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Abstract

We construct nontrivial solutions with compact support for the el-
liptic equation ∆u = V u with V ∈ Lp, p < n/2 or V ∈ L

n/2
w for n ≥ 3

and with V ∈ L1 for n = 2. The same method also yields nontrivial
solutions with compact support for the elliptic equation ∆u = W∇u
with W ∈ Lq, p < n or W ∈ Ln

w for n ≥ 2.

For the second order elliptic equations

∆u = V u in Rn (1)

respectively
∆u = W∇u in Rn (2)

we define the (weak) unique continuation property (UCP) , respectively the
strong unique continuation property (SUCP) as follows:

Let u be a solution to (1) which vanishes in an open set.
Then u = 0.

(UCP)

Let u be a solution to (1) which vanishes of infinite order
at some point x0 ∈ Rn. Then u = 0.

(SUCP)
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The same definitions apply to solutions to (2).
If V = W = 0 then (SUCP) holds trivially because of the analyticity of

u. The natural question to ask is for which class of potentials does the unique
continuation property hold. Scale invariant classes of potentials are V ∈ L

n
2 ,

respectively W ∈ Ln. It has been believed for some time that this should be
the threshold: (SUCP) was expected to hold above it and there is a simple
counterexample below it, namely

u(x) = e−| ln x|1+ε

.

On the positive side, (SUCP) was proved in Jerison-Kenig [1] for L
n
2
loc po-

tentials, n ≥ 3 and for Lp potentials, p > 1, n = 2. Stein [1] shows that

(SUCP) holds for potentials which are small in L
n
2
w , n ≥ 3. See also [3]

for the most recent positive results. The counterexamples with V ∈ L
n/2
w of

Wolff [6] for (SUCP) show that these results are optimal.
On the other hand, the counterexamples to (UCP) are rather scarce. Re-

cently Kenig-Nadirashvili [2] have obtained a counterexample to unique con-
tinuation for (1) with V ∈ L1 for n ≥ 2, while Mandache [4] found a coun-
terexample to unique continuation for (2) with W ∈ Lq, q < 2, for n ≥ 2.
Our aim here is to close the gap for n ≥ 3 and obtain counterexamples for (1)

with V ∈ L
n/2
w and for (2) with W ∈ Ln

w and also smooth counterexamples
with V ∈ Lp, p < n/2 or W ∈ Lq, q < n. For n = 2 we only improve the
regularity of the counterexamples compared to [2], [4]. We are grateful to both
Kenig-Nadirashvili and Mandache for making their articles [2], respectively [4],
available prior to publication.

LetH1 be the Hardy space, H1 the space of functions with square integrable
derivatives and H−1 its dual. Let Lp

w is the weak Lp space and let Lp,1 ⊂ Lp

be the Lorentz space.

Theorem 1. a) Let n ≥ 2, p < n
2
, q < n. Then there exists a nontrivial

smooth compactly supported function u so that

∆u

u
∈ Lp(Rn),

∆u

|∇u|
∈ Lq(Rn),

b) Let n ≥ 3. There exists a nontrivial compactly supported function u ∈ L
n

n−2
,1

so that ∆u ∈ H1 and
∆u

u
∈ L

n
2
w (Rn)

c) Let n ≥ 2. There exists a nontrivial compactly supported vector valued
function u ∈ L

n
n−2

,1 (C0 for n = 2) so that ∇u ∈ L
n

n−1
,1, ∆u ∈ H1 and

|∆u|
|∇u|

∈ Ln
w(Rn)
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d) Let n = 2. Then there exists a nontrivial continuous compactly supported
function u ∈ H1 so that ∆u ∈ H1 ⊂ H−1 and

∆u

u
∈ L1(R2)

The above quotients are set to 0 whenever the denominator vanishes. This
is acceptable provided that the set where the numerator is zero but the de-
nominator is not has measure zero. Such a condition is always satisfied for
smooth functions u, and our counterexamples are smooth except at most for
a sphere, which has measure zero.

The reason for using Lorentz spaces in (b) above is that we want to set V =
∆u/u and then verify that (1) is satisfied. This works due to the multiplicative
property

Ln
w · L

n−2
n

,1 ⊂ L1

A similar comment applies to (c).
Besides being counterexamples for unique continuation, our counterexam-

ples serve also as examples for embedded eigenvalues and compactly supported
eigenfunctions. The construction can easily be modified for nonzero eigenval-
ues.

The proof is inspired from the work of Kenig-Nadirashvili [2]. The novelty
here is that we obtain more precise quantitative estimates which allow us to

bridge the gap between L1 and L
n
2
w potentials for n ≥ 3.

We start with a sequence of disjoint increasing annuli centered at the origin

Ak = {rk − ak ≤ |x| ≤ rk}

so that the thickness ak of Ak is equal to its the distance to Ak+1,

rk+1 − rk = ak + ak+1, r0 = a0 ≥
1

2
.

Here ak is a decreasing slowly varying sequence. We want all the Ak to be
contained in a fixed ball B(0, 2). This is equivalent to a summability condition
for the sequence ak

∞∑
k=0

ak = 1.

Corresponding to the sequence Ak we define a sequence of compactly sup-
ported cutoff functions χk so that χ(0) = 1 and ∇χk is supported in Ak. More
precisely we require that with a constant δ which will be chosen later we have

dist ( supp ∇χk, ∂Ak) ≥ δak/(2
√
n).
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Then we define inductively a sequence un as follows. Set u1 = χ1. For the
inductive step we start with some fk of the form

fk =
∑

f j
kφεj

k
(x− xj

n)

which is “close” to ∆uk in Ak. Here φε(x) = ε−nφ(x/ε) where φ is smooth,
nonnegative, supported in the unit ball and having integral 1. Let vk be the
solution to the elliptic problem

∆vk =

{
∆uk outside Ak

fk in Ak

vk = 0 on ∂B(0, rk+1).
(3)

Then set uk+1 = χk+1vk. We will produce the counterexample u as the limit
of uk.

1 The choice of fk

Here we want to construct fk using as few xj
k’s as possible so that for a large

range of εjk we can still make sure that the sequence

|uk+1 − uk|

decays exponentially (with respect to k) away from Ak. This suffices in order
to insure the convergence of uk. For now we are not concerned at all about
the size of ∆uk

uk
.

Given δ > 0 we define the set Xk = {xj
k} by

Xk = Ak ∩ δakZn.

Then, with Nk = |Xk| denoting the number of points in Xk,

Nk . δ−na1−n
k , |xj

k − xl
k| ≥ δak if j 6= l.

Let ψ be a smooth function supported in [−3/4, 3/4]n so that∑
m∈Zn

ψ(x−m) = 1.

Correspondingly we get a partition of unit on Ak

1 =
∑

j

ψj
k, ψj

k = ψ
(x− xj

k

δak

)
.

The following result is the basis of our iterative construction of the func-
tions uk.
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Proposition 2. There exist a small constant δ > 0 and a large constant C > 0
independent of k so that the following statement is true:

For each vk−1 harmonic in Ak and satisfying

|∂αvk−1| ≤ 2−2ka
1−|α|
k in Ak , |α| ≤ 1

there exist (f j
k)1≤j≤Nk

so that

δn+1an−1
k 2−2k ≤ |f j

k | ≤ Cδnan−1
k 2−2k (4)

and for all εjk ≤ δak we have

|∂αvk| ≤ 2−2(k+1)a
1−|α|
k+1 in Ak+1 |α| ≤ 1 (5)

and

|∂α(vk − vk−1)| ≤ 2−2(k+1)a
1−|α|
k in B(0, rk − 2ak) |α| ≤ 1. (6)

Proof: In Ak we have

gk = ∆uk = vk−1∆χk + 2∇vk−1∇χk

therefore
|gk| . 2−2ka−1

k . (7)

The function
wk = vk − χkvk−1

satisfies
∆wk = fk − gk, supp wk ⊂ B(0, rk+1). (8)

Then we define

f j
k =

{
δn+1an−1

k 2−2k if |
∫
ψj

kgkdx| ≤ δn+1an−1
k 2−2k∫

ψj
kgkdx otherwise

Given (7), this implies (4). It remains to establish the bounds (5) and (6), i.e.
show that wk is small away from the annulus Ak. Without any restriction in
generality we can rescale and assume that rk+1 = 1. In order to obtain bounds
for wk we need the fundamental solution for the Laplacian in the unit ball,

K(x, y) = cn

(
|x− y|2−n − |x|n−2|x̄− y|2−n

)
, x̄ =

x

|x|2
, n ≥ 3

respectively

K(x, y) = c2

(
− ln |x− y|+ ln |x̄− y| − ln |x|

)
, x̄ =

x

|x|2
, n = 2.
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Note that K is symmetric and satisfies the bounds

|K(x, y)| .
(1− |x|)(1− |y|)

|x− y|n
,

|∂yK(x, y)| .
1− |x|
|x− y|n

, (9)

|∂2K(x, y)| .
1

|x− y|n
.

We can compute

wk(x) =

∫
(fk − gk)(y)K(x, y)dy

=
∑

j

∫
(ψj

k(y)gk(y)− f j
kφεj

k
(y − xj

k))K(x, y)dy

=
∑

j

∫
(ψj

k(y)gk(y)− f j
kφεj

k
(y − xj

k))(K(x, y)−K(x, xj
k))dy

+
∑

j

( ∫
ψj

k(y)gk(y)dy − f j
k

)
K(x, xj

k)

For x at distance at least ak from Ak and |y − xj
k| . δak we have

|K(x, y)−K(x, xj
k)| . δak(1− |x|)|x− xj

k|
−n,

|∇x(K(x, y)−K(x, xj
k))| . δak|x− xj

k|
−n.

Then

|wk(x)| . δak(1− |x|)
∑

j

|xj
k − x|−n

∫
ψj

k(y)|gk(y)|+ |f j
k |φεj

k
dy

+δn+1an−1
k 2−2k

∑
j

K(x, xj
k)

. δak(1− |x|)
∑

j

|xj
k − x|−n

∫
ψj

k(y)|gk(y)|dy

+δn+1an−1
k 2−2k

∑
j

K(x, xj
k)

. δak(1− |x|)
∫
|gk(y)||x− y|−ndy + δa−1

k 2−2k

∫
Ak

K(x, y)dy

. δ2−2k(1− |x|)
∫

Ak

|x− y|−ndy

. δak(1− |x|)d(x,Ak)
−12−2k.
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If x ∈ Ak+1 then 1− |x| ≤ ak+1 and d(x,Ak) ≈ ak therefore we get

|wk(x)| . δak+12
−2k

On the other hand if |x| < rk − 2ak then 1− |x| ≈ d(x,Ak) therefore

|wk(x)| . δak2
−2k.

The computation for the derivative of wk is similar, the only difference is that
the factor 1− |x| no longer appears. Thus we obtain

|∇wk(x)| . δakd(x,Ak)
−12−2k.

Then the conclusion follows if we choose δ sufficiently small.

2 Bounds for uk+1 − uk

The estimate (5) is the only one needed in order to carry out the iterative
process. However, at each step we can also obtain additional information
about higher order derivatives of the functions uk. Since we are interested in
the convergence of the sequence uk, we collect below the information we can
obtain about the difference uk+1 − uk. The easy part is to get estimates away
from Ak:

Proposition 3. Assume that uk, vk, x
j
k, ε

j
k and f j

k are inductively chosen as
in Proposition 2. Then

|∂α(uk+1 − uk)(x)| ≤ cαakd(x,Ak)
−α2−2k x ∈ B(0, rk − 2ak) (10)

and
|∂α(uk+1 − uk)(x)| ≤ cαa

1−α
k+12

−2k x ∈ Ak+1 (11)

(uk = 0 in Ak+1, so this is really a bound on uk+1).

For |α| ≤ 1 this is an immediate consequence of Proposition 2. The higher
order derivatives are obtained in a similar fashion since each derivative on the
kernel K beyond the second simply produces an additional |x− y|−1 factor.

It remains to bound uk+1 − uk in a neighborhood of Ak, more precisely in
the larger annulus {rk − 2ak ≤ |x| ≤ rk + ak}. This estimate is not as simple
since the difference should have spikes concentrated near the points in Xk.

Proposition 4. Assume that uk, vk, x
j
k, ε

j
k and f j

k are inductively chosen as
in Proposition 2. Then for rk − 2ak ≤ |x| ≤ rk + ak we have

|∂α(uk+1 − uk)(x)| ≤ cαa
n−1
k 2−2k max

j
(εjk + |x− xj

k|)
2−n−|α|, n ≥ 3. (12)

For n = 2 (12) still holds for α 6= 0, while for α = 0 we get

|(uk+1 − uk)(x)| ≤ cαa
n−1
k 2−2k max

j
− ln(εjk + |x− xj

k|), n = 2. (13)
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Proof: We prove the result for n ≥ 3. The argument also works for n = 2
with obvious changes. In the desired range we have uk+1 − uk = wk, so we
need to get bounds for wk, which solves (8). The function gk = ∆uk−1|Ak

can
be estimated using (11),

|∂αgk(x)| ≤ cαa
−1−α
k 2−2k x ∈ Ak. (14)

We consider only the more difficult case case when x is close to some xj
k,

|x− xj
k| ≤ δak. We decompose wk into three components,

wk = uj
k + vj

k + wj
k

so that uj
k solves

∆uj
k = f j

kφεj
k
(x− xj

n), uj
k = 0 on ∂B(0, rk+1)

and vj
k satisfies

∆vj
k = −χj

k(x)g(x), vj
k = 0 on ∂B(0, rk+1).

Observe that ∆wj
k is supported at least O(ak) away from B(xj

k, ε
j
k). Then the

analysis in the proof of Proposition 2 applies and we obtain

|∂αwj
k| . cαa

1−α
k 2−2k in B(xj

k, ε
j
k).

On the other hand for vj
k we can use the fundamental solution for ∆. It is

convenient to treat separately the two terms in the kernel K,

K0(x, y) = cn|x− y|2−n, K1(x, y) = |x|n−2|x̄− y|2−n,

Correspondingly we decompose

uj
k = uj

k,0 + uj
k,1, vj

k = vj
k,0 + vj

k,1.

We are in the range where |x| ≈ 1, |x̄− y| ≈ ak, therefore

|∂α
xK1(x, y)| ≤ cαa

2−n−α
k .

This implies that the corresponding components uj
k,1, v

j
k,1 of uj

k, v
j
k satisfy a

bound similar to the bound for wj
k. Indeed,

|∂α
xu

j
k,1| =

∣∣∣∂α
x

∫
K1(x, y)f

j
kφεj

k
(y − xj

n)dy
∣∣∣ ≤ cαa

2−n−α
k |f j

k | ≤ cαa
1−α
k 2−2k.

The same argument applies to vj
k,1 as well.
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For vj
k,0 we get the same bound,

|∂α
x v

j
k,0| = |∂α

x (χj
kgk ∗ |x|2−n)|

= |∂α
xχ

j
kgk ∗ |x|2−n|

≤ cαa
1−α
k 2−2k.

The only contribution which can be worse comes from

uj
k,0 = f j

kφεj
k
(x− xj

k) ∗ |x|
2−n.

But this can be bounded by

|∂αuj
k,0| ≤ cαa

n−1
k (εjk + |x− xj

k|)
2−n−|α|2−2k.

Putting together all the pieces we get (12) and (13).

3 Convergence

Proposition 5. Assume that uk, vk, x
j
k, ε

j
k and f j

k are inductively chosen as in

Proposition 2. Then there exists a function u ∈ L
n

n−2
w if n ≥ 3 and u ∈ VMO

if n = 2 supported in B2(0) with ∆u ∈ L1 so that

• The sequence ∆uk converges in L1 to ∆u.

• uk converges to u uniformly on compact sets.

• |u− uk+1| ≤ ak2
−2k in Ak.

Proof: Observe first that ∆uk is supported in ∪k
j=0Aj and ∆uk+1 −∆uk

is supported in Ak ∪ Ak+1. In Ak we have

∆uk+1 −∆uk = fk − gk

while in Ak+1 we get
∆uk+1 −∆uk = gk+1.

Using the bounds in Proposition 2 we obtain

‖∆uk+1 −∆uk‖L1(Rn) . 2−2k

This guarantees the L1 convergence of ∆uk, which implies the convergence of

uk in L
n

n−2
w if n ≥ 3: The space Lp

w, p > 1, is a Banach space when equipped
with the norm

‖f‖Lp
w

= sup
A⊂Rn

|A|−
1
p′

∫
A

|f | dx
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where |A| denotes measure of the set A and the supremum is taking over all
measurable sets. Then

‖f‖Lp
w
∼ sup

t>0
t|{x : |f(x)| > t}|1/p

and |x|2−n ∈ L
n

n−2
w , hence

‖|x|2−n ∗ f‖
L

n
n−2
w

≤ ‖|x|2−n‖
L

n
n−2
w

‖f‖L1 .

Similarly uk converge in VMO if n = 2: the functions uk are smooth, hence
in VMO, and they converge in BMO since ln |x| ∈ BMO, thus uk → u in
VMO. Note that

∆u =
∑

k

∑
j

f j
kφεj

k
(x− xj

n). (15)

Moreover
∆(u− uk)(x) = 0

for x in B(0, ρ) with ρ < 2 and k sufficiently large. This, together with

convergence in L
n

n−2
w implies uniform convergence of all derivatives on B(0, ρ).

Finally, the last assertion in the theorem is a straightforward consequence of
(10).

We can also sum up the estimates in Propositions 3 and 4 to obtain point-
wise bounds on u and its derivatives:

Proposition 6. Let n ≥ 3. For rk − 2ak ≤ |x| ≤ rk + ak we have

|∂αu(x)| ≤ 2−2kan−1
k sup

j
|εjk + dist(x,Xk)|2−n−|α|.

The modification for n = 2 is obvious.

4 Bounds on ∆u/u, ∆u/|∇u|
By construction ∆u is supported in ∪k,jB(xj

k, ε
j
k). The following proposition

provides a bound from above on ∆u/u on each such ball.

Proposition 7. Assume that uk, vk, x
j
k, ε

j
k and f j

k are inductively chosen as
in Proposition 2.

a) Then∣∣∣∣∆uu
∣∣∣∣ .

{
(εjk)

−2 if n ≥ 3

(εjk)
−2| ln (εjka

−1
k )|−1 if n = 2

in B(xj
k, ε

j
k) (16)
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b) Assume in addition that the mollifier φ is spherically symmetric and non-
increasing with respect to the radial variable. Then there is a small constant c
and points yj

k ∈ B(xj
k, cε

j
k)

|∆u|
|∇u|

. |x− yj
k|
−1 in B(xj

k, ε
j
k) (17)

Proof: We restrict ourselves to the proof for n ≥ 3. The modifications
for n = 2 are obvious.

a) In B(xj
k, ε

j
k) we have

∆u = f j
kφεj

k
(x− xj

n),

therefore
|∆u| . |f j

k |(ε
j
k)
−n . 2−2kan−1

k (εjk)
−n.

Then it remains to show that in the same region we have

|u| & 2−2kan−1
k (εjk)

2−n.

By the last part of Proposition 5 and by (11) it suffices to show that

|uk+1 − uk| & 2−2kan−1
k |εjk|

2−n in B(xj
k, ε

j
k).

In Ak we have uk+1 − uk = wk. For wk we use the decomposition in the proof
of Proposition 4. All terms except for uj

k,0 are bounded by 2−2kak, which is
negligible. Then it remains to show that

|uj
k,0| & 2−2kan−1

k |εjk|
2−n in B(xj

k, ε
j
k). (18)

But
uj

k,0 = f j
kφεj

k
(x− xj

k) ∗ |x|
−n

2 ,

therefore for x ∈ B(xj
k, ε

j
k) we get

|uj
k,0| ≥ |f j

k |(ε
j
k)

2−n.

Then (18) follows from the bound from below for f j
k in (4).

b) This time we need to show that

|∇u| & 2−2kan−1
k (ej

k)
−n|x− yj

k| in B(xj
k, ε

j
k)

We decompose u as before into

u = uj
k,0 + (u− uj

k,0)

11



For the second component we use the bounds in the proof of Proposition 4 to
get

|∂α(u− uj
k,0)| ≤ cα2−2ka1−α

k

On the other hand, u0
k is the spherically symmetric (around xj

k) solution to

∆uj
k,0 = f j

kφεj
k
(x− xj

k)

We translate and rescale to the case when xj
k = 0, εjk = 1. We also use the

bound from below for f j
k in (4) to eliminate the factor 2−2kan−1

k and reduce
the problem to the case when f j

k = 1. Then we need to prove the estimate

|∇(u0 + u1)(x)| & |x− y| in B(0, 1) (19)

for some small y, where u0 is the bounded spherically symmetric solution to

∆u0 = φ

and u1 is a small C2 perturbation. It is easy to see that u0 has an unique
critical point, which is a non-degenerate minimum at 0. Then the perturbed
function u0 + u1 will still have an unique non-degenerate critical point y close
to 0. Hence (19) follows.

5 Conclusion

Here we finish the proof of our main result. The question is how to choose
the parameters ak, ε

j
k. There are two competing factors. In order to get good

bounds on ∆u/u and ∆u/|∇u| we would like to have εjk as small as possible,
while in order to get better regularity for u we need εjk as large as possible.
Balancing these two factors yields Theorem 1.

Proof of Theorem 1: a) Here we can choose all εjk equal to some εk.
Then by Proposition 7 we get∥∥∥∆u

u

∥∥∥p

Lp
.

∑
k

a1−n
k εn−2p

k ,
∥∥∥ ∆u

|∇u|

∥∥∥q

Lq
.

∑
k

a1−n
k εn−q

k

while
‖u‖Cm(Rn) . sup

k
2−2kan−2

k ε2−n−m
k .

Since p < n/2 and q < n, in order to have all three norms finite it suffices to
choose ak and εk with polynomial decay in k. This construction is rough and
one should even be able to get Gevrey type estimates for u.
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b) The difficulty here is that the ratio ∆u
u

is a sum of “bumps” which have

comparable Ln/2 norm. Hence the only way of getting a bounded L
n/2
w norm

is if the size of these “bumps” decreases exponentially,

{εjm

km
} = {2−m; m ∈ N}

where (km, jm)m is an enumeration of the set {(k, j) : 1 ≤ j ≤ Nj} such that
km ≤ km̃ if m ≤ m̃. For such a choice of εjk we compute the regularity of
∆u. It suffices to show that ∆u ∈ H1. Then all second derivatives are in
H1 ⊂ L1 and the regularity of u by a variant of the Hardy-Littlewood-Sobolev
inequality:

‖∆−1f‖
L

n
n−2 ,1 ≤ c‖f‖H1

whenever the right hand side is bounded. The left hand side is defined by
convolution with the fundamental solution. We define the norm on the left
hand side by duality with L

n/2
w . It suffices to check this inequality for atoms,

see Stein [5]. After scaling it suffices to prove the estimate for bounded f
supported in the unit ball with mean zero, in which case the proof is simple.

Let

bk = C
k∑

j=1

a1−n
k .

Then the sharp bound from below for εjk is

εjk ≥ 2−bk .

We fix such a sequence εjk and compute the H1 norm of ∆u. We recall that

∆u =
∑
j,k

f j
kφεj

k
(x− xj

n).

The function u is supported in B(0, 2) and ∆u ∈ L1. Let φ ∈ C∞0 (Rn) with∫
φ dx = 1 and φR(x) = R−nφ(x/R) . Then

‖∆u‖H1 ∼
∥∥∥ sup

R
|φR ∗∆u|

∥∥∥
L1
.

Since ∆u has compact support and
∫

∆u dx = 0 we have∥∥∥ sup
R≥1

|φR ∗∆u|
∥∥∥

L1
≤ c‖∆u‖L1 .

Abusing the notation slightly we consider only radii R ≤ 1 in the H1 norm
below:
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‖∆u‖H1 .
∑
k,j

‖f j
kφεj

k
(x− xj

n)‖H1 .
∑
k,j

2−2k| ln εjk| .
∑

k

2−2ka1−n
k bk.

If we choose ak with polynomial decay then bk has polynomial growth and the
sum converges.

c) We would like to repeat the argument in the previous case. This does
not work in the scalar case because the bound in Proposition 7(b) is not as
good as the bound in Proposition 7(a). What we would like to have instead
of (17) is

|∆u|
|∇u|

. |x− yj
k|
−1 in B(xj

k, ε
j
k) (20)

Then the previous argument can be applied.
To achieve this we use the same procedure to construct two functions, u1

and u2, using the same xj
k, ε

j
k but different choices φ1, φ2 for φ. Here φ2 is

chosen so that
φ2(x) = φ1(x+ e1)

where e1 is the first unit vector in the canonical basis. The bounds from above
for ∆u1, ∆u2 and the bounds from below for |∇u1|, |∇u2| remain the same as
in Proposition 7. Thus for u = (u1, u2) we get

|∆u|
|∇u|

. (|x− yj
k,1|

−1 + |x− yj
k,2|)

−1 in B(xj
k, 2ε

j
k) (21)

At this point the shift in φ plays an essential role. By the argument in Propo-
sition 7, yj

k,1 is close to xj
k, |y

j
k,1 − xj

k| ≤ cεjk with a small constant c. On the

other hand, because of the shift we get |yj
k,2 − (xj

k + εjke1)| ≤ cεjk. This implies

that |yj
k,1 − yj

k,2| & εjk. Using this in (21) we get some form of (20).

d) By Proposition 7 we know that ∆u/u ∈ L1 if∑
j,k

| ln εjk|
−1 <∞

On the other hand we can bound the H1 norm of u as in the previous case,

‖∆u‖H1 .
∑
j,k

2−2k| ln(εjk)|.

Both sums are finite if we choose ak with polynomial decay at ∞ and

εjm

km
. 2−mκ

, κ > 1.

The space BMO is the dual space of H1. Since ln |x| ∈ BMO, ∆u ∈ H1

implies boundedness of u, as well as uniform convergence of uk. Hence we
obtain continuity of u. As above one sees that ∇u ∈ L2.
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