)rn−1dr

and estimate its L2 norm using Plancherel’s theorem,∫
|vΘ(s)|2dsdΘ ≈

∫
|f |2(rΘ)r2(n−1)drdΘ ≈

∫
|f |2(Ξ)rn−1δK

Since r ≈ µ in the support of f , this implies that

‖vΘ‖L2
Θ(L2) ≈ µ

n−1
2 ‖f‖L2(K) ≈ µ

n−1
2 ‖v‖ ◦

Xµ

i.e. the first part of (20). For the second part of (20) it suffices to observe that the support
Cj
α ∩K ∩ S(0, 1) of vΘ with respect to Θ has size αn−1. 4

Now we prove (19). We have

‖uv‖L2 ≤
∫
Cjα∩K∩S(0,1)

‖u(X )vΘ(X ·Θ)‖L2dΘ

≤
∫
Cjα∩K∩S(0,1)

‖u‖L∞tΘ (L2
xΘ

)‖vΘ‖L2dΘ

. α−1‖u‖ ◦
Xλ
‖vΘ‖L1

Θ(L2) ( use Corollary 3.3(a) for u)

. µ
n−1

2 α
n−3

2 ‖u‖ ◦
Xλ
‖v‖ ◦

Xµ
(use (20) for v)

b) Let u, v ∈
◦
Xλ. Given two vectors Ξ1,Ξ2 on the cone K so that

|Ξ1| ≈ λ, |Ξ2| ≈ λ, |Ξ1 + Ξ2| ≈ µ, ∠(Ξ1,Ξ2) ≈ α

their sum Ξ1 + Ξ2 will satisfy
2(Ξ1 + Ξ2) ≈ α2λ2

It can be in a dyadic annulus Aµ only if µ & αλ, in which case it is at distance

d ≈ α2λ2

µ
(21)
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from the cone.
As in part (a), we claim that it suffices to prove the estimate

‖Sµ(u · v)‖ . α−
1
2µ

1
2 (αλ)

n−2
2 ‖u‖ ◦

Xλ
‖v‖ ◦

Xλ
(22)

in the special case when û, v̂ are supported in α-sectors of the cone Aiλ,α, respectively Ajλ,α
which are separated by an angle α, i.e. |i− j| ≈ 2.

Indeed, if (22) holds then for α, d as above we have

‖Sµ,d(u · v)‖2
0, 3−n

4
≈ d

3−n
2 ‖Sµ,d(u · v)‖2

= d
3−n

2 ‖Sµ,d(
∑

|i−j|=2

Siλ,αu · S
j
λ,αv)‖

2

. d
3−n

2 (
∑

|i−j|=2

‖Sµ(Siλ,αu · S
j
λ,αv)‖)

2

. d
3−n

2 α3−nλn−2µ(
∑

|i−j|=2

‖Siλ,αu‖ ◦
Xλ
‖Sjλ,αv‖ ◦

Xλ
)2 (use (22))

. λµ
n−1

2 (
∑
i

‖Siλ,αu‖2
◦
Xλ

)(
∑
j

‖Sjλ,αv‖
2
◦
Xλ

) (use (21))

≈ λµ
n−1

2 ‖u‖2
◦
Xλ

‖v‖2
◦
Xλ

which gives (17).
The notable difference compared to part (a) is that here we loose the angular orthog-

onality; to compensate for this we relax the norm in the target space by introducing the
parameter ε, thus eliminating the need for summation with respect to µ, d.

It remains to prove (22). Unfortunately a direct application of the method in part (a)

yields a weaker bound, with an additional α−
1
2 factor. This indicates that there is some

additional orthogonality which we have not yet used. However, the method in part (a) does
give the sharp bound

‖ûv‖L2 . α−1(α2λ)
n−1

2 ‖u‖ ◦
Xλ
‖v‖ ◦

Xλ
(23)

for û, v̂ supported in α2-sectors at angle α. It remains to show that (23) implies (22). To
achieve this we first partition the α-sectors on the cone with respect to the radial direction
into αλ-cubes on the cone; then we cut each such cube into α2-sectors. The complete
argument follows.

The supports Aiλ,α and Ajλ,α of û and v̂ have size λ × (αλ)n−1. Since Aiλ,α and Ajλ,α are
at angle α, it follows that they are contained in parallel parallelepipeds of comparable size
λ× (αλ)n−1 × α2λ. Then their convolution has size λ× (αλ)n−1 × α2λ.

The support of the convolution intersects the Aµ annulus only if µ ≥ αλ. The intersection
is then contained in a µ× (αλ)n−1×α2λ cube. Consequently (22) follows from the estimate

‖ûv‖L2(C) . α−
1
2 (αλ)

n−1
2 ‖u‖ ◦

Xλ
‖v‖ ◦

Xλ
(24)
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for all cubes C of size (αλ)n × α2λ.
By orthogonality it suffices to do this when u, v have Fourier transform supported in

(αλ)n cubes on the cone, at angle α. Since they are at angle α, both can be embedded into
parallel parallelepipeds Qi, Qj of size (αλ)n×α2λ, whose “radial” direction is given by some
characteristic direction Θ at angle α with respect to both Aiλ,α and Ajλ,α.

For the last reduction, we decompose each such parallelepiped into α−n parallel paral-
lelepipeds of size αλ× (α2λ)n−1 × α3λ oriented in the radial direction,

Qi =
⋃
k∈J

Qi
k Qj =

⋃
k∈J

Qj
k

where J stands for the lattice points in an n-dimensional cube with sides α−1, using “par-
allel” labeling for the two partitions. Denote by J i, respectively J j the subsets of J which
correspond to parallelipipeds which intersect the cone (or more general, which intersect an
α3λ neighbourhood of the cone).

The projection of this decomposition on the plane τ = 0 is shown in Figure 2. The
solid lines represent the two α-sectors and their radial and angular decompositions, while
the dotted lines represent Qi, Qj and their decomposition. The projections on a plane
transversal to the radial direction Θ are shown in Figure 3.

ξ            ’

ξα
αα            1

α

Figure 2: The decomposition for a pair of α-sectors at angle α for n = 2

The essential features of this decomposition are described in the following Lemma:

Lemma 4.4. i) The intersection of each parallelepiped Qi
k, respectively Qj

k with the cone is
contained in (an enlargement of) an α2-sector.

ii) For each k ∈ J i, l ∈ J j the sum Qi
k +Qj

l is contained in (an enlargement of) a same
size parallelepiped situated at the position m = k + l in a similar lattice of parallelepipeds.
Furthermore, each such sum m occurs at most O(α2−n) times as we vary k ∈ J i, l ∈ J j.

Part (i) of the Lemma shows that this decomposition is equivalent to a decomposition of
the part of the cone within Qi, Qj into α2 sectors, and will allow us to use (23). Part (ii),
on the other hand, provides the necessary orthogonality in our argument.
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ξ

αλ

α λ           2

      θ
         ’

ξ          θ

          1           

Figure 3: Transversal projection of the decomposition for a pair of αλ cubes on the cone at
angle α for n = 2

Proof. For part (i) it suffices to observe that within the regions Qi, Qj the radial direction
is at angle α with respect to Θ and at angle α2 with respect to the plane ξ1

Θ = 0. Hence
the difference between a radial displacement of αλ (the lenght of our small parallelipipeds
Qi
k, Q

j
k) and a similar displacement in the direction Θ is of the order of α2λ in the ξ′Θ

direction and of α3λ in the ξ1
Θ direction. But this is comparable with the dimensions of the

parallelipipeds Qi
k, Q

j
k.

Part (ii) comes from a simple transversality argument. It suffices to consider the transver-
sal sections of Qi

k, Q
j
k, as shown in Figure 3. Then we need to look at the α3λ × (α2λ)n−1

parralelipipeds within an α3λ neighbourhood of sections of the parabolas

ξ1
ΘtΘ

i = (ξ′Θ)2, ξ1
ΘtΘ

j = (ξ′Θ)2,

where tΘ
i, tΘ

j have size of the order of λ and opposite signs. If we denote by U i, respectively
U j the α3λ neighbourhood of the sections of the parabolas within Qi, Qj, then we have
to determine when their sum belongs to a fixed α3λ × (α2λ)n−1 parrallelipiped. This is
equivalent to determining the intersection of U i with a translate of −U j. Since U i and
U j are at angle α, this intersection is transversal. In dimension n = 2 it is contained in
(an enlargement of) a α3λ × α2λ parallelipiped, which intersects finitely many α3λ × α2λ
parallelipipeds (independent of α). In dimension n = 3 the intersection is contained inside
a curved parallelipiped of size α3λ × α2λ × αλ, which can be covered with roughly α−1

parallelipipipeds of size α3λ× (α2λ)2. 4
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Corresponding to the decomposition of Qi and Qj we split û and v̂ into

û =
∑
k∈Ji

ûk, v̂ =
∑
k∈Jj

v̂k

Now we can prove (24):

‖uv‖2
L2 = ‖

∑
k∈Ji, l∈Jj

ukvl‖2
L2

≈
∑
m∈2J

‖
k+l=m∑

k∈Ji, l∈Jj
ukvl‖2

L2 (use (ii) above)

≤
∑
m∈2J

(
k+l=m∑

k∈Ji, l∈Jj
‖ukvl‖L2)2

. α2n−4λn−1
∑
m∈2J

(
k+l=m∑

k∈Ji, l∈Jj
‖uk‖ ◦

Xλ
‖vl‖ ◦

Xλ
)2 ( use (i) and (23))

. α2n−4λn−1
∑
m∈2J

|α|−n+2
∑
k+l=m

‖uk‖2
◦
Xλ

‖vl‖2
◦
Xλ

( use (ii))

= αn−2λn−1‖u‖2
◦
Xλ

‖v‖2
◦
Xλ

4

5 The trace method

The aim of this section is to introduce the so-called ”trace method” which allows us to
transfer estimates from solutions to the homogeneous wave equation to the X

1
2
,1

λ spaces. As

a corollary we obtain the extension of the estimates in Theorem 3 to the X
1
2
,1

λ spaces.
Given an arbitrary Lipschitz function

φ : D(φ) ⊂ Rn → R

we denote by Xθ
φ, respectively X

1
2
,1

φ the spaces of functions with Fourier transform supported
in R×D(φ) and norms

‖u‖Xθ
φ

= ‖|τ − φ(ξ)|θû(τ, ξ)‖L2

respectively

‖u‖
X

1
2 ,1

φ

=
∑

λ dyadic

λ
1
2‖s(λ−1(τ − φ(ξ)))û(τ, ξ)‖L2

Also denote by
◦
Xφ the space of functions with Fourier transform in L2(δ{τ−φ(ξ)}). Then our

main result is
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Proposition 5.1. Let φ, ψ be two Lipschitz functions defined on subsets of Rn with values
in R. Given a continuous function χ, denote by Tχ the multiplication operator by χ. Assume

that Tχ :
◦
Xφ→ Xθ

ψ is bounded operator for some 0 ≤ θ ≤ 1
2
. Then Tχ is also bounded from

X
1
2
,1

φ into Xθ
ψ and

‖T‖
L(X

1
2 ,1

φ ,Xθ
ψ)

. ‖T‖
L(

◦
Xφ,X

θ
ψ)

Observe that the result remains true for any operator T commuting with time Fourier
translations, Teitτ = eitτT . Here we consider a more restricting context only in order to
avoid distracting technicalities.

Proof. Replacing Tχ by
S(t) = eitψ(Dx)χ(t, x)e−itφ(Dx)

the problem reduces to the similar one for S in the case φ = ψ = 0.

Observe that in this special case
◦
X0 contains the functions in L2

x which are independent
of t, while

X
1
2
,1

0 = Ḃ2,1
1
2

(L2
x), Xθ

0 = Ḣθ(L2
x)

Given a function u ∈ X
1
2
,1

0 , we interpret its image through S as the trace

S(t)u(t) = S(t)u(s)|s=t

Since the diagonal trace of Ḃ2,1
1
2

(Ḣθ) is in Ḣθ for 0 ≤ θ < 1
2
, we obtain

‖S(t)u(t)‖Ḣθ
t (L2

x)
. ‖S(t)u(s)‖Ḃ2,1

1
2

(Ḣθ
t (L2

x))

. ‖u(s)‖Ḃ2,1
1
2

(L2
x)
‖S‖

L(
◦
X0,X

θ
0 )

4

The special case when φ and ψ are ±|ξ| corresponds to product estimates for the X2,1
λ

spaces. The analogue of Theorem 3 is

Theorem 4. Let n = 2, 3. Then the following multiplicative estimates hold:
a) Let µ� λ. Then

X
1
2
,1

λ ·X
1
2
,1

µ ⊂ µ
n+1

4 X
3−n

4
λ ∩ µ

n
2X

1
2
,1

λ (25)

b) Let µ ≤ 4λ. Then

X
1
2
,1

λ ·X
1
2
,1

µ ⊂ λ
1
2
+εX−n−1

4
−ε, 3−n

4
+2ε, ε > 0 (26)
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Proof. a) It suffices to prove the estimate when the frequency λ factor is supported in a fixed
dyadic region Aλ,d (in frequency).

a1) If d > 10µ then the product is also supported at distance O(d) from the cone. But for

functions with Fourier transform supported at distance O(d) from the cone the X
1
2
,1

λ norm

is equivalent to the d−
1
2L2 norm. Hence it suffices to show that

L2 ·X
1
2
,1

µ ⊂ µ
n
2L2

which follows from the second part of the next Lemma.

Lemma 5.2. For all µ > 0 the following two embeddings hold:

X
1
2
,1

µ ⊂ C0
t (L

2
x) (27)

(this is the analogue of the energy estimate for solutions to the homogeneous wave equation),
and

X
1
2
,1

µ ⊂ µ
n
2L∞ (28)

Proof. The first part follows from the straightforward inequality

‖û‖L1
τ (L

2
ξ)

. ‖u‖
X

1
2 ,1
µ

The second embedding is a consequence of the first one due to the Sobolev embeddings. 4

a2) If d < 10µ then the Fourier transform of the product is also supported within distance

O(µ) from the cone. For such functions the µ
n+1

4 X
0, 3−n

4
λ norm is stronger than the µ−

n
2X

1
2
,1

λ

norm, therefore it suffices to prove that

X
1
2
,1

λ ·X
1
2
,1

µ ⊂ µ
n+1

4 X
0, 3−n

4
λ

If both factors have Fourier transform supported outside a conic neighborhood of {|ξ| = 0}
then the result follows from Theorem 3 by applying Proposition 5.1 once for each factor if
we successively take

φ(ξ) = ±|ξ|, D(φ) = {λ/4 ≤ |ξ| ≤ 4λ}, ψ(ξ) = ±|ξ|, D(ψ) = {λ/8 ≤ |ξ| ≤ 8λ}

respectively

φ(ξ) = ±|ξ|, D(φ) = {µ/4 ≤ |ξ| ≤ 4µ}, ψ(ξ) = ±|ξ|, D(ψ) = {λ/8 ≤ |ξ| ≤ 8λ}

The factors with Fourier transform supported within a conic neighborhood of {|ξ| = 0} can
be easily dealt with via a Lorentz transform which maps the conic neighborhood of {|ξ| = 0}
away from the line {|ξ| = 0}.

b) This follows directly from Theorem 3 and Proposition 5.1 if we use a Lorentz transform
to deal with factors which are frequency localized in a small conical neighborhood of the line
{|ξ| = 0}.
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6 Dyadic function spaces

At fixed frequency λ we build our spaces Fλ of functions with Fourier transform supported
in B(0, 4λ) \B(0, λ/4) as follows:

Fλ = X
1
2
,1

λ +

α≤1∑
α dyadic

Yλ,α

with norm

‖u‖Fλ = inf{‖u0‖
X

1
2 ,1

λ

+

l≥1∑
α=2−l

‖uα‖Yλ,α ; u = u0 +

l≥1∑
α=2−l

uα}

The Yλ,α spaces are atomic spaces. A function u is an Yλ,α atom iff
(a) û is supported in Ãλ, 1

20
α2λ.

(b) For each j there exists a characteristic direction Θj, at angle αj ≥ α from the support
of S̃jλ,α, so that ∑

j

(λαj)
−2‖2Rj

αu‖2
L1
tΘj

(L2
xΘj

) ≤ 1

∑
j

α2
j‖Rj

αu‖2
L∞tΘj

(L2
xΘj

) ≤ 1

Then the Yλ,α norm is defined by

‖u‖Yλ,α = inf{
∞∑
k=1

|ak|; u =
∞∑
k=1

akuk, uk are Yλ,α atoms }

In other words, the Yλ,α spaces consist of frequency localized classical solutions to the
inhomogeneous wave equation with respect to characteristic directions, square summed in
the frequency space. These are exactly the bounds which are satisfied by L2 solutions to
the homogeneous wave equation. To see that one only needs to orthogonally decompose
its Fourier transform with respect to the α sectors and then write the characteristic energy
estimate in the sector Rj

α with respect to the direction Θj as in Section 3. Thus we have the
embedding

◦
Xλ⊂ Yλ,α

On the other hand, one can naively see that these spaces are nested modulo X
1
2
,1

λ , in the
sense that

Yλ,2α ⊂ Yλ,α +X
1
2
,1

λ

The Yλ,α space allows for a wider range of directions Θ for each α-sector, therefore in this
regard Yλ,α is larger than Yλ,2α. However, the functions in Yλ,α have Fourier transform

supported closer to the cone, therefore we need the X
1
2
,1

λ space to account for the part of
Yλ,2α which has Fourier transform at distance roughly α2λ from the cone.
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We start with a few simple properties of the Fλ spaces. First we relate them to the X
1
2
,∞

λ

space.

Proposition 6.1. The following embedding holds:

Fλ ⊂ X
1
2
,∞

λ (29)

Proof. This property is straightforward for X
1
2
,1

λ . It remains to prove it for the Yλ,α spaces.
Let u be a Yλ,α atom as above. Decompose it as

u =
∑
j

Rj
αu

By orthogonality, it suffice to prove the result for one of the pieces. But Rj
αu is frequency

localized in the α-sector Cj
α at angle αj > α from Θ, therefore the conclusion follows from

Theorem 3.5. 4

Our second result shows that the functions in Fλ satisfy the ”energy estimate” with
respect to time-like directions. It also provides the main ingredient in the proof of the
scattering result.

Proposition 6.2. The following embedding holds:

Fλ ⊂ L∞(L2) (30)

Furthermore, the limits
lim
t→∞

e±it|D|(ut ± i|D|u)

exist in λL2 for all u ∈ Fλ.

Using the Sobolev embeddings we also obtain

Corollary 6.3. The following embedding holds:

Fλ ⊂ λ
n
2L∞ (31)

Proof. For the the X
1
2
,1

λ space the result follows from Proposition 5.2. Then it remains to
prove it for Yλ,α. Hence start with a Yλ,α atom

u =
∑
j

Rj
αu

The orthogonal projections of the α-sectors Ajλ,α on the plane τ = 0 are almost disjoint. Then

by orthogonality it suffices to prove the result for a single piece Rj
αu. But, by Proposition 3.4,

Rj
αu is a superposition of truncated L2 solutions to the wave equation therefore (30) follows.
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The second part of the result requires a more detailed analysis. To fix the signs, suppose
we look at the limit

lim
t→∞

eit|D|(ut + i|D|u)

We need to consider two cases:
a) If û is supported away from τ − |ξ| = 0 then we use the embedding (29) to obtain

(ut + i|D|u) ∈ λ 1
2L2. Hence its limit at infinity is 0.

b) If û is supported near τ − |ξ| = 0 then

ut ± i|D|u ∈ λYλ,α

therefore it suffices to show that the limit

lim
t→∞

eit|D|u

exists in L2 when u is in Yλ,α, supported in a α sector near τ = |ξ|. But then u is a superposi-
tion of L2 solutions to the wave equation truncated across characteristic hyperplanes. Then
the conclusion follows if we prove that, as t → ±∞, such a truncated solution approaches
either 0 or the non-truncated solution for any L2 initial data. By density it suffices to prove
this for smooth compactly supported initial data. Indeed, suppose the initial data is sup-
ported in the unit ball and we truncate it using the characteristic function χ{t<x1}. Then

the corresponding solution decays like t−
n−1

2 . Hence

|u(t)|2L2(t<x1) .
∫
t<x1,|x|<t+1

t1−ndx . t
1−n

2

which implies that
lim
t→∞

|u(t)|L2(t<x1) = 0

If instead we truncate by χ{t>x1} then the truncated solution will approach the untruncated
one as t approaches ∞. 4

The next result is an extension of Lemma 4.3; it shows that Yλ,θ functions which are
frequency localized in an α-sector, α > θ, can be represented as a superposition of truncated
traveling waves.

Proposition 6.4. Let α > θ. Let u ∈ Yλ,θ so that û is supported in an α-sector Aiλ,α. Then
u can be represented as

u =

∫
D

uΘdΘ (32)

where D ⊂ K ∪ S(0, 1) is a θ
10

enlargement of Ci
α ∪K ∪ S(0, 1) and∫

D

‖uΘ‖L2
tΘ

(L∞xΘ )dΘ . (αλ)
n−1

2 ‖u‖Yλ,θ (33)
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Proof. It suffices to prove the result for an Yλ,θ atom. Decompose the α sector into roughly
(α/θ)n−1 θ-sectors. Because u ∈ Yλ,θ, we can represent it as the square summable superpo-
sition of (α/θ)n−1 components supported in θ-sectors. Then we can reduce the problem to
the case of a single θ-sector, i.e. to the case when α = θ.

But according to Proposition 3.4, an Yλ,θ atom u which is frequency localized in an
θ-sector Aiλ,θ can be expressed as superpositions of solutions for the homogeneous wave
equation, truncated on characteristic hyperplanes. These solutions are frequency localized
in the Θ projection on the cone of the support of û, with respect to a characteristic direction
Θ at angle at least θ from Aiλ,θ. But by the definition of Yλ,θ, û is supported within 1

20
θ2λ

from the cone. Then its Θ projection on the cone is contained within a θ
10
λ neighborhood of

Aiλ,θ ∩K.
The solutions for the homogeneous wave equation can, in turn, be represented by Lemma 4.3

as a superposition of traveling waves. This yields the desired conclusion. 4
Now we can define the spaces 2Yλ,α,2Fλ with the induced norm. Their characterization

is the expected one:

Proposition 6.5. i) The space 2Yλ,α is an atomic space, where a function f is an 2Yλ,α
atom if

(a) f̂ is supported in Ãλ, 1
20
α2λ.

(b) For each j there exists a characteristic direction Θj, at angle αj ≥ α from the support
of S̃jλ,α, so that ∑

j

(λαj)
−2‖Rj

αf‖2
L1
tΘj

(L2
xΘj

) ≤ 1

ii) The operator 2 : Yλ,α → 2Yλ,α is right invertible and Ker2 =
◦
Xλ.

iii) 2Fλ = λX− 1
2
,1 +

∑
2Yλ,α. In addition, the operator 2 : Fλ → 2Fλ is right invertible

and Ker2 =
◦
Xλ.

Proof. Clearly the functions in 2Yλ,θ are contained in the atomic space determined by 2Yλ,α
atoms defined as in (a),(b). To prove the converse, and also half of (ii), it suffices to construct
a right inverse to 2 which maps 2Yλ,α atoms into uniformly bounded multiples of Yλ,α atoms.
But due to Corollary 3.3(b) such an inverse is the forward parametrix 2−1

f for the wave
operator . The proof of part (iii) is then straightforward. By (30), the elements in the kernel

are L∞t (L2
x) solutions to the homogeneous wave equation, i.e. exactly the functions in

◦
Xλ.

4
Now introduce the spaces Gλ of functions with Fourier transform supported in λ

4
≤ |ξ| ≤

4λ,

Gλ =
⋂

θ dyadic

Zλ,θ ∩X
1
2
,∞

λ

with norm
‖u‖Gλ = max{‖u‖

X0, 12 ,∞
, sup
θ dyadic

‖u‖Zλ,θ}
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where the Zλ,θ norms are defined for θ . 1 by

‖u‖2
Zλ,θ

=
∑
j

sup
α≥θ

α2‖Rj
θu‖

2
L∞Θ (L2)

where α is the angle between the characteristic direction Θ and the support of Qj
λ,θ.

Formally we have
Gλ = λ(2Fλ)

′

However, we have to be a bit cautious here due to the restriction on the support of the
Fourier transform. We can stay out of trouble if we modify a bit the support of the Fourier
transform:

Proposition 6.6. The following embeddings hold:
a) Gλ ⊂ λ(2Fλ)

′.
b) λSλ(2Fλ)

′ ⊂ Gλ.

Remark 6.7. A stronger form of the above Proposition is
a) The space Gλ is a closed subspace of λ(2F2λ + 2Fλ

2
)′.

b) The space λ(2Fλ)
′ is a quotient space of G2λ +Gλ

2
.

However, the result in the Proposition is easier to prove and is well adapted for the duality
arguments we use later on.

Proof. The proof of part (a) is straightforward as one only needs to test Gλ functions against

the building blocks of (2Fλ), i.e. X
− 1

2
,1

λ and 2Yλ,α.
For part (b), let f ∈ λ(2Fλ)

′, with norm 1. We can interpret Sλf as a distribution if for
any test function u we set

Sλf(u) = f(Sλu)

First we test it against X
− 1

2
,1

λ :

|(Sλf)(u)| ≤ ‖Sλu‖
X
− 1

2 ,1

λ

This implies that
‖Sλf‖

X
1
2 ,∞
λ

. 1

Next we test it against Yλ,α type functions. For each j we choose a direction Θj at angle
αj > α from the α-sector Cj

α and a function uj ∈ L1
tΘj

(L2
xΘj

). Then set

u =
∑
j

Sjλ,αuj

The operators Sjλ,α are uniformly bounded in L1
tΘj

(L2
xΘj

). Then it is not difficult to show

that u ∈ 2Fλ, and

‖u‖2
2Fλ

.
∑
j

(λαj)
−2‖uj‖2

L1
tΘj

(L2
xΘj

)
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Hence we must also have
|f(u)|2 .

∑
j

α−2
j ‖uj‖2

L1
tΘj

(L2
xΘj

)

and further
|
∑
j

(Sjλ,αf)(uj)|2 .
∑
j

α−2
j ‖uj‖2

L1
tΘj

(L2
xΘj

)

This holds for all choices of uj in the above spaces, therefore we obtain∑
j

(αj)
2‖Sjλ,αf‖

2
L∞tΘj

(L2
xΘj

) . 1

for all possible choices of characteristic directions Θj at angle αj > α from Cj
α. Since

Sjλ,α = Rj
αSλ, this says exactly that

‖Sλf‖Zλ,α . 1

and further
‖Sλf‖Gλ . 1

4
We start the study of these spaces with the embedding into L∞:

Proposition 6.8. The following embeddings hold:

Gλ ⊂ λ
n
2L∞

Fλ ⊂ Gλ

The first embedding follows easily if we use the Zλ,θ norm for θ ≈ 1. The proof of the
second embedding is more involved. Start with

X
1
2
,1

λ ⊂ Zλ,θ

By orthogonality this reduces to a θ-sector. Then this is the dual to (14).
It remains to prove the embedding

Yλ,θ ⊂ Zλ,α

a) Suppose that θ < α. By orthogonality it suffices to prove the embedding for Yλ,θ
atoms which are frequency localized within an α-sector Ajλ,α. This is equivalent to the
uniform estimate

β‖u‖L∞tΘ (L2
xΘ

) . ‖u‖Yλ,θ

when u is frequency localized in Ajλ,α and the characteristic direction Θ is at angle β ≥ α

from Ajλ,α.
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We can decompose u into pieces which are frequency localized in θ-sectors. The θ sectors’s
projections in the direction Θ are almost disjoint, therefore by orthogonality it suffices to
prove the above estimate for functions with Fourier transform supported in a θ sector. But
the part of Yλ,θ within a θ sector is a superposition of truncated L2 solutions to the wave
equation, which by Corollary 3.3 satisfy the appropriate L∞Θ (L2) bound.

b) If θ > α then we reason in a dual way. In this case the problem reduces to a θ
sector. We can truncate it at distance α2λ from the cone, and then split it in α sectors. By
orthogonality the problem reduces to α sectors and we conclude as before.

Next we prove that our function spaces behave nicely with respect to truncation away
from the cone.

Proposition 6.9. The following estimates hold uniformly in λ, ν > 0:

‖Q̃νf‖Fλ . ‖f‖Fλ (34)

‖(1− Q̃ν)f‖2Fλ . ν−1‖f‖Fλ (35)

‖Q̃νf‖Gλ . ‖f‖Gλ (36)

Proof. Observe that (36) follows from (34) by duality. Then it suffices to prove (34) and

(35). Both properties are trivial for the X
1
2
,1

λ space; also for the Yλ,α space if the thickness
of the support of the Fourier transform of its elements is less than λ−1ν, i.e. if α2λ2 < ν. It
remains to prove these properties for Yλ,α atoms with α2λ2 ≥ ν.

These would in turn follow from the following L1(L2) bounds and the dual L∞(L2)
bounds:

‖Q̃νu‖L1
tΘ

(L2
xΘ

) . ‖u‖L1
tΘ

(L2
xΘ

)

‖(1− Q̃ν)2
−1u‖L1

tΘ
(L2
xΘ

) . ν−1‖u‖L1
tΘ

(L2
xΘ

)

for û supported in an α-sector Ajλ,α at angle β ≥ α from the characteristic direction Θ.

In characteristic coordinates, Q̃ν has symbol

q̃ν = s̃(
2τΘξ

1
Θ − (ξ′Θ)2

ν
)

and kernel

K(tΘ, ξΘ) =
ν

2ξ1
Θ

ˆ̃s(
νtΘ
2ξ1

Θ

)e
itΘ

|ξ′Θ|2

2ξ1
Θ

According to the analysis in Section 3, within the α-sector Ajλ,α we have

|ξ1
Θ| ≈ β2λ, |ξ′Θ| ≈ βλ
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For ξΘ restricted to this range we have K ∈ L1
tΘ

(L∞ξΘ) which implies the first bound. A

similar analysis for the operator (1− Q̃ν)2
−1 yields the kernel

H(tΘ, ξΘ) = ν−1 1

2ξ1
Θ

ŵ(
t

2ξ1
Θ

)e
it
|ξ′Θ|2

2ξ1
Θ w(t) =

1− s̃(t)

t

Then for ξΘ in the same range as above we get

‖H(tΘ, ξΘ)‖L1
tΘ

(L∞ξΘ
) ≤ ν−1

which implies the second bound. 4

We continue with a simple multiplicative estimate which shows that multiplication by L∞

functions at frequency µ leave our function spaces unchanged away from a µ neighborhood
of the cone.

Proposition 6.10. Let µ� λ. Then

(1− Q̃10λµ)Fλ · L∞µ ⊂ Fλ (37)

(1− Q̃10λµ)Gλ · L∞µ ⊂ Gλ (38)

Proof. Observe first that in both cases the product is frequency localized outside a 5µ neigh-
borhood of the cone. By Proposition 6.5, (37) is equivalent to

2((1− Q̃10λµ)Fλ · L∞µ ) ⊂ 2Fλ (39)

If we use now the Leibnitz rule and observe that a derivative at frequency λ is roughly
equivalent to multiplication by λ, then we get

2((1− Q̃10λµ)Fλ · L∞µ ) ⊂ 2(1− Q̃10λµ)Fλ · L∞µ + λµ(1− Q̃10λµ)Fλ · L∞µ

By (35) the first factor in the second right hand side term can be replaced by 2(1−Q̃10λµ)Fλ.
Then (39) reduces to

(1− Q̃10λµ)2Fλ · L∞µ ⊂ 2Fλ (40)

Furthermore, if we prove this then (38) also follows by duality.

The proof of (40) for the X
− 1

2
,1

λ space is straightforward; it essentially repeats the orthog-
onality argument in part (a1) of Theorem 4. It remains to look at 2Yλ,α. Observe first that
(1− Q̃10λµ)Yλ,α = 0 unless λα2 > 10µ.

The dyadic pieces of 2Yλ,α atoms are L1(L2) functions supported in λ× (λα)n−1× 1
20
λα2

cubes. Multiplication by L∞µ clearly preserves these spaces; the only problem is that the
support of the Fourier transform increases by µ.
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However, we know that λα2 > 10µ. Then the increase in the size of the support within
distance 1

40
α2λ from the cone can be taken care of by Yλ, 1

2
α; the contribution outside this

region goes into the X
1
2
,1

λ space.
Now we prove the main result of this section, which deals with the multiplicative prop-

erties of the spaces Fλ, Gλ. The estimates in the next theorem mirror the earlier ones in

Theorems 3, 4 for the
◦
Xλ spaces, respectively the X

1
2
,1

λ spaces.

Theorem 5. a) Let µ� λ and ε > 0, small. Then

Fλ · Fµ ⊂ µ
n
2Fλ ∩ µ

n+1
4

+εX
3−n

4
+ε

λ , (41)

GλFµ ⊂ µ
n
2Gλ ∩ µ

n+1
4

+εX
3−n

4
+ε

λ (42)

and

FλGµ ⊂ λ
n−1

2

(
µ

1
2Gλ ∩ µ

n−3
4

+εX
3−n

4
+ε

λ

)
(43)

b) Let µ ≤ λ and ε > 0, small. Then

Fλ · Fλ ⊂ λ
1
2
+2εX

1−n
4

+ε, 3−n
4

+ε (44)

Sµ(Fλ ·Gλ) ⊂ λµ
n−3

4
+εX

3−n
4

+ε
µ (45)

Note that this theorem is a bit weaker than Theorems 3,5. The reason for that is that
we cannot cut orthogonally the sectors in Gλ into shorter pieces. In principle this can be
fixed by taking shorter dyadic pieces in the definition of Fλ, Gλ. However, this would make
the proofs considerably more complicated.

Proof of (41),(42). Due to the embeddings

X
1
2
,1

λ ⊂ Fλ ⊂ X
1
2
,∞

λ

it follows that the µ
n
2Fλ norm is stronger than the µ

n+1
4

+εX
0, 3−n

4
+ε

λ norm on functions which
are frequency localized at distance at least O(µ) from the cone but is weaker on functions
which are frequency localized within distance O(µ) from the cone. Then it is natural to cut
the first factor in (41) in frequency in a piece at distance 5µ from the cone and a piece at
distance at most 20µ from the cone,

Fλ = Q̃10λµFλ + (1− Q̃10λµ)Fλ

The Fourier transform of (1− Q̃10λµ)Fλ · Fµ is still at distance at least O(µ) from the cone.
Then it suffices to show that

(1− Q̃10λµ)Fλ · µ−
n
2Fµ ⊂ Fλ
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This follows from the embedding (31) and Proposition 6.10.
It remains to look at the piece at distance O(µ) from the cone and show that

Q̃10λµFλ · Fµ ⊂ µ
n+1

4
+εX

3−n
4

+ε

λ (46)

Using a similar argument, (42) reduces to the stronger estimate

Q̃10λµGλ · Fµ ⊂ µ
n+1

4
+εX

3−n
4

+ε

λ (47)

This is the counterpart to the estimate (15) for solutions to the homogeneous wave equation.
In this case the output is within distance µ from the cone.

Now we prove (47). If the second factor is in X
1
2
,1

µ then, using the trace method, the
problem reduces to the case when that component is in effect a solution to the homogeneous
wave equation. Hence, it remains to show that

Q̃10λµGλ · Yµ,θ ⊂ µ
n+1

4
+εX

3−n
4

+ε

λ

By modifying ε, this reduces to the similar estimate within a dyadic region with respect to
the distance to the cone. More precisely, we let α > 0 and estimate the Fourier transform of
the product in a dyadic region at distance d ≈ α2µ from the cone. It suffices to show that

Qα2λµ(Q̃λµGλ · Yµ,θ) ⊂ µ
n+1

4
+εX

3−n
4

+ε

λ

Truncate the frequency λ factor at distance 1
10
α2µ from the cone,

Q̃10λµGλ = Q̃ 1
10
α2λµGλ + (1− Q̃ 1

10
α2λµ)Q̃10λµGλ

For the second component we use the embedding Gλ ⊂ X
1
2
,∞

λ . We would like to get a bound

for it in the smaller space X
1
2
,1

λ . To achieve that we have to count the dyadic pieces in the
support of (1− Q̃ 1

10
α2λµ)Q̃10λµYλ,θ1 ; we have roughly

ln
1

α2
. ln

µ

d

such pieces, therefore

(1− Q̃ 1
10
α2λµ)Q̃10λµGλ ⊂ ln

µ

d
X

1
2
,1

λ

Hence, using the trace method, the estimate corresponding to the second component of Gλ

reduces to the case when the Gλ factor is a solution to the homogeneous wave equation2.
If we also substitute Gλ by Zλ,α then it suffices to prove that

Qα2λµ(Q̃ 1
10
α2λµZλ,α · Yµ,θ) ⊂ µ

n+1
4 X

3−n
4

λ (48)

2Of course here we loose a factor of ln µ
d , but we can account for that by modifying the ε in the Theorem
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It is enough to consider the case when the second factor is an Yµ,θ atom. If θ > α then the
output within distance α2µ from the cone is generated by pairs of sectors at angle no more
than θ. Thus we reduce the problem by orthogonality to θ-sectors. But by Proposition 3.4
the dyadic pieces of Yµ,θ within θ sectors are superpositions of truncated solutions to the
homogeneous wave equation, therefore, by Proposition 3.6, the problem reduces to the case

when the Yµ,θ factor is in
◦
Xλ supported in a θ sector, i.e. to the case when θ = 0.

Finally, consider the case when α ≥ θ. Then the output at distance α2µ from the cone
comes from pairs of α-sectors at angle α. Hence by orthogonality it suffices to prove the
desired dyadic estimate,

‖(Q̃ 1
10
α2λµu) · v‖L2 . µ

n+1
4 d

n−3
4 ‖u‖Zλ,α‖v‖Yµ,θ (49)

in the case when v is a Yµ,θ-atom and u, v are frequency localized in α-sectors Aiλ,α, A
j
µ,α at

angle α.
For this we use the characteristic energy estimates for u (which are part of the Zλ,α norm)

and the decomposition of v into truncated traveling waves in Proposition 6.4,

v =

∫
D

vΘ(tΘ, xΘ)dΘ

where D ⊂ K ∩ S(0, 1) is an θ
10

enlargement of Cj
α ∩K ∩ S(0, 1). Then

‖uv‖L2 ≤ ‖
∫
D

uvΘdΘ‖L2

≤
∫
D

‖uvΘ‖L2dΘ

≤
∫
D

‖u‖L∞tΘ (L2
xΘ

)‖vΘ‖L2
tΘ

(L∞xΘ )dΘ

≤ α−1‖u‖Zλ,α
∫
D

‖vΘ‖L2
tΘ

(L∞xΘ )dΘ (energy estimates for u)

. α−1‖u‖Zλ,α(αµ)
n−1

2 ‖v‖Yµ,θ (use (33) for v)

This gives (49) and concludes the proofs of (41), (42). 4

Proof of (43). This proof proceeds in a similar fashion, with the (nonessential) difference
that now we truncate both factors at distance 1

10
α2µ from the cone. The problem reduces

to the counterpart of (49), namely

‖(Q̃ 1
10
α2λµu) · (Q̃ 1

10
α2µ2v)‖L2 . α−1(αλ)

n−1
2 ‖u‖Yλ,θ‖v‖Zµ,α (50)

in the case when θ � α, u is a Yλ,θ-atom and u, v are frequency localized in α-sectors Aiλ,α,
Ajµ,α at angle α.
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To prove (50) we use again the characteristic energy estimates for v and the decomposition
of u in Proposition 6.4 as a superposition of truncated traveling waves. The constant we
get is much worse because this time we use (33) for the frequency λ factor instead of the
frequency µ factor. 4

Proof of (44). If either factor is in X
1
2
,1

λ then we can use the trace method to reduce the

problem to the case when that factor is in
◦
Xλ. Hence, it remains to look at products of the

form
Yλ,θ1 · Yλ,θ2

Estimate the output
Qα2λ2(Yλ,θ1 · Yλ,θ2)

in the region
2(Ξ) ≈ α2λ2,

i) If θ1 ≥ α, θ2, by orthogonality it suffices to obtain the estimate in the case when
both factors are frequency localized in θ1 sectors. Then, by Corollary 3.4, the first factor
is a superposition of truncated L2 solutions to the homogeneous wave equation. Hence, by
Theorem 3.6 we can assume that the first factor is a solution to the wave equation, i.e. that
θ1 = 0. Using this argument once or twice the problem reduces to the second case:

ii) If α ≥ θ1 ≥ θ2 then we reduce the problem first by orthogonality to α-sectors at angle
α. Following the proof of Theorem 3, we would now like to split these sectors further in
length up to a length of αλ. However, we want to do that without loosing orthogonality,
and this presents a difficulty.

First of all, the α-sectors consist of many θ1-sectors, respectively θ2-sectors, and each
corresponds to a different characteristic direction. Hence, we need to partition these smaller
sectors individually. Now suppose we take a θ1-sector and we try to truncate it into pieces
of length αλ. The only way we can truncate L1

tΘ
(L2

xΘ
) and still retain the orthogonality is if

the multipliers we use act only on the L2 norm, i.e. if their symbol depends only on ξΘ. But
the direction Θ could be as close as θ1 to our θ1 sector, therefore when we truncate using
multipliers which are constant in the direction Θ we can still get pieces of length λ due to
the θ2

1λ thickness of θ1-sectors. However, we can overcome this difficulty if we truncate first
the thickness to αθ2

1λ,
Yλ,θ1 = Q̃αθ21λ

2Yλ,θ1 + (1− Q̃αθ21λ
2)Yλ,θ1

Then the inner part can be orthogonally decomposed into αλ long pieces, while the outer part

is in X
1
2
,∞

λ and further in3 | lnα|X
1
2
,1

λ . The X
1
2
,1

λ factor can be replaced with a corresponding
solution to the homogeneous wave equation using the trace method. The | lnα| factor can
be absorbed into ε since the region where the Fourier transform of the product is supported,

Ãλ ∩Bα2λ2 , is at distance d ≥ α2λ from the cone; thus |α| ≤
√

d
λ
.

3Again we count the number of dyadic regions in the support of the outer part
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It remains to prove the counterpart of (24), namely

‖u1u2‖L2 ≤ α−
1
2 (αλ)

n−1
2 ‖u1‖Yλ,θ1‖u2‖Yλ,θ2 (51)

in the case when ui have Fourier transform supported in (αλ)n × αθ2
i λ “parallelepipeds” on

the cone, at angle α. Now we continue the argument as in the proof of (24). The Fourier
transform of u1u2 is supported in an (αλ)n × α2λ parallelepiped. We would like to reduce
the problem to α2 sectors, but here we do this in two steps. We reduce the problem first to
θ sectors, where θ = max{θ1, θ2, α

2}. Arguing as in the proof of (24), (see also Figures 2,3)
(51) reduces to

‖u1u2‖L2 ≤ θ−
1
2 (θλ)

n−1
2 ‖u1‖Yλ,θ1‖u2‖Yλ,θ2 (52)

provided that the functions ui have Fourier transform supported in αλ × (θλ)n−1 × αθ2
i λ

sectors on the cone at angle α.
If θ = θ1 then we can use Propositions 3.4, 3.6 to substitute the first factor with a

solution to the homogeneous wave equation. If necessary we do the same for the second
factor. Eventually we arrive at the case when θ = α2 > θ1, θ2, and the estimate to prove is
the counterpart of (23),

‖u1u2‖L2 ≤ α−1(α2λ)
n−1

2 ‖u1‖Yλ,θ1‖u2‖Yλ,θ2 (53)

for û1, û2 supported in α2 sectors Aiλ,α2 , A
j
λ,α2 at angle α.

This follows as before from the characteristic energy estimates for u1 (which are a con-
sequence of the embedding Fλ ⊂ Gλ) and the decomposition of u2 into truncated traveling
waves in Proposition 6.4. 4

Proof of (45). Observe that (45) is equivalent to

Fλ ·Gλ ⊂ λ(µεX
3−n

4
, 3−n

4
+ε + µ−εX

3−n
4
−2ε, 3−n

4
+ε) (54)

(the equivalence holds only when we consider it for all dyadic values of µ � λ). Then the

trace method takes care of the case when the first factor is in X
1
2
,1

λ . Thus it suffices to
consider products of the form

Sµ(Yλ,θ ·Gλ)

We truncate Gλ at distance 1
10
θ2λ from the cone,

Gλ = Q̃ 1
10
θ2λGλ + (1− Q̃ 1

10
θ2λ)Gλ

For the second term we use the embedding into X
1
2
,∞

λ and count the dyadic regions to get

(1− Q̃ 1
10
θ2λ)Gλ ⊂ | ln θ|X

1
2
,1

λ
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Then the estimate for
Yλ,θ · (1− Q̃ 1

10
θ2λ)Gλ

follows from (44). It remains to analyze the product

Yλ,θ · Q̃ 1
10
θ2λGλ (55)

i) First we estimate the Fourier transform of the product (55) in the dyadic region B̃θ2λ2 .
Now the output within distance θ2λ from the cone is generated by θ-sectors at angle at most
O(θ). By orthogonality the problem reduces to the case when both factors are frequency
localized in such regions. But then, by Proposition 3.4, the first factor is a superposition
of truncated solutions for the homogeneous wave equation, therefore, by Proposition 3.6,

the problem reduces to the case when the first factor is in
◦
Xλ, which corresponds to θ = 0.

Hence the problem is reduced to the next case.
ii) For α� θ estimate the product in (55) in the dyadic region Bα2λ2 . It suffices to show

that
Qα2λ2(Yλ,θ · Q̃ 1

10
θ2λGλ) ⊂ X

3−n
4
, 3−n

4

uniformly in α. The summation with respect to α is taken care of by the ε in (45).
For the Gλ factor it is enough to use the Zλ,α norm. The output in Bα2λ2 is generated

by α-sectors at angle α. Hence by orthogonality the problem reduces to the case when both
factors are frequency localized in such regions. It suffices to prove the inequality

‖uv‖L2 ≤ λ(α2λ2)
n−3

4 ‖u‖Yλ,θ‖v‖Zλ,α (56)

in the case when û, v̂ are supported in α-sectors Qi
λ,α, Q

j
λ,α at angle α. But

λ(α2λ2)
n−3

4 = α−1(αλ)
n−1

2

Then (56) follows as before from the characteristic energy estimates for v and the decompo-
sition of u in Proposition 6.4 as a superposition of truncated traveling waves.

7 Paley-Littlewood decompositions and multiplicative

estimates

Define the spaces F , F s as follows:

‖u‖F =
∑
λ=2j

λ
n
2 ‖Sλu‖Fλ

‖u‖2
F s =

∑
λ=2j

λ2s‖SλF‖2
Fλ
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Then (iii) requires the dyadic estimates

‖Sλu · Sµv‖Fλ . µ
n
2 ‖Sλu‖Fλ‖Sµv‖Fµ µ� λ

respectively ∑
µ≤λ

µ
n
2 ‖Sµ(Sλu · Sλv)‖Fµ . λn‖Sλu‖Fλ‖Sλv‖Fλ µ ≤ λ

which follow from (41), (44) in Theorem 5.
Similarly, (iv) requires the dyadic estimates

‖Sλu · Sµv‖2Fλ . µ
n
2 ‖Sλu‖Fλ‖Sµv‖2Fµ µ� λ

‖SλuSµv‖2Fλ . µ
n
2 ‖Sλu‖2Fλ‖Sµv‖Fµ µ� λ

respectively ∑
µ≤λ

µ
n
2 ‖Sµ(SλuSλv)‖2Fµ . λn‖Sλu‖Fλ‖Sλv‖2Fλ µ ≤ λ

By duality these estimates are equivalent to

‖Sµ(SλuSλv)‖Gµ ≤ cλµ
n
2
−1‖Sλu‖Fλ‖Sλv‖Gλ µ ≤ λ

‖SλuSµv‖Gλ ≤ cµ
n
2 ‖Sλu‖Gλ‖Sµv‖Fµ µ� λ

respectively

‖
∑
µ≤λ

Sµu · Sλv‖Gλ ≤ cλn−1‖Sλv‖Fλ sup
µ≤λ

µ−
n
2
+1‖Sµu‖Gµ

which in turn follow from (45), (42) and (43) in Theorem 5.
Finally, (iii)’, (iv)’ reduce in a similar manner to the dyadic estimates in Theorem 5. 4
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