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Abstract. We establish Lq bounds on eigenfunctions, and more generally on spec-
trally localized functions (spectral clusters), associated to a self-adjoint elliptic opera-
tor on a compact manifold, under the assumption that the coefficients of the operator
are of regularity Cs, where 0 ≤ s ≤ 1. We also produce examples which show that
these bounds are best possible for the case q =∞, and for 2 ≤ q ≤ qn.

1. Introduction

Let M be a compact manifold without boundary, on which we fix a smooth volume form
dx. Let a be a section of real, symmetric quadratic forms on T ∗(M), with associated
linear transforms ax : T ∗x (M) → Tx(M), and let ρ be a real valued function on M . We
assume both a and ρ are strictly positive, with uniform bounds above and below.

Consider the eigenfunction problem, with d∗ the transpose of d relative to dx,

(1.1) d∗(a df) + λ2ρf = 0 .

Under the condition that a and ρ are bounded, measurable, and uniformly bounded from
below, there exists a complete orthonormal basis φj of eigenfunctions for L2(M,ρ dx)
with frequencies λj →∞. In this paper we establish the following theorem.

Theorem 1.1. Suppose that a, ρ ∈ Cs(M), where 0 ≤ s ≤ 1. Assume that the frequencies
λj of f are contained in the interval [λ, λ+ λ1−s] , so that

(1.2) f =
∑

j:λj∈[λ,λ+λ1−s]

cj φj

Then for 2 ≤ q ≤ qn = 2(n+1)
n−1

(1.3) ‖f‖Lq(M) ≤ C λ

(
2(n−1)

2+s +1−s
)(

1
2−

1
q

)
‖f‖L2(M) .

Furthermore

(1.4) ‖f‖L∞(M) ≤ C λ
n−s

2 ‖f‖L2(M) .

The constant C depends only on the Cs norm and lower bounds of a and ρ . In particular,
C is uniform under small Cs perturbations of a and ρ.
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We also produce examples to show that, for general Cs metrics, (1.4) and (1.3) are best
possible, in the latter case for all q in the given range. The examples are exponentially
localized eigenfunctions on open sets, and show that the exponents in Theorem 1.1 cannot
be improved in general even for functions f with frequency spread O(λ−N ). It is not
known what the sharp bounds are for qn < q <∞ .

We compare Theorem 1.1 to the bounds in the case a and ρ belong to C2, or more
generally C1,1, and where the frequencies of f lie in the interval [λ, λ+ 1]. In that case,
by [8], ∥∥f∥∥

Lq(M)
≤ C λ

n−1
2 ( 1

2−
1
q ) ‖f‖L2(M) , 2 ≤ q ≤ qn ,∥∥f∥∥

Lq(M)
≤ C λn( 1

2−
1
q )− 1

2 ‖f‖L2(M) , qn ≤ q ≤ ∞ .

These estimates were established by Sogge [12] for smooth a and ρ, and are best possible
at all q for unit width spectral clusters. The case q = ∞ is related to the spectral
counting remainder estimate; see Hörmander [5]. Recently, Bronstein and Ivrii [2] have
obtained spectral counting remainder estimates in the case of Hölder coefficients. A direct
corollary of their estimates is an upper bound of the form O((log λ)σλn−s) for the number
of frequencies λj (counting multiplicity) in the interval [λ, λ+λ1−s]. A corollary of (1.4)
is that this upper bound holds with σ = 0. Indeed, (1.4) implies pointwise bounds on
the kernel χλ(x, y) of the spectral projection onto frequencies in the range [λ, λ+ λ1−s] ,

|χλ(x, y)| ≤ C2 λn−s ,

and integrating over the diagonal yields the desired trace bounds.

Estimates for Cs metrics are derived from the C2 result together with a frequency
dependent scaling argument. Our work shows that there are two distinct spatial scales
that enter into the estimates when s < 1,

R = λ−
2−s
2+s , T = λs−1 .

The scale R is the size of a ball on which, when working with solutions f with frequencies
of magnitude λ, the coefficients a and ρ are well approximated by C2 functions, in the
sense that the errors can be absorbed as an appropriate source term. The larger scale T
is the size of a ball on which the coefficients are well approximated by C1 functions.

Compared to the C2 case, there is in Theorem 1.1 a loss of (TR−1)
1
q T−

1
2 at the indices

q = qn and q = ∞. (The sharp bounds for 2 ≤ q ≤ qn are obtained by interpolation.)
The loss of T−

1
2 arises in spatially localizing solutions to balls of size T in order to have

energy flux bounds. The loss of (TR−1)
1
q arises from the fact that we have good Lq

bounds on sets of size R, and need to sum over a total of TR−1 sets to obtain bounds on
sets of size T . For 1 ≤ s ≤ 2 only the scale R enters, and the loss relative to the C2 case
is R

1
q for q = qn and q = ∞, as shown by the second author in [9].

One can establish better bounds on the Lq norm of f over balls of size R. In that case,
there is only the loss of T−

1
2 relative to the C2 case. Precisely, in the process of proving

Theorem 1.1 we also establish the following.

Theorem 1.2. Let BR ⊂ M be a ball of radius R = λ−
2−s
2+s . Then under the same

conditions as Theorem 1.1, and with a constant C uniform over such balls BR,

(1.5)
∥∥f∥∥

Lq(BR)
≤ C λn

(
1
2−

1
q )− s

2 ‖f‖L2(M) , qn ≤ q ≤ ∞ .
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The examples we produce to show that (1.4) is sharp also show that (1.5) cannot
be improved for any qn ≤ q ≤ ∞. It is expected, though, that the bound obtained
by interpolating (1.3) at q = qn with (1.4) is not sharp for qn < q < ∞ . That is, the
additional loss of (TR−1)

1
q which would be obtained by adding (1.5) over TR−1 disjoint

sets is sharp only for qn and ∞ .

Since the constant C in (1.5) is independent of the center of BR, estimate (1.4) is an
immediate consequence of the case q = ∞ of (1.5). We also remark that all cases of (1.5)
for qn ≤ q ≤ ∞ follow from the case q = qn of (1.5). This was noted in [9], using heat
kernel estimates. Briefly, by Theorem 6.3 of Saloff-Coste [7], the heat kernel hλ(x, y) at
time t = λ−2 for the diffusion system associated to (1.1) satisfies

|hλ(x, y)| ≤ C λn exp(−c λ2d(x, y)2) .

By Young’s inequality, then for qn ≤ q ≤ ∞

‖f‖Lq(BR) ≤ C λn( 1
qn
− 1

q )‖H−1
λ f‖Lqn (B∗

R) + CN λ−N‖H−1
λ f‖L2(M\B∗

R)

≤ C λn( 1
2−

1
q )− s

2 ‖f‖L2(M)

where we use (1.5) at q = qn with BR replaced by its double B∗
R, and the fact that

‖H−1
λ f‖L2 ≈ ‖f‖L2 since exp(λ2

j/λ
2) ≈ 1 for λj ∈ [λ, λ+ 1].

Since (1.3) follows from the case q = qn (by interpolating with the trivial case q = 2)
we are thus reduced to establishing the estimates (1.3) and (1.5) at q = qn.

Notation. By the Cs norm on Rn for 0 < s ≤ 1 we mean

‖f‖Cs = ‖f‖L∞(Rn) + sup
h∈Rn

|h|−s ‖f(·+ h)− f(·)‖L∞(Rn) .

Thus, Cs coincides with Lipschitz for s = 1.

We use d to denote the differential taking functions to covector fields, and d∗ its adjoint
with respect to dx. When working on Rn, d = (∂1, . . . , ∂n), and d∗ is the standard
divergence operator.

The notation A . B means A ≤ C B, where C is a constant that depends only on the
Cs norm of a and ρ, as well as on universally fixed quantities, such as the manifold M
and the non-degeneracy of a and ρ. In particular, C will depend continuously on a and
ρ in the Cs norm.

2. Proof of Theorems 1.1 and 1.2

For s = 0 both theorems are a result of Sobolev embedding, for example using heat
kernel estimates, so we restrict to the case s > 0. Let φT denote a smooth cutoff to a
ball BT ⊂M of diameter T = λs−1. We then write

d∗(a d (ϕT f)) + λ2ρ (ϕT f) = T−1
(
d∗g1 + g2

)
where g1 , g2 are supported in B∗

T (the double of BT ), with

g1 = a (TdϕT )f g2 = a(TdϕT , df) + T ϕT

(
d∗(a df) + λ2ρ f

)
and hence

‖g1‖L2 + λ−1‖g2‖L2 . ‖f‖L2(B∗
T ) + λ−1‖df‖L2(B∗

T ) + λs−2‖d∗(a df) + λ2ρf‖L2(B∗
T )
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Note that if f is of the form (1.2), and λ ≥ 1, then

‖d∗(a df) + λ2ρf‖L2(M) . λ2−s‖f‖L2(M) ,

‖df‖L2(M) . λ ‖f‖L2(M) .

Consequently, if we prove that for f satisfying

(2.1) d∗(a df) + λ2ρ = T−1
(
d∗g1 + g2

)
we have

(2.2) ‖f‖Lqn (BT ) . λ
1

qn (TR−1)
1

qn T−
1
2
(
‖f‖L2 + λ−1‖df‖L2 + ‖g1‖L2 + λ−1‖g2‖L2

)
as well as

(2.3) ‖f‖Lqn (BR) . λ
1

qn T−
1
2

(
‖f‖L2 + λ−1‖df‖L2 + ‖g1‖L2 + λ−1‖g2‖L2

)
then summing over a cover of M by balls BT with bounded overlap yields (1.3) and (1.5)
at q = qn, and hence all cases of Theorems 1.1 and 1.2 as remarked above.

By choosing local coordinates we may assume we are working with an equation of the
form (2.1) on Rn with Lebesgue measure, and with f supported in a ball of radius T .
After making a linear change of coordinates and multiplying ρ by a harmless constant,
we may additionally assume (for s > 0) that

(2.4) ‖a− I‖Cs(Rn) + ‖ρ− 1‖Cs(Rn) ≤ c0 ,

for c0 a suitably small constant to be fixed depending on the dimension n.

Let Sr = Sr(D) denote a smooth cutoff on the Fourier transform side to frequencies
of size |ξ| ≤ r. Let aλ = Sc2λa, for c to be chosen suitably small. Then

‖(a− aλ)df‖L2 . λ−1T−1‖df‖L2 , λ2‖(ρ− ρλ)f‖L2 . λT−1‖f‖L2 ,

and thus we may replace a and ρ by aλ and ρλ at the expense of absorbing the above
two terms into g1 and g2, which does not change the size of the right hand side of (2.2)
and (2.3).

Next, let f<λ = Scλf . Then

(2.5)
∥∥[Scλ, aλ]

∥∥
L2→L2 . λ−1‖aλ‖C1 . λ−1T−1 ,

and similarly for [Scλ, ρλ], hence we can absorb the commutator terms into g1 and g2,
and since all terms are localized to frequencies less than λ we can write

(2.6) d∗(aλ df<λ) + λ2ρλ f<λ = T−1g<λ ,

where
‖g<λ‖L2 . λ ‖f‖L2 + ‖df‖L2 + λ ‖g1‖L2 + ‖g2‖L2 .

Since ‖d∗(aλdf<λ)‖L2 . (cλ)2‖f<λ‖L2 , for c suitably small the L2 norm of the left hand
side of (2.6) is comparable to λ2‖f<λ‖L2 , hence we have

‖f<λ‖L2 . λ−1T−1
(
‖f‖L2 + λ−1‖df‖L2 + ‖g1‖L2 + λ−1‖g2‖L2

)
.

Since 1
qn

= n( 1
2 −

1
qn

)− 1
2 , Sobolev embedding implies

(2.7) ‖f<λ‖Lqn . λ
1

qn
− 1

2T−1
(
‖f‖L2 + λ−1‖df‖L2 + ‖g1‖L2 + λ−1‖g2‖L2

)
,

which implies (2.2) and (2.3) for this term since R, T ≥ 1 and λ−
1
2 ≤ T

1
2 .
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If we let f>λ = f − Sc−1λf , then similar arguments let us write

(2.8) d∗(aλ df>λ) + λ2ρλ f>λ = T−1d∗g>λ

where now g>λ, like f>λ, is frequency localized to frequencies larger than c−1λ, and

‖g>λ‖L2 . ‖f‖L2 + λ−1‖df‖L2 + ‖g1‖L2 + λ−1‖g2‖L2 .

Taking the inner product of both sides of (2.8) against f>λ yields

‖df>λ‖2
L2 − 4λ2‖f>λ‖2

L2 . T−1‖g>λ‖L2‖df>λ‖L2 ,

and by the frequency localization of f>λ we obtain

‖f>λ‖H1 . T−1
(
‖f‖L2 + λ−1‖df‖L2 + ‖g1‖L2 + λ−1‖g2‖L2

)
.

Since n( 1
2 −

1
qn

) = 1
qn

+ 1
2 ≤ 1, Sobolev embedding yields (2.7) for the term f>λ.

It remains to establish (2.2) and (2.3) for fλ = Sc−1λf−Scλf . We decompose fλ using
a partition of unity in the Fourier transform variable ξ to cones of small angle. We may
thus assume that fλ is frequency localized to a small cone about the ξ1 axis. Since the
localization is by means of an order 0 multiplier at frequency λ, the commutator satisfies
the same bounds (2.5), and we may write

(2.9) d∗(aλ dfλ) + λ2ρλ fλ = T−1gλ

where
‖gλ‖L2 . λ ‖f‖L2 + ‖df‖L2 + λ ‖g1‖L2 + ‖g2‖L2 .

The functions aλ and ρλ satisfy the condition (2.4). By Corollary 2.4 of [9], we thus
have the localized estimate, uniformly over cubes QR of sidelength R,

‖fλ‖Lqn (QR) . R−
1
2λ

1
qn

(
‖fλ‖L2(Q∗

R) + λ−1‖dfλ‖L2(Q∗
R) +RT−1λ−1‖gλ‖L2(Q∗

R)

)
.

Summing over disjoint cubes contained in a slab SR of the form {x ∈ Rn : |x1 − c | ≤ R }
yields

‖fλ‖Lqn (SR) . R−
1
2λ

1
qn

(
‖fλ‖L2(S∗R) + λ−1‖dfλ‖L2(S∗R) +RT−1λ−1‖gλ‖L2(S∗R)

)
.

We will show that

(2.10) ‖fλ‖L2(S∗R) + λ−1‖dfλ‖L2(S∗R) . R
1
2T−

1
2
(
‖fλ‖L2 + λ−1‖dfλ‖L2 + λ−1‖gλ‖L2

)
.

Since R
1
2T−1 ≤ T−

1
2 , this yields

‖f‖Lqn (SR) . λ
1

qn T−
1
2

(
‖f‖L2 + λ−1‖df‖L2 + ‖g1‖L2 + λ−1‖g2‖L2

)
.

The estimate (2.3) follows immediately; the estimate (2.2) follows after summing over
the TR−1 disjoint slabs SR that intersect BT .

The bound (2.10) follows by energy methods. Let V denote the vector field

V = 2(∂1fλ) aλ dfλ +
(
λ2ρλ f

2
λ − 〈aλ dfλ, dfλ〉

)−→e1 .
Then

d∗V = 2T−1(∂1fλ) gλ + λ2(∂1ρλ)f2
λ − 〈(∂1aλ)dfλ, dfλ〉 .

Since |∂1aλ|+ |∂1ρλ| . T−1, applying the divergence theorem on the set x1 ≤ r yields∫
x1=r

V1 dx
′ . T−1

(
λ2‖fλ‖2

L2(Rn) + ‖dfλ‖2
L2(Rn) + ‖gλ‖2

L2(Rn)

)
.
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Since aλ and ρ are pointwise close to the flat metric, we have pointwise that

V1 ≥ 3
4 |∂1fλ|2 + 3

4λ
2|fλ|2 − |∂x′fλ|2 .

The frequency localization of f̂λ to |ξ′| ≤ cλ yields∫
x1=r

V1 dx
′ ≥ 1

2

∫
x1=r

|dfλ|2 + λ2|fλ|2 dx′ .

Integrating this over r in an interval of size R yields (2.10). �

3. Examples to show (1.4) and (1.5) are sharp

In this section we produce examples of Hölder metrics and associated eigenfunctions
which show that the estimates (1.4) of Theorem 1.1 and (1.5) of Theorem 1.2 are best
possible. Our example is a radial version of the 1-dimensional example of Castro-Zuazua
[3], which in turn is based on a calculation of Colombini-Spagnolo [4]. In our example
the metric depends on the frequency λ (with uniform bounds on its Hölder norm), but
because of the exponential localization of the eigenfunctions one may easily cut and paste
together a sequence of examples to produce a metric for which these estimates fail for a
sequence of λ tending to ∞, as in [3]. Our example is also global on Rn, but again by
its exponential localization it may be truncated and placed on a compact manifold, with
the truncation errors small enough to show that the estimates are still best possible for
spectral clusters, even those of spectral width O(λ−N ).

We start by producing smooth radial functions Φ, q1, q2, all of which vanish near 0,
with Φ(r) = r +O(1), such that for all ε > 0:(

∆ + 1 + εq1 + ε2q2
)
e−εΦ d̂σ = 0 ,

where dσ is surface measure on the unit sphere Sn−1. Furthermore, Φ′, q1, q2 are globally
bounded, together with their derivatives of all order.

For this, we write
d̂σ(r) = r

1−n
2 Fn(r) .

Then (see Stein p. 338–348)

Fn(r) = an cos(r − n−1
4 π) + bn r

−1 sin(r − n−1
4 π) +O(r−2) .

We normalize dσ so an = 1, and set

Φ(r) = 2
∫ r

0

h(s)Fn(s)2 ds ,

where h is a smooth non-negative function which vanishes near 0 and equals 1 for s > 1
2 .

By the asymptotics of Fn, we have Φ(r) = r +O(1).

Consider the radial Laplacian ∆ = d2

dr2 + n−1
r

d
dr . Then

r
n−1

2 ∆ r
1−n

2 =
d2

dr2
− (n− 1)(n− 3)

4r2

and hence we may expand ∆(e−εΦd̂σ) as

r
1−n

2

[
F ′′n − (n− 1)(n− 3)

4r2
Fn − 4 εF ′nhF

2
n − 2 εFn

(
hF 2

n)′ + 4 ε2Fn h
2F 4

n

]
e−εΦ
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where ′ denotes d
dr . This in turn may be written as

−
(
1 + ε q1 + ε2 q2

)
e−εΦd̂σ

with
q1 = 4hFnF

′
n + 2

(
hF 2

n

)′
, q2 = −4h2F 4

n .

These functions are smooth since h vanishes near 0, and the global boundedness of their
derivatives follows easily from boundedness of F (k)

n for r bounded away from 0.

To construct the example, we set ε = λ−s and change variables r → λr, and let

ψλ(r) = e−λ−sΦ(λr)d̂σ(λr) , ρλ(r) = 1 + λ−sq1(λr) + λ−2sq2(λr) ,

so that
∆ψλ + λ2ρλψλ = 0 .

Note that ρλ ∈ Cs, since

‖1− ρλ‖L∞ ≤ λ−s , ‖1− ρλ‖Lip ≤ λ1−s ,

and min(λ−s, λ1−s|x− y|) ≤ |x− y|s. On the other hand,

|ψλ(r)| ≈ e−λ1−sr|d̂σ|(λr) .
Precisely,

‖ψλ‖2
L2 = λ1−n

∫ ∞

0

|Fn(λr)|2 e−2λ−sΦ(λr) dr ≈ λs−n

∫ ∞

0

|Fn(λsr)|2e−2r dr ≈ λs−n .

The maximum of |d̂σ| occurs at r = 0, so ‖ψλ‖L∞ is independent of λ. Thus

‖ψλ‖L∞

‖ψλ‖L2
≈ λ

n−s
2

showing that (1.4) is sharp.

We also note that |ψλ| ≈ 1 for r ≤ λ−1. Hence ‖ψλ‖Lp(B1/λ) & λ−
n
q . Hence

‖ψλ‖Lq(B1/λ)

‖ψλ‖L2
& λn( 1

2−
1
q )− s

2

showing that (1.5) is sharp. �

4. Examples to show (1.3) is sharp

In this section we produce examples to show that (1.3) is similarly sharp, in the range
2 ≤ q ≤ qn. These examples are exponentially localized to a tube of diameter λ

2
2+s , and

of length λs−1. They are essentially a product of the examples of Smith-Sogge [10], where
the metric depends on n− 1 variables, with the 1-dimensional example of Castro-Zuazua
[3].

For the examples, fix 0 < s < 1. Let (x, y) denote variables on Rn with x ∈ R and
y ∈ Rn−1. We take A(y) to be the ground state solution of

−∆yA(y) + |y|sA(y) = cA(y) .

Here c > 0 and A(y) is radial and of class C2,s, with

|A(y)| . e−N |y|
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for all N > 0. This may be seen, for example, by Theorem XIII.47 of [6] and Theorems
4.1 and 5.1 of [1]. The regularity follows by examining the ordinary differential equation
in r near 0.

Given κ > 0, let λ = λ(κ) solve

λ2 − κ2 = c λ2δ , δ =
2

2 + s
.

For s > 0 there is a unique positive solution for large κ, which satisfies λ ≈ κ.

We then have (
∆y + λ2(1− |y|s)

)
A(λδy) = κ2A(λδy) .

Next consider Φ, q1, q2, as in the preceeding section, with n = 1 and F1 = cos(x). We set

ρκ(x) = 1 + κ−sq1(κ |x| ) + κ−2sq2(κ |x| ) .
Then (

∂2
x + κ2ρκ(x)

)
e−κ−sΦ(κ |x| ) cos(κx) = 0 ,

and consequently(
d2

x + ρκ(x)∆y + λ2(1− |y|s)ρκ(x)
)
e−κ−sΦ(κ |x|)A(λδy) cos(κx) = 0 .

This equation takes the form (1.1). Since κ ≈ λ, the eigenfunction is exponentially
concentrated in the set

|y| ≤ λ−
2

2+s , |x| ≤ λs−1 .

By Hölder’s inequality, this implies that
‖ψλ‖Lp

‖ψλ‖L2
& λ

(
2

2+s (n−1)+(1−s)
)(

1
2−

1
p

)
showing that (1.3) is sharp. �
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