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Abstract. The aim of this article is to provide a new approach for the classical
Fefferman-Phong inequality and some other related inequalities concerning pseudo-
differential operators. The idea is to conjugate these estimates with respect to the
FBI transform and obtain equivalent formulations which require only a few deriva-
tives of the symbol. Modulo some integration by parts, these are reduced to certain
decomposition results for C1,1, respectively C3,1 functions. As a byproduct of this
method we get to extend the inequalities to (possibly sharp) classes of symbols with
limited smoothness.

1. Introduction

We say that a pseudodifferential operator A is semipositive if it satisfies an inequal-
ity of the form

(1) < < Au, u >≥ −c‖u‖2
L2

for all functions u ∈ S(Rn). We consider pseudodifferential operators whose symbols
are either scalar or N ×N matrices. The classical formulation of the sharp Garding’s
inequality and of Fefferman-Phong’s inequality is

Theorem 1. a) (sharp Garding [6][9]) Let a(x, ξ) ∈ S1 be an N×N symbol satisfying
<a ≥ 0. Then A(x,D) is semipositive.

b) (Fefferman-Phong [3]) Let a(x, ξ) ∈ S2 be a real scalar nonnegative symbol. Then
A(x,D) is semipositive.

These results have been extended later on to various other classes of symbols (see
[8] and references therein). However, here we aim to keep things uncomplicated so we
restrict ourselves to the simplest symbol classes. The first result we prove is stated
using the Weyl calculus:

Theorem 2. a) Let a(x, ξ) be a real N ×N nonnegative symbol in T ∗Rn satisfying

(2) |∂αx∂
β
ξ a(x, ξ)| ≤ cαβµ

|α|−|β|
2 , |α|+ |β| ≥ 2

for some µ > 0. Then Aw(x+y
2
, D) is semipositive.

b) Let a(x, ξ) be a real scalar nonnegative symbol in T ∗Rn satisfying

(3) |∂αx∂
β
ξ a(x, ξ)| ≤ cαβµ

|α|−|β|
2 , |α|+ |β| ≥ 4

for some µ > 0. Then Aw(x+y
2
, D) is semipositive.
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For scalar symbols (b) is stronger than part (a). However from a historical stand-
point it is useful to state them separately, as (a) corresponds to the sharp Garding’s
inequality and (b) corresponds to the Fefferman-Phong inequality. Note that we im-
pose no restriction on the size of the support of the symbol a. Hence this is a scale
invariant result with respect to the parameter µ. This result is not new (see [1]),
however we hope that the proof we present here is simpler and sheds some new light
on this class of problems.

The classical proof [3] of the Fefferman-Phong inequality, refined in [1], is based
on successive localizations combined on an inductive argument with respect to the
dimension. All this is done at the operator level. The idea is to successively peel
off squares of operators in a sufficiently localized setting, all while retaining sufficient
orthogonality to be able to assemble together the localized results. Our idea, instead,
is to reduce the problem to a statement about decompositions of Ċ3,1 nonnegative
functions as sums of squares of Ċ1,1 functions:

Proposition 1.1. There exist K,M > 0 depending only on the dimension n so that
for any nonnegative function φ in Rn satisfying

|∇4φ| ≤ 1

there exist functions {φk}k=1...K so that

φ =
K∑
k=1

φ2
k

and

(4)
∑
k

|∇2φk|2 + |(∇3φk)(∇φk)| ≤M .

Note that the expression (∇3φk)(∇φk) above is well defined as a distribution by

(∇3φk)(∇φk) = ∇((∇2φk)(∇φk))− (∇2φk)(∇2φk).

The proof of this result mirrors to a certain extent the classical proof, but is consid-
erably simpler and quite elementary.

By a standard Littlewood-Paley decomposition Theorem 2(a),(b) implies corre-
sponding result for symbols in Sρ,ρ like classes, with 0 ≤ ρ < 1. We introduce two
pairs of conditions,

(5) |∂αx∂
β
ξ a(x, ξ)| ≤ cαβ(1 + |ξ|)ρ(|α|−|β|), |α|+ |β| ≥ 2,

(6) |∂αx∂
β
ξ a(x, ξ)| ≤ cαβ(1 + |ξ|)2(1−ρ)+(2ρ−1)|α|−|β|, |α|+ |β| < 2.

respectively

(7) |∂αx∂
β
ξ a(x, ξ)| ≤ cαβ(1 + |ξ|)ρ(|α|−|β|), |α|+ |β| ≥ 4,

(8) |∂αx∂
β
ξ a(x, ξ)| ≤ c(1 + |ξ|)4(1−ρ)+(2ρ−1)|α|−|β|, |α|+ |β| < 4.
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The important conditions here are (5) and (7). The only purpose of (6) and (8) is to
insure that the dyadic pieces of a still satisfy (5), respectively (7). Likely with some
extra work one can elliminate (6) and (8) at least partially, if not fully (see also [1]).

Corollary 1.2. a) Let a(x, ξ) be a real N ×N nonnegative symbol which satisfies (5)
and (6). Then Aw(x+y

2
, D) is semipositive.

b) Let a(x, ξ) be a real scalar nonnegative symbol which satisfies (7) and (8). Then
Aw(x+y

2
, D) is semipositive.

Part (a) easily implies a generalization of the sharp Garding’s inequality,

Corollary 1.3. Let a ∈ C2S1 be an N ×N symbol so that <a ≥ 0. Then A(x,D) is
semipositive.

Part (b) instead gives a generalization of the Fefferman-Phong inequality,

Corollary 1.4. Let a(x, ξ) ∈ C4S2 be a real scalar nonnegative symbol. Then A(x,D)
is semipositive.

One can also get intermediate results by trading regularity for added decay of the
symbol.

Corollary 1.5. Consider an N × N nonnegative symbol a(x, ξ) ∈ CsS
2s

2+s for some
0 ≤ s ≤ 2. Then A(x,D) is semipositive.

Corollary 1.6. Consider a real scalar nonnegative symbol a(x, ξ) ∈ CsS
4s

4+s for some
0 ≤ s ≤ 4. Then A(x,D) is semipositive.

The second problem we consider deals with the following question: when is a
pseudodifferential operator “controlled” by some other pseudodifferential operators ?
More precisely, consider real scalar symbols b and aj so that |b| ≤

∑
|aj|. Then we

can ask whether a similar bound holds for operators,

(9) ‖Bu‖L2 .
∑

‖Aju‖L2 + ‖u‖L2 .

It is important here that there are several Aj’s. If there is only one then the problem
as stated is considerably simpler, and one can get better results, see [4]. In the case
of smooth symbols aj, b ∈ S1 one can easily prove this using the Fefferman-Phong
inequality. Using instead Corollary 1.4 one can show that a similar result holds for
C4S1 symbols. However, in order to conjugate this result with respect to the FBI
transform one only needs two derivatives on the symbol; this would seem to indicate
that perhaps C2S1 should suffice. Indeed, we are able to prove the following scale
invariant result:

Theorem 3. Let µ > 0 and aj, b be real symbols which satisfy (2) so that |b| ≤
∑
|aj|.

Then

(10) ‖Bw(
x+ y

2
, D)u‖L2 .

∑
‖Awj (

x+ y

2
, D)u‖L2 + ‖u‖L2 .
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Here and below it is not important whether we use the Weyl calculus or not, since
the differences are negligible. Using a Littlewood-Paley decomposition we also get

Corollary 1.7. Let aj, b be real symbols satisfying (5), (6) so that |b| ≤
∑
|aj|. Then

(10) holds.

and also

Corollary 1.8. Let aj, b ∈ C2S1 be real symbols so that |b| ≤
∑
|aj|. Then

(11) ‖B(x,D)u‖L2 .
∑

‖Aj(x,D)u‖L2 + ‖u‖L2 .

At the heart of this problem lies a division question: If b, aj are smooth and

|b| ≤
∑

|aj|

does this imply that there is a smooth decomposition

b =
∑

cjaj ?

The answer to this question is unfortunately negative, which is what makes this
problem nontrivial. One can see this easily by looking at the simple example

|xy| ≤ x2 + y2 .

Instead our approach uses the FBI transform to reduce the problem to a rough de-
composition:

Proposition 1.9. Let b, aj be functions satisfying

|b| ≤
∑

|aj|, |∇2b|, |∇2aj| ≤ 1 .

Then there exist functions cj so that

b =
∑

cjaj,

and

(12) |cj| . 1, |aj∇cj| .
|aj|

|∇aj|+ |aj|
1
2

.

The expression aj∇cj is well defined as a distribution by

aj∇cj = ∇(ajcj)− cj∇aj.
One can also pose a similar question for one sided estimates. Suppose that the

symbols b, aj satisfy

b ≤
∑

|aj| .
Then we can ask whether the following estimate is true:

(13) < Bu, u >. ‖u‖2
L2 + ‖u‖L2

∑
‖Aju‖L2 .

If aj, b ∈ S1 then this follows from the classical Fefferman-Phong inequality. Here
we prove a similar result for rough symbols. The main scale invariant result is
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Theorem 4. Let µ > 0 and aj, b be real symbols satisfying (2) so that b ≤
∑
|aj|.

Then

(14) < Bw(
x+ y

2
, D)u, u >. ‖u‖2

L2 + ‖u‖L2

∑
‖Awj (

x+ y

2
, D)u‖L2 .

Using a Littlewood-Paley decomposition we also get

Corollary 1.10. Let aj, b be real symbols satisfying (5), (6) so that b ≤
∑
|aj|. Then

(14) holds.

This further gives

Corollary 1.11. Let aj, b ∈ C2S1, aj real, so that b ≤
∑
|aj|. Then

(15) < B(x,D)u, u >. ‖u‖2
L2 + ‖u‖L2

∑
‖Aj(x,D)u‖L2 .

The proof of these results uses the decomposition in Proposition 1.9 combined with
an additional argument:

Proposition 1.12. Let b, aj be functions satisfying

b ≤
∑

|aj|, |∇2b|, |∇2aj| ≤ 1 .

Then b can be represented as b = b0 + b1 where

b0 ≤ 0, |b1| .
∑

|aj|, |∇2bi| . 1 .

The structure of the paper is as follows. In the next section we introduce the FBI
transform and show how to conjugate pseudodifferential operators with respect to
it. The main result contains the error estimates for the conjugation. This essentially
repeats arguments in [10], with the difference that the results here are somewhat more
precise and are done for the Weyl calculus. In Section 3 we use the conjugation to
obtain equivalent formulations of Theorems 2, 3, 4 and we show how these follow from
Propositions 1.1, 1.9, 1.12. The dyadic estimates are assembled together in Section 4,
where we conclude the proof of all the above corollaries. Section 5 contains the proof
of all the representation results in Propositions 1.1, 1.9, 1.12. Finally, in the last
two section we give some applications to local solvability and unique continuation for
principally normal operators.

2. The FBI transform and error estimates

The FBI transform of a temperate distribution f is a holomorphic function in Cn

defined as

(16) (Tf)(z) = 2−
n
2 π−

3n
4

∫
e−

1
2
(z−y)2f(y) dy
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For additional information about the FBI transform we refer the reader to Delort’s
monograph [2]. To understand better how it works, consider the L2 normalized func-
tion

fx0,ξ0(y) = π−
n
4 e−

1
2
(y−x0)2eiλ(y−x0)

which is localized in a neighborhood of size 1 of x0 and frequency localized in a
neighborhood of size 1 of ξ0. Due to the uncertainty principle this is the best one can
do when trying to localize in both space and frequency. Then

(Tf)(z) = π−
n
2 e

1
4
(z−x0+iξ0)2− 1

2
(z−x0)2 = π

n
4 e−

1
4
|z−x0+iξ0|2e

1
2
|=z|2e−i

1
2
(<z−x0)(=z−ξ0) .

Modulo the common factor e
1
2
|=z|2 this is concentrated in a neighborhood of size 1 of

x0 − iξ0. Hence, it is natural to introduce the notation

z = x− iξ.

Like the Fourier transform, the FBI transform has good L2 properties. Set

Φ(z) = e−λξ
2

.

Then the operator Tλ is an isometry from L2(Rn) onto the closed subspace of holomor-
phic functions in L2

Φ(Cn). One inversion formula is provided by the adjoint operator:

f(y) = 2−
n
2 π−

3n
4

∫
Φ(z)e−

1
2
(z̄−y)2(Tf)(z) dxdξ .

This is of course not the only possible inversion formula since the range of T consists
only of holomorphic functions.

Our main goal is to see how to conjugate pseudodifferential operators with respect
to the FBI transform. Such a computation was already carried out in [10]. However,
for our purposes here we need somewhat stronger results. This is easier to achieve
using the Weyl calculus.

Let a(x, ξ) be a compactly supported symbol. What we want is to determine the
conjugate Ãw of Aw with respect to T ,

TAw ≈ ÃwT ,

modulo a small remainder. To get started observe that

Ty = (x+ (∂ − iξ))T, TD = (ξ +
1

i
(∂ − iξ))T ,

where ∂ stands for the complex differentiation with respect to the variable z = x− iξ.
We want to carry out all the analysis in complex variables, so it is more useful to
rewrite this in the form

T (y − iD) = zT, T (y + iD) = [z̄ + 2(∂ − iξ)]T .

Based on this, one can take a Taylor series expansion and obtain the formal asymp-
totics

TAw ≈
∑
α≤β

2|β|−|α|
∂α∂̄βa(x, ξ)

α!(β − α)!
(∂ − iξ)β−αT .
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To gain a better understanding of the size of the terms in the above series it is useful
to recall the following estimate proved in [10]:

Lemma 2.1. The following estimate holds:

(17) ‖(∂ − iξ)αTu‖L2
φ

= cα‖u‖L2 .

We want to make such asymptotics rigorous. Given k > 0 define the partial sum

Ãwk =

|α|+|β|<k∑
α≤β

2|β|−|α|
∂α∂̄βa(x, ξ)

α!(β − α)!
(∂ − iξ)β−αT

and the remainder

Rk = TAw − Ãwk T .

Then our main result is

Theorem 5. Assume that the symbol a(x, ξ) satisfies

|∂αx∂
β
ξ a(x, ξ)| ≤ cα,β, |α|+ |β| ≥ k

Then

(18) ‖Rk‖L2→L2
φ

. 1

Two special cases are of interest to us, namely k = 2 and k = 4. For k = 2 we get

(19) Ãw2 = a+ 2∂̄a(∂ − iξ) .

For k = 4, on the other hand,

(20) Ãw4 = a+ 2∂̄a(∂ − iξ) + 2∂̄2a(∂ − iξ)2 +
4

3
∂̄3a(∂ − iξ)3 + ∂∂̄a+ 2∂∂̄2a(∂ − iξ) .

Proof. The operator TAw has the form

(TAwf)(z) = cn

∫
e−

1
2
(z−ỹ)2a(

y + ỹ

2
, η)ei(ỹ−y)ηf(y)dydη .

Introduce the new complex variable

w =
y + ỹ

2
− iη .

Then

(TAwu)(z) = cn

∫
a(w)eφ(z,w,y)u(y)dwdw̄dy .

where

φ(z, w, y) = −1

2
(z + y − w − w̄)2 +

1

2
(w̄ − w)(w̄ + w − 2y)

= w̄(z − w)− 1

2
[(z + y − w)2 + w(w − 2y)] .
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We claim that Ãwk is the operator obtained from this by replacing a(w) by its k-th
Taylor polynomial at z,

(21) (Ãwk Tu)(z) =
∑

|α|+|β|<k

∂α∂̄βa(z)

α!β!

∫
(w − z)α(w̄ − z̄)βeφ(z,w,y)u(y)dwdw̄dy .

To prove this assertion we integrate by parts. Observe that

∂φ

∂w̄
= (z − w), 2(

∂φ

∂z
− iξ)− ∂φ

∂w
= (w̄ − z̄) .

Then we use the first relation to eliminate all the (w − z) factors and the second
relation to deal with the (w̄ − z̄) factors. We get∫

(w − z)α(w̄ − z̄)βeφ(z,w,y)dwdw̄ =
β!

(β − α)!

∫
(w̄ − z̄)β−αeφ(z,w,y)dwdw̄

=
β!

(β − α)!
[2(

∂

∂z
− iξ)]β−α

∫
eφ(z,w,y)dwdw̄ .

This proves (21). Note that the above computations are rigorous since the phase
function φ is non-positive definite.

It remains to prove the L2 → L2
φ remainder bound. It is easier to visualize the

analysis in the real setting, where Rk has the form

(Rku)(x, ξ) =

∫
b(x, ξ,

y + ỹ

2
, η)e−

1
2
(x−iξ−y)2ei(ỹ−y)ηdỹdη .

and b is the order k remainder in the Taylor series for the symbol a,

b(x, ξ, y, η) = a(y, η)−
∑

|α|+|β|<k

∂αx∂
β
ξ a(x, ξ)

α!β!
(y − x)α(ξ − η)β .

Note that b satisfies the bounds

(22) |∂αy ∂βη b(x, ξ, y, η)| ≤ cα,β(|x− y|+ |ξ − η|)max{k−|α|−|β|,0} .

We can eliminate part of the exponential weight if we observe that

‖Rk‖L2→L2
φ

= ‖e−ixξe−
1
2
ξ2Rk‖L2→L2 .

We write the kernel H(x, ξ, y) of

R = e−ixξe−
1
2
ξ2Rk

in the form
H(x, ξ, y) = e−iξyc(x, ξ, y − x)

where

c(x, ξ, y − x) =

∫
b(x, ξ,

y + ỹ

2
, η)e−

1
2
(x−ỹ)2ei(ỹ−y)(η−ξ)dỹdη .

After the change of variable η := η − ξ, ỹ := ỹ − x this becomes

c(x, ξ, y) =

∫
b(x, ξ, x+

y + ỹ

2
, ξ + η)e−

1
2
ỹ2ei(ỹ−y)ηdỹdη .
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We claim that c is a Schwartz function in y, uniformly in x, ξ. Given the bound (22)
on b, it suffices to show that the function

c(y) =

∫
b(y + ỹ, η)e−

1
2
ỹ2ei(ỹ−y)ηdỹdη

is a Schwartz function provided that b satisfies

|∂αy ∂βη b(y, η)| ≤ cα,β(|y|+ |η|)max{k−|α|−|β|,0} .

Indeed, the function b(y + ỹ, η)e−
1
2
ỹ2 is a Schwartz function in ỹ of size at most

(|y|+ |η|)k. Then integrating with respect to ỹ we get a Schwartz function in η of size
at most |y|k. Finally, integrating with respect to η we get a Schwartz function in y.

The L2 → L2 boundedness of R is equivalent to the L2 boundedness of RR∗, whose
kernel is

K(x, ξ, x̃, ξ̃) =

∫
c(x, ξ, x− y)c(x̃, ξ̃, x̃− y)eiy(ξ̃−ξ)dη .

Integrating with respect to y we get

|K(x, ξ, x̃, ξ̃)| ≤ cN(1 + |x− x̃|+ |ξ − ξ̃|)−N

and the L2 boundedness follows. �

3. The dyadic results

The aim of this section is to prove Theorems 2, 3, 4 using the representation results
in Propositions 1.1, 1.9, 1.12. We can rescale and assume that µ = 1. We start with
the counterpart of the sharp Garding’s inequality, namely Theorem 2(a). This is quite
easy and it illustrates well one aspect of the more involved computations later on.

Proof of Theorem 2,(a). By Theorem 5 with k = 2, the semipositivity of Aw is equiv-
alent to the semipositivity of Ãw2 on the space of holomorphic functions in L2

Φ,

< Ãw2 v, v >≥ −c‖v‖2
L2

Φ

where v = Tu. The operator Ãw2 is given by (19). The useful observation is that
(∂ − iλξ) is the adjoint operator to −∂̄ in L2

Φ. Since v is holomorphic, this implies
that

< Ãwλ,2v, v > = < (a+ 2∂̄a(∂ − iλξ))v, v >Φ

= < (a− 2∂∂̄a)v, v >Φ .

Then the conclusion follows since a is nonnegative and |∂∂̄a| . 1. �

Proof of Theorem 2,(b). By Theorem 5 with k = 4, the semipositivity of Aw is equiv-
alent to the semipositivity of Ãw4 on the space of holomorphic functions in L2

Φ,

< Ãw4 v, v >Φ≥ −c‖v‖2
L2

Φ

where v = Tu. At this point we discard all the information about the higher order
derivatives of a and only retain the bound on the fourth order derivatives. The
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operator Ãw4 is given by (20). Then, as before, we integrate by parts all the terms in
Ãwλ,4 which contain (∂ − iλξ),

< 2∂̄a(∂ − iξ)v, v >Φ= −2 < (∂∂̄a)v, v >Φ .

This term in not necessarily bounded in L2
φ since we have no information about the

second derivatives of a.

< 2∂̄2a(∂ − iξ)2v, v >Φ= 2 < (∂2∂̄2a)v, v >Φ .

This is bounded since the fourth derivatives of a are bounded.

<
4

3
∂̄3a(∂ − iξ)3v, v >Φ= −4

3
< (∂∂̄3a)(∂ − iξ)2v, v > .

This is also bounded by Lemma 2.1.

< 2∂∂̄2a(∂ − iξ)v, v >Φ= −2 < (∂2∂̄2a)v, v >Φ

which is also bounded. Summing up all these estimates we obtain the following simple
formula:

(23) < Ãw4 v, v >Φ=< (a− ∂∂̄a)v, v >Φ +O(‖v‖2
L2

Φ
) .

By Proposition 1.1 we can assume without any restriction in generality that a = φ2

where φ satisfies the bounds in (4). Then

a− ∂∂̄a = φ2 − 2(∂φ)(∂̄φ)− 2φ(∂∂̄φ) .

On the other hand we use the same integration by parts procedure to evaluate the
nonnegative quadratic form

Q(v, v) = ‖(φ+ 2∂̄φ(∂ − iξ) + ∂∂̄φ)v‖2
L2

Ψ

= < (φ+ ∂∂̄φ)2v, v >Φ +4< < (∂φ)(φ+ ∂∂̄φ)v, (∂ − iξ))v >Φ

+ 4 < ∂̄φ(∂ − iξ))v, ∂̄φ(∂ − iξ))v >Φ

= < (φ+ ∂∂̄φ)2v, v >Φ −4< < [∂̄((∂φ)(φ+ ∂∂̄φ))]v, v >Φ

+ 4 <
1

2
(∂φ)(∂̄φ) + ∂∂̄(∂φ)(∂̄φ)v, v >Φ

= < [φ2 − 2(∂φ)(∂̄φ)− 2φ(∂∂̄φ)]v, v >Φ

+ < [(∂∂̄φ)2 − 4<∂̄(∂φ)(∂∂̄φ) + 4∂∂̄(∂φ)(∂̄φ)]v, v >2
Φ .

By (4) the second term is bounded, therefore

< Ãw4 v, v >Φ= Q(v, v) +O(‖v‖2
L2

Φ
) .

Hence the semipositivity of Ãwλ,4 follows. �

Proof of Theorem 3. Set v = Tu. Then according to the conjugation result in Theo-
rem 5,

‖Awj u‖L2 = ‖Ãwj,2v‖L2
Φ

+O(‖v‖L2
Φ
) .
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and similarly for B. Hence we need to show that

‖B̃w
2 v‖L2

Φ
.
∑

‖Ãwj,2v‖L2
Φ

+ ‖v‖L2 .

We use the decomposition in Proposition 3 to evaluate

‖B̃w
2 v‖L2

Φ
= ‖(b+ 2(∂̄b)(∂ − iξ))v‖L2

Φ

= ‖(
∑

cjaj + 2(∂̄cjaj)(∂ − iξ))v‖L2
Φ

.
∑

‖Ãwj,2v‖L2
Φ

+ ‖aj(∂̄cj)(∂ − iξ))v‖L2
Φ

.
∑

‖Ãwj,2v‖L2
Φ

+ ‖ aj

(|∇aj|2 + |aj|)
1
2

(∂ − iξ))v‖L2
Φ
.

Then it remains to bound the second right hand side term. The function

dj =
aj

(|∇aj|2 + |aj|)
1
2

is Lipschitz, therefore, integrating by parts,

‖dj(∂ − iξ)v‖L2
Φ

. ‖(∂ − iξ)djv‖L2
Φ

+ ‖v‖L2
Φ

. ‖djv‖L2
Φ

+ ‖∂̄djv‖L2
Φ

+ ‖v‖L2
Φ

. ‖djv‖L2
Φ

+ ‖v‖L2
Φ
.

It remains to show that

(24) ‖djv‖L2
Φ

. ‖(aj + 2(∂̄aj)(∂ − iξ))v‖L2
Φ

+ ‖v‖L2 .

This is a consequence of the following computation:

< (aj + 2(∂̄aj)(∂− iξ))v,
aj

|∇aj|2 + |aj|
v >Φ= ‖djv‖2

L2
Φ
− 2 < [∂̄(

aj∂aj
|∇aj|2 + |aj|

)]v, v >Φ

The second right hand side term is bounded because the function
aj∂aj

|∇aj |2+|aj | is Lips-

chitz. This follows easily since the second derivatives of aj are bounded. �

Proof of Theorem 4. Rescale to µ = 1. Using the conjugation result in Theorem 5,
the estimate (13) is equivalent to

< B̃w
2 v, v >Φ.

∑
‖Ãwj,2v‖L2

Φ
+ ‖v‖L2 .

From this point on we only use the information about the second order derivatives of
the symbols b, aj. We use Proposition 1.12 to decompose b = b0 + b1. Then we treat
b0 as in the proof of Theorem 2(a) (the sharp Garding inequality) and b1 as in the
proof of Theorem 3. �
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4. Littlewood-Paley decompositions and symbol smoothing

In this section we obtain Corollaries 1.2-1.6 from Theorem 2 and Corollary 1.7 from
Theorem 3. These are all routine arguments therefore we leave the reader to fill in
the details where necessary. For the Weyl calculus we refer the reader to [8], and for
the symbol smoothing, to [11].

Proof of Corollary 1.2. We start with a smooth function s(ξ) supported in 1
2
≤ |ξ| ≤ 2

so that

1 = s0(ξ)
∑

λ≥1, dyadic

sλ(ξ), sλ(ξ) = s(
ξ

λ
) .

Correspondingly we decompose

a(x, ξ) =
∑

aλ(x, ξ), aλ(x, ξ) = sλ(ξ)a(x, ξ) .

If the symbol a satisfies (5) and (6) then aλ satisfies (2) with µ = λρ so we can apply
Theorem 2(a). There is, however, the question of summation with respect to λ. To
deal with that we introduce the additional operators

Tλ =
∑
|j|≤4

S2jλ .

Then
Awλ = TλA

w
λTλ +Rλ ,

where the remainders Rλ are rapidly decaying in λ because the symbol of Tλ equals
1 in a neighborhood of the support of aλ. Then by Theorem 2(a) we get

< Awu, u > =
∑

λ≥1, dyadic

< AwλTλu, Tλu > +O(‖u‖L2)

≥ −c
∑

‖Tλu‖2 +O(‖u‖L2)

= O(‖u‖2
L2) .

Similarly, if the symbol a satisfies (7) and (8) then aλ satisfies (3) so we can apply
Theorem 2(b) instead. �

Proof of Corollaries 1.3-1.6. The next result allows us to replace the Weyl operators
Aw(x+y

2
, D) with A(x,D) or A(D, y) in Corollary 1.2.

Lemma 4.1. a) Let 0 ≤ ρ < 1 and a be a symbol satisfying (5). Then

aw(
x+ y

2
, D)− a(x,D) ∈ OPS0

ρ,ρ,

therefore it is L2 bounded.
b) Let a be a symbol satisfying (7). Then

Aw(
x+ y

2
, D)− a(x,D) + A(D, y)

2
∈ OPS0

ρ,ρ

therefore it is L2 bounded.
12



The proof is straightforward. Taking this into account, Corollaries 1.3-1.6 follow
from the following symbol smoothing argument:

Lemma 4.2. Let s > 0, k a nonnegative integer and a(x, ξ) ∈ CsS
ks

k+s . Then there
is a decomposition

a(x, ξ) = a0(x, ξ) + r(x, ξ) ,

where a0 satisfies

|∂αx∂
β
ξ a0(x, ξ)| ≤ cα,β(1 + |ξ|)

k
k+s

(|α|−|β|), |α|+ |β| ≥ k

|∂αx∂
β
ξ a0(x, ξ)| ≤ cα,β(1 + |ξ|)

ks
k+s

+ k−s
k+s

|α|−|β|, |α|+ |β| < k

and r(x, ξ) ∈ CsS0
1, k

k+s

.

This is done as in [11]. Roughly speaking, a0 is obtained by regularizing a in x on

the λ−
k

k+s scale for |ξ| = O(λ).
The remainder R is L2 bounded, so the Lemma allows us to use Corollary 1.2(a) if

k = 2, respectively Corollary 1.2(b) if k = 4. In both cases ρ = k
k+s

. �

Proof of Corollary 1.7. With the same notations as in the proof of Corollary 1.2 we
define the frequency localized symbols aj,λ, bλ. These will satisfy the conditions in
Theorem 3, therefore applying it to Tλu we get

‖Bw
λ Tλu‖L2 .

∑
‖Awj,λTλu‖L2 + ‖Tλu‖L2 .

We square this and sum up. To get (10) we need to verify that

(25) ‖Bwu‖2
L2 ≈

∑
λ dyadic

‖Bw
λ Tλu‖2

L2 +O(‖u‖2
L2) ,

and similarly for Awj . Indeed, we have

‖Bwu‖2
L2 ≈

∑
‖SλBwu‖2

L2 .

Since the symbol of Tλ is 1 in a λ neighborhood of the support of sλ, it follows that
the difference SλB

wTλ − SλB
w is rapidly decreasing in λ. Hence we get

‖Bwu‖2
L2 ≈

∑
‖SλBwTλu‖2

L2 +O(‖u‖2
L2) .

Then (25) follows since the operators SλB
w −Bw

λ are uniformly bounded in L2. �

Proof of Corollary 1.8. First we use the symbol regularization in Lemma 4.2 with
k = s = 2 to reduce the problem to the case when the symbols b, aj satisfy the
conditions (5) and (6). Since the difference between the original and the regularized
symbols is bounded, we still have

|b| . 1 +
∑

|aj| .

Then observe that Lemma 4.1 allows us to interchange the operators B(x,D) and Bw

and reduce the estimate to the one in Corollary 1.7. �
13



Proof of Corollary 1.10. As above, one uses a Littlewood-Paley decomposition to re-
duce the problem to the dyadic estimates in Theorem 4. The operator B is dealt
with as in the proof of Corollary 1.2(a), while for the operators Aj one argues as in
the proof of Corollary 1.7. �

Proof of Corollary 1.11. This follows from Corollary 1.10) after using the symbol reg-
ularization in Lemma 4.2 combined with Lemma 4.1. �

5. Representations of functions

Proof of Proposition 1.1. The proof consists entirely of classical arguments. However,
the simplicity of the result makes it worthwhile to present a complete argument. We
use induction with respect to the space dimension n. We begin the induction at
n = 0, where any nonnegative number is the square of another real number.

Observe that the result is invariant with respect to the scaling

φ(x) → λ−4φ(λx), φk(x) → λ−2φk(λx) .

This is used repeatedly in order to simplify the arguments below.
We define

|∇jφ(x)| = sup
|uk|≤1

|(Djφ(x))(u1, · · · , uj)| .

For the gradient this gives the euclidean norm, for the Hessian, the largest eigen-
value. Such precise definitions are only necessary in order to perform the explicit
computations in the sequel. It is easy to verify that the following relations hold:

(26) |∇2φ| = sup
|u|≤1

|(D2φ)(u, u)| |∇3φ| ≤ 2 sup
|u|≤1

|(D3φ)(u, u, u)| .

We start with a bound for the odd derivatives of φ in terms of the even ones.

Lemma 5.1. Let φ be a nonnegative function in Rn satisfying

|∇4φ| ≤ 1

Then

(27) |∇φ(x)| ≤ 2φ(x)
3
4 + 3φ(x)

1
2 |∇2φ(x)|

1
2 ,

(28) |∇3φ(x)| ≤ 8φ(x)
1
4 + 8|∇2φ(x)|

1
2 .

Proof. Without any restriction in generality we assume that x = 0. By (26) we can
also assume that n = 1 at the expense of replacing 8 by 4 in (28). Write the Taylor
series at 0 for φ,

φ(y) ≤ φ(0) + yφ′(0) +
1

2
y2φ′′(0) +

1

6
y3φ′′′(0) +

1

24
y4 .

If we use the nonnegativity condition for φ at ±y then we obtain

|yφ′(0) +
1

6
y3φ′′′(0)| ≤ φ(0) +

1

2
y2|φ′′(0)|+ 1

24
y4 .

14



Substituting y by 2y yields

|2yφ′(0) +
4

3
y3φ′′′(0)| ≤ φ(0) + 2y2|φ′′(0)|+ 2

3
y4 .

If we combine these two bounds we get

|yφ′(0)| ≤ 3

2
φ(0) + y2|φ′′(0)|+ 1

6
y4 .

|y3φ′′′(0)| ≤ 3φ(0) + 3y2|φ′′(0)|+ y4 .

Then (27) follows if we set

y =
φ(0)

1
2

φ(0)
1
4 + φ′′(0)

1
2

.

in the first relation, while (28) follows from the second relation with

y = max {φ(0)
1
4 , φ′′(0)

1
2}. .

�

The next step is to define the function

r(x) = max {|∇2φ(x)|
1
2 , |φ(x)|

1
4} ,

which shall be used to measure the size of φ near x. An essential property of r is that
it is “slowly varying”, i.e.

Lemma 5.2. Let φ be a nonnegative function in Rn satisfying |∇4φ| ≤ 1 and r
defined as above. Then

|r(x)− r(y)| ≤ 1

2
r(x) for |x− y| ≤ 1

50
r(x) .

Proof. By translation and rescaling we can assume that x = 0 and r(x) = 1. Then

φ(0) ≤ 1, |∇φ(0)| ≤ 5, |∇2φ(0)| ≤ 1, |∇3φ(0)| ≤ 16 ,

therefore, for |y − x| ≤ 1
50

, Taylor’s formula gives

|φ(y)− φ(0)| ≤ 5

50
+

1

2 · 502
+

4

3 · 503
+

1

504
≤ 1

2
while

|∇2φ(y)−∇2φ(0)| ≤ 16

50
+

1

2 · 502
≤ 1

2
.

Given the definition of r, the last two relations imply the desired conclusion. �

As an immediate consequence of the previous Lemma we get

Corollary 5.3. Let φ be a nonnegative function in Rn satisfying |∇4φ| ≤ 1 and r
defined as above. Then

B(x,
1

50
r(x)) ∩B(y,

1

50
r(y)) 6= ∅ =⇒ 1

3
r(x) ≤ r(y) ≤ 3r(x) .

15



Proof. Let z ∈ B(x, 1
50
r(x)) ∩B(y, 1

50
r(y)). Then by Lemma 5.2 we have

1

2
r(x) ≤ r(z) ≤ 3

2
r(x),

1

2
r(y) ≤ r(z) ≤ 3

2
r(y) ,

therefore the conclusion follows. �

The next step in the proof is a Whitney type covering lemma. The goal is to obtain
a partition of unit which allows us to isolate the “building blocks” of the function φ.

Lemma 5.4. Let 0 < ε ≤ 1
50

be a small parameter. There exists a sequence {xk} in
Rn and a partition of unit

1 =
∑

χ2
k(x) in {r(x) > 0}

with the following properties:
i) The support of χk is contained in B(xk, εr(xk)).
ii) There is some N depending only on n so that each ball B(xk, εr(xk)) intersects

at most N others.
iii) |∇αχk| ≤ cα(εr(xk))

−α, where cα depends only on α and n.

Proof. Start with a maximal collection xk so that the balls B(xk,
ε
8
r(xk)) are disjoint.

Our first claim is that

(29)
⋃
k

B(xk,
ε

2
r(xk)) = {x ∈ Rn; r(x) 6= 0} .

The “⊂” part follows from Lemma 5.2. To obtain the “⊃” inclusion let x be so that
r(x) > 0. Then there exists some k so that

B(x,
ε

8
r(x)) ∩B(xk,

ε

8
r(xk)) 6= ∅ .

By Corollary 5.3 this implies that

r(x) ≤ 3r(xk) ,

which further gives x ∈ B(xk,
ε
2
r(xk)) and concludes the proof of (29).

Corollary 5.3 also shows that if two balls B(xk, εr(xk)) intersect then they must
have comparable radiuses. But on the other hand the balls B(xk,

ε
6
r(xk)) are disjoint,

therefore a ball B(xk, εr(xk)) can only intersect finitely many others.
Thus we have obtained a family of balls satisfying (i) and (ii). It remains to

construct the corresponding partition of unit. This can be done in a standard fashion.
We start with a smooth function χ supported in B(0, 1) and which is 1 in B(0, 1

2
)

and define

χk = χ
(x− xk
εr(xk)

)(∑
j

χ2
(x− xj
εr(xj)

))− 1
2

.

It is easy to see that this satisfies (iii). �
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We now continue the proof of Proposition 1.1. Due to the finite intersection prop-
erty for their supports, it suffices to express each of the the functions χ2

kφ as sums of
squares which satisfy uniformly the bounds (4). Here it is important that the number
of such squares depends only on the dimension; then one can group them together
into finitely many sums of squares with disjoint supports.

After translation and rescaling we can assume without any restriction in generality
that xk = 0 and r(0) = 1. Then by Lemmas 5.1,5.2 it follows that φ and all its
derivatives up to order 4 are bounded in the ball B(0, 1/50),

(30) |φ| ≤ 3

2
, |∇φ| ≤ 8, |∇2φ| ≤ 3

2
, |∇3φ| ≤ 24, |∇4φ| ≤ 1.

In what follows we choose ε to be sufficiently small but fixed; ε = 10−8 is sufficiently
small. By c(ε) we denote various constants which depend only on ε. Once ε is fixed
these are absolute constants. We consider two cases:

I. φ(0) ≥ 10ε. Then for x ∈ B(0, ε) and ε ≤ 1
50

we have

φ(x) ≥ 10ε− 5ε− 1

2
ε2 − 8

1

6
ε3 − 1

24
ε4 ≥ 4ε .

Hence we simply define the function φk as

φk = χkφ
1
2 .

It is of class C3,1 Since φ stays away from 0 in the support of χk it follows that φk is
of class C3,1,

|∇αφk| ≤ c(ε), |α| ≤ 4 .

II. φ(xk) ≤ 10ε. Then |∇2φ(0)| = 1. After a rotation we can assume that ∂2
x1

(0) =
1. Then we can use (30) to get

(31) ∂2
x1
φ(x) >

1

2
x ∈ B(0,

1

50
) .

On the other hand, (30) also shows that

φ(x) < 26ε x ∈ B(0, 2ε) .

Then by Lemma 5.1 we obtain

(32) |∂x1φ(x)| ≤ 50
√
ε, x ∈ B(0, 2ε) .

Split the coordinates x = (x1, x
′) and consider the function φ(x1, x

′) as a function of
x1 in the range

D = {|x′| ≤ 2ε, |x1| ≤
1

100
} .

By (31), (32) it follows that φ(x1, x
′) has a unique minimum point X(x′) in D as a

function of x1, satisfying
|X(x′)| ≤ 100

√
ε .

The function X(x′) is given by the equation

(∂x1φ)(X(x′), x′) = 0 .
17



By (30) ∂x1φ is of class C2,1 in D. By its level sets are nondegenerate. It follows that
X(x′) is of class C2,1 as well,

|∇jX(x′)| ≤ c(ε), j = 0, 1, 2, 3 |x′| ≤ 2ε .

Define the function

φ1(x
′) = φ(X(x′), x′) .

Then we can decompose the function φ within D as

φ(x) = φ1(x
′) + φ2

2(x) ,

where

φ2 = sgn(x1 −X(x′))(φ(x)− φ1(x
′))

1
2 .

Correspondingly,

χ2
kφ(x) = χ2

kχ(
|x′|
2ε

)φ1(x
′) + (χk(x)φ2(x))

2 .

Hence we can apply the induction hypothesis to χ( |x
′|

2ε
)φ1(x

′) and obtain the decom-
position of χ2

kφ(x) into a sum of squares provided we can prove the following

Lemma 5.5. With the above notations we have φ1 ∈ C3,1(B(0, 2ε)) and φ2 ∈ C2,1(D).
More precisely, we obtain bounds which depend only on ε, namely

|∇jφ1(x
′)| ≤ c(ε), j = 0, 1, 2, 3, 4 |x′| ≤ 2ε ,

|∇jφ2(x)| ≤ c(ε), j = 0, 1, 2, 3 x ∈ D .

Proof. To keep the proof simple we give only the qualitative arguments. These can
be easily turned into explicit quantitative arguments. Compute first the derivatives
of φ1:

∂iφ1(x
′) = ∂iφ(X(x′), x′) + ∂1φ(X(x′), x′)∂iX(x′)

= (∂iφ)(X(x′), x′) .

Since both X and ∂iφ are of class C2,1 it follows that ∂iφ1 are of class C2,1, i.e. φ1 is
of class C3,1.

To show that φ2 ∈ C2,1 we can assume without any restriction in generality that
φ1 = 0. We can also make a C2,1 change of variable

(x1, x
′) → (x1 −X(x′), x′) ,

which reduces the problem to the case when X ≡ 0 at the expense of lowering the
regularity of φ to φ ∈ C2,1 and ∂x1φ ∈ C2,1. Then φ(0, x′) = ∇φ(0, x′) = 0 therefore
by (31) we can represent it in the form

φ(x) = x2
1ψ(x), ψ ≥ 1

4
.

Thus φ2 = x1

√
ψ therefore it suffices to establish that

ψ ∈ C1,1, x1ψ ∈ C2,1 .
18



More generally, we claim that

∂x1φ ∈ Ck−1, φ(0, x′) = 0 =⇒ φ(x)

x1

∈ Ck−1 .

The x′ derivatives can be factored out, so it remains to look at the one dimensional
problem. But this is easily solved using Taylor’s formula of order k around x1 = 0. �

This concludes the proof of Proposition 1.1. �

Proof of Proposition 1.9. We use again induction with respect to the dimension. We
begin the induction in dimension 0, when the result is trivial. It remains to do the
induction step. We start with a bound for the gradient of b.

Lemma 5.6. Let b, aj be functions satisfying

|b| ≤ max
j
|aj|, |∇2b|, |∇2aj| ≤ 1 .

Then

(33) |∇b| ≤ 13

4
max
j
|∇aj|+ |aj|

1
2 .

Proof. Without any restriction in generality we can assume that the dimension is 1.
Let x ∈ R. Suppose that

|aj(x)| ≤ δ2, |aj ′(x)| ≤ δ .

Due to the bound on the second derivatives, this implies that

|aj(y)| ≤
5

2
δ2 for |y − x| ≤ δ .

Hence we get the same bound for b. By the mean value theorem, |b′(y)| < 5
4
δ for

some |y − x| ≤ δ. Using the bound on the second derivative of b we therefore obtain
|b′(x)| ≤ 13

4
δ. �

For each x we define

rj(x) = |∇aj(x)|+ |aj|
1
2 , r(x) = max

j
rj(x) .

Then it is a simple exercise to show that rj, r are slowly varying. Hence we can apply
Lemma 5.4 to get a locally finite covering

supp a =
⋃

B(xk, εr(xk)) ,

with a corresponding partition of unit,

1 =
∑

χk in {r > 0} .

with χk supported in B(xk, εr(xk)). Here ε is a small fixed parameter. We can replace
the function r by

r̃(x) =
∑

r(xk)χk .
19



In doing this we preserve its size while gaining differentiability

r̃(x) ≈ r(x), |∂αr̃(x)| . r1−|α| .

We decompose the functions aj, b into

aj =
∑

χkaj, b =
∑

χkb .

Then the localized components χkaj, χkb still have bounded second order derivatives
and satisfy the inequality

|χkb| ≤
∑
j

|χkaj| .

Hence, due to the finite intersection property, it suffices to prove the result in a ball
B = B(xk, εr(xk)). By rescaling and translation we can assume that xk = 0, r(0) = 1.
Then both aj and b are of class C1,1 in B with uniform bounds.

According to the definition of r(x) we need to consider two cases:
i) We have |aj(0)| ≥ 1

2
for some j. Hence there exists some j so that |aj| & 1

4
in

B. Then within B we represent b as b = cjaj. The function cj is of class C1,1 in B,
which concludes the proof.

ii) We have |∇aj(0)| > 1
2

for some j. Then without any restriction in generality

we can assume that |∂1a1(0)| > 1
2
; If ε is sufficiently small this in turn implies that

|∂1a1(0)| > 1
4

in 4B. Since a1 is C1,1 we can make a C1,1 change of coordinates in 4B
so that in the new coordinates we have a1 = x1.

Now we use the induction hypothesis on x1 = 0 to get

b(0, x′) =
∑
j>1

cj(x
′)aj(0, x

′) .

with cj(x
′) satisfying (12). We want to extend the quotients cj to B so that they still

satisfy (12). To achieve this consider the slowly varying function rj associated to aj
and a corresponding partition of unit χjk associated to a locally finite covering with

balls B(xjk, εr
j(xjk)). Then we define the function

χj =
∑

B(xj
k,εr

j(xj
k))∩{x1=0}6=∅

χjk

which satisfies the bounds

|∂αχj(x)| ≤ cα(r
j(x))−|α| .

In addition, observe that within the support of χj we must have rj(x) ≈ rj(0, x′).
Hence, if we set

cj(x) = cj(x
′)χj(x)

then the function cj not only satisfies (12), but also has some better differentiability
properties as a function of x1. More precisely, one can verify that

(34) |∇(cjaj)|, |∂1∇(cjaj)| . 1 .
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Observe, however, that we cannot bound second derivatives of the product with
respect to x′. This allows us to define

c1(x) =
b(x)−

∑
j>1 cjaj

x1

.

The numerator vanishes when x1 = 0 and satisfies bounds similar to (34), therefore
after the division we get c1 Lipschitz. This concludes the proof. �

Proof of Proposition 1.12. This is an inductive argument with respect to the dimen-
sion which follows the same procedure as in the proof of Proposition 1.9. The re-
placement of Lemma 5.6 is now

Lemma 5.7. Let b, aj be functions satisfying

b ≤ max
j
|aj|, |∇2b|, |∇2aj| ≤ 1 .

Then

(35) |∇b| ≤ 9(|b|
1
2 + max

j
|∇aj|+ |aj|

1
2 ) .

The proof is almost identical. For each x we define

r(x) = |b(x)|
1
2 + max

j
|∇aj(x)|+ |aj|

1
2 .

Then r is slowly varying. Arguing as before, we can use the same reduction argument
involving the partition of unit in Lemma 5.4. Thus after rescaling and translation
it suffices to obtain the desired decomposition for b in a ball B = B(0, ε), under the
assumption that r(0) = 1. This time we need to consider three cases:

i) |a(0)|, |∇a(0)| � 1. Then b(0) ≈ −1. Hence b is negative in B, therefore our
decomposition in B is b0 = b, b1 = 0.

The remaining two cases correspond to the two cases in the proof of Proposition 1.9.
ii) |a(0)| = O(1). Then |b| ≤ |a| in B, so the desired decomposition is b0 = 0,

b1 = b.
iii) |a(0)| � |∇a(0)| = O(1). Arguing as in the proof of Proposition 1.9, the

problem reduces to the case when

a1 = x1, |aj|, |∇aj|, b, |∇b| . 1 .

Using the induction hypothesis we decompose b on x1 = 0,

b(0, x′) = b0(0, x
′) + b1(0, x

′) .

Then we extend this decomposition by setting

b0(x1, x
′) = b0(0, x

′) ,

which is still negative. It remains to verify that

|b1(x1, x
′)| ≤

∑
|aj(x1, x

′)| in B .
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Indeed,

|b1(x1, x
′)| ≤ |b0(0, x′)|+ |b(x1, x

′)− b(0, x′)| ≤
∑

|aj(0, x′)|+ c|x1|

≤
∑

|aj(x, x′)|+ c|x1| .

�

6. An application to local solvability

The aim of this section is to consider a classical result on local solvability for
partial differential operators with smooth coefficients, and extend it to the case when
the coefficients have limited smoothness. Consider a partial differential operator
P (x,D) of order m in Ω ⊂ Rn. Then we say that P is locally solvable with loss of
k derivatives if for any x0 ∈ Ω there is a neighborhood V of x0 so that for all f in
a finite codimensional subspace of L2, supported in V there is a function u ∈ Hm−k

loc

solving P (x,D)u = f in V . Normally the local solvability is stated with smooth f
and u, but this does not make sense for nonsmooth coefficients.

The local solvability result we consider refers to principally normal operators of
principal type. In the following definitions p(x, ξ) stands for the principal symbol of
P (x,D).

Definition 6.1. The operator P (x,D) is of principal type if

∇ξp(x, ξ) 6= 0 on {p(x, ξ) = 0} .

Definition 6.2. We say that the operator P is principally normal if

|{p̄, p}| ≤ c|ξ|m−1|p| .

Here {·, ·} represents the Poisson bracket of two symbols.
Hörmander [5][7] proved that if P is a principally normal operators of principal

type with smooth coefficients then it is locally solvable with loss of one derivative.
We obtain here a similar result for operators with C2,1 coefficients.

Theorem 6. Suppose P (x,D) is a principally normal operator of principal type with
C2,1 coefficients. Then it is locally solvable with loss of one derivative.

Remark 6.3. What is needed in the proof, in effect, is that both p and {p̄, p} have
C1,1 coefficients.

Proof. We take x0 = 0 and V = B(0, ε) with ε small. Rescaling by a factor of ε−1,
we need to prove local solvability for the rescaled operator Pε(x,D) = εmP (εx, ε−1D)
in the unit ball. By standard functional analysis arguments the local solvability with
loss of one derivative for P follows from a bound for the adjoint operator:

(36) ‖v‖L2 . ‖P ∗
ε v‖H1−m + ‖v‖H−1 .

for all v supported in B. We claim that this estimate holds uniformly in ε for small
ε. The conjugated operator P ∗

ε is given by

P ∗
ε = εmP̄ (ε−1D, εx) .
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The lower order terms in P come with factors of ε so they are negligible in (36).
Hence without any restriction in generality we can assume that P is homogeneous of
order m, in which case

P ∗
ε = P̄ (D, εx) .

Replacing P ∗
ε by Q(D, εx) with

q(x, ξ) = |ξ|1−mp̄(x, ξ) .
the estimate (36) becomes

(37) ‖v‖L2 . ‖Q(D, εx)v‖L2 + ‖v‖H−1

while q is also principally normal,

(38) |{q, q̄}| . |q| .
We write q = a+ ib. Then (37) follows from the next two estimates. The first one is
a Fefferman-Phong type estimate which is a consequence of the principal normality
condition.

(39) ‖A(D, εx)v‖L2 + ‖B(D, εx)v‖L2 . ‖Q(D, εx)v‖L2 + ε‖v‖L2 .

The second one is an energy estimate which follows from the principal type condition.

(40) ‖v‖L2 . ‖A(D, εx)v‖L2 + ‖B(D, εx)v‖L2 + ‖v‖H−1 .

The proof of (40) relies on a standard argument which requires only one derivative
on the coefficients, see [11]. The idea is as follows. Given some ξ0 ∈ Rn we can find
some direction, say ξ1, so that either ∂ξ1a(0, ξ0) 6= 0 or ∂ξ1b(0, ξ0) 6= 0. If ε is small
then the same happens for x in B(0, ε). Hence either A or B is microhyperbolic at ξ0
in the direction x1 and the estimate (40) follows microlocally near ξ0. The microlocal
estimates can be put together using a conical partition of unit in frequency.

It remains to prove (39). This is our main point here. The estimate (39) can be
rescaled back to

‖A(D, x)v‖L2 + ‖B(D, x)v‖L2 . ‖Q(D, x)v‖L2 + ‖v‖L2 .

The support information for v is not useful here. To prove this compute

‖Q(D, x)v‖L2 = ‖A(D, x)v‖L2 + ‖B(D, x)v‖L2 + 2< < A(D, x)v, iB(D, x)v >

= ‖A(D, x)v‖L2 + ‖B(D, x)v‖L2+ < Cv, v > ,

where
C = i(A(x,D)B(D, x)−B(x,D)A(D, x)) .

Then the pdo calculus for operators with rough symbols (see [11]) shows that, modulo
an L2 bounded error term, we have C = C(D, x) where

c(x, ξ) = axξb− bxξa+ {a, b} .
This computation requires only C1,1S1 regularity for the symbols a and b. However,
the additional derivative on the coefficients implies that also c ∈ C1,1S1. To conclude
it suffices to verify that

(41) ‖C(D, x)v‖L2 . ‖A(D, x)v‖L2 + ‖B(D, x)v‖L2 + ‖v‖L2 .
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The principal normality condition on q = a+ ib gives

|c| . |a|+ |b| .
Also the operator C(D, x)−C(x,D) is L2 bounded, and similarly for A and B. Then
(41) follows from Corollary 1.11. �

7. An application to unique continuation

Consider a partial differential operator P (x,D) of order m and an oriented surface
S = {φ = 0} in Rn. We say that the unique continuation property across S holds
for solutions u to P (x,D)u = 0 if for each x0 ∈ S and u a solution to P (x,D)u = 0
near x0, u = 0 in {φ > 0} near x0 implies that u = 0 near x0. In other words,
if u vanishes on one side of S then it must also vanish on the other side. One can
also view the unique continuation property as an uniqueness result for the Cauchy
problem corresponding to the equation P (x,D)u = 0 with Cauchy data on S. This
is formally equivalent to an existence result for the Cauchy problem corresponding to
the adjoint operator P ∗. Note that the orientation of the surface is important, if one
has unique continuation in one direction this says nothing about unique continuation
in the opposite direction.

The interesting question in unique continuation is, given an operator P , to de-
termine the surfaces S across which unique continuation holds for solutions u to
P (x,D)u = 0. This problem is reasonably well understood, so we proceed to state
one of the main results. Some definitions are necessary. We denote by p(x, ξ) the prin-
cipal symbol of P (x,D). If φ is the defining function for the surface S we introduce
the symbol

pφ = p(x, ξ + iτ∇φ)

Definition 7.1. We say that the oriented surface S is strongly pseudoconvex with
respect to the operator P if

(i) {p̄, {p, φ}} > 0 on p = {p, φ} = 0
(ii) {p̄φ, pφ} > 0 on pφ = {pφ, φ} = 0, τ > 0.

Then (see [7] and references therein):

Theorem 7. (Hörmander) Let P be a principally normal operator with smooth co-
efficients. If S is strongly pseudoconvex with respect to P then unique continuation
across S holds for solutions u to P (x,D)u = 0.

The question we want to address is to what extent the regularity of the coefficients
can be relaxed in this result. Two cases when the principal normality condition for P
is trivially satisfied are (i) when P is elliptic and (ii) when the principal symbol of P
is real. In both cases, the unique continuation result is known to hold for operators
with merely C1 coefficients. Here we consider the general case. Our result is

Theorem 8. Let P be a principally normal operator with C2,1 coefficients. If S is
strongly pseudoconvex with respect to P then unique continuation across S holds for
solutions u to P (x,D)u = 0.
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Remark 7.2. Again, what is needed in the proof is that both p and {p̄φ, pφ} have C1,1

coefficients.

The unique continuation result is a consequence of certain Carleman estimates.
These are a one parameter family of weighted estimates, of the form

(42) τ‖eτψu‖Hm−1
τ

≤ Cτ‖eτψP (x,D)u‖L2 τ > τ0 > 0 .

where the norms of the weighted spaces Hm
τ are defined as

‖u‖2
Hm

τ
= ‖u‖2

Hm + τ 2m‖u‖2
L2

which corresponds to the usual norms if we interpret τ as a derivative. The essential
feature of these estimates is that the constant C > 0 does not depend on τ .

The function ψ is chosen to have level sets close to the level sets of φ, but more con-
vexity across level sets. In practice, a good choice is to take ψ a small C2 perturbation
of eµφ, with µ large enough. Then (see [7]) ψ will satisfy the strong pseudoconvexity
condition for functions:

Definition 7.3. We say that the function ψ is strongly pseudoconvex with respect to
the operator P if

(43)
1

i
{pψ, pψ} ≥ C−1τ(τ + |ξ|)2(m−1) − C(τ + |ξ|)m−1|pψ| .

The fact that Carleman estimates imply unique continuation is well explained in
the literature. Instead, let us focus on the proof of the estimate (42). With the
substitution v = eτψu (42) becomes

(44) τ‖v‖Hm−1
τ

≤ Cτ‖Pψv‖L2 τ > τ0 > 0 ,

where the conjugated operator Pψ is given by

Pψ = eτψP (x,D)e−τψ = P (x,D + iτ∇ψ) .

and has principal symbol pψ. The lower order terms are negligible in (44) if τ is
sufficiently large. Set

q(x, ξ, τ) = pψ(x, ξ, τ)(ξ2 + τ 2)−
m−1

2 .

Then q is a pseudodifferential operator of order 1, and we need to show that

(45) τ‖v‖L2 ≤ C‖Q(x,D, τ)v‖L2 . τ > τ0 > 0

On the other hand Q ∈ C2,1S1 and from (43) we get

(46)
1

i
{q, q} ≥ C−1τ + C|q| .

We decompose q into its real and imaginary part,

q = a+ ib .

Then, computing as in the previous section,

‖Q(x,D)v‖2
L2 = ‖A(x,D)v‖2

L2 + ‖B(x,D)v‖2
L2+ < C(x,D)v, v > +O(‖v‖2

L2)
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where
c(x, ξ) = axξb− bxξa+ {a, b} .

Hence it remains to prove that

C−1τ‖v‖L2 ≤ ‖A(x,D)v‖2
L2 + ‖B(x,D)v‖2

L2+ < C(x,D)v, v > .

But the pseudoconvexity condition (46) implies that

c ≥ C−1|τ | − C(|a|+ |b|)
therefore this follows from Corollary 1.11.
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