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Abstract

In this paper, we shall prove a general comparison lemma for iteration
strategies. The comparison method involves iterating into a level of a back-
ground construction, one that has been done in a universe that is uniquely
iterable in the appropriate sense. The proof that it succeeds relies heavily on
an analysis the normalization of a stack of normal iteration trees.

We then use this comparison method to develop the basic theory of hod
mice in the least branch hierarchy. Modulo the existence of iteration strategies,
our results yield a fine structural analysis of (HODI|#)™, whenever M is a
model of ADgr + V = L(P(R)) that has no iteration strategies for mice with
long extenders. In particular, HODY = GCH, for such M.
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0 Introduction

In this paper, we shall prove a general comparison lemma for iteration strategies. We
then use it to develop the basic theory of hod mice in the least branch hierarchy.! 2

Our comparison lemma relies heavily on an analysis of the normalization of a
finite stack of iteration trees. Recall that an iteration tree W on a premouse M is
normal iff the extenders EY used in W have lengths increasing with «, and each E"Y
is applied to the longest possible initial segment of the earliest possible model in W.
Suppose now T is a finite stack of iteration trees, with 7y being a normal tree on M,
and 7;;1 being a normal tree on the last model of 7;. Let N be the last model of
the last tree. There is a natural attempt to construct a “minimal” normal iteration
tree YW on M having last model N. This attempt may break down by reaching an
illfounded model. If it does not break down, it will in the end produce a model P
and m : N — P such that 7o i7 = i". We call W the embedding normalization of
T.

If 7 is played according to a reasonable iteration strategy 3, then W is also by 32,
so the W-construction does not break down. Although it is embedding normalization
that is important to us here, one can also ask whether there is a normal tree on M
whose last model is equal to N. We shall show that this is true if M is an iterable
premouse, and T is a finite stack of finite trees. The proof gives that there is a full
normalization of 7 in other cases as well.

Some of our work on normalization was done earlier (but never written up) with
Itay Neeman, and then later with Grigor Sargsyan. Fuchs, Neeman and Schindler
([5]) and Mitchell ([9]), and probably others, have considered the question. Much
of what seems to be new in this part of the paper was done independently, and at
roughly the same time, by Farmer Schlutzenberg. (See [26].) Schlutzenberg and
the author have carried this work further, and in particular analyzed embedding
normalization and full normalization for infinite stacks of normal trees. See [27].

The reasonableness of iteration strategies with respect to embedding normaliza-
tion is isolated in

Definition 0.1 Let X be an iteration strategy for a (hod) premouse M. We say that

!This research was partially done while the author was a Simons Foundation fellow at the Isaac
Newton Institute for Mathematical Sciences in the programme ‘Mathematical, Foundational and
Computational Aspects of the Higher Infinite’ (HIF) funded by EPSRC grant EP/K032208/1. The
author extends special thanks to the INI and its staff, for having provided an environment that is
ideal for mathematical research.

2The author thanks Xianghui Shi and Nam Trang for their invaluable help in the preparation
of this paper.



> normalizes well iff whenever T is a finite stack of normal trees by X, and W is an
embedding normalization of T, then W is by X.

The concept is defined more fully in 3.1, and that should be considered the official
definition of normalizing well.

Embedding normalization actually makes sense for coarse-structural stacks T
on coarse-structural M. Granted the appropriate form of UBH in V', the iteration
strategy X* for V normalizes well. In particular, if we assume ADT, and then let V
be a coarse I'-Woodin model N} as in Theorem 10.3 of [30] (due to Woodin), then
the iteration strategy ¥* we get for N normalizes well.

We shall show that the property of normalizing well passes from ¥* (for V') to the
iteration strategy of M, whenever M is a level of the (hod or pure-extender) mouse
construction in V. The proof of this is like Sargsyan’s proof that hull condensation
passes to induced strategies (Lemma 2.9 of [10]). It is important here that we defined
normalizing well in terms of embedding normalizations. We do show in [33] that if
>’ is induced by X* for N* as above, and T is by X, and U is its full normalization,
then U is by ¥. However, the proof does not proceed by some direct, combinatorial
route. It involves a comparison argument, and so cannot be used until a comparison
theorem for iteration strategies has already been proved.

We shall define a slight strengthening of hull condensation, and show that it
passes from ¥* for V to X for M, where ¥ is the induced iteration strategy for a
level M of a full background construction. We shall call this property strong hull
condensation. The details are in §3.

With these properties in hand, we can state our strategy comparison theorem.
We state first a version that has AD" as its hypothesis.

Let X be a strategy for M, T a stack on M with last model P, and @) an initial
segment of P; then Xz  is the 7 -tail of ¥ restricted to stacks on @. So for U on Q:

ZiQ(L{) =X(T"U).
Strategy comparison involves lining up such tail strategies.

Theorem 0.2 Assume AD", and for M and N be countable (hod or pure-extender)
premice, with Suslin-co-Suslin (w,w,w,)-iteration strategies ¥ and Q respectively.
Suppose ¥ and €2 normalize well and have strong hull condensation. Then there are
countable normal trees T on M and U on N by > and 2, with last models P and Q)
respectively, such that either

1. P<Q, and X1 p agrees with Yy p on finite stacks of normal trees, or

2. Q AP, and Xy o agrees with g on finite stacks of normal trees.
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This seems to be new even in the case of pure extender premice. Of course, if we
drop the strategy-agreement condition, it becomes in that case the usual Comparison
Lemma.

By hod premouse we mean here what we call in section 5 below a least branch hod
premouse. In earlier work, Woodin, Sargsyan, and the author have developed the
theory of hod mice in a different hierarchy, the “rigidly layered” or “extender biased”
hierarchy. See [38], [30], [16], [17], [1&], and [32]. This hierarchy becomes quite
complicated once one reaches the level of strong cardinals that are limits of Woodin
cardinals, and it is not known how to properly define it much past that. Moreover,
the extent of extender bias is controlled by the background determinacy model M
whose HOD is being analyzed, so that there are different notions of hod mouse
corresponding to different M, and we do not have such elementary condensation
results as "the first level of P satisfying the sentence ¢ is countable”. The least
branch hierarchy is much simpler and more uniform. It has condensation properties
like those of the pure extender hierarchy. There is no extender bias; one simply tells
the model P being built, at essentially every stage, a branch for the first iteration
tree T it has constructed that is according to the strategy it is being told, and such
that it has not been told a branch for 7 yet. We give the detailed definition in
section 5.

The “least branch” idea originates in unpublished work of Woodin. The new
comparison process is what makes it possible to use this hierarchy to analyze HOD
for M |= AD", in the short extender realm. We believe it will some day be possible
to use it in the long extender realm as well.

By a least branch hod pair we mean a pair (M, ) such that M is a least branch
premouse, and ¥ is an iteration strategy for M (generally defined on countable stacks
of countable normal trees) that normalizes well and has strong hull condensation.
The full definition is given in 5.16. If M is a pure extender premouse, and ¥ nor-
malizes well and has strong hull condensation, then we call (M, ) a pure extender
pair. The full definition is 5.19. A pair of one of the two types we call a mouse pair.
Theorem 0.2 says that assuming AD™, any two mouse pairs of the same type can be
compared.

We prove 0.2 by putting M and N into a common I'~-Woodin universe N*, where
> and Q are in T NT. We then iterate (M,¥) and (N, Q) into levels of the full
background construction (of the appropriate type) of N*. Here are some definitions
encapsulating the method.

Definition 0.3 Let (M,) and (N,QQ) be mouse pairs of the same type; then

(a) (M,X) iterates past (N,€Q) iff there is a normal iteration tree T by ¥ on M
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with last model Q) such that N < Q, and X7 n = (L.

(b) (M,X) iterates to (N, Q) iff there are T and Q as in (a), and moreover, N = @,
and the branch M-to-Q of T does not drop.

(c) (M,X) iterates strictly past (N, Q) iff it iterates past (N, ), but not to (N, ).

Definition 0.4 (AD") Let (P,X) be a mouse pair; then (*)(P,X) is the assertion:

Let N* be any coarse I'-Woodin model with iteration strategy ¥V as in 10.1 of
[20] (so T is inductive-like and has the scale property), such that P € HCY", and
Y e I'NT is Suslin captured by (N*,W). Let C be a background construction done
in N* of the appropriate type, and let (R, ®) be a level of C. Suppose that (P,3)
iterates strictly past all levels of C that are strictly earlier than (R, ®); then (P,X)
iterates past (R, ®).

The conclusion of 0.4 asserts: suppose the comparison of P with R has produced
a normal tree 7 on P with last model Q, with 7 by 3, and Q|n = R|n; then X1 g,
and ® g, agree on finite stacks of normal trees. Thus the least disagreement between
@ and R is an extender disagreement. Moreover, if £ on ) and F' on R are the

extenders involved in it, then F' = &.
We shall show (cf. Theorem 4.10 below)

Theorem 0.5 Assume AD™; then (*)(P,X) holds, for all mouse pairs (P,Y).
We note

Proposition 0.6 Theorem 0.5 implies Theorem (). 2.

Proof. Let (M,X) and (N, ) be as in the hypotheses of 0.2. Let (N*, V) witness
(*)(M, %) and (*)(N,Q) simultanecously. Let C be the full background extender
construction of N* of the appropriate type.

Claim 0.6.1 There is a level R of C such that R is a X-iterate of M.

Proof. Suppose first C breaks down, in that it has a least level @) such that @) is not
w-solid. Since M is w-solid, and this is preserved by iteration, () is not an initial
segment of an iterate of M. By (*)(M, ), M iterates to a proper initial segment of
(), with no strategy disagreement. This implies that some R properly before () in C
is a X iterate of M.

If C never breaks down, then let Q = (N;)®, where 6 is the Woodin of N*.
Then M cannot Y-iterate past ) by the usual universality argument. (Note here
¥ € I'NT.) So M iterates to a proper initial segment of Q, and thus some R properly
before () in C is a Y-iterate of M. [l



Claim 0.6.2 There is a level S of C such that S is an Q-iterate of N.

Proof. Symmetric. U

Notice that the iterations provided by our two claims do not drop. Letting R and
S be the last models, we may assume without lost of generality that R is before S
in C, or R=S. Let 7 be the normal tree on M by ¥ with last model R. Let U be
the normal tree on N by €2 that comes from comparing N with R. It is clear that T
and U witness the conclusion of 0.2. O

Least branch hod pairs can be used to analyze HOD in models of AD", provided
that there are enough such pairs.

Definition 0.7 (AD+)

(a) Hod Pair Capturing (HPC) is the assertion: for every Suslin-co-Suslin set A,
there is a least branch hod pair (P,Y) such that A is definable from parameters
over (HC, €,%).

(b) L|E] capturing (LEC) is the assertion: for every Suslin-co-Suslin set A, there
is a pure extender pair (P,X) such that A is definable from parameters over
(HC, €,%).

An equivalent (under AD) formulation would be that the sets of reals coding strate-
gies of the type in question, under some natural map of the reals onto HC, are Wadge
cofinal in the Suslin-co-Suslin sets of reals. The restriction to Suslin-co-Suslin sets
A is necessary, for AD' implies that if (P, X)) is a pair of one of the two types, then
the codeset of ¥ is Suslin and co-Suslin. This is proved in [33].

Remark 0.8 HPC is a cousin of Sargsyan’s Generation of Full Pointclasses. See
[16] and [17], §6.1.

Assuming AD", LEC is equivalent to the well known Mouse Capturing: for reals
x and y, x is ordinal definable from y iff x is in a pure extender mouse over y. This
equivalence is shown in [30]. (See especially Theorem 16.6.) Using the results of this
paper, one can show that under AD™, LEC implies HPC. See 5.70 below. We do not
know whether HPC implies LEC. This may be a hint that whether LEC holds is the

more fundamental question.

Theorem 0.9 Assume ADr and HPC; then Vy N HOD is the universe of a least
branch premouse.



We believe Theorem 0.9 remains true if ADg is weakened to AD™ in its hypothesis,
but we do not have a proof. We shall prove an approximation to Theorem 0.9 in §7.
The full theorem is proved in [33].

The natural conjecture is that LEC and HPC hold in all models of AD" that have
not reached an iteration strategy for a premouse with a long extender. They cannot
hold past that, of course.

Definition 0.10 NLE (“No long extenders”) is the assertion: there is no countable,
wy + l-iterable pure extender premouse M such that there is a long extender on the
M -sequence.

Conjecture 0.11 Assume AD' and NLE; then LEC.

Conjecture 0.12 Assume AD™ and NLE; then HPC.

As we remarked above, 0.11 implies 0.12. Conjecture 0.11 is equivalent to a slight
strengthening of the usual Mouse Set Conjecture MSC. (The hypothesis of MSC is
that there is no iteration strategy for a pure extender premouse with a superstrong,
which is slightly stronger than NLE.) Hence by [16], both LEC and HPC hold in
models of AD" that are below the minimal model of ADg + “f is regular”. By [18],
they hold in all models of AD" below the minimal model of ADT + “the largest
Suslin cardinal belongs to the Solovay sequence”.

The mouse pairs witnessing LEC and HPC are produced in background extender
constructions. One important context in which such constructions can be done is
described in the following theorem.

Theorem 0.13 Assume ADT, let T’ be an inductive-like pointclass with the scale
property, and such that all sets in T are Suslin. Let (N*,¥) be a coarse T'-Woodin
together with its unique I'-fullness preserving strategy. (cf. 10.1 of [10]) Let M be a
level of the (hod or pure extender) full background construction of N*, then letting X
be the strategy for M induced by W,

(a) X normalizes well and has strong hull condensation,
(b) ()(M,X), and
(¢) M is w-solid.

We stated part (a) above. We shall prove it in §3. That (a) = (b) is Theorem 0.5.
We shall prove 0.5 in §4; see also §5.4. We prove part (c) of Theorem 0.13 in §5.7.



For pure extender mice, it is a standard theorem. The proof for hod mice resembles
the proof for pure extender mice, but there are some extra difficulties in adapting
the comparison process implicit in the proof of 0.6 to the comparison of phalanxes.
Finally, the various pieces of the proof of Theorem .13 are gathered together in §5.8.

One can also prove a version of Theorem 0.13 for the least-branch hod mouse
construction of V', provided that V is iterable by the strategy of choosing unique
cofinal wellfounded branches for nice, normal iteration trees.

One must be careful in formulating unique iterability and UBH to restrict to
nice, normal trees on V. Let us say that a tree is nice (or strongly closed) if all its
extenders have length = strength an inaccessible-but-not-measurable cardinal in the
model from which they are taken. The restriction to nice trees is needed to avoid
some counterexamples to UBH due to Woodin. (See [39], [I1], and section 3.) It is
quite plausible to the author that UBH for stacks of nice, normal trees on V is true.

Woodin has shown that if s is supercompact, and this form of UBH holds, then
V' is iterable by the strategy of choosing unique cofinal wellfounded branches for
nice, normal iteration trees with all critical points above k. We shall prove this in
section 3. We also show that if V' is iterable for nice, normal trees by the strategy
of choosing unique cofinal wellfounded branches, and F is any coarsely coherent
sequence of extenders, then V' is iterable for stacks of normal F-trees by the strategy
of choosing unique cofinal wellfounded branches. (An F-tree is an iteration tree all of
whose extenders come from F .) The resulting F-iteration strategy normalizes well.

With these preliminaries, we can state our theorem about hod-mouse construc-
tions done in V| assuming the existence of very large cardinals.

Theorem 0.14 Suppose V' is normally iterable above p by the strategy of choos-
ing unique cofinal wellfounded branches. Suppose there is a j: 'V — N such that
for k = crit(j), & > p, Vijwy © N, and j(k) is inaccessible; then there is a
canonical inner model M such that M |= “There is a superstrong cardinal ”, and
M = “I am iterable ”.

Corollary 0.15 Let p be supercompact, and that UBH holds for nice, normal iter-
ation trees on V with all critical points > . Suppose also there is a j: 'V — N
such that for k = crit(j), x > p, Vi) © N, and j(k) is inaccessible; then there is
a canonical inner model M such that M = “There is a superstrong cardinal ”, and
M = “I am iterable ”.

At bottom, the proof of 0.14 is the same as that for 0.13. We give it in §5.8.
The inner model M of 0.14 is a hod premouse in the least-branch hierarchy. The
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hypothesis of the theorem requires a little more than a superstrong cardinal in V,
but it seems quite likely one could make do with just a superstrong above pu.

One can arrange that the hod mouse M of theorem 0.14 has a limit of Woodin
cardinals A above its superstrong. Its derived model D(M, A) is then a model of ADg
in which there is an iteration strategy for a hod mouse with a superstrong cardinal.
The usual methods for computing HOD show that in fact

HODP™MA) 1= GCH + there is a superstrong cardinal.

One can realize D(M, \) as a Wadge cut in Hom,, by using an R-genericity iteration.
This leads to

Theorem 0.16 Suppose V is normally iterable above k by the strategy of choosing
unique cofinal wellfounded branches. Suppose there is a superstrong cardinal A\ > K,
and suppose there are arbitrarily large Woodin cardinals; then there is a Wadge cut

I' in Home, such that L(T',R) = ADg, and
HOD*T®) = GCH + there is a superstrong cardinal.

We shall prove this theorem in the last section of the paper. Of course, there are
much stronger statements of this kind that are well known, and likely to be true.
The theorem does make a point: granted unique iterability for V', the HOD’s of AD™T
models can be hod mice with superstrongs.

Remark 0.17 It is well known that if there is a supercompact cardinal, and there
are arbitrarily large Woodin cardinals, and the appropriate form of UBH holds, then
there is a Hom,, iteration strategy for a pure extender premouse M such that M
has a long extender on its sequence. So we have a Wadge minimal cut I'y in Hom,,
such that L(I'g, R) = NLE. We show in [33] that if L(T',R) is a proper Wadge cut in
L(Ty,R), then both LEC and HPC hold in L(I',R). Using 0.9, this yields a significant
strengthening of Theorem 0.16.

In what follows, we shall give fairly complete proofs of the theorems above. The
paper is long, partly because we wanted to check things carefully, and partly because
we are looking more closely at the construction of iteration strategies in [10] (FSIT),
and there are many details there. However, the main new idea behind our strategy-
comparison theorem is quite simple. We describe it now.

The first step is to focus on proving (*)(P, ). That is, rather than directly com-
paring two strategies, we iterate them both into a common background construction
and its strategy. In the comparison-of-mice context, this method goes back to Kunen
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([7]), and was further developed by Mitchell and Baldwin ([2]). The first proof of
comparison for pure extender mice with Woodin cardinals had this form, and Woodin
and Sargsyan had used the method for strategy comparison in the hod mouse con-
text. All these comparisons could be replaced by direct comparisons of the two mice
or strategies involved, but in the general case of comparison of strategies, there are
serious advantages to the indirect approach. There is no need to decide what to do
if one encounters a strategy disagreement, because one is proving that that never
happens. The comparison process is just the usual one of comparing least extender
disagreements. Instead of the dual problems of designing a process and proving it
terminates, one has a given process, and knows why it should terminate: no strategy
disagreements show up. The problem is just to show this. These advantages led the
author to focus, since 2009, on trying to prove (*)(P, ).

The main new idea that makes this possible is motivated by Sargsyan’s proof in
[16] that if ¥ has branch condensation, then (*)(P, %) holds. Branch condensation
is too strong to hold once P has extenders overlapping Woodin cardinals; we cannot
conclude that X(7) = b from having merely realized M] into a S-iterate of P. We
need some kind of realization of the entire phalanx ®(77b) in order to conclude that
Y(T) = b. This leads to a weakening of branch condensation that one might call
“phalanx condensation”, in which one asks for a family of branch-condensation-like
realizations having some natural agreement with one another. Phalanx condensa-
tion is still strong enough to imply (*)(P, %), and might well be true in general for
background-induced strategies. Unfortunately, Sargsyan’s construction of strategies
with branch condensation does not seem to yield phalanx condensation in the more
general case. For one thing, it involves comparison arguments, and in the general
case, this looks like a vicious circle. It was during one of the author’s many attempts
to break into this circle that he realized that certain properties related to phalanx
condensation, namely normalizing well and strong hull condensation, could be ob-
tained directly for background-induced strategies, and that these properties suffice
for (*)(P,X).

Let us explain this last part briefly. Suppose that we are in the context of
Theorem 0.5. We have a premouse P with iteration strategy > that normalizes
well and has strong hull condensation. We have NV a premouse occuring in the fully
backgrounded construction of N*, where P € HCY™ and N* captures . We compare
P with N by iterating away the least extender disagreement. It has been known since
1985 that only P will move. We must prove that no strategy disagreement shows
up.

Suppose we have produced an iteration tree 7 on P with last model (), and
that Qo = Nla, and that I/ is a tree on R = Q|a = N|a played by both ¥7 s

12



(the tail of X) and €2, the N*-induced strategy for N. Let U/ have limit length, and
let b = Q(U). We must see b = S((T,U)). For this, we look at the embedding
normalization W (T ,U) of (T,U), which also has limit length. We shall see:

(1) b generates (modulo 7T) a unique cofinal branch a of W (T ,U) (see §2.7).

(2) Letting i} : N* — N} come from lifting &/ to N* via the iteration-strategy
construction of [10], we have that W (7 ,U)"(a) is a pseudo-hull of ;(7"). This
is the key step in the proof. It is carried out in section 4.3.

(3) i (X) C X because ¥ was Suslin-co-Suslin captured by N*, so i;(7T) is by 2.
(4) Thus W(T,U)"(a) is by 3, because ¥ has strong hull condensation.

(5) Since a determines b (see §2.7), and ¥ normalizes well, we must then have
S((T,U)) = b, as desired.

Here is a diagram of the situation:

My s MY i(R) Ny
u i iy
R, i (T) R N*
.

P

Figure 0.1: Proof of (*)(P,X). W, is a psuedo-hull of i;(7).
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Remark 0.18 We suspect that the existing iterability proofs will adapt to the hod-
mouse hierarchy. So the following seem accessible:

1. Suppose k is supercompact, and there is a Woodin limit of Woodins above k;
then there is a canonical inner model satisfying “There is a Woodin limit of
Woodins, and I am iterable”.

2. Assume PFA; then there is a canonical inner satisfying “There is a A that is a
limit of Woodins and <A-strongs, and I am iterable”.

Project 1 would use [11], 2 would use [1].

Historical note. The author proved the main theorems of this paper in Spring 2015.
They have been circulated as a handwritten manuscript since July 2015. Something
close to the present typewritten version has been circulated since April 2016.
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1 Preliminaries

Inner model theory deals with canonical objects, but inner model theorists have
presented them in various ways. The conventions we use here are all fairly common.
For basic fine structural notions such as projecta, cores, standard parameters, fine
ultrapowers, and degrees of elementarity, we shall follow the paper [23] by Schindler
and Zeman. We shall use Jensen indexing for the sequences of extenders from which
premice are constructed; see for example Zeman’s book [10]. The construction of
premice using background extenders comes ultimately from Mitchell-Steel [10], but
the precise definitions and notation we use come from Neeman-Steel [15]. Here is
some further detail.

1.1 Extenders and ultrapowers

Our notation for extenders is standard.

Definition 1.1 Let M be transitive and rudimentarily closed; then E = (E, | a €
[0]<¥) is a (k,0)-extender over M with spaces (i, | a € [0]<) if and only if

(1) Each E, is an (M, k)-complete ultrafilter over P([ua]'") N M, with p, being the
least p such that [u)l*l € E,.

(2) (Compatibility) Fora Cb and X € M, X € E, & X% € Ej,.

(3) (Uniformity)ug. = k.

(4) (Normality) If f € M and f(u) < max(u) for E, a.e. wu, then there is a
f < max(u) such that for E, sy a.e. u, foaBY () = y®aiBY,

The unexplained notation here can be found in [23, §8]. We shall often identify
E with the binary relation (a, X) € F iff X € E,. One can also identify it with
the other section-function of this binary relation, which is essentially the function
X — i (X)N 6. We call  the length of E, and write § = Ih(E). The space of E is

sp(E) = sup{u, | a € [h(E)]}.

The domain of E is the family of sets it measures, that is, dom(£) = {X | Ja(a, X) €
E}. If M is a premouse of some kind, we also write M|n = dom(FE), where 7 is least
such that V(a, X) € E)X € M|n. By acceptability, n = sup({u | a € [0]<“}).
The critical point of a (k, ) extender is k, and we use either crit(E) or kg to denote
it.
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Given an extender E over M, we form the ¥, ultrapower
Ulto(M, ) = {[a, /13 | a € [h(E)]* and f € M},

as in [23, 8.4]. Our M will always be rudimentarily closed and satisfy the Axiom of
Choice, so we have Los’ theorem for 3y formulae, and the canonical embedding

iy M — Ultg(M, E)

is cofinal and Yg-elementary, and hence ¥;-elementary. By normality, a = [a,id]¥,

so lh(F) is included in the (always transitivized) wellfounded part of Ulty(M, E).
More generally,
la, flg = ix (f)(a).
If X CIh(E), then E | X ={(a,X) € E|aC X}. E| X has the properties of
an extender, except possibly normality, so we can form Ulty(M, E[X), and there is
a natural factor embedding 7: Ultg(M, E [ X) — Ulty(M, E) given by

T([CL, f]AE4[X) - [CL, f]%[

In the case that X = v > kg is an ordinal, F [ v is an extender, and 7 | v is
the identity. We say v is a generator of E iff v is the critical point of 7, that is,
v # la, fI¥ whenever f € M and a C v. Let

v(E) =sup({v + 1| v is a generator of E }).

So v(F) < 1h(F), and E is equivalent to E[v(F), in that the two produce the same
ultrapower.

We write A\(E) or Ag for i¥ (kg). Note that although F may be an extender over
more than one M, sp(F), kg, Ih(E),dom(E), v(E), and A(F) depend only on F itself.
If N is another transitive, rudimentarily closed set, and P(u,) NN = P(u,) N M for
all @ € [Ih(E)]<, then F is also an extender over N; moreover i¥ agrees with i
on dom(E). However, i¥ and i% may disagree beyond that. We say F is short iff
v(E) < A(E). Tt is easy to see that F is short iff Ih(E) < sup(i¥ “((kf)M)). If E is
short, then all its interesting measures concentrate on the critical point. When E is
short, i is continuous at £, and if M is a premouse, then dom(E) = M|xi™.
In this paper, we shall deal almost exclusively with short extenders. If we start
with j: M — N with critical point s, and an ordinal v such that k < v < o(N),
then for a € [V]<% we let y, be the least p such that a C j(), and for X C [ua]'”! in
M, we put

(a,X) € E; & a € j(X).
E; is an extender over M, called the (k,v) extender derived from j. We have the
diagram
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where ¢ = z]\b{ , and

k(@i(f)(a)) = j(f)(a).
klv is the identity. If F is an extender over M, then E is derived from i}.
The Jensen completion of a short extender F over some M is the (kg, i3 ((k5)™))

extender derived from ). E and its Jensen completion E* are equivalent, in that

v(E) =v(E*), and E = E*[1h(F).

1.2 Pure extender premice

Our main results apply to premice of various kinds, both hod premice and pure
extender premice, with A-indexing or ms-indexing for their extender sequences. The
comparison theorem for iteration strategies that is our first main goal holds in all
these contexts. Although the proof of this theorem requires a detailed fine-structural
analysis, the particulars of the fine structure don’t affect anything important. We
shall prove it first in the case of iteration strategies for pure extender premice with \-
indexing. The essential equivalence of A-indexing with ms-indexing has been carefully
demonstrated by Fuchs in [3] and [1].

The reader should see [1, Def. 2.4] for further details on the following definition.
A Jensen premouse is a pair

M = (M, k),

where A B
M = <JE7 67 E’ 7’ F>

is an acceptable structure with various properties, and £ < w. The language L, of
M has €, predicate symbols E and F, and a constant symbol 4. We call £, the
language of (pure extender) premice. We write k = k(M); it marks the level of the
Levy hierarchy over M at which we are considering this structure, and we demand
that M be k(M )-sound. So what we are calling a premouse is just a premouse in
the usual sense, paired with a degree of soundness that it has. We usually abuse
notation by identifying M with M.
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Abusing notation this way, we set o(M) = ORD N M, so that o(M) = wa for M
as displayed. (The [23] convention differs slightly here.) We write 6(M) for « itself.
The index of M is

(M) = (6(M), k(M)).

If (1,1) <jex [(M), then M|(v,1) is the initial segment N of M with index [(N) =
(,1). (So EN = EM AN, and FN = EM)) If v < 6(M), then we write M|v for
M|(v,0). We write M||v, or sometimes M|(v, —1), for the structure that agrees
with M|v except possibly on the interpretation of F, and satisfies FMIlv = By
convention, k(M||v) = 0.

Definition 1.2 If P and Q) are Jensen premice, then P < Q iff there are p and |
such that P = Q|{u,1). Also, P<1Q iff P<Q and P # Q.

Thus if P and @ have the same universe, but k(P) < k(Q), then P < Q. Also,
if P is passive and @) is active at o(P), then it is not the case that P < Q. So for
example, if @ is active, then Q||o(Q) AQ, where Q||o(Q) is @ with its last extender
predicate removed. Other conventions would be possible, but this one works best
here.

If M is a Jensen premouse, then EM is a sequence of extenders, and FM is
either empty, or codes a new extender being added to our model by M. The main
requirements are

(1) (Mindexing) If F' = F™ is nonempty (i.e., M is active), then M |= crit(F)" ex-
ists, and for p = crit(F)™ o(M) = i¥ (). FM is just the graph of i¥ [(M|p).

(2) (Coherence) iM (EM)o(M) 4+ 1 = EM~(().

(3) (Initial segment condition, J-ISC) If G is a whole proper initial segment of F,
then the Jensen completion of G must appear in EM. If there is a largest whole
proper initial segment, then 4™ is the index of its Jensen completion in EM.
Otherwise, M = 0.

(4) If N is an initial segment of M, then N is k() sound.

Here an initial segment G = F'[n of F is whole iff n = Ag. Since Jensen premice are
acceptable J-structures, the basic fine structural notions apply to them, so clause
(4) above makes sense.

Figure 1.1 illustrates a common situation, one that occurs at successor steps in
an iteration tree, for example.
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Figure 1.1:  E is on the coherent sequence of M, k = crit(£), and A = A(E).
P(k)M = P(k)N = dom(E), so Ult(M, E) and Ult(N, F') make sense. The ultrapow-
ers agree with M below 1h(E), and with each other below 1h(E) + 1.

There is a significant strengthening of the Jensen initial segment condition (3)
above. If M is an active premouse, then we set

v(M) = max(v(FM), crit(FM) M),
FMIu(M) is equivalent to FM, and so it is not in M. But

Definition 1.3 Let M be an active premouse with last extender F'; then M satisfies
the ms-ISC (or is ms-solid ) iff for any n < v(M), FIn € M.

Theorem 1.4 (ms-ISC) Let M be an active premouse with last extender F, and
suppose M is 1-sound and (1,w,w; + 1)-iterable; then M is ms-solid.

This is essentially the initial segment condition of [10], but stated for Jensen
premice. [10] goes on to say that the trivial completion of F'[n is either on the
M-sequence, or an ultrapower away. This is correct unless F'[n is type Z. If F'[n is
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type Z, then it is the extender of F'[{-then-U, where £ is its largest generator, and
U is an ultrafilter on &, and we still get F'[n € M. (See [24]. Theorem 2.7 of [21] is
essentially 1.4 above.)

If M is active, we let its initial segment ordinal be

UM)=sup({n+1]|F"meM}).

So M is ms-solid iff «(M) = v(M). Theorem 1.4 becomes false when its soundness
hypothesis is removed, since if N = Ulty(M, E) where v(M) < crit(E) < Ap, then
(N) = (M) =v(M), but crit(F) < v(N).

We shall not use ms-premice, so henceforth we shall refer to Jensen premice as
premice, or later, when we need to distinguish them from hod premice, as pure
extender premice.

1.3 Projecta and cores

If M = (N, k) is a premouse, then N is a k-sound acceptable J-structure. Thus
the projecta p;(N) and standard parameters p;(IN) exist for all i« < k + 1, as do the
reducts ( “%; mastercodes”) N* = N*»i(N) As in [23], if i < k, then

pis1(N) = p1(NY),
and
pit1(N) = pi(N) " (r),
where 7 is the lexicographically least descending sequence of ordinals from which a

new subset of p;(N?) can be X defined over N¢. Clearly, ORD N N* = p;(N), and
r C [pir1(N), pi(N)). If i < k, then r is solid, so each « € r has a standard solidity

witness Wy ‘™) that belongs to N°.
Definition 1.5 (a) If Q is an amenable J-structure, then he, is its canonical ¥,

Skolem function.

(b) If M is a premouse and n < k(M) +1, then R is the v, Skolem function
obtained by iteratively composing Y1 Skolem functions of reducts. (Cf. [27],

5.4.)
(c) Let M = (N, k) be a premouse and o < pp(N) and r € [pp(M)]<¥; then
W = transitive collapse of 5™ (o Ur U pp(M)).
When o € ppyi(M) and v = ppy (M) — (o + 1), we call W3;" the standard

solidity witness for «.
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Abusing notation, we speak of p;(M), M*, etc., instead of p;(N), N, etc. Finally,
if £ < w, we set

p(M) = pria(M),p(M) = pr (M), and hy = h5

where k = k(M), and call them the projectum, parameter, and Skolem function of
M. Let

C(M) = Cray+1(M) = transitive collapse of ha“(p(M) U p(M)),

considered as an Ly-structure. Let m: C(M) — M be the anticollapse, and t =
7 (p(M)). We say that M is k + 1 solid, or M has a core, iff pj (M) is k + 1
universal over M, and ¢ is k+1 solid over C(M). This implies that ¢ is £+ 1 universal
over C(M), that pxy1(M) is k + 1-solid over M, and that t = py1(C(M)). If M is
k(M)+1 solid, then C(M) is the core of M. We say that M is k-sound iff M = Cy(M)
, and simply sound iff M = C(M). When we wish to consider C(M) as a premouse
with degree of soundness attached, we set

K(C(M)) = k(M) + 1.

If M is k + 1 solid, then M*+1 exists. M**! is the reduct which codes Cy;1(M).

For the notion of generalized solidity witness, see [23]. Roughly speaking, a gen-
eralized solidity witness for v € p;(M) is transitive structure whose theory includes
Th¥(a U py(M) — (a + 1)). Being a generalized witness for an o € pp(M) is a I,
condition, hence preserved by rY; embeddings. Such embeddings may not preserve
being a standard witness.

The extension-of-embeddings lemmas relate reducts to the structures they code.
The downward extension of embeddings lemma tells us that if S is amenable and
m: S — N™is Xy, then there is a (unique) M such that S = M"™. The upward
extension lemma tells us that if 7: M™ — S is ¥; and preserves the wellfoundedness
of certain relations (the important one being €™ as it is described in the predicate
of M™), then there is a unique N such that S = N". See 5.10 and 5.11 of [23].

Remark 1.6 We have defined cores here as they are defined in [23]. In [10] they
are defined in slightly different fashion. First, [10] works directly with the Cyy1 (M),
rather than with the reducts which code them. The translations indicated above
show that is not a real difference; see [10], page 40. Second, if k£ > 1, then [10] puts
the standard solidity witnesses for p(M) into the hull collapsing to Cy41(M), and if
k > 2, it also puts pgp—1(M) into this hull if py_1(M) < o(M). The definition from
[23] used above does not do this directly. We are grateful to Schindler and Zeman for
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pointing out that nevertheless these objects do get into the cores as defined in [23],
and therefore the two definitions of Cy1 (M) are equivalent. | For example, let k = 2
and let M be 1-sound, with o € p;(M). Let r = py(M)\ (a+1). Let w: Co(M) — M
be the anticore map, and 7(f8) = « and 7(s) = r. The relation “W is a generalized
solidity witness for «,r” is II; over M. (It is important to add generalized here.
Being a standard witness is only Il,.) Since 7 is 3, elementary, there is a generalized
solidity witness for 3, s over Co(M) in Co(M). But any generalized witness generates
the standard one ([23], 7.4), so the standard solidity witness U for 5, s is in Co(M).
Being the standard witness is Iy, so m(U) is the standard witness for «,r, and this
witness is in ran(7), as desired.]

1.4 Elementarity of maps

Given n-sound acceptable J-structures M and N, and 7: M™ — N™ a ¥, elementary
embedding on their n-th reducts, then by decoding the reducts we get a unique
: M — N that is ¥, elementary and is such that 7 C 7. If 7 is 3; elementary, then
is ¥,11 elementary. The decoding is done iteratively, and yields that for k < n,
: M¥ — NFis ¥, or ¥,_i.1, respectively. is called the n-completion of 7. See
lemmas 5.8 and 5.9 of [23]. These lemmas record additional elementarity properties
of 7, codified in definition 5.12 as rX,i-elementarity if m is X1, and weak r¥,1-
elementarity if 7 is only ¥y. Such maps are cardinal preserving , in that M = “y is
a cardinal” iff N = “m(v) is a cardinal”, except possibly the weakly r¥, maps. In
this case, we shall always just add cardinal preservation as an additional hypothesis.
This leads us to:

N N> X

Definition 1.7 Let M and N be Jensen premice with n = k(M) = k(N), and
m: M — N; then

(a) 7 is weakly elementary iff 7 is the n-completion of # [ M™, andw [ M"™: M"™ —
N™ 1s Yo and cardinal preserving.

(b) 7 is elementary iff w is the n-completion of m | M™, and = [ M™: M™ — N"
18 21.

(c¢) 7 is an n-embedding iff  is elementary and cofinal, in the sense that sup w“p, (M)

pu(N).

The elementary maps are correspond to those which are near n-embeddings in the
sense of [21]. The cofinal elementary maps correspond to the n-embeddings. When
n > 1, the weakly elementary embeddings correspond to those that are n-apt in the
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sense of [21], Eé") is the sense of [10], or n-lifting in the sense of [25]. There are many
other levels of elementarity isolated in these references, but for our purposes this is
enough.

In particular, we shall not use the notion of weak n-embedding defined in [10]. In
the end, that notion is not very natural, and in a number of places it does not do the
work that the authors of [10] thought that it did. In particular, there are problems
with how it was used in the Shift Lemma, the copying construction, and the Weak
Dodd-Jensen Lemma. These problems are discussed in [25], and a varity of ways to
repair the earlier proofs are given. The simplest of these is to use weakly elementary
maps instead of of weak n-embeddings at the appropriate places.

The following is clear from the definition:

Proposition 1.8 Let M and N be Jensen premice with n = k(M) = k(N), and
m: M — N be weakly elementary; then

(1) 7 is ¥, elementary,
(2) w(pr(M)) = pr(N) for all k <n, and
(3) w(p(M)) = pr(N) for k <n—1, and sup7“p, (M) < po(N), and

(4) for any a < p, (M), W(Thfy(a Upn(M))) = Thy(m(a) Up,(N)).

It is easy to see that if 7 is (weakly) elementary as a map from (M,n) to (N,n),
and k < n, then 7 is (weakly) elementary as a map from (M, k) — (N, k). Indeed,
7 | M*is a stage in the decoding of w | M™. If k(M) # k(N), then wesay 7: M — N
is (weakly) elementary iff it is (weakly) elementary as a map from (M,n) to N,n),
where n = inf(k(M), k(N)).

Note that if 7: M — N is weakly elementary, and k = inf k(M ), k(N), then 7
moves generalized solidity witnesses for py(M) to generalized solidity witnesses for
pr(N). For example, being a generalized witness for p; (M) is a I1; fact, so preserved
by Y1 embeddings. Even cofinal elementary maps may fail to move standard solidity
witnesses to standard solidity witnesses.

Here are some natural contexts in which the levels of elementarity play a role.

(i) The natural map from the core of M to M is elementary and cofinal, that is,
a full n-embedding.

(ii) The maps EQT 5 along branches of iteration trees are elementary and cofinal (see
below).
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(iii)

(vi)

(vii)

1.5

If 7: M — N is weakly elementary, and T is a weakly normal tree on M,
then 77 is weakly normal, and the copy maps 7,: M7 — MZT are weakly
elementary.

If 7, M, N, and T are as in (iii), and in addition, px(N) < 7(pr(M)) for k =
k(M), then all the 7, satisfy the corresponding condition, and if 7 is normal,
then so is 77T .

By Lemma 1.3 of [21]), if 7: M — N is elementary, and 7 is a weakly normal
tree on M, then the copy maps m,: M7 — MT7 are elementary. (They are
not necessarily cofinal.) If 7 is only weakly elementary, then the copy maps are
weakly elementary. The Dodd-Jensen and weak Dodd-Jensen lemmas holds in
the category of weakly elementary maps.

The maps 727 occuring in an embedding normalization are elementary. The
maps o, are weakly elementary, but may not be elementary, so far as we can
see. (See section 1.)

The lifting maps that occur in the proof of iterability are only weakly elemen-
tary. They are not in general elementary. (See below.)

Iteration trees

If M is a premouse with n = k(M), and F is a short extender over M with kg <
pn(M) and P(kg))M C dom(E), then we set

Ult(M, E) = Ult, (M, E)
= decoding of Ulty(M", E).

The canonical embedding of M™ into Ult(M™, E) is ¥; and cofinal. Its n-completion
i¥: M — Ult, (M, E) is therefore an n-embedding. (We assume here that Ult,, (M, E)
is wellfounded, though one could make sense of these statements even if it is not.)
By convention,

k(M) = k(Ult(M, E)).

Rather than coding and decoding, one can define Ult(M, E) directly, as in [10]:

Ult(M, E) = {[a, frJ¥ |a € [N Aqge M AT eSK,},

where n = k(M) and SK,, is the set of r%,, Skolem terms.
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If in addition p(M) < kg, p(M) is solid, and E is close to M, then p(M) =
p(Ult(M, E)), and w(p(M)) = p(Ult(M, E)), and p(Ult(M, E)) is also solid.

Our notation and terminology regarding iteration trees is essentially that of [29].
If 7 is a tree on M, then M7 is its a-th model, and E] is the ezit extender taken
from the sequence of M7 and used to form

ML, = UM ED).
where
ML = M| k)
for some § = T-pred(a + 1), and some (£, k) < I[(M]) such that crit(E]) <
pe(MZ[E). We put a+1 € D7 iff M7, < M} iff M) < I(M]), and we
say T drops at o + 1 in this case. So unlike [29], drops in degree yield elements of
D7 too. If a <7 B and (a, ]y N DT =, then the canonical embedding

iaTﬁ: MT — ./\/l/;r

is cofinal and elementary; that is, it is an n-embedding, where n = k(M) = k(M}).
All extenders in T are close to the models to which they are applied, so if Crit(z'Z; B) >
p(MY), then p(M) = p(M) and T 5(p(MY)) = p(M]).

We shall also have a use for the natural partial embeddings that exist along
branches that have dropped.

Definition 1.9 Let U be an iteration tree, and o <y . Then igﬁ 15 the natural
map from a (perhaps proper!) initial segment of MY into M%’ More precisely

U U AU
lapr1 = 1a+1 © lay

if v =U-pred(f + 1), and

tan(®) = 15\ (ia,6(2))
if B is past the last drop in [0, \)y.

It would have been more natural to have originally defined igﬂ the way we just
defined 2 5, but it is too late for that now. The difference between and “” is
barely visible anyway.

If 7 is an iteration tree, then lh(7) is the domain of its tree order, that is,
Ih(T) = {a | M7 exists }. Soif Ih(T) = a + 1, then M7 exists, but E/ does not.
T I3 is the initial segment U of T such that 1h(i4) = 8. So Mo+ exists, but there
is no exit extender E o+,

By normal we shall mean “Jensen normal”.

wn
7
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Definition 1.10 Let T be an iteration tree on a premouse M, then T is normal iff
(1) if 6+1 <I(T) and oo < 3, then Ih(ET) < In(E]), and

(2) z'fczl—i- 1 <1Ih(T), then T-pred(a+1) is the least 3 such that crit(E]) < X(E}),
an

(3) MZL = M |(n, k), where (n, k) < 1(M}) is largest so that crit(E) < pp(MF]E).

Definition 1.11 Let T be a normal iteration tree on a Jensen premouse; then for
and B < 1h(T),

Nj =sup{Ar | 3n < B(F = E])}
=sup{Ar | In(n+1 STﬁ/\F:EnT)}

So /\E is the sup of the “Jensen generators” of extenders used to produce /\/l; For
k=k(MJ), ML = hET4(ran(igg) U D).
If 7 is normal, then T-pred(S 4 1) is the largest o such that A] < crit(E]).

Another useful characterization is the following. Let 6 be Crit(Eg)+, as computed in
M |Ih(ET). Then

T-pred(f + 1) = least o such that M |0 = MT|6.

Note here that 6 is passive in M:;‘, so for a as on the right, 6 is passive in M. The
formula may fail if we replace the | by ||, for when Agr = crit(Eg), T-pred(f+1) is
a+ 1, not a.

Figure 1.2 shows how the agreement of models in a normal iteration tree is prop-
agated when the tree is augmented by one new extender. (Figures like this were first
drawn by Itay Neeman.)

If one replaces the condition crit(E]) < A(E]) by the condition crit(E]) <
v(ET) in the definition of (Jensen) normality, one obtains a definition of ms-normality.
(This is called s-normality in [1, §5].) In fact, there are some advantages to working
with ms-normal trees, even in the context of Jensen premice. One is that full back-
ground constructions of Jensen-normally iterable M seems to require superstrong
extenders in V' ( but see [15]). On the other hand, one can show granted only a
Woodin with a measurable above that there is a ms-normally iterable Jensen mouse
with a Woodin cardinal, granted that there is in V' a Woodin with a measurable
above it. ( [10] yields an ms-iterable ms-mouse with a Woodin, and [3] and [] then
translates it to an ms-normally iterable Jensen mouse with a Woodin.) Neverthe-
less, 1.10 is the more common notion of normality in the setting of Jensen premice,
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Figure 1.2: A normal tree 7, extended normally by F'. The vertical lines represent
the models, and the horizontal ones represent their levels of agreement. crit(F') = pu,
and (3 is least such that u < A(EJ]). The arrow at the bottom represents the
ultrapower embedding generated by F'.

and it will serve our purposes. We believe that there are elementary simulations of
Jensen normal trees by ms-normal trees, and vice-versa, but we have not verified this
carefully.

Remark 1.12 ms-normal iterations preserve ms-solidity. As we remarked earlier,
Jensen normal iterations may not.

We also need stacks of normal trees.

Definition 1.13 Let M be a premouse; then s is a normal M-stack iff s = ((Va, ko, Ta) |
a < ), and there are premice M, for a < 8 such that

(1) Ta is a normal tree on My |(Va, ko),
(2) My =M,

(3) if a < B and « is a limit ordinal, then M, is the direct limit of the Mg for
0 < a, and
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(4) if y+1=a< B, then M, is the last model of T,

The definition allows a gratuitous drop at the beginning of each normal tree 7.
If (o, ko) = L(M,,) for all «, then we say s is mazimal. We allow k, = —1, with the
convention that P|(v, —1) = P||v as above.

In (3), the direct limit is under the obvious partial maps ¢ : M — M,, for § <
v < a. We demand that for o < f a limit, there are only finitely many drops along
the branches producing these maps, and that the direct limit is wellfounded. We
write M¢(s) and T¢(s) for M and T¢. If dom(s) = a+ 1, then we write U(s) = T,(s)
for the last tree in the stack. U(s) could have no last model.

1.6 Jensen normal genericity iterations

Jensen normal genericity iterations must be allowed to drop, unless our identities are
generated by superstrong extenders. However, this dropping will not occur along the
main branch, so it is harmless. We explain this briefly now. The reader should see
[29, §7] for more detail on the extender algebra and genericity iterations.

Let M be a premouse, and p < ¢ cardinals of M. We let B = IB%%(; be the w-
generator extender algebra determined by the extenders on the M |d-sequence with
critical point > k. . B is the Lindenbaum algebra of a certain infinitary theory T'
in the propositional language L5, generated by the sentence symbols A,,, for n < w.
For x Cw, x E A, iff n € x, and then x | ¢ for ¢ an arbitrary sentence of Ly has
the natural meaning. The axioms of T" are those sentences of the form

\ @a =V ie((pe: € <) T A,

a<k a<A

whenever E is on the M|d-sequence, crit(E) =k > p, ig({we: £ < K)) [ A € M|n,
for some cardinal n of M such that n < A\g. Let us write T' = T (M6, ).

The usual argument shows that if § is Woodin in M, then M | “B is é-c.c.”. It
is also clear that if M comes from a background construction in V', then every x € V
satisfies all axioms of T'. This is because if F generates an axiom as above, and E*
is its background extender, then E [ n = E* [ nN M, for all M-cardinals 7.

Given an iterable M as above, and an r C w, we form a Jensen normal tree 7
on M as follows: E is the first extender on the sequence of M with critical point
above i] (1) that induces an axiom of T(M]|supif 6,4 ,(11)) not satisfied by =.
The rest is determined by the rules of Jensen normal trees. Note the hat above the
i in the formula! [0, )7 may have dropped, but it will never drop below the image
of u. It may happen that i[{a(é) is undefined, however.
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As usual, the construction of T terminates with a last model M7 such that z
satisfies all the axioms of T(M7T|supi] ,“8,4] (1)) are satisfied by z. We must see
that in this case, [0, «)r has not dropped. Suppose that is has, and let £ + 1 < «
be the site of the last drop, and T"— -pred({ + 1) = . Let E = EVT, and let

=\ ¢a = Visl(pe: € <r)) 1A

a<k a<<

be the bad axiom induced by F, and n a cardinal of /\/l:/f such that ¢ € /\/l;r|77 Since
we dropped when applying it, n < crit(Ez), SO iza [ n is the identity. But also,
MT|Ih(E) 9 Mgy, so il (E) exists. Clearly, i/ ,(F) still induces 1 as an axiom
of T(M]|supif 6,4 ,(11)). Since x does not satisfy 1, the genericity iteration did

not terminate at «, contradiction.

1.7 Iteration strategies

Let M be a premouse. G(M, @) is the game of length € in which I and II cooperate
to produce a normal tree on M, with II picking branches at limit steps, and being
obliged to stay in the category of wellfounded models. See [29], where the game is
called Gi(M,0), for k = k(M). A O-iteration strategy for M is a winning strategy
for IT in G(M, 6).

Similarly, in G(M,n,0) the players produce a normal stack of length 6 on M,
with II picking branches at limit ordinals and I doing the rest, and II being obliged
to insure all models are wellfounded. A (), 0)-iteration strategy for M is a winning
strategy for II in G(M,n, ). See [29].

It is natural to generalize these standard iteration games so that player I has
the freedom to “drop gratuitously” on any of his moves. For example, if M is
premouse, we let G*(M,0) be the variant of Gy)(M, ) in which player II must
pick cofinal wellfounded branches at limit steps as before, and given that 7 with
Ih(7T) = a + 1 is the play so far, I must pick E, from the M, = M7 sequence such
that 1h(Ejs) < Ih(E,) for all 5 < a. (Here My = M.) As before, we set

§ = T-pred(a+ 1) = least § s.t. crit(E,) < A(Ej).
Let (v, k) be least such that p(M7) < crit(E,), or (v, k) = I(Me). Let v = crit(Eq)*

in the sense of M,|1h(E,), or equivalently, in the sense of M¢|(v, k). We now allow
I to pick any (n,l) such that

(7, 0) <, 1) < (v, k),
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and we set

Ma+1 = Ult(M§| <77a l>7 Eoc)‘
We write Me|(n, ) = T-pd(a + 1),

Definition 1.14 A weakly normal tree on an lpm M is a play of some GT(M,0) in
which player 11 has not yet lost.

In older terminology, a weakly normal tree is just one that is length-increasing
and nonoverlapping.

We let G*(M, A, 0) be the variant of Gr)(M, A, 6) in which I is allowed gratu-
itous dropping within each of the A rounds. For notational reasons, we’ll allow him
to drop in the base model for the beginning of a round as well, though this is no
extra generality in fact. We call a position in G (M, A, ) in which II has not yet
lost an M -stack.

Definition 1.15 An M-stack is a sequence s = ((Va, ka, Ta) | @ < B) with all the
properties of normal M -stacks, save that the T, may be only weakly normal.

We allow some or all of the weakly normal trees in our M-stack to be empty.

Given an an M-stack s as above, we write (v4(s), ki(s), Ti(s)) for s(i), My(s) = M,
and M;.1(s) for the last model of T;(s), when i < dom(s) — 1. We write U(s) for
Taom(s)—1(s), the last normal tree in s. We write M. (s) for the last model of U(s),
if it has one.

We shall be most interested in M-stacks of finite length.

If s is a normal M-stack, then we identify s with its sequence of trees 7;(s), the
v;(s) and k;(s) being determined by normality.

A complete strategy for M is an iteration strategy X that acts on all finite M-
stacks that are according to .

Definition 1.16 Let M € Hy; then a complete strategy for M with scope Hy is a
winning strategy for player 11 in the game Gz(M)(M, w,0).

Notice that a complete strategy ¥ for M tells us how to iterate the full M at its
level of soundness, as well as how to iterate initial segments of it. In practice, the
iteration strategies for initial segments of M determined by X are consistent with
one another; we spell this out in section 5.3. Although ¥ is only required to act on
finite stacks, whenever s is a run of G;(M(M, w, ) by 3, then the direct limit M, (s)
of the M;(s) for i < w sufficiently large exists, and is wellfounded.

Given m: M — N weakly elementary, we can copy an M-stack s to an N-stack
s, until we reach an illffounded model on the 7s side. Thus if € is a complete
strategy for N, we have the complete pullback strategy Q™ for M.
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Remark 1.17 It is possible that 7: M — N is weakly elementary, 7 is normal on
M, and 7T is not normal. 77 will be weakly normal, however. In §5.2 we describe
the natural normal tree on N into which 77 embeds; this tree is called (77)7.

Definition 1.18 [Pullback strategies] If ¥ is a strategy for N, and m: M — N is
weakly elementary, then Q2" is the pullback strategy for M, given by

07 (s) = Q(ms),
for all s such that s € dom(f).

The copy maps are all weakly elementary, and if 7 is fully elementary, then the copy
maps are all fully elementary. (Cf. 1.3 of [21].)
Tail strategies are defined by

Definition 1.19 Let Q be a complete strategy for M, and let s be an M -stack ac-
cording to Q such that M. (s) exists; then § is the complete strateqy for Muo(s)
given by:

Q(t) = Q(s71),

for all M (s)-stacks t.
The following notation will be useful:

Definition 1.20 Let ) be a complete strategy for M, and let s be an M -stack accord-
ing to Q0 such that My (s) exists, and let N = My (s)|{v, k); then Qs n = Qo p0y-
We also write €0 1y for Qs n.

When N = M|(v, k), we write Qy or Q,xy for Qp n. It is also useful to have a
notation for a join of strategies:

Definition 1.21 Let €2 be a complete strategy for M, and s an M-stack by §2; then
Qs,<l/ = U{Qs,(n,@ | n<vA k< (,d}.

Note that in general, €, ., is strictly weaker than €1 (, o).
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1.8 Coarse structure

One must consider also iteration trees on transitive models M that are not equipped
with any distinguished fine structural hierarchy. In that case, we shall always assume
M = ZFC, for simplicity. In general, VM plays the role that M|a would in the fine
structural case. All extenders are total on the models to which they are applied, and
all embeddings are fully elementary in the €-language. We shall sometimes call such
M, and associated objects like iteration trees or embeddings acting on them, coarse,
in order to distinguish them from their fine-structural cousins.

Definition 1.22 Let E be an extender over V; then E is nice iff
(a) E is strictly short, that is, Ih(E) < A(E),
(b) Ih(E) is strongly inaccessible, but not a measurable cardinal,
(¢) Vingy € Ut(V, E).

Nice E can be used to background extenders in a Jensen premouse, even though
Ih(E) < A(E). In practice, our background extenders will be such that 1h(E) is
the least strongly inaccessible strictly above 7, for some 7, so that (b) holds. The
requirements of (b) enable us to avoid a counterexample to UBH for stacks of normal
trees due to Woodin. See 3.21 below.

Definition 1.23 Let T be an iteration tree on a coarse M ; then
(a) T is nice iff whenever a +1 < 1h(T), then M7 = “ET is nice”.
(b) T is normal iff

(i) if o < B and f+1 <1n(T), then Ih(E]) < 1h(E]), and
(ii) if a« +1 < Ih(T), then T-pred(a + 1) is the least B such that crit(E]) <
Ih(ET).

This definition of normality is only appropriate for nice trees, but all our coarse
iteration trees will be nice, so that is ok. In fact, we shall restrict the choice of
extenders in T even further.

Definition 1.24 A sequence F = (F, | a < p) is coarsely coherent iff each F, is a
nice extender over V', and

(1) a < = 1h(F,) < 1h(Fj), and
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(2) ifi: V. — Ult(V, F,) is the canonical embedding, and E = z(ﬁ), then Ela =

—

Fla, and 1h(F,)) < lh(E,).

Given a coarsely coherent F, an F-iteration tree is one where all extenders used
are taken from F and its images. Similarly for F-stacks of normal trees. So the trees
in an F-stack are nice. F-iteration strategies are defined in the obvious way. The
following simple lemma uses only clause (1) of coarse coherence.

Lemma 1.25 Let F' be coarsely coherent, and let ¥ be an F-iteration strategy for
V'; them for any N, there is at most one normal F'-iteration tree played according to
Y2 whose last model is N.

Proof. Let T and U be distinct such trees. Because both are played by ¥ and normal,
there must be a  such that T8+ 1=U[S + 1, but G # H, where G = Eg and

H = ng Both G and H are taken from z(ﬁ), where 1 = 2’3?5 = z'z({ﬁ. Say G occurs

—

before H in i(F). Then G € N because U is normal. But G ¢ N because T is
normal. U

The iteration strategies for coarse M that we shall consider will choose unique
cofinal wellfounded branches.

Definition 1.26 Let M = ZFC + “F s coarsely coherent”; then

(a) M is uniquely 0, F-iterable for normal trees iff whenever T is a normal F-
iteration tree on M, and Ih(T) is a limit ordinal < 6, then T has a unique
cofinal wellfounded branch. M is uniquely F-iterable for normal trees iff M is
uniquely 0, F-iterable for mormal trees, for all 6.

(b) M is strongly uniquely 6, F-iterable (for finite stacks) iff whenever (U, . .., U,)
is a finite stack of normal nice iteration trees, with Uy on M, and 1h(U;) < 0 for
all i, and U, has limit length, then U,, has a unique cofinal wellfounded branch.
M s strongly uniquely F-iterable iff it is strongly uniquely 6, F-iterable for all
0.

Assuming AD", we get such M and F via the I-Woodin construction due to
Woodin. See [36][§3] and [30][§10]. These M also satisfy “I am strongly uniquely
F -iterable”, and hence are suitable as background universes for a hod mouse con-
struction. We say more about this in §3 (see 3.11), and in §5.5.

Woodin has shown that ii Kk is supercompact, Fis coarsely coherent and such
that x < crit(E) for all £ on F, and, and UBH holds in VC°!(“<%) for normal F-trees
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on V', then V is uniquely F-iterable. See Theorem 3.10. We show in 3.21 below that
this implies that V is strongly uniquely F-iterable, via a strategy that normalizes
and condenses well.

1.9 Full background extender constructions

In this paper, we shall be looking very carefully at full background extender construc-
tions, and in particular at how an iteration strategy >* for the background universe
induces iteration strategies for the premice occurring in such a construction. In
our applications, the background universes will satisfy “I am strongly uniquely F-
iterable”, where F is the sequence of background extenders used in the construction,
and X* will be the corresponding F-iteration strategy. In this section we look at the
well known construction of pure extender premice. Section 5.5 lays out the obvious
generalization to hod mice.

We shall use the notation of [15] in this context. The reader should look at [15],
and at [1] on which it relies, for full definitions.

Let w be a wellorder of Vs, and Kk < d. A w-construction above k is a full
background construction in which the background extenders are nice, have critical
points > k, cohere with w, have strictly increasing strengths, and are minimal (first
in Mitchell order, then in w).

More precisely, such a construction C consists of premice Ml(fk, with k(M, ) = k,
and extenders F'- obtained as follows. (In the notation of [10], M, ; = Ci(N,), and
FF is a choice of background extender for the last extender of M, o = N,.) We let
My be the passive premouse with universe V,,. For any k, v,

Mz/,k+1 = COl“e(Mu,k) =def C(My,k)-

We have an anti-core embedding 7 : M, p41 — M, with crit(r) > p(M,). For
k < w sufficiently large, M, = M, 41 (except of course that its associated k has
changed), and we set

M, ., = eventual value of M, ;, as k — w,
and
M, 11, = rud closure of M, , U{M,,},
arranged as a passive premouse.
Finally, if v is a limit, put
M= = unique passive P such that for all premice N,
N < P ift N < M, for all sufficiently large o < v.

34



Case 1. There is an F' such that (M <", F') is a Jensen premouse, and F is certifiable,
in the sense of Definition 2.1 of [15].

A bicephalus argument shows that F' is unique, and we set

M,o= (M= F).

Case 2. Otherwise.

Then we set
M,y = M=V,

(Again, our convention is that in case 1, M<" is not an initial segment of M, ,.)
A certificate for F' in the sense of 2.1 of [15] is a short extender F*. Let us write
kp = crit(F) and Ap = ip(kp). F* must have strength some inaccessible cardinal
n > Ap, and satisfy
F*IAp 0 M<® = Fl\p,

Since F™* is short, ip«(kp) > 1 > Ap, so we cannot replace Ap by Ap + 1 in this
equation. We add here the demands that

(1) F*isnice, i.e. Ih F* =,
(1) VT <v (IhFE < n),
(i13) ip-(w) NV, =wNV,,
(iv) F* € Vs, and crit(F7*) > k.
We then choose F€ to be the unique certificate for F' such that

() FC is a certificate for F', minimal in the Mitchell order among all certificates
for I, and w-least among all Mitchell order minimal certificates for F'.

This has the consequence that 1h(FC) is the least strongly inaccessible  such that
Ar < nand V7 < v (IhES < 7). We also get that F© “coheres with C”. That is,
letting Cly = (Mg, Fr) | T <y ANk < w),

1. ipe(C)lv = Clv,
i c(C
2. M&%; : is passive.
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Thus the sequence FC of all FC is coarsely coherent. By a C-iteration, we mean
a FC-iteration in the sense explained above. The length of a construction C is the
lexicographically least (u, ) such that M{%,Z) does not exist.

Associated to a construction C we have resurrection maps Res, x[N] = (n,[) for
some (1, 1) <jex (v, k). The idea is that N traces back to M, ; by following anti-core
maps. o0,;[N] is the associated elementary (at level [) embedding of N into M, ;.
For example, suppose Res, ; and o, are defined. We define Res, j11, 0,541 by

A If N = M, 41, then Res, 41 [N] = (v, k + 1) and o, ;41 [N]| = identity.

B. If N <A M, jy1|(pF)Mrrr1 ) where p = p(M,}.), then Res, 41[N] = Res, x[N] and
0u,k+1[N] = Uu,k[N]~

C. Otherwise, letting 7 : M, xy1 — M, be the anti-core map, Res,11[N] =
Res, k[7(N)] and 0, j41[N] = o, k[7(N)] o 7.

The reader should see [!] for the remainder of the definition. Two points on
agreeement of resurrection maps:

1. if N M, and VN’ (N I N' <M, = p(N') > ), then o, ;[ N]]y = identity.

2. if NI N* 9 M,, and VN’ (N S N' I N* = p(N') > ), then o,4[N][y =
Uu,k[N*”V-

These of course just come from the fact that the anti-core map = : C(M) — M is
the identity on p(M).

Now let C = (M, F}) | (v,k) <iex (1,1)) be a construction above . Take
k = 0 to save notation. Let ¥* be an iteration strategy for nice trees on V. We
wish to describe the induced complete strategy X for M, ;. For T a weakly normal
iteration tree played by X, we shall have a conversion system for T in the sense of
Definition 2.2 of [15]. Such a conversion system converts trees on M, to trees on
V. The particular conversion system we construct we call lift(7, M, x, C,¥*). In
general, a C-conversion system for a weakly normal tree 7 consists of

(7) an iteration tree 7* on V,
(i) indices (ne,le) for £ <1hT,
(¢73) maps m¢ for £ <1hT,

so that, using P, i¢,, Fe, B, ig,, F{ for the models, embeddings, and exit extenders
of T and T*
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P

Py . 9 . C
1. me: P — M(nilg) is weakly elementary (where M(Ui‘vl.s) is My, 1) in i5 (C)),

2. T and T* have the same tree order,

3.if &€ <r v and (§,v]r does not drop in model or degree, then (n,,l,) =
iz,u(@?& le)) and m, 0 idg, = igy O TMe.
4. if £ = T-pred(v + 1) and this is a drop in model or degree to P < P, then

Y P,
(Mgt log1) = Zg,y+1(ReSn§,l§ [me(P)])-

5. Let A\¢ = ip, (crit(Fy)), and ag = Ih F¢ be the index of I in P, and o¢ be the

iy (C
resurrection map an(;’ji )[7T§<P5 || (@, 0))]. Then for £ < v,

Ty [ Ae = 0¢ 0 Me[ Ae
and

Pisup og o me“ A\e = PJ|sup og o me “ Ae.

The particular conversion system lift(7, M, , C) is determined by these condi-
tions and the fact that

(a) let & = T-pred(v + 1), and o, = lh F,, so that F, is the last extender of
P,|{cv,0). Let

G = last extender of Resnpfjlu (7, (P, (v, 0))];
then
F}; = background extender for G' provided by ig ,(C).

(b) let &, v etc. be as in (a). If (§,v + 1]r is not a drop in model or degree, then

Tl f15) = [o o m (@), me(f)] s

where o = a,, 1, [1,(P,|{a,,0))]. If it is a drop, to P < P, then

Toer(la, f15,) = o o my(a). 7 o (]S

. = P*
where o is as above, and 7 = 0,1 [P]"¢.
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The strategy ¥ induced by ¥* is defined as follows: given 7 on M, j,
T is by ¥ = lift(T, M, 4, C) is by ¥*.

If 3 is a strategy for the background universe or even just a partial strategy defined
on all trees of the form lift(7, M, ;, C), then ¥ is a strategy for M, ;. (There may be
T such that lift(7, M, x, C) does not exist, because it enters the realm of illfounded
models. But these trees T are not according to X.)

We may occasionally use the notation lift(7, M, x, C,¥*) for the largest ini-
tial segment of lift(7, M, , C) that is by X*. So T is by X iff lift(7,M,;,C) =
it (7, M, s, C, 3*).

We need to see that the lifted tree 7* is normal. (This is true even if T itself is
only weakly normal.)

Lemma 1.27 Let T be weakly normal, and let ift(T, M, x, C,3*) = (T*, ((ne, l¢) |
§<IhT),(me | € <1hT)); then T* is normal.

Proof. Let P, ig,, Fe, PY, i, F¢ be the models, embeddings, and extenders of T
and 7. Set

Rg = crit Fg, )\5 = iFE(/ig),
K¢ = crit Iy, Ae = tpy (Ke).

Let
5.0

0 = 005 [me(Fe || {ag, 0))]
be the resurrection embedding, so that
F¢ = background extender for o¢ o m¢(Fy) provided by i ¢(C).
Recall that in Jensen indexing, F is indexed at 1h F' = (\},)VI5),
Sublemma 1.27.1 Let (¢ +1 <1hT; then
(a) o¢ome(Ae) < Af = Teq1(Ae),
(b) oglmer1(lh Fe) = identity, for all B > £+ 1,

(¢) mal(lh Fe + 1) = mepq [(th Fe + 1), for all > £+ 1.
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Proof. For (a): let G = ¢ o me(Fy). Since F{ is the background in i (C) for G,
e > Ag = 0gome(Ae). But
Te1(Ae) = mep1([@, contant ke function]%)
= [, contant r; function]?f

= )\g’

where 7 = T-pred(¢ + 1) and P, < P, is appropriate.
For (b), we have since T is weakly normal that for all 5 > £+1, lh F} is a cardinal

in Pg, and py(p,)(P3) > Ih Fe. We then get by induction on 3 that plB(M;iﬁé(c)) >

Tey1(lh Fy), and meyq(1h Fy) is a cardinal in M:liﬁ;i@’ for all B > £+ 1. This gives (b).
For (c), we have A¢ g > 1h Fy, so

mgl(lh Fe + 1) = 0¢qq o meyq [(Ih Fe 4+ 1),
— et (L Fe + 1),

for all B> €+ 1. O
Now we show T* is normal. First, let a < 3, with 5+ 1 <1hT7*. Then

IhEFr < AL = Tar1(Aa) = m3(Aa)
=0 Oﬂﬁ(Aa < Jﬁoﬁg()\g) < thE,

as desired.
For the rest, it is enough to show that whenever o < 3, then

Kp < Ao iff  Kj <Ih F}.
Suppose first K3 < A,. Then

kg =0poms(rp) = ma(kp) = 0a © Talkp)
< SUP O, 0Ty “ Ay < lh ;.

Suppose next kg > A,. Then
k= 0goms(kg) = 050 m(Aa) = Tp(Aa) = Ag

But Af, > Ih F7, so kj > 1h F. g
If ¥* is defined on stacks of normal trees, then we can extend the lifting process
and the induced strategy ¥ for M, ;, so that it is defined on stacks of weakly normal
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trees. For example, if (7,U) is a stack on M, ;, and P, = MZ is the last model of
T, and Lift(T, M, 1, C) has tree T* by ¥* with last model P, then we have

P*
. 3
Te Pg — Mnévlﬁ

from this lift. But X7 P: is a strategy for P on normal trees and by what we

P*
just said, it induces a strategy {2 on Mnélg' (We did not need that the background
universe was V.) We let

Yrp =Q™
= me-pullback of €.
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2 Normalizing stacks of iteration trees

First, given 7 a normal tree on M, and U a normal tree on the last model of T,
we shall define the embedding normalization W (7,U) of (T,U). As we do so, we
show that 7 embeds into ¢/ in a natural way, via what we call later a psuedo-hull
embedding. We then describe how branches of W (7 ,U) are generated by branches
of 7 and U. Finally, in the last subsection we describe the possible ways to normalize
a finite stack of normal trees.

There are two sorts of base models M we are interested in:

1. M |= ZFC, M transitive. This is the “coarse structural” case. Here we shall
assume that 7 and U are “nice”, in that in M, E7 has length = strength an
inaccessible cardinal, and similarly for ¢/. This simplifies various things.

2. M is a premouse. It may be an ordinary premouse, a hybrid premouse (such as
those that provide examples of the N*’s referred to in 0.4), or a hod premouse.
In this case, we want to consider arbitrary fine-structural (7, U), with dropping
allowed.

The definition of W (7 ,U) will make sense in both cases. In this section we shall
focus on the case that M is a pure extender premouse, with Jensen indexing for
its extender sequence. Until we get to section 6, this is what we shall mean by a
premouse. We do need to define W (T ,U) in the coarse structural case as well, and
we shall indicate how to do so as we proceed.

One important feature of the fine structural case is:

Fact 2.0 Let M and N be premice, and % an iteration strategy for M ; then there is
at most one normal iteration tree T according to 3 having last model N.

In the coarse structural case, this is not clear, even if ¥ chooses unique cofinal
wellfounded branches. We shall use this fact in an important way in the proof of
Lemma 2.59 below. One could recover the fact in the coarse structural case by
restricting to iterations where the extenders come from some coherent sequence. We
shall essentially do that.

The definition of W (T ,U) does not require that any iteration strategy for M be
fixed; however, it may break down by reaching illfounded models, even if the models
of T"U are wellfounded. In the case we care about, M has an iteration strategy 3,
(T,U) is played according to X, and the initial segment of W (7 ,U) up to our point
of interest is also played by . We can then invoke Fact 2.0, relative to X, for the
models in W (7T ,U) up to our point of interest.
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2.1 Normalizing trees of length 2

Let M be a premouse, E on the sequence of M, crit(£) < pran(M), and N =
Ult(M, E). Let F be on the sequence of N, and crit(F) < A(E). It follows that
Ult(N, F') makes sense; let @ = Ult(N, F'). So k(M) = k(N), and both ultrapowers
are k(M )-ultrapowers.
Let
Kk =crit(E), p=crit(F).

Let 7 be the iteration tree such that E] = E, E] = F, M] = M, M] = N, and
M7 = Q. Since u < M\(E), T is not normal. We show how to normalize it. There
are two cases.

Case 1. crit(F) < crit(E).

Since p < k and E'is an extender over M (that is, over the reduct M™, for n = k(M)),
F is also an extender over M. Let P = Ult(M, F), and i¥) : M — P be the canonical
embedding. We have the diagram

F T

N Q iyt (N) = Ulto(P, iy (E))

AL
F vE

M ———P

Suppose first that M = ZFC; then N is definable over M from E, and i}/ moves
the fact that N = Ulto(M, E) over to the fact that i (N) = Ulte(P,i¥(E)). 7 is
the natural embedding from ¥ (N) to i (N). That is,

7(la, g]F) = la, g]F
for g : [u]lYl — N, with ¢ € N. The tree & with models
MY =M, M¥ =N, MY =P, MY = Ulty(P,i¥(E))

and extenders
EY=E, BY=F, EY =i¥(F),

is normal. We call U the embedding normalization of T .

Remark 2.1 This implicitly assumes lh £ < lh . If ln F' < 1h E, then F'is already
on the M-sequence, and the extenders of U would be EY = F, EY = i¥(F). The
diagrams and calculations above don’t change, however.
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The proof just given was based on N being definable over M as its E-ultrapower
and i acting elementarily on this definition. But of course, ORY > OR is possible,
and anyway, we need to know i) has enough elementarity. If M = ZFC, all is fine.
We now give a more careful proof that works in general.

Let us assume k(M) = k(N) = 0; otherwise we can replace M and N by their
k(M)-reducts in the following argument. So every x € ) has the form ¥ (g)(b) for
g € Nandb € [v(F)]<¥. We can write g = i (h)(a), where h € M and a € [v(E)]<“.
So

z = ip (ig (h)(a))(b)
= ip o iy (h)(ip(a))(D),
with b, i¥(a) € [sup i “v(E)]<“. Let
G = (extender of iy oy )[sup ik “v(E),
so that
Q = Ult(M, G).
The space of G is k, and its critical point is u. Let us write
R = Ulto(P, iy (E))
H = (extender of iff)g(E) o i) supi¥ “v(E).
It is easy to see that
R =Ult(M, H).

But then we can calculate that G is a subextender of H. For let b € [v(F)]<* and
g " — [v(E)) with g € N. Let A C [crit(E)]" with A € N. (Equivalently,
A€ M.) We have

([b,glF, A) € G i [bgly € ip oig (A
iff for Fy a.e.fi, g(j1)
iff for Fy a.e. i, (g (ﬂ)
iff ([, 9]]}4,2]}4( ) €
iff b, 9]} € il i (p) © z%(A)
iff  ([b,g]¥,A) € H.

)
€i
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So letting o : lhG — 1h H be given by

o([b, glw) = [b, g]¥,

we have

(a,A) e G iff (o(a),A) € H,

so (G is a subextender of H under 0. We can therefore define 7 from Q into R by

7(la, fl&) = lo(a), f5 -

Note 7[1h(F') = o[ Ih(F') = identity. One can easily show that in the case M |= ZFC,
our current definition of 7 coincides with the earlier one.

Remark 2.2 Another way to obtain 7 is the following. Let v: Ult(M,E) —
Ult(P, E*) be the Shift Lemma map, where E* = i¥(E). That is, ¥([a, f]¥) =
[i¥(a),i¥(f)]E.. By the Shift Lemma, v agrees with ¥ on v(E). It follows that F
is an initial segment of Ey, the extender of ¢. The factor embedding from Ult(N, F')
to Ult(V, Ey) is our 7. One can check that it is the same as the embedding we
defined above.

We now digress a bit to discuss the full normalization of 7. Full normalization
is not important for this paper, but it is very useful in its sequels [33], [34], and [35].
See [33] for a more complete discussion of full normalization.

To fully normalize T, we must replace i% (E) by a subextender of itself. We can
use condensation to show that the appropriate subextender is on the P-sequence. To
see this, let ((B;,k;) | 0 <1i < n) be the lh(F)-dropdown sequence of M. That is

(Bo, ko) = (Ih E,0)
and

(Bix1, kiv1) = lexigraphically least («, j) such that
(o, 1) <jex L(M) and p(M[{ev, 1) < p(M[(B;, k:))).

So long as they are defined, the ordinals
p; = p(M[(B;, ki)

are strictly decreasing as i increases. The (f;, k;) increase, lexicographically. Note
that p} is a cardinal of M|B;; with respect to r¥, ., functions, and (8; 1, k1) is
lex-largest such that this is true.

i+1
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Let n be least such that (3,, k,) cannot be defined this way, and set
(B kn) = L(M) = (6(M), k(M)).

Notice that E was total on the reduct M*M) so that crit(E) < p(M|{B;, k;)) for all
i < n, so by our case hypothesis, crit(F') < p(M|(f;, k;)) for all ¢ < n. Thus we have

for all i < n. We have

Ty = 10

and Ult(M|(B,, kn), F) = Ultg(M, F) = P. So R = Ult(P, 7, (E)) was the last model

of our embedding normalization.
Claim 2.3 @ = Ult(P, m(E)).
Proof. 1h(FE) is a regular cardinal in N. So

mo = ip " = i IN||Th(E),

and thus

Let
L = (extender of if:o(E) oi¥)iN(v(E)),

then it is easy to see that
Ult(P, mo(E)) = Ult(M, L).
Recall that G was the extender of length i¥ (v(E)) given by i¥ 0 i¥. As before, we
get 0 : 1h(G) — 1h(L) by
_ M]|h(E
U([ba g]]}}j) = [ba g]FH ( )7

defined for b € [V(E)]<“ and ¢ : [u]® — v(E) with ¢ € N. (We assume here
k(M) = k(N) = 0; otherwise replace M and N by their k(M )-reducts.) But all such
g are in M||1h(E), so

o = identity.

As before, we get that GG is a subextender of L under &, but this just means that
G = L, proving Claim 2.3. O

Claim 2.4 For 0 <i <n, Ut(M|(8;, ki), F) is an initial segment of P.
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Proof. Ult(M|{Bn, k), F') = P. Now suppose Ult(M|(Bit1, kit1), F') is an initial
segment of P. So then m; 1 (M|{B;, k;)) is an initial segment of P. It will suffice to
show ULt(M|{B;, ki), F') < i1 (M|{B;, k;)). But consider the factor map

¥ UR(M[(B;, ki), F') = i (M[(B;, ki >)

given by

bl fI7) = [a, £
for f a function given by a r¥j,-Skolem term interpreted over M|f;. For simplicity,
let us assume k; = k; ;1 = 0, so this just amounts to f € M|p5;. Let p = pf; that is,
assuming k; = 0, let

p = p1(M|B:),
p :p1<M‘5¢)>
S = Ult(M|B;, F).

So v : S — miys1(M|B;). Now pis still a cardinal in M|Bi1. So (Ha)MIbi = (Ha)MIBin
for all & < p. So
crit(¢)) > sup m; “ p.
Also,
S = Hullf (sup m;“ p U {mi(p)}),
as is easily checked. So p;(S) < supm;“p. Using the solidity witnesses, it is easy to
see that
p1(S) =supm“p and pi(S) = m(p).

We can apply condensation to ¢ to see that S < ;i (M]|f;) once we show that
sup 7; “ p is not an index of an extender on the ;1 (M|5;)-sequence.

Suppose it were. Then supm;“p is not a cardinal of w1 (M|3;), so crit(y)) =
sup m; “ p. This implies that m;,; is discontinuous at p and that

M|Bis1 = cof(p) = p.
But then
Ult(M|Bis1, F) |= cof(sup m;“ p) = p.
But indices of extenders have successor cardinal cofinalities, and p is a limit cardinal

in Ult(M|Bit1, F), so sup m; “ p is not an index in Ult(M|B;41, F')-sequence. Therefore
it is not an index in the ;1 (M |B;)-sequence. O

By Claim 2.4, mo(E) is on the sequence of P. Thus our full normalization of T
is the tree S, where

Mg =M, My = N, M3 = P, M5 =Q,
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and
E$ =FE, ES =F, BES = m(E)).

Again, this assumes 1h(F) > lh(E). Otherwise it is £ = F and ES = my(E).
The following diagram summarizes Case 1.

i -
N Q R
E iN(E) N
. T s%@
M—r p

Here i¥ (F) = m(E). The notation is justified because (N|1h(F), E) = M|1h(E),
so % moves F' as an amenable predicate, and produces thereby what we called 7y (E).
The construction in Claim 2.4 shows that in fact i%(FE) is a subextender of i¥ (E)
under the map o : ¥ (v(E)) — i¥(v(E)) we identified earlier, o([b, g|¥) = [b, g]¥

for g : [ — v(E) with g in N.

Remark 2.5 All embeddings in the diagram above are all elementary and cofinal.
All but 7 are ultrapower embeddings. 7 is easily seen to be weakly elementary, and
it is cofinal because all the other embeddings are cofinal.

Remark 2.6 If G is the extender of i} 0¥ then in fact v(G) = supi¥ “v(E), as

shown by our earlier calculation. So v(iX(E)) = sup i “v(FE).

Remark 2.7 Let us consider the case that v(E) is a cardinal in M. Then (“a)M =

(Fa)N for all @ < v(E), so for o as above, o|supi® “v(E) = identity. Thus

i¥(E) is the trivial completion of i (E)|supi¥ “v(E). If i¥ is continuous at v(F)
(i.e. cof M(v(E)) # p), then i¥(E) = i¥(E) and Q = R. If ¥ is discontinuous at
v(E) (i.e. cof M (v(E)) = p), then Q # R, and in fact crit(r) = supi¥ “v(E).

So in this case, the embedding normalization of T uses i (E) to continue from

P, while the full normalization may use a proper initial segment of i}/ (F) to continue
from P.

Case 2. crit(E) < crit(F).

Let p = crit(F) and k = crit(E). We have assumed p < A(E), as otherwise T is
already normal. Let

P = Ult(M|(£, k), F)
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where (&, k) is lexicographically least such that p(M|(£, k)) < p. Let
i: M|(¢, k) — P
be the canonical embedding, i = z’?!'@””. The embedding normalization of 7 con-

tinues from M, N (assuming lh(£) < Ih(F)), and then P by using i(E) now. Note
i(E) should be applied to M, not P, in a normal tree. So let

R = Ult(M,i(E)).
Let G be the extender of i o ¥ and notice that G is short, with \(G) ==
iN(NE)) =supi¥ “A(E). Let
7 iy (A(E) = i T ()

be given by N .
o(lb,glr) = b:9lp ™,

for g : [u]® — A(E) with ¢ € N. (Note that for n = k(M) = k(N), we have
Kk < po(M), so AM(E) < pn(N), so every r3Y such function g belongs to N.) We
claim that

Claim 2.8 G is a subextender of i(E) under o.

Remark 2.9 In this case, G and i(E)are short, and o is the identity on their com-
mon domain.

Proof. Let a C supiX “ \(E) be finite, and let A C [k]/% be in M. Let a = [b, g]¥,
where g € N and g : [l — [v(E)]%l. Then
(a,A) G iff ([b.glp.A4) G
iff (b, glp € i oig (A)
iff for Fy a.e. fi, g(f1) € it (A)
iff for F, a.e.fi, (g(n),A) € E
iff (b gly °, A) € i(E)
iff (o(a),A) €i(E).
Thus we have a factor map 7: @ — R from Ult(M, G) to Ult(M,i(E)) given by
7(la, flg) = lo(a), fli(e).
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Assuming lh(F) < lh(F'), the embedding normalization of T is then U, where
EY=FE, E¥ = F, EY =i(E).
If In(F) < Ih(E), it is BY = F, B4 = i(E).

The full normalization is obtained as in Case 1. Let

o« M||Ih(E) — Ult(M||Ih(E), F)

be the canonical embedding. Letting a([b, g|¥) = [b, g]?f”lh(E) for b, g as above, we

have ¢ = identity, which yields G = m(E). One can show that my(E) is on the
P-sequence by considering the 1h(E) dropdown sequence of M|¢ and using conden-
sation, as in Case 1.

The situation in Case 2 is summarized by the diagram

Vi

MI¢

Mg
p

We have assumed here £ = 0 to remove some clutter. Again, all the embeddings in
the diagram are cofinal and elementary. In the case of 7, this is because it is weakly
elementary, and it is cofinal because all the other embeddings are cofinal.

Remark 2.10 If (¢, k) = (Ih(E),0), then iy ¢ = i¥[N|Ih(E), so i¥(E) = iy *(E),
and Q = R. This is what happens if v(E) < crit(F) < A(E). The original T is

ms-normal but not Jensen normal. Its embedding normalization is Jensen normal,
and has the same last model as T .

If (¢, k) = 1(M), then the diagram simplifies to
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If u < v(E) and v(E) is a cardinal of M and (£, k) = [(M), then % (E) is the trivial
completion of i¥ (E)[supiy “v(E). In this case, Q = R iff cof™ (v(E)) # u, and if
Q # R, then crit(7) = supif “v(E). O

Remark 2.11 In both cases, the embedding normalization of ((E), (F')) may break
down by reaching an illfounded model. Similarly for full normalization. (There we
also used condensation, hence indirectly iterability.)

Again we are interested in the case M has an iteration strategy . In that case,
the models are all wellfounded, and things work out as above. It doesn’t yet matter
what X is, since the trees are finite.

2.2 Normalizing 7(F)

Let M be a premouse, and 7 a normal tree on M having last model N. and let F' be
on the N-sequence. Let @) be the longest initial segment of N such that Ult(Q, F)
makes sense, that is, such that F'is total on @ and crit(F) < py()(Q). We construct
a normal tree W on M such that Ult(Q, F') embeds into the last model of W via
a weakly elementary map. We call W the embedding normalization of T (F), and
write

W =W (T, F).

Let « be the least such that F is on the M7 -sequence. Then M7 agrees with @
up to Ih(F) + 1, and @ agrees with Ult(Q, F') up to lh(F'), but not 1h(F) + 1. By
Fact 2.0, W must start out with 7 [(a + 1), if it is being played by some iteration
strategy X for M such that 7 [(«a + 1) is played by ¥. This is the context that is
motivating our definition of W, so we set

Wlla+1)=T(a+1).

(This does not imply EY = ET just MY = M7 )
Now let 8 < « be least such that pu < )\(Eg—), or # = «a. F must be applied to an
initial segment of M = MZ; in W. That is

EY =F,
and the rest is dictated by normality:
W-pred(a + 1) = g,

and

MY = M (6o, ko)
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where (&, ko) is least such that pMg|(o, ko)) < g or (€0, ko) = I(M)’), and
MY = UM F).
This gives us W|(«a + 2).

Case 1. Q # N.
In this case @ is a proper initial segment of M BT | lh(EﬁT), by the following claim.

Claim 2.12 Let T be a normal iteration tree, f+1 < 1h(T), and M7 |Ih(E] <R <
M for some 0 > 5+ 1; then Ih(ET) < priry(R).

Proof. Let S = M]. Tt is easy to see that pys)(S) > (h(G) for all extenders G
used in the branch [0, 6)7. Since some G with 1h(G) > 1h(E} was used in [0, 6)7, we
are done if R = S. If 6(R) = 6(5) but k(R) < k(S), then pys)(S) < prr)(R), so
again we are done. Finally, if 6(R) < 6(S), then R € S, so pyr)(R) < Ih(E]) < o(R)
implies that lh(Eg) is not a cardinal in S. This is a contradiction. U

Let N = MJ and Q = N|{¢, k). We apply the claim to R = N|{£,k +1). We
have Q <IN, so this makes sense. We have p(Q) = pi(r)(R) < p < Ih(E]). It follows
from the claim that R < ./\/l:Br| lh(Eg). But @ < R. Thus @ is a proper initial segment
of MT|1h(E]).

Thus @ = M7 (&, ko), a = 3, and MY, = Ult(Q, F). So we set

W(T,F) = Wi(a+2)
=TIHB+1)7(F).

We call this the dropping case in the definition of W (T, F'). In this case, Ult(Q, F')
is actually equal to the last model of W (T, F).

Case 2. Q= N, and Ih(7T) =4+ 1.
Since Ih(7T) =3+ 1, then Q = N = M[;r Thus a = 3, and again

W(T,F)=W[(a+2)
=TIB+1)(F).

Again, Ult(Q, F') is actually equal to the last model of W (T, F). The difference
between this and the previous case is just that we did not drop when we applied F

to T.
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Case 3. Q =N, and IW(T) > 5+ 1.

In this case, Ult(N,F) makes sense, so (Ih(E]),0) < (&, ko), and in fact that
Ult(M7, F') makes sense for all n such that § < n < Ih(T).
For n < 1h(T), set

o) =147 L
(a4 1)+ (1 B). ifn>p.

So ¢ : [0,Ih(7)) = [0,8)Ua+1, (a+1)+ (Ih(T)—f)) order-preservingly. We define
M?{n), and
T w
Ty My = M.

For n < 3, ¢(n) = n and M] = M}V and m, = identity. We let
3 = canonical embedding of M} (%o, ko) into Ult(MF[(&, ko), F).

(So the display above is a bit off; for n = 3, 7, may not act on all of ./\/lnT For n #£ 3,
7, will act on all of /\/lnT) Note that F is close to Mg|<§0, ko) because it arose in a
later model of 7T, so that ms is cofinal and elementary.

We define 7, and Mg\(/n) for n >  + 1 by induction.

Forn =+ 1, we let

w o _ T
Egig) = ms(Ep),
and let 7 < 3 be least such that crit(E)y ) < A(EYY), and (v, k) be least such that

B
crit(E;Q}B)) > pre1(MW]y), and set

w w w
M¢>(B+1) = Ult(M‘r |</77 k>7 Ed)(,ﬁ))u
as required by normality. We get mgy; from the Shift Lemma. There are two cases.
Case A. crit(E}) > p.

Since s = ip” " cxit(rg(E])) > I(F). But F = EY. Thus ms(E]) = B, is

applied to MY, = M};\(’ﬁ), or an initial segment of it. That is

T=0¢f)=a+1
in this case. In T, we must have
T_pred(ﬁ + 1) = Ba
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because [ was least such that p < V(Eg) Similarily, the case hypothesis implies
that

M,y = Ul(MT (&1, ki), ET)
where (&1, k1) <iex (€0, ko). We have that 7w : Mp|(&, k1) — ma(Mp|(&1, k1)) is
elementary, so we can set

M]|¢ MY o (61)
7T,3+1([a7 f]Egﬁ' 1) = [71'5(&)7 Wﬂ(f)]EJ;?;I;)

MT &

. . MY m5(€0) .
as in the Shift Lemma. (If k1 > 0, m3(fr" ) = frmola) .) We have that w4, is

elementary ( a near kj-embedding) by [21], and 7wz [Th(E] 4 1) = ms] Ih(E]).

Case B. crit(E] ) < p.

Then crit(mg(E])) = crit(E] ), so 7 = T-pred(f+1) = W-pred(¢(5+1)). It is clear
that E] and mg(E] ) are applied to the same initial segment, of M7 = M. Letting
this be M7 |{v, k), we get

w1 s U(MT (9, k), B]) = Ule(MY[(y, k), m5(EY))

from

7rﬁ+1([a>f]gjh) = [W'B(a)’f]g&g'

Again, g1 is elementary, and 7g; agrees with 75 on lh(EZ;) + 1.

Remark 2.13 In Case A, ¢(T-pred(f + 1)) = W-pred(¢(f + 1)), while in Case B,
this fails, and in fact T-pred(8 4+ 1) = W-pred(5 + 1). It is because ¢ may not
preserve point-of-application for extenders that 7 may not be a hull of W, under
¢ and the m,’s, in the sense of Sargsyan’s thesis [16]. In fact, 7 will be such a
hull iff crit(EZ' ) > p for all n >7 . For example, this happens when 7 factors as
T1(B+41)"S, where S is a tree on M} with all critical points > p.

The successor case when n > [ is similar. Suppose by induction that whenever
0 <

(1) By = ms(EY).

(2) if § # S, then s is an elementary embedding from M7 to Mg‘(jé). (7 is cofinal
elementary from M7|[(&o, ko) to /\/lg‘(/ﬁ).)

(3) if £ < 0, then 75 agrees with 7¢ on lh(EZ) + 1.
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(4) (a) if T-pred(9) # B then ¢(T-pred(d)) = W-pred(¢(9))
(b) if T-pred(d) = 3, then
i. crit(E] ) > p= ¢(T-pred(d)) = W-pred(¢(6))
ii. crit(E] ;) < p= W-pred(¢(d)) = j3
(c) i ifd # B, then (6 T & iff ¢p(6) W ¢(£))
. BTE = (o(B) W ¢(€)) iff the first extender used in (3, £]r has critical
point > pu).
(5) (a) if 6 # B3, then § € D7 iff $(6) € D, and deg” (0) = deg" (4(5))
(b) if 6 £ B, 6T &, and DT N (€, 6]y = &, then m¢ o igé = ig\(}é),qb(g) oy

we then define 7, : MZ+1 — /\/lg‘(}77 +1) 80 as to maintain those conditions. Namely,

w T
E¢>(n) - 7T77(E77 )’

and letting 7 be least such that Crit(EZYn)) < A(EY), and (v, k) be appropriate for
normal trees,

M o(n+1) Ult(MZVK% k>7 E};(/n))

We get 41 from the Shift Lemma, with two cases, as before.

Case A. crit(E]) > p.

Let 0 = T-pred(n + 1), i.e. o is least such that crit(ET) < A(E]). Clauses (1) and
(3) above tell us that ¢(o) is the least 6 in ran(¢) such that crlt(EW ) < AMEY).
But 7 > ¢(8) by our case hypotheses, so 7 € ran(¢), so 7 = ¢(c). We leave it to the
reader to show that if

Mn—l—l - Ult('/\/lc7r—| <)" l>a ETT)a
then in fact i = k, and 7,(A) = . Thus we set

msa(fo: [T ) = (o). 7o (]

and everything works out so that (1)-(5) still hold.

Case B. crit(E]) < p.

Again, let ¢ = T-pred(n 4+ 1). So o < . Since anlh(ET) = 7| h(F 7@ , Tyl =

identity, so crit(E]) = crit(E o(p)- Thus 0 = 7. One can show that £, and E;;\(}n)
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are applied to the same initial segment of M7 = M, via ultrapowers of the same
degree. So we have

Tper + ULt (M| (. k), ET) — UMY (7, k), EX)

given by
MT MW
mrs (o gy ") = [mafa), flg "
The reader can check (1)-(5) still hold.
This finishes the definition of 7, ;. For A a limit, Mg\(j/\) and my : ./\/lz — ./\/lg\(}/\)
are defined by

M;\(}/\) = dirlim of ./\/lg‘(ja) for a T' X sufficiently large,

w
(a)

(il () = ig(a),e0n: for aT A sufficiently large.

(1)-(5) imply this makes sense, and that (1)-(5) continue to hold. This completes
our description of the embedding-normalization of 7 (F).

We must see that for N the last model of 7 and R the last model of W, Ult(N, F)
embeds elementarily into R. But

Lemma 2.14 For any v > 8, F' is an initial segment of the extender of m,.

Proof. F is the extender of ms. Since s (ut)Msl8 = 7 [(u+)Mslé (because
(H)Mslé < 1h(ET)), we are done. O

Thus there is a natural factor embedding 7 from Ult(NV, F') into R, given by
~(la, f1¥) = 7, (f)(a), where N = M.

Lemma 2.15 7 is weakly elementary.

Proof. Let n = k(N). Let G be the shortest initial segment of the extender
of m, such that 7,(N") = Ultg(N",G). Then F is an initial segment of G, and
7| Ultg(N™, F) is g elementary from Ulty(N™, F') to Ultg(N", G), and ¥, elementary
on ran(i¥"), which is cofinal in Ultg(N™, F').. This implies that 7 is Y, elementary,
and rX, ., elementary on a set cofinal in p, (Ult(N, F').

The remaining clauses in definition 1.7, concerning the preservation of parameters
and projecta, follow from the fact that i¥ and ., are weakly elementary, and Toi¥¥ =
.

0
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Remark 2.16 We do not know whether 7 must be fully elementary. The problem
is that 7, “p,(/N) may not be cofinal in p,(R). If M-to-N does not drop in 7T, then
M-to-R does not drop in W, and therefore ., is cofinal and elementary, so 7 is cofinal
and elementary. When M-to-N drops, 7 may fail to be elementary, so far as we can
see.

In a sufficiently coarse case, W is also the full normalization of (T, F')..

Remark 2.17 There is an analogous construction that starts with an ms-normal
tree 7 on M, and an extender F' on the sequence of its last model N, and produces
an ms-normal tree W™S(T | F') such that Ult(V, F') embeds into its last model.

We shall write X (7, F) for the full normalization of (7, F). In a sufficiently
coarse case, X(T,F)=W(T,F).

Proposition 2.18 Let M, T, F, and 3 be as above. Suppose also that T is ms-
normal, and that k(M) = w and p,(M) = o(M). Let p = crit(F'), and suppose that
for all v +1 < 1h(T),

T T ,
M Ev(E)) is a cardinal of cof # p.

(So T does not drop anywhere, and all models have degree w.) Then for all v < 1hT
such that v > (8
-
MYy = Ult, (M| F),

and the embedding normalization map m is the same as the F-ultrapower map.

Proof. We show this by induction on «. For v = /3, this is the definition of MZ\(},B)

and mg. Suppose it holds for all v <7, we must show it holds at 74 1. Let £ = EnT

and B* = 7,(E) = E)Y . Let 0 = T-pred(n + 1).

Case 1. p < crit(E).

-
Then o > 3, and ¢(0) = W-pred(¢(n + 1)). Let S = Ult, (M|, F), and let i?”“
be the canonical embedding. We have the diagram

T
,L'MTH-l
F T

M, B

'S

M —— MY
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Here 7 comes from the argument in Case 1 of two-step normalization. Namely,
MT MT MY MT
let G' be the extender of i, """ o4, and H be the extender of ¢,.”" o1 7. Note
MT MT . .
v(G) =supip " “v(E) and v(H) = sup ZJFM" “v(E), by our cofinality assumption.

Claim 2.19 G is a subextender of H under the map 1, where

wllb gl = gl
Jorb e [(F)]< and g : ()" — v(E), g € MT ;.

Proof. We calculate as before: for b, g as above and A C [crit(E)]<¥ with
Ae M,

T T T
(b gl ™ A) € G iff [b,gly ™ €y ™ o i (A)
. . 7—
it for Fy ace.p, g(p) € iy (A)
(by Los for Ult(M],, F))
iff for F, ae.p, (g(n),A) € E

MT T

: M .
ift  ([b,glp",ip" (A)) € E
(by Los for Ult(M], F))

i (b, gl € i (i (A))

.
(since z‘ﬁff and igi” agree on subsets of crit(E*))

. M MT o MT

it [b,glp" € ip (ip7 (4))
-

.
" agrees with ,, hence 7, hence il/;l” on subsets of crit(£))

iff (b, g]5", A) € H.

. M
(since 7%

g

But now M) and M, have the same functions g : [u]<* — v(E), by our
%

“coarseness” assumptions. So ¢ = identity, and G = H, and S = M¢>(n+1)‘ So our
diagram is

T 'F w
/x1ﬁ+1 \\\\——’/; j»1¢(n+1)
Tn+1
E E*

T w
Mg ———— Mo
Mg =1ip 7
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It remains to show i/;l”T“ = Ty+1. Since both maps make the diagram commute,
it is enough to show iﬁ/l”ll 'V(E) = myp1[V(E). But myq[v(E) = m,[v(E) by the
Shift Lemma, and 7, [v(E) = i/;q [v(E) by induction, and zj;l"T lW(E) = iﬁ/t"T“ lv(E)
because M7 and M7, | have the same functions g : [u]< — v(E).

Case 2. crit(F) < p.

Let 0 = T-pred(n+1). Then in this case, 0 = W-pred(n+1). Let S = Ult(M],,, F).
We have the diagram

M
T 'F T w
Mo S M¢>(n+l)
E*

MI = MY

M7 . .
We show that S = MZ\(}HH) and i "' = w41 by the calculations in Case 2 of
two-step normalization. [l

Definition 2.20 For U a normal iteration tree on M, let
US" =U[(a+ 1), where a is least such that Th EX > 7,
and U7 = U if there is no such «. Let

Uy, u
U = (M, | B exists Ny < M(E}')).

Definition 2.21 Let M, T, F and W be as above, then we write
W(T, F) — T< thm<F>r\Z~F ::T> crit(F)

for the embedding normalization of T (F) just defined. We write a™F, gT-F ¢TF
and WZ’F for the auziliary objects a, B, ¢, e that we defined above.

The full normalization X (7, F') of T"(F') can be obtained as follows. We assume
that 7 is normal on M, N is the last model of 7, F' is on the N sequence, and
crit(F') < pp(N), for n = k(N). Let

W = T< lh FA<F>AZ~F « T> crit(F)
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be the embedding normalization. Let 7<™# = T(a + 1), = W-pred(a + 1), and
¢ :1hT — Ih W be as above. The full normalization is X', where

Xl(a+2)=W][(a+2)
and
M;f(n) = Ult(/\/lnT, F) for n > .

(Note that if n > /3, then some G such that crit(F) = p < A(G) was used on the
branch to M., so for k = k(M]'), u < pp(M]).) The tree order of X is the same as
that of W. We have

mT
T 'F X T w
My ——— M) ——— My,

n

where 7 is the natural factor map. What remains is to find the extenders E(f(n) that
make X into a normal iteration tree. For this, let E = EnT , and

m: M |(In(E),0) — Ult(M, |{Ih(E),0), F)

be the canonical embedding. One can show using condensation that w(E) is on the

sequence of M;((n)' Moreover, for ¢ = W-pred(n + 1),

Miy = UMY [(€,n), 7(E)),

where n = k(M) ) = k(M7 ) and ¢ is appropriate. The details here are like those
in the two-step case. Since we don’t actually need full normalization in comparing
iteration strategies, we give no further detail here. There is a much more careful
discussion in [33]. Here is a diagram of the situation.

i -
N —" S U(N,F) ——— R
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Each J\/lnT is mapped into M(f(n), and that in turn is mapped into Mg\(}n)'

Returning to W (T, F), here are a few illustrations that the reader may or may
not find helpful. Let 7 be normal on M of length § + 1, F' on the sequence of M7
p = crit(F), § least such that u < A(E}), and a least such that F is on the sequence
of M7, as above. We assume in the diagram that 8 < 6, and that Ult(M], F)
makes sense. Let ¢ : 0 = [0,5)U[a+ 1, (a+ 1) + (0 — B)] be the order-isomorphism
as above.

We illustrate first the embedding of T into W(T, F'), as it appears in the agree-

ment diagrams. We draw them as if 8 < «, although § = « is possible.

T lhET
I
I r 1hEg
+A(Ep)
ol 1
0 I6; o 0
¢, m, for v >
w
$A(Es) ||
(¥ H
0 B a+1 (a+1)+ (0 —05) We
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have

TlHa+1)=W][(a+1),
F=EY,

and ip“T~* = remainder of W.

The next diagram show how ¢ may fail to preserve tree order. By (4)(c) above,
we can have § <p & but ¢(8) €w ¢(&) iff 6 = 3, and the first extender G used in
(0,€)7 such that G is applied to an initial segment of M7 satisfies crit(G) < p. Let
S<t be the set of such £ >7 3, and S=* the remaining ¢ >+ 3. The picture is

S=n S<w P S=H PUS<H

’ \

Ay \

T W

Finally, we illustrate the relationship between the branch extenders of [0, &)y and
[0,0(&))w. If € < 3, they are equal. For £ = 3, the picture is
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L L
K K
extender of 0, 5)r extender of [0,0(8))w

because [0, 8)r C [0, ¢(5))w, and just the one additional extender F' is used.
For £ > 3, let G be the first extender used in [0,£)7 such that A\(G) > A(E}).
The picture depends on whether p < crit(G). If p < crit(G), it is

F(H)
1| :
{ F(G)
G { :
F
B |
L { Ll
K{ K|
extender of [0, 3)7 extender of 0, 0(8))w
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In this case, F' is used on [0, ¢(£))w, and the remaining extender used are the images
of old ones under copy maps.
If crit(G) < p < A(G), the picture is

extender of [0, 3)r extender of [0, ¢(5))w

In this case, the two branches use the same extenders until G is used on [0,£)7. At
that point and after, [0, ¢(£))w uses the images of extenders under the copy maps.

Notice that in either case, there is an L used in [0, ¢(€))w such that crit(L) <
crit(F) < A(F) < A(L). This will be important later.

Remark 2.22 There is nothing guaranteeing that the models of W (T, F') are well-
founded. In our context of interest, 7 is played according to an iteration strategy
Y. Part of “normalizing well” for ¥ will then be that W (7, F') is according to X.

2.3 The extender tree V!

The fact that ¢7°F does not fully preserve tree order or tree predecessor is awkward.
Here is another way to visualize our embedding of 7 into W (T, F) given by ¢7-F
and the WZ’F’S.

For V a normal tree, let

Ext(V) = {EY |a+1<1hV}
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be the set of extenders used. Note Ext()) determines ¥V modulo a strategy ¥ for the
base model of V, by normality. For v < 1h(V),

317) = increasing enumeration of {EY | a4+ 1 <y 7},

increasing in order of use (index, length).

Note that of s)y’, Mlj and V[(a + 1) each determines the others, by normality.
Set

V= {sV |y <1hV}.

Vet determines V. The structure (V™' C) is the extender-tree of V.

Here are two simple facts. If F' and G are extenders, then F' and G overlap iff
[crit(F'), A(F)) N [crit(G), A(G)) # @. We say F and G are compatible iff Ja(F =
Gla or G = Fla). Then for normal V:

1. If s™(F) € V™' and s™(G) € V™', then F and G overlap.

2. If s,t € V™' and s(i) is compatible with ¢(k), then i = k and s[(i+1) = t[(i+1).

Now let 7 be normal on M, and W = W(T, F). Let ¢ = ¢7F', 7 = WZ’F, etc.
We define a partial map

pr.r  Ext(T) — Ext(W)
by
prr(El) = me(El) = E).

So pTyp(Eg—)i iff £ € dom ¢, and either £ # 3, or £ = 8 and Mg] lh(EﬂT) < MZK

We can view p as acting on branch extenders. For s € T, let

P {least i such that crit(F) < A(s(7)), if this exists;

s undefined, otherwise.

Let £ € dom ¢ and s = sz'. Then if dom(¢) =  + 1, we have

W :{s, if € < B;

S(F), i &= 8.
If dom(¢) > 5+ 1, then i, exists precisely when s = sz for some £ > 5+ 1, and
s, if &€ < p;
wo_ 3A<F>> it £ = f;
20O T sl (F)Y T (s(8)) | § > i), if erit(F) < crit(s(is));
slis ™ (T F(s(i)) | i > i), if crit(s(is)) < crit(F).

So if E is used before H in sz, then pr p(E) is used before pr p(H) in sg‘(’g).
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Definition 2.23 Let W = W (, F), and suppose s € T*" is such that Yu € dom(s),
pr.r(s(p)i; then

Py p(s) = unique shortest t € W™ such that
Wi € dom(s), pr.p(s(u)) € ran(t).

For p = pp, we have that p(s]) = sg‘(’g), except when & = 3. At 3, we have
Sg\(} 5 = D(s E)A< ). The map p: T — W(T, F)™" does preserve C.

Proposition 2.24 Let s,t € dom(47F); then
(1) 5 C 1 = pls) C plt), and

(2) s Lt=p(s) Lp(t).

2.4 Psuedo-hull embeddings

An iteration strategy X for M condenses well iff whenever U is by X, and 7 is
a sufficiently elementary embedding from 7 into U such that 7[M U {M} is the
identity, then T is by Y. By weakening the elementarity required of 7, we obtain
stronger condensation properties.

In the Hull Condensation property of [10], one is given an embedding o : lh T —
lhf and embeddings 7, : M! — ./\/lf;’(a). o preserves tree order and tree-predecessor.
The 7,’s have the agreement one would get from a copying construction, and they
commute with the branch embeddings of 7 and U. Moreover, 7,(E]) = Ef;’(a) A
simple example in the way 7 = 7V sits inside U = 7(W), in the case m: H — V is
elementary and 7[M U{M} = id .

A hull embedding (o, 7) as above induces a map ¢ : Ext(7) — Ext(U) by

Y(E]) = Tal(EY).
We then get ¢ : 7ot — Y=t by

Definition 2.25 ¢(s) = unique shortest t € U™ such that Vu € dom(s) ¥(s(p)) €
rant.

1& preserves C and incompatibility in the extender trees. 1/3 is related to o by
T u
¢(5a+1) = Sa(a+1)‘

But for A a limit, @Z(SAT) may be a proper initial segment of SZ(/\).
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We now define the notion of a pseudo-hull embedding from 7 into . This will
be a triple (u,,p) with most of the properties of o, 7, 1) above. The main thing
we drop is the requirement that u(7-pred(y + 1)) = U-pred(u(y + 1)). We shall
also allow the t,’s to be partial, in a controlled way. Recall here the partial branch
embeddings % ;. (Cf. 1.9.)

Definition 2.26 Let T and U be normal iteration trees on a premouse M. A
pseudo-hull embedding of T into U is a system

(u, (tg | 8 <ThT),(ts | 6+1<1IhT),p)
such that

(@) u:{a|a+1<hT} ={a|a+1<lhid}, a < f = ula) <u(p), and X is
limit iff w(X) is limit.

(b) p : Ext(T) — Ext(U) is such that E is used before F' on the same branch
of T iff p(E) is used before p(F') on the same branch of U. Thus p induces
p: T — U™ as in Definition 2.25.

(¢) Let v:1hT — 1hid be given by

32’([3) = ﬁ(sZ)

Then
0. agT u

is total and elementary. Moreover, for a <r f3,

0 T _ U 0
tﬁ o ZQ,B = Zv(a),v(ﬁ) O tOt'
In particular, the two sides have the same domain.

(d) Fora+1<I1hT, v(a) <y u(a), and

Moreover,

Moreover, for a < 8 <1hT,
t5I(E]) + 1 =ti1h(E]) + 1.
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(e) If 8 = T-pred(a + 1), then U-pred(u(a) + 1) € [v(B),u(B)]u, and setting
p* = U-pred(u(a) + 1),

9. a(la f15r) = [0, ) 0 1)V

where P < MBT is what E] is applied to, and P* < Mg’ s what Eﬁ’(a) 1s applied
to.

The appropriate diagram to go with (e) of Definition 2.26 (for the non-dropping
case is)

o Ko v
a+1 v(a+1)
Ez{(a)
u
iT MU(B
B,a+1
1
g u
M,
P
5
T 2
M Miys)
T fa u
Ma Mu(a)

Here iﬁ’( 8,5+ © t% = p is a possibly partial map, defined and elementary on P.

Remark 2.27 By clause (c), v(0) = 0 and t) = id. It is possible that u(0) > 0.
By clause (d), v(a 4+ 1) = u(a) + 1. Clause (b) implies that « +1 <y 8+ 1 iff
v(a+1) <g v(B+1). If X <1h(T) is a limit ordinal, then v(\) = sup{v(§) | £ <r A}
So v preserves tree order, and is continuous at limits. The map u may not preserve
tree order.
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Remark 2.28 Given u(a) and t}, we can characterize v() as the least & <y u(a)
such that ran(t)) C ran(#,,,)-

In the context of Jensen premice, embeddings that agree on 1h(E) will generally
be forced to agree on Ih(E) + 1. For example, in clause (e) of 2.26, 0, agrees with
tl on Ih(E]) + 1, because the Shift Lemma produces this kind of agreement. One
does encounter embeddings that agree on Ag, but not on Ag + 1.

The agreement of maps in a psuedo-hull embedding is given by

Lemma 2.29 Let < u,(ty | 8 < IhT),(ty | B+ 1 < I0T),p) be a psuedo-hull
embedding of T into U; then

(a) if a +1 < 1h(T), then t} agrees with t° on \I, and
(b) if B <o <In(T), then t agrees with t% on X}

Proof. For (a), notice that if F is used in s/, then p(F) is used in sﬁ’(a), and so

Ap(r) < CTib(0) o) THUS SUP 1AL < Crit(Ba) () BUE fo = &) () © o 50 We
have (a).

For (b): we have that ¢} agrees with 2 on Ih(E]) + 1 by the definition, and ¢}
agrees with t% on A} by (a). Since A} < Th(E]), we are done. O

One could not replace A by sup{lh(F) | F € ran(s])} in the lemma above.
The reason is that there could be a last extender F used in s/. (So F = Eg—
where a = 4 1.) Then p(F) is the last extender used in sf,,. It could be that

erit (i) (@) = Aw(r)> and thus ¢, and ¢, both disagree with t; at Ap. (This is the
only way the stronger agreement lemma can fail.)

Remark 2.30 The proof of 4.2 gives a formula for the point of application of Eﬁ’(a)
under a psuedo hull embedding of 7 into U, namely

U-pred(u(a) + 1) = least n € [v(5), u(B)]y such that crit zﬁu(ﬁ) > quj(ﬂ),n o t%(1),

where
B = T-pred(a + 1) and p = crit(E]).

Remark 2.31 It is easy to see that 7,U, and u determine the rest of the psuedo-
hull embedding. For p is given by p(E]) = EY¥ . and p determines p and v. We

u(a)?
then determine the copy maps t2 and t! by induction on «. t! is determined by ¢°

by 1 = ) ui © to- If @ is a limit, we easily get ¢3 from v(a) and the fact that

to 01} 0 = 5 () © tg holds whenever § <r a. Clause (e) determines t3,, from

carlier t*‘s.
p determines u, hence p determines the whole of the psuedo-embedding as well.
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Remark 2.32 7 is a pseudo-hull of W(T,F). In our embedding normalization
notation, v = ¢7°F, and té = 7TZ:’F, and p(Eg) = EZI(;(; ’F), which determines p and

v. u agrees with v except at 3 = 7°F, where we have v(3) = 8 and u(8) = a”F +1.

Definition 2.33 Let ® be a psuedo-hull embedding from T into U, and V¥ be a
psuedo-hull embedding from U into V; then W o ® s the psuedo-hull embedding from
T into V obtained by composing the corresponding component maps of ® and V.

It is easy to check that composing corresponding maps does indeed produce a
psuedo-hull embedding.

2.5 Normalizing 7"U

First, note that W (T, F') makes sense in somewhat greater generality. Let T be a
normal tree on the premouse M. Let S be another normal tree on M, and F' be on
the sequence of the last model of S. Let a be least such that F'is on the sequence of
M3, so that S[(a+1) = S Let 3 be such that 8 = S-pred(a+1) would hold in
any normal &' extending S|(a 4 1) such that F' = ES'. That is, S|+ 1 = S<erit(F),
Suppose that

TIB+1=8[5+1.

Suppose also that if 5+ 1 < 1h(7), then dom(F) < )\(EBT), that is,
TW 11 = 7-<crit(F).
We define a normal tree W(T,S, F).

Remark 2.34 The last supposition holds if either v = 8 and 1h(F) < lh(E}), or
o > f, and Ih(E5) < Ih(E}). This will be the case when we use W(7,S,F) to
define W(T,U).

Let Q < N = MJ, where § + 1 =1h(T), and let
= crit(F).

Suppose that Ult(Q), F') makes sense, that is, dom(F') < pr)(Q). Suppose also that
(@ is the longest initial segment of N to which F' applies, that is, either ) = N,
or p(Q) < p < pr)(Q). We want to define W(T,S, F) so that Ult(Q, F) embeds
weakly elementarily into the last model of W (T, S, F).
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There are three cases.

Case 1. Q # N.

In this case @ is a proper initial segment of M BT | lh(EBT), by the argument given in
the dropping case of the definition of W (T, F).

W(T,S,F)=S8[(a+ 1) (F)

is the unique normal continuation W of S[(a+1) of length av+ 2 such that EYY = F.
Note here that MBT = M‘g, and @ is what F' would be applied to in a normal
continuation of SJa+ 1. (Unlike the case 7 = S we discussed before, it is possible
that @ # N and « > (.) In this dropping case, the last model of W (T,S, F) is
equal to Ult(Q, F'), and doesn’t just embed it.

Case 2. Q= N,and Ih(T)=p+1.
Again

W(T,S,F) = SH(a+1)(F)
is the unique normal S’ of length o + 2 extending S such that ES = F. Q = N =
M7, and so Ult(Q, F) is equal to the last model of W (T, S, F).
Case 3. Ih7T >+ 1,and Q = N.
In this case, we construct W = W (T, S, F) just as before. We set

Wi(a+1) = Si(a+ 1),

and

Mg\il = Ult(M;K’Ya k)a F)>
where k,~ are appropriate for normality. (Note M] = Mg =M g‘) ) Let ¢(&) = ¢
for £ < B, and ¢(&) = (a+ 1)+ (£ — B) for &€ > 5. Let m = id for £ < B,

and 75 © MJ[(7,k) — M}, be the canonical embedding. Note that by our case

hypothesis, F applies to M7, and hence to MZ|(Ih(E]), so (In(E7),0) < (v,k).
Thus 73 moves EJ. So we can use the Shift lemma to lift the rest of 7, defining an
elementary

me : M — M
for £ > (8, by induction on £. If ¢ = T-pred (), then ¢(o) = W-pred(¢(&)), unless o =
Band crit(E7 ;) < pu. In this case, crit(E};(/g)fl) = crit(E] ;) < p, so W-pred(¢(€)) =
B, rather than ¢(3). We write
W(T,S, F) — S<thm<F>AZ~F « 7—>crit(F)

in this case.
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Remark 2.35 Recall that 7 and S were normal on M. Let ¥ be an iteration
strategy according to which both 7 and S are played. F' and ¥ determine S|(a+ 1),
because F' determines MS|1h F', and thus S|(a + 1) as the unique normal tree on
M by ¥ leading to a model having F' on its sequence, and using only extenders of
length lh F'. S[(a+1) is all we need of S to determine W (7, S, F'). So we could write
W(T,%, F) for W(T,S, F), or if ¥ is understood, write W(T,F) = W(T,S, F).

Notation 2.35.1 Let a”75 and 875 be the a and /3 described above. In Case 3,
let 975 and ﬂg’S’F for £ <1h7T be the maps ¢ and 7 described there. In Cases 1
and 2, let dom(¢75F) = B+ 1, with ¢7SF(¢) = ¢ if € < B, and ¢75F(B) = a + 1.
(Where o = a”5F and 8 = B75F)) Let W?’S’F =id if £ < 3, and ﬂg’S’F M
Mg\f — M., be the canonical embedding in those cases.

In cases 2 and 3, we have a psuedo-hull embedding ®7rsr = (u, (tg | € <
IhT),(te | €+ 1 < 1hT) from T into W(T,S,F). It is determined by setting

U= ¢r.5F
Some of its other maps are given by

1 _T,SF
tg =T

and
p(EL) = =] >T(E]).

In case 1, these objects determine a partial psuedo-hull embedding from T [B + 1 into
W(T,S, F). This is a system with all the properties of a psuedo-hull embedding,
except that its last map t}j may only be defined on some () < ./\/lg

The ilustrations associated to W (T,S, F') are pretty much the same as before,
allowing for the possibility that S # 7. In particular, if & > 87%F then F either
appears directly as one of the extenders used in [0, ¢(§))w, or appears indirectly via
some extender F'(G) used in [0, ¢(§))w, where crit(G) < p < A(G) and G is used in
[0,£) .

Now let 7 be a normal tree on a premouse M, with last model ), and let U be
a normal tree on ). We do not assume that / has a last model. We shall define

W(T,U) =W, the embedding normalization of T"U. For this, we define
W, =W(T, U|(y+1)),
the embedding normalization of 7 U|(y + 1), by induction on ~y. Let us write
Q, = MY =last model of U|(y + 1).
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We shall maintain that each W, has a last model

R, = last model of W,
= MM

z(v)’

and that there is an elementary embedding
oy Qy — R,

As we go we construct psuedo-hull embeddings ®,, ., for n <y 7, from an appropriate
initial segment of W, to W,.. ®, , is determined by its u-map ¢,,, acting on an initial
segment of Ih(W,), and its t'-maps we call

7 . W, W’Y
T M MO

defined when 7 € dom(¢, ). (There is the possibility that 77 acts only on some
proper initial segment of M. That happens iff (,7]y has a drop.) Roughly, the
system (W, | v < 1h(Uf)), (P, | n <u 7)) is an iteration tree of iteration trees,
whose base node is Wy = T, and whose overall structure is induced by Y. The &, ,
are the branch embeddings of this tree.
We set
Wo=T,

and let oy be the identity. Now suppose everything is given up to v. We let
Iy=o v(Es{ ))-

Let . be the least £ such that [, is on the sequence of ./\/l?}”. So So F, is on

the sequence of M?}” for all £ such that a, < & < 2(y). We assume the following
agreement hypotheses:

(%)~
(i) Forn <& <7, oy [(Ih(E) + 1) = oe[(E) +1).
(i) For n <& <7, oy < ag and 1h(F,) < Ih(F).

(iii) For n <& <+~, R, agrees with R¢ up to lh(F},), but 1h(F),) is a cardinal of Ry,
so they disagree at 1h(F}).

(iv) For i < & <7, Wyl(ay +1) = Wel(a, + 1), and Eat = F,.
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(v) Forn <,
(a) for all £ < ay, Ih(E}"") < 1h(F,), and
(b) if oy < 2(n), then Th(F,) < Ih(En™).

Claim 2.36 (ii) and (v) of (*)y41 hold.

Proof. For (ii), if n < v, then Ih(EY) < Ih(EY), so Ih(F,) < Ih(F,) by (i) at ~.
Moreover, if a, < a,, then by (iv), F} is on the sequence of MZ\:]” = MZ\;”. So F, is

also on the MZ\;” sequence. Since lh(F},) < 1h(F,) and F, is on the R, sequence, we

get that F), is on the R, sequence. This contradicts (iv) at 7.

v)(a) holds because otherwise F. would be on the sequence of some M for
(v)(a) y ¢

¢ < a,,. For (v)(b), suppose o, < z(7y). Since F, is on the sequences of Mz\ﬁ and of
M, we must have Th(F}) < Ih(EX). O
Now suppose n = U-pred(y + 1). We set

erl = W<Wna W% F’Y)'

Let us check that this makes sense. Let us write /' = F, and o« = a,. Clearly
a = V"Vl Let
fi = crit(EY),

and
1 =0, (i) = crit(F).
Let
6 _ ﬂWmW%F

= least £ such that p < )\(E;/V”) or & = z(7)

be the tree predecessor of @ 4+ 1 in any normal continuation & of W, [(« + 1) that
uses F'. Since 7 is the least & such that i < A(EY), we have by (i) of (x), that

n = the least & such that p < A(F)).
But W, [(a, +1) = W, (o, +1), and EZ\;” = F, or else = 7. In either case, 5 < ay),

SO

Wil(B+1) =W, 1B +1).
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Moreover, since 8 < a,), if f < z(n) then

Ih(E}”) < Ih(Ey™),

with equality holding iff 8 < «,,. These are the conditions we needed to check, so
W(W,, W,, F') makes sense.
Let @, 41 be the (possibly partial) psuedo-hull embedding ®yy, . r. Its u-map
is
gbn,w—i-l = ¢W,,,WW,F7

and its t' maps are
ny+1l _ Wy W, F
ot = )

For 6 <y n,
Psyi1 = Pyap1 0 Py
. 1
This of course means that ¢s.1 = @y11 © 511, and 7271 = 7 “’JET) o oM. Here

the compositions are condidered as defined wherever they make sense.

Note that @, 1 is partial iff y+1 € DY. If y+1 € DY, then dom(¢,+1) = B+1,

and WZ”H acts on a proper initial segment of MEV".

0441 is determined as follows. Let

Q’Y-i—l - Ult(Q*a Erz;{)7

where Q* < Q),,.

Let R* = R, if Q* = @,, and R* = 0,(Q*) otherwise. 0, [Q* is elementary from
Q" to R*.

Suppose first that we drop in U, i.e. Q* # @,. Then p(Q*) < 1, and o, is a near
k(Q*) + 1 embedding, so

p=0,(1) = oy (1) < p(R"),

while py g+ (R*) = n(pk(Q)(Q)) > 1. so R* is what we would apply F' to in a normal
continuation of W, [(a + 1). Moreover,

W’Y"rl = Wj thA<F>AU1t(R*> Fv)

because we are in ether case 1 of the definition of W(W,,W,,F). So R, =
Ult(R*, F), and we can take 0,41 to be the Shift Lemma map.
Suppose next that Q* = @),), so that we are in case 2 or case 3, and

W’y-{-l — W,y< lh FA<F>AZF « Wn> Crit(F)‘
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Wot1

. Since we are not
¢nn/+1(7')

For 7 < z(n), we have an elementary 777+ MM 5 M
dropping in U,

u U U

w1 = Ul(Q7, ET).

and
¢n,'y+1 (2(77)) = 2(7 + 1)'
We have then the diagram

Qi — " S UW(R,, F) " Ry = M
il/{
Wi
QT] —>O'n qu] — Mz(n])

Here 6 is given by the Shift Lemma, and i) comes from the fact that F' is an initial
segment of the extender of WZ&Z;A, as we remarked before. (So ¢ [lh F = id.) We
then set

Oyp1 =100,

So when v+ 1 ¢ DY, we have the diagram
My T R

U n,7+1
’anle[ )I\ﬂ—z(n)

u
MY R,

When v + 1 € DY, we have the diagram

Uu Oy+1
M’er — R’Y+1

kU n,7+1
Z’Y+l/l\ /l\ﬂ—ﬁ

* U * U
M'Y+1 07,*> OH(M7+1)

where = WVl
Claim 2.37 (x),41 holds.
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Proof. Left to the reader.

We have completed the definition of W, ;.
If X <1h(l) is a limit ordinal, then

W)\ = lim Wa,

a<yA

where we make sense of the direct limit using the psuedo hull embeddings ®,,  for

n <u vy <vu A. We give a little more detail on this below

In our context of interest, (7,U) is played by a background-induced iteration
strategy Y for M, and we shall show that all WW, are by . So in our context of

interest, all models above are wellfounded.

Here are a couple illustrations that the reader may or may not find helpful. Let

Y U1 U2 U3 be successive elements of a branch of U,. Write ¢; = ¢, ,,,. Let ;
. Thus W.

W WrioFi where 13 = 4541 — 1 and Fj = UTZ.(EZT{,)
and ; = crit(¢;). The ¢; might look like:

e

d
Ty

o { o
b0 o3} O2

The last step pictured involves a drop. Notice that S;11 > ¢;(5;).

In W M

possible.) This is because U is normal. .

Wooi .
/\/lﬂiw+1 via an Fj-ultrapower. Moreover, W,, . [(a+1) =

®i(;). By our choice of «, )\(EW”'

e ) <A forall § <

- W(W%., Wn-a E)7

Yi+1

(equality is
Yi+1

#i(Bi)
W [(a+1), where a+1 =
a. But A(F}) < crit(Fiqq),

is immediately above

since U is normal, so Fj;; cannot be applied to any MZV”“ for & < ¢:(5;).
Because ;11 > ¢;(5;), and above ¢;(5;), ran(¢;) is an initial segment of ORD —
®(5;), we see that along any branch b of U, the direct liimit of the ¢, , for v,n7 € b

is wellfounded.
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In fact, the direct limit has order type A + ¢, where A = sup, ¢, crit(¢,;), and
6 =1hT — 3, where (3 is least such that ¢g,(5) > A

In addition to the ¢-maps on indices of models, we have the m-maps on the
models. Let p; = crit(F;), and let In(W,,) = 6 + 1. Let n be the level of R,,, or
equivalently ./\/l;:”, that we drop to when we apply F5. The picture is

R’Yl RW R’YS
Wy
M¢1(§)
ﬂ.% V2 RN
& - N ﬂgw/a
W. P N 2
M /il/ P 71-71’7/
/ "//
W F2 [
M¢1 (B1) 0,[112/ H2
Y1572 >
T .-
Wa |-77
M By -
ol 1
ﬂ_gl Y2 77-2)’;1'73

One can look at @, ., for n <y 7, as a map on the extender trees. Let

Yy - Ext(W,) — Ext(W,)

by
¢n,v(Egvn> = WQ’W(EWW) =Ey

€ /7 Tona()
S0 Uy (EL )L iff € € dom @, Let

~

Y(s) = least t € W such that ¢ “ran(s) C ran(t).
Then
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Proposition 2.38 Let n <y v and ¢,~(a)l, and suppose whenever n <y & <y 7,
then ¢, ¢(a) > crit(¢e ). Then for s = s,

Wy

Sgp(a) — p;in,y(S)A<Ff | 7+ 1 <y v and for all i € dom wgﬁ(s),

AWy (5)()) < crit(F,))

We omit the simple proof. The proposition says that the branch extender to
M;:L(a) consists of blow-ups by v, , of extenders used in the branch to MZV", to-
gether with certain F.’s used in U from 7 to ~y. It generalizes our pictures on 63 and
before.

The map @ZTW : Wt — WS does preserve C.

Proposition 2.39 Let s,t € dom(i,,); then
(1) sCt= drm(s) - Q&n,v(t)f and
(2) sLt= Q@nn(s) 1 Q@nn(t)~

Suppose now that A < 1h(/) is a limit ordinal, and we have defined W, 0,,, and
the @, for n,v < A\. We let W(T,UI\) be the liminf of the W, for v < 1hi{. More
precisely, let

F, = UW(E~%
and
a, = least a such that F, is on the sequence of M}
= largest a such that W, i [(a+1) = W, [(a +1).
We put

W(T.UN) = | Wyl(a, +1).

y<lhid

Since v < n = ay < a,, W(T,U) has limit length. There are no new o’s or ®’s to
be defined at this stage.

Now let A < 1hif be a limit, and let b be a cofinal branch of U [\ (not necessarily
a wellfounded one). We define the embedding normalization

W, = W (T, U"D)

by forming the direct limit of the W,, for v € b, under the ®, ., for n <y « in b.
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We begin with 1h(W). Let us put
(n,€) e I iff n e b, and for all sufficiently large v € b, ¢™7(£)].
Put
(n,&) <1 (6,6) iff for all sufficiently large v € b, ¢, (&) < ¢5-(8).

It is easy to see that <; is a prewellorder (even if b is illfounded, or drops infinitely
often). We set
lh(Wb) = Otp(-[7 S])

For n € b, we let ¢,,,(€)) iff (n,£) € I, and in that case, set
Onp(§) = rank of (n, &) in (I, <p).

We define the tree order <y, by: given (n,&) and (0,60) € I

Gnp(€) <w, ¢°°(0) iff  for all sufficiently large v € b, ¢, (&) <w, ¢s,(0).

Although the ¢,,, do not completely preserve tree order, they almost do so. See
clause (4) on p.54 and the illustration on p.61. Using this, we can show <y, is a tree
order. ¢,;, may fail to preserve tree order, but again, this can only happen in a way
similar to (4) on p.54. We record this in a proposition.

Proposition 2.40 Let (n,§), (n,0) € I, and suppose & <w, & but ¢,,(§) Lw,
Gnp(0). Then there is a unique v > n in b such that letting U-pred(6 + 1) = v with
0+1cb, F=Fy, and and = BVl we have

1. 8=y (€) <w, dy(6), and

2. letting G be the first extender used in [0, ¢y, ,(0)) such that \(G) > )\(E;V”), we
have crit(G) < crit(F) < A(G).

Moreover, in this case, if & = Wy-pred(9), 5 = ¢n~(§) = Wy-pred(¢,~(6)), and
Woi1-pred(¢y,0+1(0)) = B = Woir-pred(¢yo+1(£))-

We omit the easy proof. Using such arguments, we can show <y, is a tree order,
and

Proposition 2.41 Let (n,&) and (6,0) € I. Then ¢,,(§) = Wy-pred(¢s,(0)) iff for
all sufficiently large v € b, ¢"7 (&) = W, -pred(¢s~(0)).

79



Here is a more concrete description of lh(W,) and ¢, ;. Let

§ =1 W(T,UIN)

= sup a,,
F<A

= sup{crit ¢, , | n <uv vy Ay € b}.

(The last equality holds because if n = U-pred(y + 1) and v+ 1 <y 7 where 7 € b,
then crit(¢, 1) < @, < crit(¢dyi1.7).)

Case 1. b drops somewhere.

Let 741 be least in b DY, and n = U-pred(y+1), and 8 = WV = crit(¢y, ,41).
Let B = ¢o,(7). Then for all v+ 1 <y 0 <y p, with p € b,

Crit(gﬁ@’p) = ¢n,6‘ (6)
=1lh(Wy) — 1.

(Further dropping cuts down on the domains of the m-maps, not on that of the
¢-maps.) Thus

Ih(Wy) =6 + 1
= dnp(B) + 1= dop(7) + 1.

Case 2. b does not drop.
Let

T =1, = least a < 1h T such that for all v <y &
with & € b, ¢g,(a) > crit(pq¢).

Then

¢0,b(7) =9,
Ih(W,) =6+ (Ih T — 7),

and for £ > 7 with & < 1h(T),
Pop(§) =0+ (£ — 7).

This case can happen in two ways: it can be that ¢ ,(7) = crit(¢,, ) for some n <y v
with v € b, in which case that is true for all sufficiently large such 7n,v. Or it can
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happen that ¢, (7) > crit(¢, ), for all n <y v with v € b. In that case, 7 is a limit
ordinal, and the extenders in b are being inserted cofinally into the branch extender
of [0, T)T.

It can happen in Case 2 that 7 is a limit ordinal, but some ¢ ,(7) and its images
are in the “eventual critical points” along b. In that case, some tail of the extenders
used in b are being inserted after the blow-ups of all those in [0, 7)7.

Now we define the models and extenders of W,. Suppose o = ¢, () < Ih(W).

Suppose n < £ < § € b. Then we have the map 71'(%65(7) acting on either M
m,

¢n,£(7) or

an initial segment thereof. We let

MW” = dirlim of the ./\/l% ) under the 7r¢77 ( )’

If b does not drop after n, then we have

s MY — MY
nb

as the direct limit map. Otherwise WZ’I’ may (or may not) act on a proper initial

W
segment of M5,
Finally, if o = ¢,,,(7) <1h(W,) and a + 1 < 1h(W,), then

EYr = mlP(EX).

One can check that with this choice of extenders, W, is a normal iteration tree on M.
For example, suppose that n € b and that for all £ > n in b, We-pred(¢, (v + 1)) =
¢ne(8), and we aren’t dropping, so

We We
ME ey = UM o EJ ).
Then
W
MU= UM, B ).

because each of the three objects in this equation is a direct limit of its £&-approximations,
for £ € b, and the maps commute appropriately. We omit further detail.
Now we also have the natural map

op Mbu — Ry,
where Ry is the last model of W}, given by
oy, () = 715 (0 (2)).
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In the abstract, it may happen that not all models of W, are wellfounded. In our
context of interest, (7,U"b) is played according to an iteration strategy X for M,
and we show that ¥ is sufficiently good that W, is also played by .

Now suppose A < Ihif and b = [0, \)y, and all models of W, are wellfounded.
Then we set

Wy = W,

¢r],)\ = ¢n,b7
A o nb

ot =77,
O)\ = Op,

and continue with the inductive construction of W (7T ,U). If some model of W, is
illfounded, we stop the construction, and say that W (7 ,U) is undefined.

Finally, if ¢ has a last model, we set W (7 ,U) = W,, where hi/f =~y +1. If U
has limit length A, then W (7 ,U) = W(T,UI\) has already been defined.

To summarize our notation associated to W(7T,U): for v < 1hiU,

F, = O-V(E'Z;{>
where o, : /\/ll;’ — R, = last model of W,, and
WV-H = W(Wm Ww F”/)

where n = U-pred(y + 1). By normality, modulo an iteration strategy according to
which all W, are played, R, and W, determine each other, while £, and W, [(c, +1)
determine each other. The R,’s are not the models of a single iteration tree, but we
do have

Proposition 2.42 Let v <n <1hU. Then
(a) R, agrees with R, below lh F,, and

(b) F, is on the sequence of R, but not that of R,. In fact, Ih(F,) is a cardinal
of R,.

The following diagram summarizes the situation. We draw the diagram as if the
maps in question exist, although sometimes they may not, because of dropping. Let
z(n) +1 = Ih(W,), and let " : M — R, be the canonical embedding (assuming
M-to-R,, does not drop).
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Ry = MY MY ! MY
R, .

Wo

M

The various embeddings all commute:

(i) M = 7T77(y 0

z(n)
. W, W, : .
7,y /A P y
(ii) mT ot =m T 0dy " 4 (o) (general version of (i))
Uy
(ili) oy 0dy, =7, 00y

In a sufficiently coarse case, the upper triangle in the diagram above collapses.

Proposition 2.43 Let T be normal on M, and U normal on the last model T .
Suppose also that T and U are ms-normal Suppose that whenever a« +1 < 1hT,

MT = v(ET) is strongly inaccessible.

Let Wy, oy : MY — R,, R, = M

2(n) €tC- be as above. Then

(1) R, = MY

n’

and o, =id, for all n < 1h(U);

(2) if n <v -y, then & =l
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Proof. Proposition 2.18 generalizes to W(W,,, W, F), where F' comes from W,. We
use that repeatedly. O

Remark 2.44 There is a tacit hypothesis in 2.43 that all models in W, are well-
founded. The ms-normality hypothesis is there because if we replace v(E] ) by A\(E])
above, then the hypothesis implies that M = “ there is a superstrong cardinal”.

Remark 2.45 We shall need also to consider W (7,U) when (T,U) is a stack on
some M that is not a premouse of any kind. In that case we shall assume that
M = ZFC, and M is the background universe for some construction for a fine-
structural object. The background extenders used in this construction will constitute
a coarsely coherent sequence F € M. (Cf.p.34 and following.) Each F € F will be
“nice”, in that

M |=1h(F) = v(F) = strength(ES) is strongly inaccessible.

We shall only be interested in trees S on M such that ES € iﬁa(ﬁ), for all «.
Normality for such § on M means

1. a < f=1hES <1hE§, and
2. S-pred(y + 1) = least 5 such that crit(E7) < Ih(E7).

Given (7,U) a normal stack on M, with all extenders taken from images of F as
above, we can define W (T ,U) as above. In this coarse case we shall have o, = id
for all v, and hence F, = Eif for all 4. Having defined W, for n < v, and with
R, = MY, we let

u
a = least 7 such that forn = lh(Es{), V;]Mu = VT,M”.
It is easy to see that a is the least 7 such that EY € if o iT(F). We define
W’erl = W<Wn7 W’ya Eg)
crit(EY
= Wyl(a+ 1) (B g Wy .

Y

The coherence of F implies that if o < o, then Ih(E) ") < Ih(EY), so that W, [(a +
1)~(EY) is normal, so W, is normal.

This completes our definition of embedding normalization. Since we do not need
full normalization in this paper, we shall not discuss it further here.
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2.6 Normalization commutes with copying

We prove that normalization commutes with copying. The proof is completely
straightforward, but takes a while to put on paper, because of the many embed-
dings involved. We shall use this fact to show that the pullback of a strategy that
normalizes well also normalizes well. The proof also serves as an introduction to our
proof that normalization commutes with lifting to a background universe. That in
turn is used in the proof that if a strategy for the background universe normalizes
well, then so do the strategies on premice that it induces. (See 3.26.)

Theorem 2.46 Let (T,U) be a stack on a premouse M, and let : M — N be
elementary. Let (T*,U*) = V(T ,U) be the stack on N obtained by copying. Suppose
that W (T*,U*) exists; then

(1) W(T,U) exists, and yW (T, U) =W (T*,U*), and

(2) letU andU* have last models Q and Q* respectively, and W (T ,U) and W (T*,U*)
have last model R and R* respectively, and let

(i) p: Q — Q* be the map from copying (T,U) to (T*,U*),

(ii) o: QQ — R be the normalization map associated to W (T ,U),
(i1i) 0: R — R* be the map from copying W (T ,U) to W(T*,U*), and
(iv) o*: Q" — R* be the normalization map associated to W (T*,U*);

then Qoo = o* o p.

Proof.

The embedding normalization W (7T ,U) has associated to it normal trees W, on
M, for v < IThid. We also have partial maps ¢, : ThW, — ThW, for n <y v, and
for 7 € dom ¢, ,, a map 77 : M MZ\:V(T). We have R, = last model of W,,
oy : MY — R, and Fy = o, (EY). W(W,, F,) = W,11, when 1 = U-pred(y + 1).

Similarly, W (7*,U*) has associated trees W2 on N for v < Thif* = IhiU, together
with partial maps ¢, . : bWy — ITh Wy for n <y« v (equivalently, n <y 7y), and for
7 € dom¢y ., a map 7?;7’7. We have R} = last model of Wy, o7 : MZ — RI,
and [ = oZ(EY"). We have that Wi, = W(W;, EY") when n = U*-pred(y + 1)
(equivalently, n = U-pred(y + 1)).

We shall prove that for all ~,

YW, = W,
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The proof is by induction on «y, with a subinduction on initial segments of W,. Given
that we know this holds for W, [n, we have copy maps

U MY MO

defined for all 7 < 7. ¢y = ¢ for all ~.
For v < 1hi4, let
@Dﬁ’: Mg — /\/lzjf

be the copy map. So ¢4 is the copy map given by the fact that 7* = 7, and the
remaining ¢* come from the fact that 2* = (Yf)U.

We write z(v) for h W, — 1 and z*(v) for h Wi — 1. We may use oo for z(v) or
z*(v) when context permits. So R, = MZ{;) = MY, If (v,7]y does not drop, then
Guy(2(v)) = 2(7), and 7)) = 757 Ry, — R,

Lemma 2.47 Let v < lhU. Then
(1) Wi =9W,.

(2) Whenever v <y v and (v,y]y does not drop in model or degree, then for all
T<IWW,, ]y omT =m0y,

(3) Pnow =5, if n,v <7y andn <y v.
(4) Y2y 00y =05 0 Y.

Here is a diagram of (2):

There is a diagram related to (4) and the case 7 = z(v) of (2) near the end of the
proof.

Proof. We prove 2.47 by induction. Suppose that it is true at all v < ~. We show
it at v+ 1. Let v = U-pred(y + 1), and

F = F, = 0,(EY),
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and

a= aWT’“
=a(W,, W,, F)
= least 7 such that F' is on the M¥'-sequence.
S0
Wy =WOW,, W, F)
=W, [(a+ 1) (F)ip W e,
Let also

F* = F} = o (E)
Since U* is a copy of U, v = U*-pred(v + 1), so
Wi = W(W,f,W;,F*)
Claim 2.48 (1) 1/;2(7)(}7) = F*,
(2) a=a(W;, F*¥), and
(3) BV, Wy, F) = BOW;, Wi, F7).
Proof. For (1), we have
Z(v)<F) - wZ(w) © UW(E»%
050 ut(E
= o3
= F*.

For (2), it is enough to show that Ih(F) < lh(EX”) if and only if Ih(F*) <
lh(EZV”). But if Ih(F') < lh(ETW”), then applying the copy maps ¥7, we have

h(F*) =Th(¢] (F)) = Ih(y7(F))
< (47 (EY))
h(E).
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The first line holds because @b;’( agrees with ©2 on Ih(E)""). Conversely, if if Ih(F) >

Ih(EX™), then if Th(F*) > lh(ET ) by the same calculation.

For (3), we must show that crit(F) < A(EY”) if and only if crit(F*) < /\(EZV:).
But this follows from the agreement of the copy maps 17 in exactly the same way.
O

The claim easily implies that ¢, 41 = ¢, which then gives us (3) of 2.47 at
v+ 1. )

We now define the copy maps 7+ : MO — M that witness Wi, =
YW, 11. As we do so, we show that (2) of 2.47 holds, that is, the ¢ and "' maps
commute with the embedding normalization maps of models of W, into models of
W, 41 and models of W} into models of W> ;.

We have W1 [(a+1) = W, [(a+1) and W2, [(a+1) = Wi[(a+1), so can set

Pt = 7 for all T < a.

Now F = E)* and F* = E;/v;“, moreover Y3 (F) = 1] ,(F) = F* because
Ih(F) < Ih(Ea") if a < z(v). Letting P = M}"|(n, k) be such that

MU = Ul(P, F),

we have
A 1 * *
asi = UL(P*, ™),

where P* = M;V”*ng(n), k). (Here we make the usual convention if n = O(MZV").)
This is because W, [(8 + 1) = W, [(f + 1), and similarly at the (*) level, by the
properties of embedding normalization. So 1 = 13, and thus agrees with 1/12(7) to

)\(E;V”), hence past crit(F). So we can let

i (la, F15) = 3t (), v ()15,

by the Shift lemma, and we have YW, 1 [(a+2) = W>,,[(a+2). Note that a+1 =
buv~+1(B), so wgﬂﬂ omy = 7?;"7“ o by by the Shift lemma, and this gives us
the new instance of (2 ( ) of 2.47.

The general successor case above o+ 1 is similar. Suppose we have YW, 1[(n +

1) = W2, 1(n+ 1) as witnessed by ¢ for 7 < 5. Suppose 1 > a. Let

n= Guy1(§) = ¢;,7+1(€)7
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_ W
G_Eﬂ wrl’

and W
G*=E,"".
Then
1 _ +1 v+l oWy
U (G) =05, e (EE))

= )

— %g,v—l—l(E;/V;H)

=B =G
The Shift lemma now gives us wgill as above, and we have YW, 1[(n + 2) =

vl (n+2).

We leave the limit case of the subinduction to the reader. This finishes the
subinduction proving (1), (2), and (3) of 2.47 at step v + 1. For (4), let us set
7 =7+ 1. To simplify things, let us assume that (v, + 1]y is not a drop. Consider
the diagram

R; R
/
o
u u* * v, T
MT M’T Too
o’
(2
R, R
/
o
u u*
MY - MY

We are asked to show that o* o ¥ = 97 o o, in other words, that the square on
the top face of the cube commutes. The square on the bottom commutes by our
induction hypothesis. The square in front commutes because U* is a copy of U.
That the square in back commutes is clause (2) of our lemma at v + 1, which we
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just proved. The squares on the left and right faces commute by the properties of
embedding normalization.

It is clear from these facts that the top square commutes on ran(if). Since MY
is generated by ran(i%/ ) U A(EY), it is enough to see that the top square commutes
on \(EY).

Let a € [A(EY)]<%. So 0.(a) € [M\(F)]<¥, and o, (a) = 7%7(a) by the agreement
properties of embedding normalization maps. Thus

V(or(a)) = v (mg" (a))
= Y (m(a),
using the agreement properties of the ™ maps. On the other hand, ¢“(a) €
ANEY <% so0
o7 (¥ (a)) = 77 (4 (a))

by the agreement in normalization maps on the W* side. But

Val(me(a)) = 75" (4% (a)

by clause (2) of 2.47 at 7. Thus ¥7_ o o,(a) = o* o Y¥(a), as desired.
This finishes the step from v to v + 1 in the inductive proof of 2.47. We leave
the limit step to the reader. U

It is easy to see that Theorem 2.46 follows from Lemma 2.47.
O

2.7 The branches of W (T ,U)

Let 7 be normal on M, and U be normal on the last model of 7. Let us adopt the
notation of the last section, so that we have W,, F., o, B, ¢p~, 7 , and so on.
Suppose lhi/f is a limit ordinal #, and let

A=1hW(T,U) =sup az’u.

<60

Here we assume W (T ,U) exists, i.e. embedding normalization has so far produced
only wellfounded models. Let b be a cofinal branch of &. We do not assume MY is
wellfounded. Note that W, still makes sense, as defined above.

Proposition 2.49 X\ = ¢g,(7), where T is least such that whenever n,~v € b and
n <u 7, then crit ¢, , < ¢o (7).
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Proof. Let n +1 € b, and o € U-pred(n+ 1). Then ¢, 41 (crit(dpm,41)) = oy + 1,
s0 oy + 1 < crit(gyq1,¢) for all £ € b. It follows that ¢o,(7) > A. But if 0 < 7, we
can find v+ 1 € b with n = U-pred(y + 1) such that ¢g,(0) < crit(¢,,41). Then
Go.n(0) = ¢op(0) < a, < A. Finally, A € ran ¢y, (because any ¢ < 1h(W,) not in
ran @, is fixed by ¢,4), S0 A = ¢ (7). O

Proposition 2.50 Let a = [0, \)w,. Then
(eca iff dneb(§ < crit(pny) AN <w, ¢on(T)).
We omit the easy proof.

Remark 2.51 We don’t get a “continuously” from b. If 7 is fixed in advance, then
continuously in those b such that 7 = 7,, we can produce the corresponding a’s.

Definition 2.52 In the situation above, we write

a=br(b, T,U)
and

T=m(b,T,U)
for the branch of W (T ,U) and model of T determined by b.

Remark 2.53 Let E, be the extender of i¥/. It is an extender over the model M7
where £ +1 = 1h7. One can show that 7 is the least o such that either Ej is an
extender over MT|1h ET, or o = €.

The branch extender of a is given by
Proposition 2.54 Let a = br(b, T,U) and 7 = m(b, T,U) be as above. Then

sW(TU) — 1&07;,(877_')”(}70_ |lo+1€ebAVI € dom(lﬁoyb(sZ—)
Mt (s7 (i) < crit(F,)).

Here we are writing sW(TU) for sKVb, because sy (4 really only depends on a and

W(T,U). We omit the proof of 2.54. For what it’s worth, here is a picture
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$o(U)
[ Fs
[ Fs
- sup w2ty
WHED) a0 {
T -
O Fa
i 0 F,
K
- %,mm[
H
1 G | |1
MZ’ MW(T,M)

Note 6(U) = §(W(T,U)). The F’s in the picture were all used in b. Some got put
directly into sy (T4 others indirectly via some 1 ,(G).

Branches of W (T ,U) of the form br(b, T,U) come from cofinal branches of & and
models of T. There may also be cofinal branches of W (7T ,U) coming from cofinal
branches of U and mazimal (perhaps not cofinal) branches of T. So we extend our
definitions.

Definition 2.55 Let W = W(T,U), where T is normal on M and U is normal on
the last model of T. For £ <1hT,

(a) fory+1<I1hl, letting n = U-pred(y + 1), we set

¢O,n(§)> if Cb()m(f)i and ¢0,n(§) SWW Crit(¢n7'y+l);

undefined, otherwise.

(b) For any v < 1hl,

T ebry(,y) iff 7=nd(&, +1),
for some & <7 § and v +1 <y 7.
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We shall drop the subscript and write nd(&,7) and br(&,~) when context permits.
Notice that if 7 = nd(§,vy + 1), then whenever v + 1 <y 6, then ¢y s(£)J, and
T <w, ¢0,s(§). This is true even if 7 = crit(¢, ,41) holds in the definition of ndyy,
because crit(¢,+1) <w;, ¢ns(crit(¢,+1)). This gives

Proposition 2.56 1. Let & <7 & and v+ 1 <y v+ 1. Then

nd (&, v + 1) <wrwy nd(§, 71 + 1)
if both are defined,
2. br(&,7) is a branch of W(T,U) (not cofinal),
3. & <1 & and v <y 71 = br(&,Y0) is an initial segment of br(&r,v1).
Proof. Routine. O

Definition 2.57 Let ¢ be a branch of T and b be a branch of U. Then

]' brW(C7 b) = U§€c,'y€b brW(f) P)/))
2. ¢ is b-minimal iff for any £ € ¢, bryy(cNE,b) # bryy(e, b).

Again we omit the subscript YW when possible.

Remark 2.58 1. If b is cofinal in 1h(Zf), then br(c,b) is the <y (7 -downward
closure of ¢g,“cNIW(W (T, U)).

2. Equivalent are: (1) ¢ is b-minimal, (2) for cofinally many £ € ¢, 3y+1 € b such
that nd(&, v+ 1)}, (3) forall £ € ¢, Iy + 1 € b, nd(&, v+ 1)].

We do not assume in Definition 2.57 that b and ¢ are maximal branches. So for
example br([ov €]T7 [O’ 7]U) = bI‘(f7 7)

We shall show that if a is a cofinal branch of W (T ,U), then a = br(c, b) for some
cofinal branch b of U and some c¢; moreover, there is a unique such b, and a unique
such b-minimal c. For this, we must assume that all W, are played according to a
common iteration strategy. The following is the key lemma.

Lemma 2.59 Let T, U be as above, and suppose there is an iteration strategy > for
M such that all W, v <1hlU, are according to ¥. Let vy and § be <y-incomparable,
and let n be largest such that n <y v and n <y . Let o = ¢, (@) and € = ¢, 5(€),
where & > crit(¢y, ) and € > crit(¢,5); then st is incompatible with sWs.
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Wy - W _ W L
Proof. Let u = so ', = 55", v = s and v = sz ". Assume toward contradiction
that either u C v, or v C u.
Let

Yo + 1 =least € € (n,7]v,
do + 1 =least € € (n, ]y,

so that EY and E§ are the extenders used in I along the two branches, and F,, and
Fj, stretch W, into W, 11 and W;,1. Let
(@) {least i such that crit(F,,) < A(a(:)), if this exists;
u) =

dom(u), otherwise,

and

K(5) {least i such that crit(Fy,) < A(v(7)), if this exists;
7) —

dom(v), otherwise.
Claim 2.60 k(u) = k(v), and for k = k(u), ulk = vk = ulk = v[k.
Proof. Let k = k(u). If k < k(v), then v(k) = v(k), so AM(v(k)) < crit(Fj,). But
Au(k)) > A(Fy,). [SWV‘)“ (@) (k) = H is defined because & > crit(¢y,q+1), and

¢717’Y()+1

AMH) > v(F,,) in all cases of its definition. w(k) = 411, (H), so Au(k)) > A(H).]
Since u(k) = wv(k), we have \(F,,) < crit(Fj,), so F,, and Fs, do not overlap,
contradiction. k(v) < k(u) leads to a parallel contradiction. So we have k(u) =
k(v) = k.
For i < k, u(i) = u(i) and v(i) = 0(i). So ulk = 0k = ulk = v[k. O
Fix k = k(u). We may assume by symmetry that vy < do.

Claim 2.61 k € dom(u), and moreover, crit(u(k)) < crit(F,,).
Proof. If either statement fails, then

SW’YQ+1 (&) (k) _ F

bnip 1 = F0-
Since the EY used in (7o + 1,7]y have crit > A(EY)), we get
Uror1y(Fro) = Fyg.
(In fact, ¢yo414 (70 + 1) = identity, and 720" = identity.) So
u(k) = F.

0"
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But k = k(v), and from this we get
A(Fs) < Aw(k))

as in Claim 2.60. Since \(F,,) < A(Fy,), we have a contradiction. O

Let G = u(k) and H = u(k). By Claim 2.61, along the branch from 1 to v, G is
being stretched above its critical point into H, by the copy maps corresponding to
the F, for 7+1 <y v and n < 7. Let 71 < v be least such that the stretching is over
with at ;. That is, setting

G=E"
711 = least 7 <y such that crit(¢, ) > ¢, -(§)
= least 7 < such that 7" (G) = H.
If n <y 7+ 1 <y 7, so that F, was used in producing W,, from W,, then F; is an

initial segment of all the extenders of copy maps 7T5’T+1, where p = U-pred(7 + 1),
and p > crit(¢,,r+1). From this we get

Claim 2.62 Forn <y 7+ 1<y v, AM(F;) < A\(H).
Proof. Just given. O

Claim 2.63 H # Fj,.

Proof. Suppose H = Fs,. We claim that v; < J§p. If v, is a limit ordinal, then
yi=sup{T+1|n<y7+1<ymn}, soby Claim 2.62, \(Fs,) > A(F;) for cofinally
many 7 in 7y, which implies g > 7;. If 71 is not a limit ordinal, we have vy =7+ 1
where F; is used, so that A(F;) < A(H) = A(F},). Thus 7 < dp, so 1 =7+ 1 < d.

On the other hand, H is used in W, on the way to I2,,. Thus R,, and Rs, agree
below Ih(H), while H = Fj, is on the Rs-sequence, but not on the R, -sequence.
This implies 09 < 71, a contradiction. O

By Claim 2.63, k € dom(v), and letting L = v(k), crit(L) < crit(Fs,). So L is
being stretched above its critical point into H along the branch from 7 to §. Let
01 < 0 be least such that the stretching is over with at d;; that is, setting

L=E"
01 = least 7 <y & such that crit(¢r5) > ¢y (1)
= least 7 <y § such that 7" (L) = H.

Since v # 01, we have A # M. Assume X/ < X{. (It no longer matters
whether vy < do, so this is not a loss of generality.) That is, we have a 7 + 1 <y 0y
such that for all o + 1 <y 71, A(EY) < A(EY). This yields:
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(%) 7 < 61, and whenever o + 1 <y 71, then A\(F,) < A(F}).

Thus 7 > o, whenever 0 + 1 <y ;. So 7 > ;. We have that H is used in
both W,, and W,, so R,, agrees with Rs, below lh(H), which is a cardinal in both
models. But F; is used in W, before H, so 1h(F}) is a cardinal in both R, and Rs,.

But then R,, and R, agree up to lh(F;), since R, || Ih(F;) = Ry, || Ih(F;). F; is
on the R;-sequence, and not the R, -sequence, so 7 < 7. Contradiction. [l

Corollary 2.64 Let 7 =nd(&,v+1) and 0 = nd(p, do+ 1), where vo+1 and 6o+ 1
are <g-minimal. (Le.v\,+1 <y v+1=7#nd(&, v+ 1), and similarly for 5o+ 1,
o, and p.) Suppose that for ny = U-pred(vy + 1) and n; = U-pred(dy + 1), we have
that ny and n, are <y-incomparable. Then T and o are <y (1 )-1ncomparable.

Proof. Let n be largest such that n <y ny and 7 <y n;. By the minimality of ~
and 71,

crit(dyro41) < Pon(§)

and
crit(@n .y, +1) < Gop(p)-
w. W W W
By Lemma 2.59, 85, " L s, """, But s, %" = SKY(T’M) and s, ' = SZY(T’M), SO we
are done. O

Corollary 2.65 Let a be a cofinal branch of W(T,U), and suppose a = br(cg, by) =
br(cy,b1). Then by = by, and by is cofinal inU. Moreover, if ¢y and ¢y are by-minimal,
then ¢y = c;.

Proof. We show first that by is cofinal. Let u < 1hif, and let 7 € a with 7 > «,, and
T=nd(§,7+1),
for £ € ¢g and v+ 1 € by. Let n = U-pred(y + 1). Then
T = o(§) < crit(yyr1) <oy + 1,
so o, < oy + 1, 50 i < 7. Hence by is cofinal. Similarly for b;.

Remark 2.66 The proof showed that if nd(§, vy + 1) and nd(§,v + 1) > «,, then
v 2 M
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Suppose toward contradiction that by # by. Let 19 € by and 1, € by be <y-
incomparable. 7,71 € a with 79 > o, and 77 > a,, and 75 = nd(&, v + 1),
71 = nd(p,7 + 1) for some 79+ 1 € by and 3 + 1 € by. Then 17y <y v + 1 and
m <u 7 + 1 by the remark above. By Corollary 2.64, 7y is <p-incomparable with
T1. Since 79, 71 € a, this is a contradiction.

Finally, suppose ¢y and ¢; are bp-minimal. We claim ¢y = ¢;. For that it suffices
to show

Claim 2.66.1 Suppose nd(§,v+1) andnd(p, d+1) are defined and <w (7 u)-comparable.
Suppose v+ 1 and 0 + 1 are <y-comparable. Then & and p are <r-comparable.

Proof. Although the ¢-maps do not fully preserve tree order, we do have

(Z) ¢n,’y(5) < ¢n,’y(p) = 5 §Wn P

(ii) &, p are <y, -incomparable and ¢, ,(£)] and ¢, (p)] implies ¢, (&) and ¢, ,(p)
are <y, -incomparable.

Now let £,v 4+ 1,p,0 + 1 be as in our hypotheses, and suppose & and p are <p-
incomparable. By (ii), we cannot have 7 +1 = § + 1. Suppose without loss of
generality v+ 1 <y 6 + 1. Let

n = U-pred(y + 1)
and
= U-pred(§ +1).

Then ¢, (§) is <w,-incomparable with ¢g,(p). Since ¢g,(§) < crit(dy,41) Wwe see
that ¢o,(n) is incomparable in W, 11 with ¢g,11(p). (If ¢o,(§) < crit(¢y,+1), this
follows from (i7). If ¢g, (&) = crit(¢y,+1), it follows from the definition of W, 44.)
Since ¢ (&) < crit(Pyt1,u), Go,(§) is Wy-incomparable with ¢ ,(p), contradiction.

O

O
Finally, we show (assuming still that all W,, v < lhl{, are by a common X.)

Lemma 2.67 For any cofinal branch a of W (T ,U), there is a cofinal branch b of U
and a branch ¢ of T such that bryy(c,b) = a.

Proof. We begin by decoding notes of U from nodes of W (T ,U). For & < Ih(W (T ,U)),
set
d(§) = least v such that £ < a,.
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Claim 2.67.1

d(&) = least v such that sz‘}” = SEV(TM)

= least v such that ./\/l?/W = M?/(T’M).

Proof. The two characterization are clearly equivalent. So it is enough to show that
<o, & ./\/l;/vW = M?/(T’u). The = direction is trivial. But if MZV” = MEV(T’U),
then W, [(§+1) = W(T,U)[(£+1) by normality. Since W, [(a,+2) = W(T,U)[(c,+
2) (because F., was used in the latter, and not the former), £ < a,,. O

Claim 2.67.2 & SW(T,I/{) & = d(fo) <vu d(fl)

Proof. Let vy = d(&) and v = d(&1). We claim that &, € ran ¢y ,,. For let 7 be least
such that ¢, (7) > &o. If o4 (7)E0, then there must be 0 <y n <y o +1 <y Y
such that

crit(Pno+1) < & < Pyorr(crit(dnoi1))

and n = U-pred(c + 1). (All discontinuities in ¢, arise this way.) But then
E<a,+1,s0 €& < a,, and 0 < 7y, contradiction.

Similarly, & € ran ¢, .

We claim that vy and ~; are comparable in /. Suppose not, and let n be largest
such that n <y v and n <y 71. Let

o = (bﬁ,’YO (50)

and

51 - d)ﬂﬂl (gl)

The hypotheses of 2.59 are satisfied, noting that & > crit(¢y,,,,) because otherwise

Weo
Seo

ilarly, & > crit(¢,,,). The other hypotheses of 2.59 hold, so we conclude sg”" is

compatible with 52}“. This implies & and & are comparable in W (T ,U). Finally,

§o <wirw &1 = o < &, and trivially & < & = d(&) < d(&). Since d(&) and d(&;)
are <y-comparable, d(&) <y d(&), as desired. d

Y0

= SZ:", whilst vy was least such that sz: appears as a branch extender. Sim-

Claim 2.67.3 d : h(W(T,U)) — bl is an order-homomorphism, and ran(d) is
cofinal in 1h(U).
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Proof. As we remarked, & < & = d(&) < d(&) is trivial. Pick any v < lhi/, and
E<IhW(T,U) with £ > a,. (The a,’s are strictly increasing.) Then d(&) >~. O
It follows that for any branch a of W (T ,U), we can set

d(a) ={v[ 3 € aly <v d(&))},

and d(a) is a branch of U. If a is cofinal in W (7T ,U), then d(a) is cofinal in U.
Next we decode nodes of 7. For any & < Ih(W(T,U)), set

e(§) = unique o < Ih 7 such that ¢g 4 () = &.
We showed in the proof of Claim 2.67.2 that £ € ran(¢g q()).
Claim 2.67.4 & <y (1) &1 = e(§o) <r e(&1).

Proof. Let v; = d(&;) and & = e(&;). As we noted above, the ¢ maps do not introduce
new tree-order relationships in ran ¢.

Subclaim 2.67.1 If ¢, (1) <w. ¢, (), then p <w, v.

Proof. Easy induction on ~. U

So if & &7 &, then ¢oq (&) £w,, Poqo(&1). That is, & Lw,, Goqe(&). If
crit(gqy 4, ) > o, then we get & ﬁwﬂ &1, and since & < o, o Lwirw &1, as
desired. So assume & > crit(¢q, -, )-

If §o = crit(pyy,q, ), then & < @y 4, (0) iff &g <w,, o for all 0. Since & ﬁwm

P00 (&1), this yields & L, &1, 50 & Lwru) &1, as desired.
Finally, suppose § > crit(¢,,,.,). So letting 7+ 1 < 5, be least such that
Yo <7+ 1, and
5 = B(W’Ym W‘ra F‘r)a

we have
5<£0§O&70<Oé7—.

No extender in ran ., ,, can have critical point in the interval [crit(F}), A(F;)]. This

implies that if 7+1 <y v and 8 < £ < a, then for all 0 € dom ¢, +, & Lw., Pyo(0).

In particular, & ﬁwﬂ &1, 50 & Lw(Tw &1, as desired. O
For a branch a of W(T,U), we set

e(a) ={B8 136 €a(B <re())}

So e(a) is a branch of 7. Even if a is cofinal in W (T ,U), e(a) may not be cofinal in
T. e(a) may have a largest element, or be a maximal branch of 7 not chosen by 7.
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Claim 2.67.5 Let a be cofinal in W(T,U). Then a = bry(e(a),d(a)), and e(a) is
d(a)-minimal.

Proof. Let b = d(a) and ¢ = e(a). Let £ € a, we wish to show £ € br(c, b). Let n be
least such that £ < ay,, so that n € b. Let ¢, (§) = &, so that £ € c¢. Let y+1 € b be
such that n = U-pred(y + 1). It will be enough to show that £ = nd(£,v + 1). For
that, it is enough to show that £ < crit(¢, ,+1)-

Let p € a be such that o, < p. Let o be least such that p < a,, so that o € b
and v+ 1 <y 0. Let ¢g,(p) = p. If & > crit(¢y,41), then £ € (crit(¢y,,41), o). But
we observed above that £ is “dead” along branches containing v + 1 for extensions
in ran ¢, ,, so since p is in ran ¢, ,, & Lw, p. But W, [(a, + 1) = W(T,U) (e, + 1),
s0 & Lw(ru) p, contrary to p € a.

It is easy to see that e(a) is d(a)-minimal. O
U

Definition 2.68 Given T normal on M, and U normal on the last model of T,
we write brw (T ,U) for the function bry, (defined on pairs of nodes and pairs of
branches) defined above. We write br)) for the function d and br?} for the function
e defined above.

Notation 2.68.1 To reconcile with our previous notation: if b is cofinal in U, there
is exactly one branch ¢ of T such that

(1) ¢=10,7]r or ¢ =1[0,7)r for some 7 < lh T, and
(17) bry(c,b) is cofinal in W (T,U).

This uses that 7 has a last model. We defined br(b, 7,U) to be bryy(c,b), for the
unique such c¢. We define m(b, T, b) to be the unique 7 as in (7). We probably won’t
use that earlier notation much.

For 7 in (i) a limit ordinal, the earlier notation does not distinguish between
¢ =1[0,7)r and ¢ = [0, 7]y, whereas the current one does. ¢ = [0,7)r is the case
where, roughly speaking, the measures in FEj, concentrate on proper initial segments

of MT|6(T supec) = MT|NT.

Remark 2.69 We assumed 7 has a last model, but one could generalize some of
this by dropping that, and assuming that U is on M(T).

Remark 2.70 There are two special cases worth mentioning.

(a) TU is already normal. Then W (T U) = T U, and bry (¢, b) = ¢"b.
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(b) U is a tree on M|k, where & = inf{crit(E]) | n+ 1 < 1hT}. Then if & has
limit length, then W (7T ,U) = U-on-M, i.e. U regarded as a tree on M. For b
a cofinal branch of U, W, = W(T,U"b) = U D" (%)T, and bry(c,b) = b ¢“c,
where ¢(n) = 1hid +&.

In our application, however, 7 and U will definitely not be separated this way.

Remark 2.71 brVTV’u makes sense in the coarse structural case. Our proof that it is
1-1 and onto used fine structure (via 2.59), as well as the hypothesis that all W, are
by some fixed ¥. So that part is limited to the fine structural case. But not much
fine structure was used, and we shall adapt the proof to the coarse structural case
later.

2.8 Normalizing longer stacks

There seem to be in the abstract many different ways to normalize a stack (U, ...,U,),
one for each way of associating the U;. If we are in the case that embedding nor-
malization coincides with full normalization, and there is a fixed strategy > for M
according to which all these normalizations are played, such that for any N there is
at most one normal >-iteration from M, then clearly all these normalizations are the
same. They are just the unique normal tree by X from M to the last model of U. We
shall be in that situation below when we deal with coarse iterations of a background
universe. But in general, it seems that the various normalizations of U might all be
different from one another.

We shall define ¥ normalizes well by demanding that whenever U is a finite stack
by 32, then all normalizations of U are by . In addition, we demand that ¥ pull
back to itself under normalization maps.

Definition 2.72 LetU = (Uy,...,Uy) be a finite stack of normal trees on M, where
n > 1. Let My = M, and M; be the last model of U; for 1 < i < n. A 1-step
normalization of U is a triple (k,V, ) such that V is a stack of length n — 1 on
M = M, and

(1) 1 <k <mn,
(2) Vo = Uy, for allm < k, and Vi, = W Uy, Ur11),
(3) Letting No = M and N; be the last model of V; for i < n, we have that

(a) m;: M; — N; is the identity for i < k,
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(b) m: M1 — Ny is the map given by embedding normalization, and

(c) fork <i<mn,V; =mli1, and mi1: M1 — N; is the copy map.
Clearly, U and k determine the rest of the normalization.

Definition 2.73 LetU = Uy, ... ,Uy,) be a finite stack of normal trees on M, where
n>1. Let 1 <t < n, then a t-step normalization on] 1S a sequence s with domain
t+1 such that s(0) = U, and whenever 0 < i < t, s(i+ 1) is a I-step normalization
of V, where V is the second coordinate of s(17).

A complete normalization of (Uy, . .., U,) is an n—1 step normalization of (U, ..., U,).
We shall sometimes identify a ¢-step normalization s of U with the stack of trees in
the second coordinate of s(t). If t = n — 1, then this is a single normal tree on M.

Remark 2.74 We have no example of a stack U on a premouse M having complete

normalizations which produce distinct normal trees on M. If Ih(Uf) = 3, then there

are two possible ways to normalize U. Must they always produce the same normal
tree?

For m > 1, and i > 0, let us write V") for the m-th tree in s(7) (or in its third
coordinate, if ¢ > 0), and N9 for the last model of VA", Let Ng(i) = M, for all i.
For any e < 7 < n, and any m such that N exists, there is a unique [ such that
N comes from N in the sense that s(e)[(I + 1) is normalized to s(i)[(m + 1)
by sl(e,]. Let us write

| = Os,i,e(m)

in this case. Composing normalization maps and copy maps given by s[(e, ] yields
a canonical

s NP — N3O,
where [ = 0*%¢(m). So if s is a normalization of (U, ... ,U,) with dom(s) =i+ 1,
then the stack V*@ has last model N2 where m = n — i, and n = 0*%(m), and
mh0 is the natural map from the last model of U to the last model of V. Let us write

" =it
in this case. So 7* is the natural map from the last model of 5(0) to the last model
of the stack in s(dom(s) — 1) that is given by s. All 7 have the form 7", for u
obtained from s in a simple way.

Probably the most natural order in which to normalize a stack is bottom-up.
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Definition 2.75 Let U = Uy, ..., U,) be a finite stack of normal trees on M; then
the bottom-up normalization of U is the complete normalization s of U such that for
eachi > 1 in dom(s), s(i) has first coordinate 1. We write W (U) for the normal tree

on M in the second coordinate of s(dom(s) — 1), and also call W(U) the bottom-up
normalization of U.

The definitions above extend to stacks & on M of infinite length. Again, it seems
to makes sense to normalize in any order, but the most natural way is bottom-up.
Suppose for example that U = (U, | n < w). Let Wy = Uy, and for n > 1 let

W, =W ({U; [ i <ny).

For n > 0, let
(I)ni Wn — Wn+1

be the psuedo-hull embedding given by the fact that W,,.1 = W(W,,, nl,,+1) for the
appropriate 7. (®,, is partial iff U, ;1 drops along its main branch.) Then we set

-

W(U) = im W,

where the limit is taken using the ®,. Clearly, we could continue further into the
transfinite, and so W (U) makes sense for stacks U of normal trees of any length. See
[27].

In fact, one could go beyond linear stacks of normal trees, and consider normal-
izing arbitrary trees on M. See [27] for a discussion. In this paper we shall not need
more than normalization for finite stacks of normal trees.
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3 Strategies that condense and normalize well

In this section we define what it is for an iteration strategy to normalize well, and
to have strong hull condensation. We prove some elementary facts related to these
definitions. We then show that under an appropriate form of UBH, there is a unique
iteration strategy >* for V' that normalizes well. UBH easily implies that >* also has
strong hull condensation. Finally, we show that, via full background constructions,
> induces iteration strategies for premice that normalize well and have strong hull
condensation.

The version of UBH we shall use in this section is open. However, assuming AD™,
it does hold in the coarse I'-Woodin models constructed by Woodin (see for example
[30]). So working in such a model, one can use the results of this section to construct
strategies that normalize and condense well.

3.1 The definitions

Definition 3.1 Let X be an iteration strateqy for M defined on finite stacks of nor-
mal trees. We say that ¥ normalizes well iff whenever U is a finite stack by 3, and
s is a t-step normalization of U, and V = V*® is the stack in s(t), then

(1) Vis by S, and

(2) if 1 = is the natural map from the last model Q ofﬁ to the last model R of
V, then X7 5 = (E5 )"

Clearly, if ¥ normalizes well, then so do all its tail strategies.

Let us say that X 2-normalizes well iff the conclusions of 3.1 hold for stacks U
of length 2. So if ¥ 2-normalizes well, then whenever (7 ,U) is by 3, then W (T ,U)
is defined. That is, the definition never produces illfounded models, because it is
producing a tree by ¥. Moreover, ¥ pulls back to itself under the normalization map
of W(T.,U).

Suppose ¥ normalizes well, and 7 is a normal tree on M with last model @) that
is according to X. Let ¢ on () be normal and by Y7 o and of limit length, and let

b= ZTQ(U) = E(<T7 u>)7
and

a=S(W(T,U)).
Then

a = brz/;/’u(c, b)
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where ¢ is some branch [0, 7)7 or [0, 7|7 of T that is chosen by 3. (I.e. T[(7 4+ 1) is
by ¥.) Moreover,
b= br, ().

In other words, X((7,U)) and (W (T,U)) determine each other, modulo 7. (This
“moreover” part applies in the fine-structural case, with all W, by a fixed X.)

Proposition 3.2 Let X be an iteration strategy for M defined on finite stacks of
normal trees, and suppose that whenever V is a normal tree by > with last model R,
then the tail strategy Xy r 2-normalizes well. Then ¥ normalizes well.

Proof. We show by induction on n that ¥ normalizes well for stacks of length n. For
n = 2 this is true by hypothesis. Let 7 (Uy,Us)"S be a stack of length n + 1 by
Y. We want to see that the 1-step normalization obtained by replacing (U;,Us) by
W (U, Us), and S by 78 for 7 the normalization map, behaves well. It is clear that
this implies t-step normalizations behave well, for all ¢. The proof is by induction on
the length of Us.

Let V be a complete normalization of 71, with 6 the normalization map from
N = M! to N* = MY.. 0 lifts Uy to 6U;; let p: MY — M% be the copy map.
Note that (V, 60U, plhz) is a stack by X, because Xy y« pulls back under 6 to YN
by our induction hypothesis. Let Q* be its last model. Let

W = W(‘gula PUZ)a

and let R* be the last model of W*, and ¢*: Q* — R* the normalization map. The
hypothesis of our proposition tells us that (V, W*) is by X, and that

Sy = (Swwre)”
Let Q be the last model of 77Uy, Us), let
W =W (U, Us),

and let R be the last model of W. Let 0: @ — R be the normalization map. The
situation can be encapsulated in the following diagram.
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92/{1 pUQ
% 0 Y R
W }
M N P 8)
7“— U Uz

Here P = MY and P* = M. The maps ¢: Q — Q* and ¢: R — R* are copy

o0

maps. We get ¢ from Theorem 2.46; in this case, copying (U;,Us) via § commutes
with normalizing (Uy,Us). We have

poo =00y

from 2.46.
. Since AW = W*, and ¥ pulls back to itself under 6 by induction, we have that
T (W) is by Z, and Sz, p = (S wey,r=)?. Tt follows that

(=
(Sov.an o))"
= ZT‘AM Us), Q"

Line 1 holds because Y normalizes well for ’f', line 2 comes from 2.46, line 4 holds
because Xy y+ 2-normalizes well, and line 5 holds because Y normalizes well for T.
This takes care of the case S = 0. The general case follows easily. Since
Z7-A<W>’R)" ZTAW ) and S is by ZTAW W), 00 We have that o8 is by ETA< W)R
and moreover the 7'“( > ~0S-tail of ¥ pulls back under the relevant copy map to
the T(Uy, Us)"S-tail of 3. O
A very similar argument shows that the property of normalizing well passes to
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pullback strategies.

Theorem 3.3 Let 3 be an iteration strategy for N that normalizes well, and let
m: M — N be sufficiently elementary that the pullback strateqy 3™ exists; then 37
normalizes well.

Proof. Let (V,U;,Us) be a stack by X7, with last model Q. Let W = W (U;,Us) have
last model R, and o: Q — R be the normalization map. We want to see that (V, W)
is by X7, and that the (V, W)-tail of X7 pulls back under o to the (V,U;,Us)-tail of
T

We have the diagram

N__™ $
™ 0 v R
W }
M K P 0
% U 253

Here 6 and p are copy maps generated by 7, and W* is the normalization of (60U, plts).
o* is the associated normalization map. v and ¢ are copy maps, which we have
because copying commutes with normalization. ¢ o 0 = ¢* 0 ¢ by 2.46.

The copy map ¢ tells us that (V, W) is by X7. The rest is given by
)

Eowy,r)” = Bavwe

)U*ozp

= (

= (X ve).R
(Swvwey,rs)” )Y
= ((Ctrv o o 07)"
5

N
T~ (U U2),Q°
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This is what we want. U
We turn to strong hull condensation.

Definition 3.4 Let X be an iteration strateqy for a premouse M. Then ¥ has strong

hull condensation iff whenever s is a stack of weakly normal trees by > with last model

N, andT andU are normal trees on N such thatU is by s n, and T is a pseudo-hull
of U, then T is by X n.

Because less is required of a psuedo-hull embedding than is required of a hull

embedding in [16], the property is stronger than the corresponding one in [16], hence
the name.
Remark 3.5 In [33] we introduce a still weaker sort of embedding of iteration trees,

and make use of the resulting “very strong hull condensation”. It turns out that
strategies for premice that normalize well and have strong hull condensation also
have very strong hull condensation, and this implies that they fully normalize well.
However, the proof of this requires a strategy-comparison argument. Strong hull
condensation has the virtue that we can verify it directly for background-induced
strategies, so we can use it in proving a comparison theorem.

Strong hull condensation is preserved by pullbacks:

Proposition 3.6 Let m: M — P be weakly elementary, and let X be a strategy for
P having strong hull condensation; then X™ has strong hull condensation.

Proof.(Sketch.) Let s be a stack on M with last model N, and & be on N and by
(X™)s. Let T be a psuedo-hull of U. Let @ be the last model of 7s, and ¢¥: N — Q
the copy map. It is not hard to see that )7 is a psuedo-hull of ¥U/. Since YU is by
Yrs.@, YU is by Xrs0, 80 T is by (X7),, as desired. O

3.2 Coarse strategies that condense and normalize well

In the context of coarse iteration trees, we shall restrict ourselves to the nice ones.
(Cf. 1.23.)One reason is that UBH fails in general (Woodin, cf.[39]), but may well
hold for nice trees on V. In fact, countable closure is enough to avoid the counterex-
amples for normal trees, but we shall stick with niceness.

Definition 3.7 (a) M is uniquely f-iterable for normal trees iff whenever T is a
normal, nice iteration tree on M, and Ih(T) is a limit ordinal < 6, then T has
a unique cofinal wellfounded branch.
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(b) M is strongly uniquely #-iterable for finite stacks iff whenever (Uy, ... ,U,) is
a finite stack of normal nice iteration trees, with Uy on M, and 1h(U;) < 6 for
all i, and U, has limit length, then U,, has a unique cofinal wellfounded branch.

(c) We say that M is uniquely O-iterable above k for normal trees (respectively,
strongly uniquely 0 iterable above K for finite stacks) if (a) ( respectively (b))
holds for trees with all critical points > k.

The unique wy iterability of V', in either sense, follows from UBH for the associated
class of trees, by [3]. For iterations of uncountable length, we need UBH in the
appropriate collapse extension.

Theorem 3.8 (Folk.) Let 0 < k, and suppose that UBH holds in V|G|, where G
is Col(w, 0) generic over V, when restricted to normal nice iteration trees above K;
then V' is uniquely 0% iterable for normal trees above k.

Proof.[Sketch.] Given T in V of limit length < 6%, we can regard T as a tree on
V[G] because § < k. In V[G], T is countable, so by UBH in V[G] and [¢] in V[G], it
has a unique cofinal, wellfounded branch. Because the collapse is homogeneous, this
branch is in V. O

In one situation, UBH in V' implies instances of UBH in V[G]:

Theorem 3.9 (Woodin) Let § be Woodin, and let T be a nice tree on V' that is
above §. Suppose |T| < 0, and let G be V-generic for a poset of size < &; then in
V[G], there is at most one cofinal branch of T .

Proof.Sketch. We may assume G is countable in V[H]|, where H is V-generic for
the countable stationary tower Q_s. Suppose toward contradiction that b and c¢ are
distinct cofinal branches of 7 in V[G]. T can be regarded as a tree on V[H], and b
and c are still wellfounded when it is regarded this way.

But let 7: V' — M = Ult(V, H) be the generic elementary embedding. Since M
is closed under countable sequences in V[H]|, #T € M, and one can check that b
and c are wellfounded as branches of 7#7. (Essentially the same functions into the
ordinals are used in forming M and M77, for example.) Thus UBH fails in M for
nice trees above m(¢), contrary to the elementarity of 7. O

At supercompacts, we catch our tail:

Theorem 3.10 (Woodin) Suppose that k is supercompact, and that UBH holds for
nice iteration trees on V above k. Then for all 6, V is uniquely 0-iterable for normal
trees above K.
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Proof. Given T above k on V, with T € Vp, let j : V. — M, crit(j) = &,
jVo € M. In M, the lifted tree j7 has size < inf{crit(Eg;T) | a+1 < 1hT},
so by 3.10 and 3.9, j7 has a cofinal wellfounded branch b in M. (Note j(k) is a
limit of Woodin cardinal in M.) The copy map o : M — ]\/[bjT witnesses that b is
wellfounded branch of T . O

We shall see in a moment that there is a reason to distinguish between UBH for
normal trees and UBH for stacks, in that UBH for stacks of length 2 fails granted
sufficiently large cardinals.

One way to get strong unique iterabilty is to work with M that have no Woodin
cardinals. Such M may have I'-Woodin cardinals, for some large pointclass I', and
be interesting for that reason. Consider for example the case I' = X1: if 4 is least
such that L(Vs) = d is Woodin, then Vn < 4, (L(V},) is uniquely d-iterable). If in
addition every set has a sharp, then L(Vj;) is f-iterable for all §. Under AD", we
have coarse I'-Woodin mice at all scaled pointclasses I', as we now describe.

There are a number of variants on the notion of a coarse I'-Woodin mouse. The
following is good enough for our purposes here. Assume AD™, and let I'y,T'; be a
good (i.e. closed under 3®) lightface pointclasses with the scale property such that
'y € A;y. Let A be a universal I'y set, and let U code the theory (with parameters)
of (V,41,€,A). Let S and T be trees on some w X £ that project to U and =U. Using
his work in [6], Woodin has shown ([30]) that there is a pair N* € HC, a wellorder
< of N*, and an iteration strategy 3* for N* such that for § = o(N*),

* L(N*U{S,T,
(a) (fullness) N* =V (N{ 4})’
(b) N*is f-Woodin, for all f: 6 — 0 such that f € Cr,(N*, <),

(c) for all n <6, there is an f: n — n such that f € Cpl(VWN*, <an VWN) and VnN*
is not f-Woodin, and

(d) ¥* is an (wp,w)-iteration strategy L(N*,S,T, <), with respect to nice trees
based on N*.

Definition 3.11 Assume AD™, and let Ty be a good pointclass with the scale prop-
erty. A coarse I'»-Woodin mouse is a tuple (N*, <, S,T,%*) as described above.

Of course, S and T' determine U, and hence I';.

Let M = L(N*,S,T,<), where (N*,<,S,T,%*) is a coarse 'y mouse. If g is
M-generic over some countable-in-V poset P € M, then M[g] knows projective-in-
U truth about the reals it sees. Moreover, if i: M — R is elementary and R is
wellfounded, then as usual (S) and #(7) can be used to compute projective-in-U
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truth in R[], for any h that is R-generic over some countable-in-V poset. So letting
Cy and Cy be the Cr, and Cr, operators (defined on HC"), M can define Cy[M and
Ci[M, and if i: M — R is elementary and R is wellfounded, then i(Cy[M) = Cx|R
for £ = 0,1. Thus the Cr, and Cr, operators can be defined over M and its iterates
by X*.

It follows that M and its iterates are Cp,-full, and X* is guided by Cr, ©-
structures. More precisely,

Lemma 3.12 Assume AD", and let (N*, <1, S,T,%*) be a coarse I'-Woodin mouse.
Let T, U be a stack of nice normal trees played by 3*; then the following are equivalent

(1) 50 =,
(2) Cr,(MU)) € M{,
(3) MY is wellfounded.

Proof. Just outlined. O

It follows that @ is an iterate of M, then () satisfies “I am strongly uniquely #-iterable
for stacks of normal trees, for all § < w}”. The strategy witnessing this is X*]Q.
Moreover, >* is definable from U, so () and its generic extensions are correct for the

theory of (HC, €,%*). In particular

Corollary 3.13 Assume AD*, and let (N*, <, S,T,X*) be a coarse I'-Woodin mouse;
then

N* = “I am strongly uniquely iterable for stacks of normal trees”.

It is easy to see that the Cp-guided strategy occurring in the proof of 3.12 nor-
malizes well.

Strong unique iterability for stacks is too much to ask if V' has extenders over-
lapping Woodin cardinals. ( There are no such extenders in the I'-Woodin models of
3.11.) The problem is that UBH is false in such models. In [1], the authors construct
a stack U = (Up,Uy) of normal iteration trees on V such that for some strong limit
cardinal ¢ of cofinality w,

(i) Uy = (F), where lh F' = strength (F) =4,

/U(VF)
s

(ii) U, is an alternating chain on Vi = , with distinct branches b and c,

and
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(iif) both MY and MY are wellfounded.

The key here is that because Vs = VJUM(V’F), both z’z,fl and 41 can be extended so as
to act on V, and the construction arranges that i,(F) = i.(F). But then MY =
Ult(V,iy(F)) = Ult(V,i.(F) = M. So not only are b and ¢ both wellfounded as
branches of U, in fact MY = M

In the example above, Ult(V, F') is not closed under w-sequences, so Uy is far
from nice. However, W.H. Woodin has shown that under stronger large cardinal
assumptions, we can modify the example so as to get a stack of length 2 of nice trees
on V. Namely, suppose we start with g a normal measure on &y, where ¢y is Woodin,
and Fj an extender with length = strength equal to dy. Let Z be a linear iteration of
i of length w, with direct limit model N. Let F' and ¢ be the images in N of F, and
do. Then let Uy be the normal tree determined by Z~(F'), so that the last model of
Uy is M = Ult(V, F). and let U, be an alternating chain on M with branches b and
¢ which, when acting on N, satisfy i,(F) = i.(F'). The construction of [11] gives us
this Us; we only need cof(d) = w to hold in V, it need not hold in N. Again we have
MY = M?, so both branches are wellfounded. But now ¥ is nice.

Remark 3.14 Woodin’s counterexample uses that 1h(F") has measurable cofinality.
We shall see in 3.21 that this is essential. That gives us a way of avoiding the
counterexample in applications.

In both examples, the branches b and ¢ are not equally good. For example,
consider the first example. Let E, and E. be the two branch extenders. Since
our chain was constructed by the one-step method, exactly one of Ult(V, E}) and
Ult(V, E.) is wellfounded. But in (Uy,U;"b) and (Uy, U, "c), these branch extenders
are applied to Ult(V, F') rather than V. We have taken advantage of non-normality
to hide the difference between b and c. If we normalize, the difference shows up:

W (Uo, Uy "b) = U b3 (F)

and
W(u(), L{l“c) = Z/ll“cﬁiﬁll (F)

Here U,"b and U, c are acting on V| where only one of the two is actually an
iteration tree, in that all its models are wellfounded. This leads us to the following
definition.

Definition 3.15 We say that M is uniquely #-iterable for finite stacks iff

(a) M is uniquely 0-iterable for normal trees, and
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(b) letting X be the unique O-iteration strategy for M on normal trees, there is an
iteration strateqy Y witnessing 0-iterability for finite stacks such that ¥y C 33,
and Y normalizes well.

If M is uniquely 6-iterable above k for finite stacks, and ¥ is its unique strategy
for normal trees, then there is a unique extension X of ¥y such that ¥ normalizes
well. X((Uy, ...,U,)) is the unique cofinal branch b of U,, such that some, equivalently
all, normalizations of (U, ...,U,"b) are by ¥y. So 3 witnesses that M is uniquely
f-iterable above & for finite stacks iff

(i) X witnesses that M is f-iterable above k for finite stacks,
(ii) ¥ normalizes well, and
(iii) the restriction of ¥ to normal trees chooses unique cofinal wellfounded branches.

There is at most one such strategy ¥ for M.

We conjecture that if V' is uniquely f-iterable above k for normal trees, then it
is uniquely @-iterable above k for finite stacks of normal trees. We shall prove below
that this is true if we restrict our trees so that the extenders used all come from a
fixed coarsely coherent sequence F and its images. That restriction seems mild so
far as applications go. In this context, 6, F -iterability, unique 6, F -iterability, and so
on, have the obvious meanings.

Strong hull condensation for F iteration strategies choosing unique wellfounded
branches is immediate.

Lemma 3.16 Suppose that M |= “F s coarsely coherent”, and that X witnesses that
M is uniquely 0, F'-iterable for normal trees; then Y has strong hull condensation.

Proof.. Suppose U is a normal F-trees on M is by X, and ¢ is a psuedo-hull
embedding of T into U. For a < 1h(T), t%: M7 — ./\/lff(a) is elementary, where these

are the maps of ®. Thus M7 is wellfounded. Since all its models are wellfounded,
T is by X. O

Theorem 3.17 Let F be coarsely coherent, and suppose that V' is uniquely Q,ﬁ—
iterable for normal trees; then V' is uniquely 0, F'-iterable.

Proof. Let 31 be the strategy witnessing that V' is uniquely 6, F-iterable for normal
trees. We must extend ¥; to a strategy X acting on finite stacks.
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We first extend X to X, acting on stacks of length < 2. Let (T ,U) be a 2-stack
of F-trees, with 7 by 1. We define $5((7,U)) by induction on 1h({), maintaining
by induction that W (7 ,U) is by 3;. The copy maps guarantee that so long as
W (T ,U) is defined, it is an F-tree. It is not hard to show that W (T ,U[(y + 1)) is
by 3, then so is W(T,UJ(y+2)). So suppose U of limit length \. Tt is enough show
that there is a unique cofinal branch b of I such that setting

Wy =W (T, U™D),
W, is by ;. For then we can set
ST U)) =0,

and our induction hypothesis remains true at A+ 1. To show this, let W = W (T ,U)
and let a = X;(W) be the unique cofinal, wellfounded branch of W. The results
of section 1.5 go through for F-iteration trees on V', because of 1.25. Adopting the
notation of 1.5, let
b =br)(a)

be the cofinal branch of U determined by a. We claim that all models of W, are
wellfounded. Let us adopt our usual embedding normalization notation: Let n =
Ih(W (T, U)). So

1= Sup ay = do(7),
F<A

where 7 < 1h(T), and 7 = m(b, T,U). So M)¥» = M}V is wellfounded. We show

by induction on & that if n < & < 1h(W,), then MZVZ’ is wellfounded, and hence
Wil(£+ 1) is by 3. This is trivial if £ is a successor ordinal, because ¥; cannot lose
at a successor step. But if £ is a limit, then we have

& = dop(§)
for some limit ordinal ¢ < 1h(7). If ¢ is a branch of W, that is cofinal in £, then we
have a unique branch ¢ of T that is cofinal in £ such that

¢, C is cofinal in ¢ .

If ¢ # [0,&]r, then ¢ is illfounded in T, so ¢ is illfounded in W,. So all cofinal
in ¢ branches of W, are illfounded, except possibly for [0,&]w,. Thus [0,¢]w, is

wellfounded, as desired.
Since MY = MW we have that MY is wellfounded, and II does not lose if he

sets Lo ((T,U)) = b.
This completes the definition of >y on stacks of length < 2. Clearly, normaliza-

tions of stacks by Y are by ¥;. Suppose now we have ¥,, where n > 2, and
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(%), whenever T is an F-stack of length < n played by X, and having last model
R, then there is a normal F-iteration tree on V' with last model R.

There is then exactly one such 7 by 1.25, and we write
T =W(T).
We define ¥, as follows: if f“<u ) is a stack of length < n + 1 played by %,,1,
S (TU)) = So((W(T),U))).

Clearly, 3,41 is an F-iteration strategy defined on stacks of length at most n+1,
extending 3,,. If 77(U) is a stack on V by ¥, 1 with last model R, then (W (T),U)

—

is a 2-stack by Y with last model R, so W(W(T),U) is a normal tree with last
model R. Thus (%),41 holds, and we can go on.

Let
Y= U Y,

We must show that > normalizes well. For this, the following notation is useful.

Definition 3.18 (1) Let W be a normal iteration tree, and 6 a limit ordinal. We
say that b is a §-branch of W iff § = sup{lh(EY) | a+ 1 € b}.

(2) Let W and U be normal iteration trees, let b be a branch of U of limit order
type (perhaps mazximal), and let ¢ be a branch of W (perhaps mazximal). We
say that b fits into c iff for any extender F used in b, there is an extender G
used in ¢ such that crit(G) < crit(F) < 1h(F) < 1h(G).

Lemma 3.19 Let W and U be normal iteration trees, and let § be a limit ordinal;
then

(1) for any §-branch ¢ of W, there is at most one §-branch b of U such that b fits
into ¢, and

(2) for any § branch b of U, there is at most one d-branch ¢ of W such that b fits
mto c.

Proof. Routine. U

Lemma 3.20 Let (T,U) be a stack of nice iteration trees on M, and b a cofinal
branch of U; then b fits into br(b, T,U).
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Proof. This is clear from the construction, and the fact that the copy maps are the

identity in this coarse case. See the earlier diagrams of the extender tree of W (7T ,U).
O

By proposition 3.2, it is enough to show that all tails of ¥ 2-normalize well. So
let S be a stack by ¥ with last model @, and let (T,U) be by Yo with last model
R. We must see that W (T ,U) is by Yg o and that Xg 0y p = Xs () r- Here
we are making use of the fact that the normalization maps in this coarse case are all
the identity.

The proof is by induction on 1h(l/), and the harder case is lh(i/) = A+ 1 for some
limit ordinal A, so let us just handle that case. Let b = [0, \)y, and 6 = §(U). Since

ST, U) is by &, we see from the definition of ¥ that
Wo = W(W(8(T)),U)

is the unique normal F-tree on V with last model R = MY. Moreover W, chooses
the o-branch .
a = br(b, W(S™NT)), U),

and a is the unique d-branch of W, into which b fits. Let
c=br(b, T,U)

be the unique §-branch of W (7,U[)\) such that b fits into ¢, and

—

d=Dbr(c, W(S),W(T,UN))).

d is a d-branch of

Wi = W(W(S), W(T,UIN),
and c¢ fits into d, so b fits into d. By our induction hypothesis, W, is according to
Y;. Because the copy maps are the identity, the common part model M(W;) =
VéW(T,ur/\) = V. By our uniqueness lemma for normal F-iterations, W, is an initial
segment of W), so a is a d-branch of W;. Since b fits into both a and d,

a=d.
But ¥, chose a branch of W(7,U[)) that fit into a, so it chose c. Thus W (T, U)
is by Eg,Q‘
) Finally, let & = Z§A<T,U>,R and ¥ = E§A(W(T,L{)),R' We must see that & = U. Let
V(YY) be played by both strategies, with ) of limit length. Let M be the last model
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of V, and let W be the normal tree on V with last model M. Let & = 6()). Let a
be the §-branch of W(W,)). Both ® and ¥ choose branches of ) that fit into a. So
they agree on V().

U

We now show how to avoid Woodin’s counterexample. Recall that if Fis coarsely
coherent, then each E in F is nice, so that 1h(E) is inaccessible, but not measurable.

Theorem 3.21 Let F be coarsely coherent, and suppose that V' is uniquely Q,ﬁ—
iterable; then V' 1s strongly uniquely 6, F-iterable.

Proof. Let ¥ be the unique iteration strategy witnessing that V' is uniquely 6, F-
iterable. We must show that it witnesses strong uniqueness. Suppose not. We then
have a stack (7,U) by ¥, and a cofinal wellfounded branch b of U such that MY

is wellfounded, but X( <71,Z/{ )) # b. By replacing 7 with its normalization, we may
assume that 7 = T is a single normal tree.

Let W =W(T,U), and let
a=br(b, T,U).
Since X({T,U) # b, X (W) # a, and unique normal iterability then implies
M is illfounded.
Let ¢op(7) = Ih(W(T,U). We see then from the normalization construction that
MY = UI(M] | By),

where E} is the extender of b.
We need some elementary covering properties of the models in 7. For n < 1h(7),
let
vy, = sup({lh(G) | G is used in [0, 7)1 }).

It is clear that v, is either inaccessible or a limit of inaccessibles in MnT

Claim 3.22 Let X C MnT be countable in V'; then there is a Y DO X such that
Y e M and M] Y| <.

Proof. There are f, € V, for n < w, such that every z € X is of the form

io.n(fn)(a), for some a € [v,]<“. So we can take Y = {ig,(f,)(a) | n < wand a €
()=} O
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Claim 3.23 Suppose M,, |= “8 is reqular but not measurable”; then § has uncount-
able cofinality in V.

Proof. We prove this by induction on 7. It is trivial for n = 0. Suppose we have
it for n < A, where A is a limit ordinal. Let # be regular but not measurable in M,
and let 6 = i, A(8). By induction, cof” (3) > w. But i, is continuous at 3, because
3 is regular but not measurable in M,. Thus cof" () > w.

Finally, suppose the claim holds at 7, and let 6 be regular but not measurable
in My41. Let v = Ih(E]) = vy41. If @ < v, then the agreement between M, and
M1 implies § is regular but not measurable in M,,, so cofV (#) > w by induction.
If & = v, then 0 is regular but not measurable in M, by our hypothesis on the
extenders in F, so again cof (0) > w. Finally, if & > v and cof” () = w, then @ is
singular in M, ;; by claim 3.22, contradiction. U

Now let v = v, = Ih(ET). We have that &% (v) > §(U), for if not, then ¢o(7) <
A. (See 2.49, and the discussion near it.) But v is regular and not measurable in
MY = M so it is continuous at v. Moreover, cof" (v) > w, while cof” (§(U)) = w
because b is not the only cofinal branch of &/. Thus we can fix p such that

p < vand ¥ (p) > o(U).
Since the measures in £}, all concentrate on bounded subsets of p, we also have
v < p.

Let us fix a witness to the illfoundedness of Ult(M7, E,), namely f, € M, and
a, € [0(U)]<* such that 7(f+1)(ant1) € 7(fn)(ay) for all n, where

7 M, — Ult(MT | E)

is the canonical embedding. By 3.22, we can cover {f, | n < w} by aset Y € M7
such that |Y| < pin M7. Let Y C N, where N is a rank initial segment of M7,
and let P be the transitive collapse of Hull’™ (Y U p). Letting g, be the collapse of
fn, we see that

Ult(P, E,) is illfounded,

as witnessed by the g,’s and a,’s. But MY agrees with M7 up to v, so

Pe M.
Further, Ult(P, E,) embeds into #/(P), so i¢/(P) is wellfounded. But &% (P) is well-
founded in MY, so MY is illfounded, contradiction. U

Putting the last two theorems together, we get
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Corollary 3.24 Let F be coarsely coherent, and suppose that V is uniquely Q,F—
iterable for normal trees; then V' is strongly uniquely 0, F'-iterable.

In the theory of hod mice, it is important that strategies be moved to themselves
by their own iteration maps. More precisely, we would like to know that ifi: M — N
comes from a stack of trees T by ¥, then (SN M) = 27 nyMNN. We shall obtain this
from the corresponding property of coarse strategies Y such that > witnesses that
is strongly uniquely 6, F-iterable.

Lemma 3.25 Let F be coarsely coherent, and let > witness that V' is strongly
uniquely 0, F-iterable. Suppose that i: V. — N comes from a stack of trees T by
¥; then i(X) = Xz y N N.

Proof. Both i(%) and ¥z y choose wellfounded branches. Since these are unique (in
V1), the two strategies cannot disagree. U

3.3 Fine strategies that normalize well

Next, we show that if ¥* is an iteration strategy for a coarse N* that normalizes
well, then the strategies for premice induced by ¥* via a full background extender
construction also normalize well.

The reader should see the preliminaries section for our definitions and notation
related to background constructions, and to the conversion of iteration strategies
they mediate.

Theorem 3.26 Let C be a w-construction done in some universe N* |= ZFC, and
let ¥* be a FC-iteration strateqy for finite stacks on N*. Suppose that X*normalizes
well. Let M be a model of C, and % its induced strateqy; then ¥ normalizes well.

Remark 3.27 We believe that the proof of 3.26 works even if the construction C
is allowed to use extenders that are not nice, so that embedding normalization does
not coincide with full normalization at the background level. This just means that
certain embeddings are no longer the identity, and hence must be given names in the
proof to follow.

Proof. By 3.2, it is enough to show that all tails of ¥ 2-normalize well. We
consider first a 2- stack on M® Vo ko 1tself.

Let 7 be normal on My, , . and U normal on the last model of T, with (7 ,U)
by X. Let (T*,U*) come from lifting (7 ,U) as above. We shall show that W (T ,U)
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lifts to an initial segment of W(7T*,U*). (If U has limit length, W (T,U) lifts to
W (T*,U*). If it has successor length, then dropping along the main branch of ¢ can
cause W (T,U) to lift to a proper initial segment of W (T*,U*).) Since W (T*,U*) is
by X%, we get that W (T,U) is by X.

More precisely, let

Lift (77, Moo ko, ©) = (T, (1T | € < &), (L | € < &)

[

We are using “i)” rather than “7” for the maps so as not to clash with our notation
for embedding normalization.
Let

: i ¢©) .
lift (LU, M55 i e, (C) = U, (1) | € < Ihd), (pe | € < Inl)).

T 1T 0,
nﬁo’lﬁo o

Let 7¢ : ./\/lzg — ./\/lé%)u be the copy map, and

U
Y¢ = pe o,
so that
u u
where B
. io,§°i0,§0 (©)
Qe = My

So 9% is the lifting map on MY given by our conversion of (7,U) to (T*,U*).
The embedding normalization W (7 ,U) has associated to it normal trees W, on
ME , | for v < 1hitd. We also have partial maps ¢, - : lh W, — 1h W, for n <y 7, and

vo,ko?
for 7 € dom ¢, , a map w7 : MM M;:TW(T). We have R, = last model of W,,
0y : MY — R, and F, = 0, (EY). W(W,, F,) = W, 11, when 1 = U-pred(y + 1).

Similarly, W (7T*,U*) has associated trees W} on N* for v < Thif* = 1hlU, together
with partial maps ¢, . : Th Wy — Th Wy for n <y« v (equivalently, n <y =), and for
7 € dom ¢y ., a map 7?2’7. Since %* normalizes well, the W7 are by ¥*; moreover,
by 2.43, the last model of Wi is MY". We have that W2, = W(W;, EY") when
n = U*-pred(y + 1) (equivalently, n = U-pred(y + 1)).

We shall prove that each W, lifts into W[ 1h W, and hence is by . The proof is
by induction on 7, with a subinduction on initial segments of W, . Basically, we are
just showing that embedding normalization commutes with our conversion method.
The proof is like the proof that embedding normalization commutes with copying
given in 2.46, but there is more to it because in addition to copying, we are passing
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to resurrected background extenders. Nevertheless, the main quality required to put
such a proof on paper is sufficient patience.
For v < 1hi4, set

WU, Moy g, ©) = (S5, (7 ) | € < W), (07 | € < IhW)).

We shall show, among other things, that S5 = WJ[1hW,, so that W, is by X.

As before, we write z(v) for ThW, — 1 and z*(v) for lh W} — 1. We write oo for
z(v) or z*(v) when context permits. So R, = MZ{;) = MY and if (v,7]y does not
drop, then ¢,,(2(v)) = 2(7), and 7, = 757 R, = R,.

Lemma 3.28 Let v < lhUd. Then
(1) & =W;ThWw,.

(2) Whenever v <y v and (v,y]y does not drop in model or degree, then for all
T<1hW,,

@) 03, ey L) = T2 (07, 12)), and
(i) 6, 077 = 727 0.
(3) ¢nw C @, if n,v <y andn <y v.

* *

: W, LW
(4) (@) Ml Uy = (1), and iy, (C) agrees with ig,2-()(C) at and below

this point,
(77) wzﬁ) 00, = @Dg.
Proof.
Here is a diagram related to 3.28:
i
e s:
MY ——— R, Q, € M
s /I\ ey a5 /I\
v,y [e's) o
u Ov wgo S*
M R, Q, € M
WY
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The fact that )2, maps to @, is (¢). The fact that the triangle on the top commutes
is (i7). That the square on the right commutes is (2), in the case 7 = z(r). We of
course need (2) at other 7 as well. That square on the left commutes is a basic fact
about embedding normalization.

The reader might look back at the diagram near the end of the proof of 2.47.
MY in that diagram corresponds to @, in the present one. We can take R’ of
that diagram to also be @), in the present one, because our tree on the background
universe is nice. We don’t actually need that; if the background extenders were not
nice, then in the present case we would be introducing some o}: @), — R}, via the
embedding normalization of (7*,U*). ¥% would map into R}, rather than @,, and
the present diagram would transform into the previous one. (See remark 3.27 above.)

We prove 3.28 by induction on y. For v =0, Wy =T and W = T*, so (1) holds;
moreover, (ng,1g) = (nI,1l') and ¢ = 4. (2) and (3) are vacuous. (4) holds: in
this case, z(0) = 2*(0) = Inh(T) — 1, and (n),1)) = (1, 1§) because U is on the
last model of 7. That gives (7). For (i1), ¥4 = pyo 1y = wgo, since py = identity and
70 = ¢, . But 0 = identity, so ¢ff = ¢ o 0y, as desired.

Now suppose Lemma 3.28 is true at all v < . We show it at v 4+ 1. Let
v = U-pred(y + 1), and
TU
gl
= least 7 such that F, is on the M -sequence.

a =

Set F'=F,. So
Wy =WOW,, F)
=W, [(a + 1)(F) ip Wi,
Then v = U*-pred(y + 1), and
ra =W B

EY" came from lifting EY by ¢, and then resurrecting it, and using the background
extender for that. More precisely, let ¢/(EY) be the last extender of

Q+1(0,0) =qer P

and
G = o [Pl (WY (EY)).
Set .
G* = background extender for G provided by 216’7 o ioT,;) (C) = cM
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Then Eff = G*, and
;—1—1 = W(W:7 G*)

Recall that o = a(W,, F).

Claim 3.29 a = a(W},G"), and G* is the background extender for o o 47(F) pro-
vided by igfj(@), where o is the resurrection map oy oy [Myz iy || (I (F),0)] of

R4%
Z(Joz’Y ((C>

Proof. F'is on the MY -sequence, SO there isa background extender H* for oo (F)
provided by 20a (C) The extender E. used to exit My~ comes from lifting and

Wi W
resurrecting Eo’". But F comes before Ex", so H* comes before Eu " in ig . (C).

©

But letting BV = F, o , we then have

W3 A%

ZOa (C) re - ZOT ((C) w

for all 7 > «, and in particular, for 7 + 1 = 1h W,. Moreover, the part of the lifting
and resurrecting maps acting on F does not change from « to 7:

00 (F) =o' o] (F),

where ¢’ is appropriate for resurrecting ¥Y(F') in MIV”, and hence also in MK[:” =
/\/l% But our inductive hypothesis says

VI(F) = 67 0 0y (EY)
= yY(EY),
so g op)(F)=0"09)(F)=G. Thus H* = G*. Hence a(W* G*) <
But suppose G* € ig:j’((:) for some § < a. Since lh E; Y < InF, lh(E ) < lh G,
and so G* occurs after Egv in zg}; (C). So /\/lﬁ g does not compute Vi, g+ the same
way that M?}; does, for all § > ¢. This implies G* ¢ ZOB ( ), for all 8 > &, contrary

to G* € iys (C) for 7+ 1 =T Wr.
This shows a = (W7, G*). In the course of the proof we also showed the rest of
Claim 3.29. O

Claim 3.30 1. The iteration tree in liftOV, [(a + 1) (F), My, x,, C) is Wi (o +
1)™(G").
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2. B =pWC,

Proof. Part 1 is just Claim 3.30 restated. Part 2 follows at once from the fact that
the lifted tree is normal; cf. 1.27. U

Since o Wy, F) = a(W2, G) and f"™"F = B+ we have ¢,,,11 C G i1
Remark 3.31 If DYN[0,y+1]y = @, then bW,y =1 W2, |, and dpy11 = ¢4
We now show that (1) and (2) of Lemma 3.28 hold at v + 1. For this, we show
by induction on § that for | £ <ThW,, letting §* = &7,
Induction Hypothesis (f);:
(1) S*I¢ = Wj;ﬂ

(2) if (v,y + 1]y does not drop in model or degree, and ¢ +1(7) < &, then

1 1 7% v Jv

(a) <T]:f>{;r7+1(7')7 l;0+7+1(7')> =7 ’Y+1(<T]‘” lT))? and
1 v, rv v

(b) U3 o = A oy

Note that the limit step in the inductive proof of (})¢ is trivial.

Base Case 1. { = a + 1.

We have W, (1 [(a+1) = W, [(a+1) and W, [(a+1) = Wr[(a+1). Since Lemma
3.28 holds at v, we get ()¢(1). For (T) (2), let ¢,44+1(7) < @+ 1. Then 7 < § and
Gut1(T) = 7. Moreover 27+ and 727! are the identity. So (1)¢(2) boils down to
(0t = (n2,17), and LZJZ“ Y. This holds because W, [(T7+1) = W, 11 [(T+1),

»UT
so their lifts are equal.

Base Case 2. £ = a + 2.
We have

Wogil(o+2) = Wyl (a + 1)7(F)
and
S (a4 2) = Wi (o + 1)7(G).

By Claim 3.29, G* is the background extender for o0 ¢)7*'(F) provided by i, W ().
So

S+ 2) =S (a+ 1)(G")
= Wj;—&-l f(Oz + 2)’
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and we have (1)¢(1). (Note that G* is applied to M$" in §*, because lifting produces
normal trees.)
For (1)¢(2), the new case to consider is 7 = 3. Note that

v+1

wﬁ - ¢ )
v+l _ Wyt
Tg = lgay1

and

71‘_1/,74-1 ZWW-H
B Bia+1"

The first because W,41[(8 + 1) = W, [(5 + 1), and the second two by our definition
of embedding normalization. (Note we are in the case that (5,a 4+ 1]y, ., is not a
drop in model or degree.) But

YL Wy Wi y+1
¢a—|—1 © lﬁ at+l Zﬁ a+1 © w

holds because lifting maps commute with the tree embedding in a conversion system.

This gives
y+1 voy+l 1/,7+1 v
VYat1 © 3 Tg o ?ﬂg

as desired.

IfIhW, = +1ory+ 1€ D¥ or deg”(y+ 1) < deg”(v), then h W, 1 = a + 2,
so we are done. So suppose lh W, > 4+ 1, and (v,v + 1]y is not a drop of any kind
inl.

Inductive Case 1. (f)¢+1 holds, and £ > a + 1.
We must prove (f) at £ + 2. We are assuming { + 1 <1hW, 1. Let

E=E"".

: : : . wr
Let o be the resurrection map for ng(E) in the construction of Mg" = M,
namely

iSe (C) g
7= U<17§+1,13“>[M<?7§+1 oy [ (E), 0)].
Let
E* = background extender for ¢ o ¢g+1(E) provided by Zgg (C).
So

STI(E+2) = SI(E+1)7(E7).
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Claim 3.32 E* = E, "'
Proof. Since £ > o+ 1, we can write

5 = ¢u,’y+1(€)u 52 5

Let
E=EM,
so that
E =" (E)

Letting H =0 o @WH( ), we have
=00 (¥ o TH(E))
—00( o gy (E))

by induction. Let & be the resurrection map for ¥¢ (E) in the Mg = M?}: con-
struction, i.e.
p— 7’ u( ) v n
=09 gzg>[M<ng,lg)|<lh@/}g(E)a0)]-
It is not hard to see that
*v,y+1

me (o) =0

This is because 7T—7+1(< ¢,lf) = <777+1 l7+1> by induction hypothesis (2)(a), and
similarly 7r£—’7+1(¢£—( ) = @WH( ”VH( ) = QWH( ). But then

E;/V:-'rl _ 7*{.1_/7’Y+1(E1_/V:)

= wi’”“(b;ckground for o (yg (£ 7)) in zg\; (C))
= background for 7T” (G ( Végy)) in z:)/?“((C)
= background for o (m MH( VE(E %)) in ig?“(@)
= background for H in zz)/z”“ (C)
= F*
as desired. 0

From Claim 3.32, we have that S*[(£ + 2) is the unique normal continuation of

LW . . X
SHE+T) =Wy 1(€+1) via B, 7. That is, S*[(£+2) = Wi, [(€ +2).
It remains to show, keeping our previous notation:
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: v+1 vy+1l v+l 04
Claim 3.33 ¢5+1 ol =T ot

Proof. Both maps act on M . The right hand side embeds it elementarily into

E+1°
M,y o of zgzﬁ(C), where

o 1) = 720 (s 12,)

The right hand side embeds M elementarily into M, (1 o1y Of zgvgjll (C). So first

e+l Mg+1 b 41
we show (1)es (2)(a):

Subclaim 3.33.1 (], (1) = 77 (2, . 12, ).

Proof. Let

0 = W, 1-pred(€ + 1)
=W, -pred(§ + 1)
= 87 -pred(§ + 1).

Case 1. crit(£) > crit(F,), or 6 < f.

In this case, 6 = ¢y41(0) = ¢}, ,1(0) for § = W,-pred(€ + 1). We have

Wl/ JR— D n
MY = U(P, E),

where P < /\/lgv". Let

Embedding normalization leads to

MU = Ul(P, B),

- : . . Wi, .
where recall E = WE”YH(E). Letting p be the resurrection map for P in M, ™', i.e.

W*
1 i 7T
p= 0y 03 (P)od O,

mapping 1 ' (P) into M,; of i:ﬁ“(@), where
(n,1) = Resmg*l,zg“)[ gH(P)]a
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we have -
1 7+l
(i ) = a1 (1),
because Wi, |[(£+2) = 8*|(+2) is a conversion system. Note that 7’ 7+1<<779+1 ZVH)) —

(g™, 17" by induction. (Ie. Subclaim 3.33.1 at  instead of €.) Also, *”VH(%( )) =

g+1(7rg "THP)) = ¢ (P). Tt follows that

1,1y = 727 (Resyy o [0 (P)] 05 ©).
Thus

Wi
<77§+1 ’ lgj-_ll> =y g—:l (<777 l))

% *y VIS
= iyiit o Ry T (Resy s[5 (P))
= R 0% (Resyy 1 [04(P))

v, +1 1%
:71'5_:1 (<T’5—+17l5+1>)

as desired.

Case 2. 0 = 3, and crit(E) < crit(F).

In this case, W, pred(f +1) = le -pred (&4 1) = . The argument above works,
with § =60 = 8 and P = P, and L " and 775 7+ replaced by the identity map. (As
they are if 6 < 3, this case is like the case ) < f3.) The relevant calculation is

wr
<772:11a12111> 25£+1(Res W+1ﬂ+1[¢ﬁ ( )

=iy, gﬁ(ReSnv w[W5(P)])

* 1 . V v
* 8 1
T (s 1))

The first equation holds because W2, [(§ +2) = S*[(£ + 2) is a conversion system.
The second comes from W2, [(8+1) = S*[(8+1). The third comes from properties
of embedding normalization. The last comes from W being a conversion system.
U

We now finish proving Claim 3.33. We keep the notation above. Let us assume
that we in Case 1. Let x € ./\/lg”1 be arbitrary, and let

tlj\"Ul

z = la, flg,
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where a C hy is finite and f € P. (We assume k(P) = 0 for simplicity.) Then

YTt o (@) = YT (T (a, f1D))
= o (77 (@), 7 ()]E)
(by the properties of embedding normalization, and the fact 727" (P) = P and

B 0
e "(E) = E)

Wi
= ooyl omt (@), pou} T o mp (NI

) and p resurrects ¥ T (P), as defined above. We have

(), and p=57 (7).

where o resurrects w “(E
o
Further )
=y y+1 v v+l v
el o vE (@) = Tl (Ve (o, fp)

The first 4 lines come from the way embedding normalization and lifting work. The
last line comes from our induction hypothesis.
This proves Claim 3.33. (We leave Case 2 to the reader.) O

Returning to the inductive proof of ()¢, we see that the limit case is trivial. We
are left with

Inductive Case 2. ¢ is a limit ordinal, and (})e).

We must prove (f)e¢11. We have S*[§ = W2, [€. Since ¥* normalizes well, the branch
[0, s, , of W 1 produced by embeddlng normalization is equal to Z*(S *1€). Thus
S*T(E+1) =W [(§+1). One can then prove (f)¢;1 by looking at how the objects
it deals with come from the M»» and MY for 7 <w, gzﬁ;# +1(£), and using our
induction hypothesis (f)¢. We omit further detail.

This completes our inductive proof of (1) and (2) of Lemma 3.28. We have already
proved (3) of Lemma 3.28. We now prove (4).
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Recall that z(n) = bW, — 1. The following diagram summarizes the proof of

(4).

(0
Oy+1 2(y+1) w*
u Wat1 N y+1
M'erl Mz('y+1) Na(y+1)lz(v+1) EM 2(y+1)
U v,y+1 *vv+1
Ew[ }zm [ () [
u ; W, _ . Wy
MV oy MZ(Z/) - RV v an(u)vlz(u) MZ(II)

z(v)

That the square on the right commutes is (f).(y+1). We have shown already that the
square on the left commutes. We have that ¢¥ = wzzj”) o 0, by induction. Further,
the diagram

¥
u Wia _ Uz,
MY, Mooty € Mooy = M

U Z‘L{*
v,y +1 v,y+1

u_ Wo o _ oAUz
M 1:[1 an(u)vlz(u) S MZ(I/) - M

v

commutes since it is part of the copy and conversion of U to U*. So 1/)7 1 agrees
with 7" 1 +1 00,41 onrandy . But MY, is generated by randy, , union Agy. For
a € [Apu ]<w7

@Zﬂ (y+1) © oyt1(a) = ¢Z(7) oo, (a). (%)
To see (*), note first o, [A Bu = Oyp1[Apu by facts about embedding normalization.

(See e.g. p.58) So it is enough to show that @D;’(’fyil agrees with 1#3(7) on Ar,. But

for « = a7¥ as before, W,[(a + 1) = W41 /(e +1). Also, A\p, < Agw-- Thus for
)\ = )\F’yv

Ty A= U2IA
— 7N
=15

This completes the proof of (x).
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But @/J? = wz(v) o 0, by induction, and @/JZ agrees with ¢§{+1 on /\Eg, by the
properties of conversion systems. So @Dg 1 agrees with LZJZ(J; 11) © 0,41 ON )\E%, as
desired.

This completes the proof of (4) in Lemma 3.28 in the case that [0, + 1]y does

not drop in model or degree, so that we have z(y) = ThW;,; — 1 as well, and
MY = ./\/l:t};fl) We leave the dropping case to the reader.

This completes the proof that if Lemma 3.28 holds at v, then it holds at v + 1.
Now suppose v is a limit ordinal. Let

A =supf{a’¥ € <}
So W(T,Uly) = W,IA, and W(T*,U*[v) = WITA. Also
STIA = WA,
because S¢ [ag = Wi lag = Wilag for £ < A. Since ¥* normalizes well, [0, >\>W:vk =
S (W2TA). Thus
SIHA+1) =WIT(A+1).

We now go on to prove (f)¢, for £ > A, by induction. The proof is similar to the

one above. Having (t)¢ for £ = Ih)V,, we go on to prove (4) as above. We omit

further detail.
This proves Lemma 3.28. [l

Now let [h(U) = y+1. So W(T,U) = W, and W(T*,U*) = W;. By Lemma 3.28,
W, lifts Eo Wr, so W, is by ¥. Let 7 = z(v). Let P = MZ;’, R = M‘T/V”,*and
S = MZV“’. We have N = M = M,y in the construction of ./\/lzj = MZV", by
Lemma 3.28. Moreover, the lemma tells us that wg = 1) oo0,. Let then Q be the
strategy for NV induced by the construction of ./\/lzj Then

Sirap = O
— QY¥rooy
— (Qlﬁ;y)"“/
= (EW%R)U'Y.
Thus ¥ 2-normalizes well.

Finally, we must show that all tails of ¥ 2-normalize well. It is enough to consider
tails of the form Y7 ¢, where 7 is normal on ML% ko L€t

hft(Tv MmGov(C) = <T*7 <77ga lgT | § < €0>a <¢g | § < §0>>
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Let ©Q be the iteration strategy for

* igj:o((c) ST
Q :M”go’lgo azo,go(c))

that is induced by > The argument we have just given shows that €2 2-

*’Mg;)* .
normalizes well. But X7 ¢ is by definition the pullback of {2 via wg;. So by 3.3, X7 ¢
2-normalizes well.

This finishes our proof of Theorem 3.26. U

[teration strategies that normalize well are also coherent, in the following sense.

Definition 3.34 Let 3 be an iteration strateqy for a premouse P, defined on finite
stacks of normal trees.

(1) We say that ¥ is coherent for normal trees iff whenever T is a normal tree by
¥, and N QM and N < M;, then Xri(a+1),N = DT1(8+1),N -

(2) 3 is coherent iff every tail X5 of ¥ is coherent for normal trees. In this case,
we say (P,Y) is strategy coherent.

Lemma 3.35 Suppose X is a strategy for a premouse P, and ¥ normalizes well;
then X is coherent.

Proof. Since all tails of ¥ normalize well, it is enough to show that ¥ is coherent
for normal trees. Let 7 be normal and by %, and let N << M7 and N < MﬂT Let
Vo = X7t~y and ¥y = Xrg41),n, and let U be a normal tree of limit length on
N that is by both ¥y and ¥;. Then

W(T 1 (a+1),U) =W(T [ (B+1),U) =W(T | (v+1),U),
where 7 is least such that N I M7 Let by = Wo(U) and by = Wy (U), and let

Since ¥ normalizes well, S(W (T | (y+1)) = a;, for i = 0,1. Thus ap = a;. By 2.65,
by = by, as desired. [l

Remark 3.36 We say that X is positional iff whenever s and t are stacks by X, and N
is an initial segment of the last model of each, then ¥, y = ¥, . Positionality implies
strategy coherence. The techniques of [33] show that normalizing well and strong
hull condensation together imply positionality, but the proof is not an elementary
combinatorial one like that above.
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3.4 Fine strategies that condense well

We show that if * is an iteration strategy for V' that has strong hull condensation,
then the strategies for premice induced by ¥* via a full background extender con-
struction also have strong hull condensation. The proof is routine, but we include it
for the sake of completeness. The corresponding result for ordinary hull condensation
was proved by Sargsyan in [10].

Theorem 3.37 Let N* = ZFC+ “C is a w construction”. Let ¥* be a 0, FC-
iteration strategy for N*. Suppose that (v, k) < 1h(C), and 3 is the iteration strategy
for Mffk induced by X*. Suppose finally that ¥* has strong hull condensation; then
Y2 has strong hull condensation.

Proof. We show that > condenses properly on normal trees. The proof that all
its tails X, do so as well is similar.

Let U be a normal iteration tree on M = M
be a psuedo-hull embedding, with

@ = (u, (13 B < 0(T)). (th | & < In(T)).p).
We must see that T lifts to a tree by ¥*. Let
lift(ed, My ko, C) = (U, (0, me | § < Th(U)), (Ve [ € < Ih(U))).
It is enough to show that 7 lifts to a psuedo-hull of U*. For this, let
lf6(T, My, C) = (T, (ne, le | € <In(T)), (pe | € < h(T))).
We shall construct a psuedo-hull embedding ®*: 7* — U* by induction, with
®* = (u, (wy | B <I(T)), (ws | B <1I(T)),q).

Notice here that u® = u = u®. Because ®* is to be a psuedo-hull embedding, this
completely determines the putative ®*, and what we have to show is just what we
get is indeed a psuedo-hull embedding of 7 into U*.

For v < 1h(7), let

) =0y = (ul{g | £+ 1<, (wf | B<7) (W] <a)g).

Let v be the “minimal realization” map of ® and ®*, given by v(0) =0, v(a+1) =
¥

u(aw) + 1, and v(\) = sup,.,v(a) for A a limit ordinal. Let Q, = Mzo’a((c), and

Nasla
"
X, = MQZ’;EE). Thus ¢: MT — Q. and 1), : MY — X, are the liftup maps of the

two conversion systems. We show by induction on v that

that is by X, and let ®: T — U
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(1) ®*[v is a psuedo-hull embedding of 7*[v into U*,
2) for a < 7, ) 0 t2 = w? o p,, and

(@) © b o
(3) for a < 7, wh(Qu) = Xy(a)-

Let (x), be the conjunction of (1)-(3). The following diagram illustrates the
situation:

wu(a) *
Mz’j(a) » Xua) € MZ';{(Q)

M ————— QoML

Some care is needed in reading this diagram. The bottom rectangle is just (2)
and (3) of our induction hypotheses, and is always valid. The top rectangle involves
only the conversion of U to U*. It is valid if and only if (v(a), u(«)] does not drop
(in model or degree), so that ii’;m(a) (Xo(a)) = Xu()- In the case that (v(«a), u(aly
drops, something like it is valid. We discuss that below.

To start with, ®} is given by setting v(0) = 0 and w = identity map from
N*=M[" to N* = MY".

If A\ is a limit, and (%), for a < A, then

o= o
a<A

in the obvious componentwise sense. It is clear that (x), holds.
If v =X+1for A <1h(7) a limit such that (x),, then ®3,, is just ®} together
with the map w9, defined as follows. Recall that v preserves tree order, and

v(A) = supv(a).

a<<A

For a <7 X and z € M we set
wl (i7 3(2)) = &0 ooy (W ().
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Using (1) at v < A, we see that w{ is well defined, elementary, and as required for
(%) at1-

Finally, suppose we have ®},_ | satisfying (*)s+1. The whole of ® ,, is determined
by u(«), which is already given to us, but we must see this choice works; that is,
that ()a42 holds for the system it determines.

The following notation is useful. Let D be any background construction, and let
F be an extender on the sequence of M}R ;- We let

res” (F) = 0,5 [M, ;| (Ih(F), 0)] (F)

n

be the complete resurrection of F'in . If G is the last extender of ME’O, and we let
B*(G) = F,,

for the unique such v, be the associated background extender. So (B o res)?(F) is
the background extender for F' given by D.

Set
Wh = 10y () © W
as we are forced to do. Let C, = i} ,(C) and D, = if,(C). Note that w}(Cs) =
]Du(a).
Let
G=ET,
G* = EI" = (B ores)™(p,(Q)),
H - Eg(ay
H* = B4,y = (B ores)” (¢ya)(H)).

Lemma 4.2 below tells us that the following claim is what we need.
Claim 3.38 w!(G*) = H*.

Proof. Suppose first that (v(a, u(a]y does not drop. In that case, iff(*a)’u(a) (Xo@) =
Xu(a), s0 the top rectangle in the diagram above is valid. Because t},(G) = H, we get
W} (¢a(G)) = thyq)(H). But then the elementarity of w;, implies that w)(G*) = H*.

Suppose now that (v(a),u(aly drops. Let I = t3(G). Since H = &, (D),
all extenders used along (v(«), u(a]y have critical points below the current image of
Ar. This implies that the drops are to levels that are in the image of the (Ih(7),0)
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dropdown sequence of MY o). Let Z, be the n-th level of the (Ih(7),0) dropdown

sequence of szl(a), starting with Zy = /\/lzj(a)|<lh(]), 0). We then have a fixed n such
that
U . u
To(e)u(@) " Zn = Mua)
is elementary.
Now let us move over to U*. We have that ¢,y (Z,) = Z; is a level of X, 4. By

looking at how resurrection works in the dropping case, one can see
Xu(a) = resurrection of ig’(lu(a)(Z;) in Dyq)-

That gives us j: Z — Xy (@ obtained by composing z'“(* ) with the resurrection

v(a),u(e)
map for zv(a w(e)(Z5) Of MY (o). Note
~ U
J© Vu(a) = Yu(a) © Ty(a) u(a)s
by the way dropping and resurrection interact in our conversion system. But now

= (B o res)Pu
= (B o res)Pu

=(Bo res) u(a)

—~

Yu(a)(H))

J © Yua(l))

() © Lo(@ (1))
wo((B ores) (pa(()))

S

= %<a>7u<a>
= wi(G*).

The third line holds because resurrecting %(a (o) © Vy(a)(1) in ./\/lu(a) can be thought
of as first doing a partial resurrection of that reaches j o, (1), then doing the rest.
The second to last line holds because ,(q)(1) = Py(a) 0 t2(G) = Wl 0 o (G), and w
is elementary, and moves C, to D).

This proves the claim. U

By Lemma 4.2, there is a unique psuedo-hull embedding ¥ from 7*[(« + 2) to
U* that extends @7, and satisfies u”(a) = u(a). Let %, be this ¥. We claim
that (%)a42 holds.

Let § = T-pred(a+1), and let 7 = U-pred(u(«) +1). Because @ is a psuedo-hull
embedding, 7 € [v(8),u(5)]y. Let us assume for simplicity that there is no relevant
dropping, that is,

(a) (a+1)¢ D7, and
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(b) DY [w(B),v(a+1)] = 0.

So ML} = Ult(M},G)) and MY, = Ult(Mi’,H)).* Let p = @'gj(ﬁ)f) o t% and
pr = Z%{(B),T o wg(ﬁ). The lifting construction yields M7}, = Ult(M7", Gx)) and
/\/lf]’(* )= Ult(MY", H*)), moreover

a+1
Xo(a+1) = Ty(g)(asn) (V(5))-
wg(a) 41 is given by the Shift Lemma:

Wy ([0 Flo ) = [k (@), p (DI

One can calculate that 1,41y 0 19,1 = w0, 1 0 Pat1, and WY, (Qat1)) = Xy(at1)-

We leave the case that one of our no-dropping hypotheses (a) and (b) above fails
to the reader. U
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4 Comparing iteration strategies

We shall prove the main Comparison Theorem for pure extender mice, in Jensen
indexing. The proof adapts easily to ms-indexing, and to hod mice. We shall discuss
hod mice in the next section.

The first two subsections contain some preliminary lemmas. The last contains
the comparison argument.

4.1 Extending psuedo-hull embeddings

We shall prove an elementary lemma on the extendibility of psuedo-hull embeddings.
Its proof uses

Proposition 4.1 Let S be a normal tree, let 6 <gn, and suppose that P < /\/lf, but
P 4 M5 whenever o <g 8. Suppose also that P € ran(i§, ). Let

a = least v such that P < /\/l;9
= least vy such that o(P) < lh(E,‘yS) ory=mn,

and
B = least v € [0,1]s such that crit(i5,) > o(P) ory =1n.

Then 8 € [6,n]s, and
(a) either B =a, or B=a+1, and \(ES) < o(P) < 1h(ES);
(b) if P = dom(Ef), then S-pred({ +1) = a = 5.

(We allow § = n, with the understanding iss is the identity.)

Proof. By normality, for any v < 7, P < MS$ iff In(ES) > o(P). So the two
characterizations of « are equivalent. Clearly, P < /\/lg , and thus a < 3. We have
that o(P) > Ih(E?) for all 0 <g d, and hence by normality, for all o <g § whatsoever.
So § < «, and 8 € [0, 1]s.

Suppose a < f3; then o(P) < Ih(ES), so o(P) < 1h(ES) where o is least such that
a<oand 0+ 1 <g f. If o(P) < A(E?), then because § < ¢ and P € ran(i3,),
we have o( P) < crit(E?), which contradicts our definition of 3. So A(E?S) < o(P) <
IW(E3). If crit(i5,,,) = A(ES), then P is not in ran(i5, ), so crit(s3, ) > o(P), and
thus f =0 + 1.
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This yields (a). For (b), note that if \(ES) < o(P) < 1h(E$), then P cannot be
the domain of an extender used in §. So we have a = 3. We have already observed
that S-pred({ +1) = a.

O

On extending psuedo-hull embeddings, we have

Lemma 4.2 Let ® =< u, (t} | 6 < a),(ty | B < a),p) be a psuedo-hull embedding of
T into U, and let F be an extender on the M -sequence such that 1h(F) > Ih(E})

for all B < a. Let T™(F) be the unique putative normal tree S extending T such
that F = ES. Let £ <1h(U); then the following are equivalent:

(1) There is a psuedo-hull embedding ¥ of T (F) into U such that & C ¥ and
u?(a) = ¢,
(2) v(e) <y &, and EY = izj(%é o t?(F).

Moreover, there is at most one such V.

Proof. Tt is easy to see from definition 2.26 that (1) implies (2).
Suppose that ¢ witnesses that (2) holds. Set u(a) = € and ¢}, = iﬁ’(a)fot?x. Clearly,

tolA0 = talAL,
and
U u
Crit(Zy(a).e) = Aoa)-

Let p(F) = G = E¢. We shall find ), such that ¥ =< u,(t} | 8 < a + 1), (t} |

«

B < a),p) is a psuedo-hull embedding of S = T(F) into U.
Let p = crit(F') and p* = crit(G). Let

B = S-pred(a+ 1) = least ns.t. p < AT,

and
B = U-pred(€£ + 1) = least n s.t. p* < M.

Let v = (ut)M&IME) and P = MT|y. Similarly, let y* = ()1 and
P* = M{|v*. So P is the domain of F' (the sets measured by it), P* is the domain
of G, and t!(P) = P*. The rules of normality tell us that

B = least ns.t. P = M|y,
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and
B = least ns.t. P* = MY|y*.

(P and P* are passive, so these identities imply that v and v* are passive stages in
ME and MY..) Suppose first that 8 < a. We then have that pu < A7, so

*

Il
~ o~

o(P)
o(P)
5(P)
(8 ,u(s) © ta(P),

where the last equalities hold because p < A ET- Thus P* is in the range of if)’( 8)u(B)"
Proposition 4.1, with 6 = v(f), n = u(f), and P* as its P then tells us that

p* =least n € [v(B),u(S)]v such that crit zﬂmu(ﬁ) > 211;{(5),?7 o t%(,u).

Let @ be the first level of MT beyond P that projects to or below p, and let Q* be
the first level of M. beyond P* that projects to or below p*. So M, = Ult(Q, F)
and MY, | = Ult(Q G). Let

p= (ﬁ(ﬁ),ﬁ* 0 t9)1Q.

We have that

We can then set
t1([a, f17) = [th(a), &g 5 0 t()E .

as we are required to do by definition 2.26, and the Shift Lemma tells us that ¢, as
defined is indeed well-defined, elementary, and agrees with ¢}, as required in a psuedo
hull embedding.

We must check clause (b) of definition 2.26. The new case involves F' and G; we
must see that £ € ran(s3) iff p(E) € s%4.. But for E € Ext(T),

E €ran(s}) < p(E) € sﬁ’(ﬁ)
& p(E) € ran(s%.).
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The right-to-left implication in line 2 holds because if E ¢ ran(s}) and 1h(E) <
Ih(ET), then E is incompatible with some H € ran(s}), so p(E) is incompatible
with p(H) € SZ;’(B), so the right hand side of line 2 fails. On the other hand, if
Ih(E) > 1h(E]), then lh(p(E)) > h(p(E])) = lh(Eﬁ’(B)), and since §* < u(f), again
the right hand side of line 2 fails.

The case that o = (3 is similar. In this case, we apply the proposition to P* with
d =v(B) and n = £. This gives us that

p* = least n € [v(B), v such that crit z“uné > ﬁ(ﬁ),n o t3(p).

We leave the remaining details to the reader. U

Remark 4.3 The proof gives a formula for the point of application of Eﬁ‘(a) under
a psuedo hull embedding of 7 into U, namely

U-pred(u(a) + 1) = least n € [v(5), u(8)]y such that crit Wmu(ﬁ) > ﬁ(ﬁ),n o t%(n),

where
B = T-pred(a + 1) and p = crit(E]).

Remark 4.4 One can have the following situation, for FF = E7:

M) = MY 7 Mi)

Ty u(a)

It can happen that dom p = M7 but domt!, = M7 1h F, so t!(F) is the last exten-
der of ./\/lz;’(a). In this case, 2 (q) is acting like a resurrection embedding, resurrecting
p(F), and (V,U(Q)]U dl"OpS.

4.2 Resurrection embeddings as branch embeddings

We prove a technical lemma on normal iterations past levels of a background con-
struction.

Let X be an iteration strategy for the premouse F,, for finite stacks of normal
trees, that normalizes well and has strong hull condensation. Suppose that X is
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universally Baire. Let C be a w-construction above |Fy|™, and (v, ko) < length(C).
Let us write M, = M. Suppose that whenever (v, k) <} (v0. ko), M, is not a X-
iterate of Fy. It has been known since the mid-80s that whenever (v, k) <. (vo, ko),
only the F, side moves if we compare it with M, by least disagreement, using > to
pick branches.
Thus for (v, k) <jex (0, ko), we have
W, = unique shortest normal tree on Py by ¥

with last model @ > M, .

Our technical lemma says that below (1, ko), the resurrection embeddings of C
are captured by branch embeddings of the Wy .

Lemma 4.5 Let (0,7) < (vo, ko), and let P <4 Mg,. Let 7 = 04;[P], so that
T: P — My . where (0, jo) = Resg ;[ P]. Let

60,30’

T = Wg;l(a+ 1), where a is least such that MZVg’j > P.

W*
Then T = Wgo Jolla+1), Wy, . has last model M, fodo — Méco Jor and a <y " £,

9
and T =1 5“0.

We remark that our convention that P 4 @ when @ is active and P = Q||o(Q)

matters here. It could be that for a as in the lemma, F = £ 91 is such that
Ih(E) = o(P). The resurrection embedding 7 is given by a branch of W, ., that has

Wy
« in it, and may not have a — 1 in it, even though P is an initial segment of M, °/
in a weaker sense.
Recall that M~ is the premouse that is equal to M, except that k(M ™) = k(M) —
1.

Sublemma 4.5.1 Suppose that M, is not k + 1-sound. Let m : M;Hl — M, be
the anticore embedding. Let §+ 1 =1hW}, ,; then

(a) Wy, has last model M, y,

(0) Wik = Woil(§o + 1),

(c) & is the least n such that 1h E:]/v:"“ > p(M, ), and

(d) letting Ih(W,) = & + 1, we have & <ws, &, and zgogf .
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Proof.

By definition, MZ/”"“ > M, . But M, is not sound (= k+ 1-sound), so ./\/12}”"c =
M, ;.. This gives (a).

The iteration Wy, from Fy to M, must have dropped. The last drop had
to be to M, j11, and it lies on the branch to M, ;. So we can fix n such that

*

W W
M, k11 = domi and 7 Zné = 7. We have that M, ;.1 < M, W

nﬁ ’
Remark 4.6 Here and elsewhere, we are allowing the convention that a normal tree
W may replace its last model (@, 7) with (Q, n) for any n < i. Otherwise, if M, and
M, ;11 have the same universe, we couldn’t possibly have both be normal iterates of
B!

Letting p = p(M, ), we have that M, ;1 agrees with M, to p*M”’k = p*M”"““.

Thus Wy .., and W) use the same extenders E such that lh £ < p.
We claim that W, ., uses no extenders E such that Ih(E) > p. For if W}, .,

uses E such that ln £ > p, then the branch P[)—tO—MZ:;’k+1 uses such an F, since
So+1=ThW;, .. h(E) < o(M,ky1) because Wy, ., was of minimal length. But
then p < crit(E) is impossible, because dom(E) C M, 41, and M, ;41 is sound.
However, crit(E) < p is also impossible, since no model on the branch [0, §,] after £
can project into (crit(E),lh E)

So we have that W, ., = W, 1§ + 1. We have (a ) (c) of the sublemma already.
For (d), we need to see § = 7. Since M, 1 < /\/ln ”k, & < 1. Suppose & < 7.
Then lh(EV:”’“) > 0(M, j+1) because M, ;1 I M, ”’“. But let K be the extender
applied to M, 41 in the branch of ij leading to M, , ie. K = EQW”"“, where
Wr-pred(6 +1) =n and 0 + 1 <y &. p < crit(K) < o(M, g1, and dom(K) C

M, j41. It follows that lh(E;/::’k = 0o(M, 11), as otherwise dom(K) is larger than

WL %
that. But then Ej “* is on the sequence of M, 41, but not that of My, ", contrary
to our choice of 7.
O

Proof. [Proof of Lemma 4.5] We go by induction on (f, j). Suppose Lemma 4.5
holds for (¢, j') <iex (0, ), as well as for all () < P, where P < My ;. Let

= least x such that k = p,(5) for some S < My ;
such that P 9.5, and n = k(S).

(Here we do not mean k = p(S) = pp41(5), where n = k(S).) Pick S to be the first
such. We can assume that p < o(P), as otherwise 7 = identity, and all is trivial.

Thus k(S) >0
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The reader can check that oy ;[S][P = 0¢;[P] = 7. If S < Mp;, then we can find
some (¢, j') <jex (0, j) such that S = My ;. [Let (v, k) be least such that S < M, .
If S # M,y, then M, = core(M, ;_1) # M, ,—1. S projects to p, so p(M,x-1) < p-
But this leads to a () such that S <Q < M, and p(Q) < p.]

The argument above also shows that oy ;[S] = oy ;/[S]. So we can apply our
induction hypothesis at ¢', j'. Note that Wy ;[(a + 1) = Wy, ;/[(a + 1).

Thus we may assume S = My ;. So j = k(S) and j > 0. If 0¢;[S] = 04 ,;-1[5],
then as (0, j — 1) <iex (0, ), our induction hypothesis carries the day. Otherwise, we
have that Mjy ;_; is not sound. Moreover

09,515] = 7 0 09,;1[5],
where 7 : Mg_’j — My ;_1 is the anticore embedding.
Let a+1 =1hW;, and 8 +1 = IhWj;,_,. By the sublemma, § < Mx " and
My ;1 = M;Vg,rl’ O <ws S, and

Wy
Also, Wy ; uses only extenders of h < p, so « is the least v such that P < M, 7,

Remark 4.7 The reason that the statement of Lemma 4.5 does not have o + 1 =
Ih Wj ; is that that is clearly not always true. It becomes true when we reduce (6, j)
to a <8/,j/> with S = Mgl,j/.

Let P, = w(P). Let
oy = least v such that P; < MZV‘;”_I.

We can assume crit(m) < o(P), as otherwise P I Mpy ;1 and 7 = 0y j_1[P], so we are
done by induction.
Claim 4.7.1 « <W§,j71 a7 SWe*,jq B

Wi

. be least such that o(Py) < crit(i, 577'). We claim that
Wi Wi

ay = . Certainly, P, <M, 77" Also, P, 4 My """". Since P is in the range of

*
o iiq

log » Wegetap=7. See the proof of Proposition 4.1. [l

Proof. Let v € (a, Bl

0,5—

The claim also showed that
TP =g q, [ P.

Now we apply our induction hypothesis to P, < My ;1. We get 0y, jo such that
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L Wey o lan +1) = Wy T(en +1).
Wy
2. Wy, j, has last model My, ;, = M, 070 and

*
) __ ~"700.d0
3. aq SW&OJO g, and O'Q’J_l[Pl] = Zal,f .

- Wiodo  Weo.s Wio.s
But 0y ;[P] = 0p-1[P1] o m. This yields op;[P] = i, " 000" = 1,7, as
desired. 0

4.3 Iterating into a backgrounded strategy

Let F be coarsely coherent, and T a finite stack of normal F-trees on V with last
model R. We have shown in section 3 that there is at most one normal F-tree VW on

—

V with last model R; we write W (7) = WV in this case.

Definition 4.8 (1) Q%BI;' 1s the partial iteration strategy for V: if T is a normal
F-tree by QL;LB;' of limit length, then

QUBH(T) =b iff b is the unique cofinal wellfounded branch of T.

n,F

(2) Q%BH 1s the partial iteration strategy for V: if 71“(2/1) s a finite stack of normal
F-trees by Q%BH such that U has limit length, then

UBH (7~ R , ,
Qz"(T™U)) =0b iff b is the unique cofinal branch of U
22 1V UBH
such that W(T~(U™b)) is by O F-
UBH

I3
iteration strategy witnessing this. Moreover, Q%BH normalizes well, and has strong

So if V' is uniquely iterable for F -trees, then (2 is total, and it is the unique

hull condensation. But our notation allows the case that Q%BH is partial.

Definition 4.9 Let C be a w-construction above k. Suppose M, ), exists. Then Qﬁk
(UBH

Fe s e

is the partial strategy for M, induced by

T s by QF, it Lft(T, M, C) ds by QUEH.
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So if V' is uniquely FC.iterable above K, then st is total, normalizes well, and has
strong hull condensation.
The following is essentially Theorem 0.5, but in the pure extender model case.

Theorem 4.10 Let 3 be an iteration strategy for the premouse Py, for finite stacks
of normal trees, that normalizes well and has strong hull condensation. Suppose
that X is universally Baire. Let C be a w-construction above |Py|™, and (v, k) <
length(C). Then either

1. there is a (unique) normal tree T by X on Py with last model Q > M, , and
YoM, = QSk, or

2. there is an (n,1) <iex (v, k) and a normal T on Py by X with last model M, ,,

_ OC
and X7 m,, = Q-

Remark 4.11 We did not assume unique iterability in the hypothesis of Theo-
rem 4.10, but we did get the le are total, until we reach on M, that is beyond .
Before that point, C-lifted trees have unique cofinal wellfounded branches.

Proof. [Proof of Theorem 4.10] The proof is by induction on (v, k). Suppose that
Theorem 4.10 holds at all (v, k) <jex (vo, ko). For (v, k) <iex (0, ko), let

W, = unique shortest normal tree on /% by X
with last model Q) > M, .

For (v, k) <iex (Y0, ko), W, exists by induction hypothesis. But in fact, W,

12
always exists because we are in the pure extender case, and this was proved long

ago. (Cf. [20].) In the hod mouse case, we would have to proceed inductively on the
construction of W} , ~at this point.

Let M = M,, x,, and let U be a normal tree on M that is of limit length, and is

by both EW;O k07M and Q((V:OJCO' Let
lift(U, M,C) = (U*, (n,, 1, | 7 < 1hld), (¥ | 7 < 1hif)).

Lemma 4.12 If b is a cofinal, wellfounded branch of U*, then szo u(U) =b.

kg’

Lemma 4.12 implies that &/* has at most one cofinal wellfounded branch. More-
over, that branch is identified by %, if it exists, and ¥ is universally Baire. So a
simple reflection argument will then give that &/* has a cofinal, wellfounded branch.
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From this we get that ¥y« and QF ., agree on normal trees, and then it is casy
UO, 0 k)

to see that they must agree on finite stacks of normal trees.
Proof. [Proof of Lemma 4.12] Let

8, = MU
s #H(0)
N’Y - anw:lw - MWSJW !
so that
Yo MY — N,

is elementary. We have M = MY = Ny, and ¢§ = identity. We write (W;,)5" for
(v, k) <iex - ((v0, ko)) to stand for & ((n,1) = W )ux. Note that iff (¥) NS, =
¥ NS, because ¥ is universally Baire. Also iff. (Fy) = Fy. Thus (W; )% is by X.

The statement above also make sense for b replacing . So S, = MY N, = Mni "l
Y MY — Ny, ete. Set

Wr=w; &

for v < Ihtd or v = b. So W is our normal tree from F, to M that is by X. The
last model of W2 is N,. If v <y v and (v,7]y does not drop, then i/ (W;) = W
(This is not the case if we have a drop.)

Now let’s look at the embedding normalization of WVg,U). Set

W, = WO, UI(Y +1)
for v < 1hid, and
Wy, = WW;,U™D).

So Wy = W{. The W,’s are all by ¥, because £ normalizes well and U[(y+ 1) is by
Y. It will suffice to show that W, is by 3. That is because if X((Wp,U)) = ¢, then
W, is by ¥ because ¥ normalizes well, so br(b, Wy, U) = br(c, Wy, U), so b = c.

We shall show

Sublemma 4.12.1 W, is pseudo-hull of Wj.

That is enough to yield Lemma 4.12, since W; is by X, and X has strong hull
condensation.

Proof. [Proof of Sublemma 4.12.1] We construct by induction on ~ a pseudo-hull
embedding @, from W, into W>. We write 2(y) = hW, —1, z*(y) = lh W —1, and

Dy = (', (157 B< (1), (457 | B < (1), p7).
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We also use @, [¢ for the “initial segment” of ®, that is a pseudo-hull embedding of
W, € into WJ.

Remark 4.13 domu” = z(y). Let v” be as in Definition 2.26, i.e. p7(se ') = sz\ﬁa).
Then domv” = z(v) + 1. We shall maintain by induction that v7(z(v)) <w: 2*(7).

Let’s recall the rest of our notation related to embedding normalization. We have
partial maps ¢, : lhW, — 1hW, for v <y v, the maps being total if (v, ]y does
not drop in model or degree. We have also

vy . AW Wy
T M — M(ﬁu,w(ﬂ
elementarily, for v <y v and 7 € dom ¢, . Let also

W
e (Ba) = By, o)
so that e, is the natural partial map from Ext(W,) to Ext(W,). (This map was

called 1), , in section 2.) R, = M:}}T’]’) is the last model of W,. o, : /\/l,b]’ — R,, and

F, = Un(Eg{)
and
W77+1 = W(Wfa Wna Fn)

where £ = U-pred(n + 1). Finally,
a,, = least a such that F), is on the MY sequence.
Since Wy = W, ®y is trivial, consisting of identity embeddings.

Remark 4.14 Let us look at the definition of ®; in a simple case. Let F' = EY =
YH(EY). Let G be the resurrection of F in C, and suppose G = F for simplicity.
Let F'* be the background extender for F' given by C. Then W; = W (W), F') and
Wi = ip(Wp). Let o = a(Wy, F'). The last model of Wy is ip«(M), and ip«(M)
agrees with Ultg(M, F') up to 1h(F) + 1. (The “plus 1”7 part is important, and it
is why we were careful about choosing our background extenders.) It follows that
Wi uses F; in fact Wil(a +2) = Wil(a + 2), with F = B, = Eml. This
gives us the desired psuedo-hull embedding from W; to Wy. For example, the map
p': Ext(W;) — Ext(Wy) is given by:
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p(E)=E, if E = Eg/vl for some £ < a+1,
and if there is no dropping at a4 1,

p'(eo1(E)) = ip-(E).

This is typical of the general successor step. Various maps that are the identity in
this special case are no longer so in the general case. In particular, the resurrection
maps may not be the identity. But the key is still that if W,., = W(W,, W,, F), and
H = Y(EY) is the blow up of F' in the last model of W2, and G is the resurrection
of H inside S,, then W3, = ig-(W}), and G is used in W3, . [ There is a small
revision to the first part of the conclusion in the dropping case.] In showing this, we
shall need to know that the map resurrecting H to G appears as a branch embedding
inside a certain normal tree W extending W;.

Setting p?™!(F) = G determines everything. For we certainly want p?*! to agree
with p” on the extenders used before F' in W, 1. Moreover, we need to take a limit
of the ®,’s along branches of ¢/ in order to get past limit ordinals, and this requires
that p?™ o e, 41 =4, o p”. But this accounts for all the extenders in dom(p**!),

so we have completely determined p?*!, and hence .1, from ®,.
The following little lemma says something about how /. (W;) sits inside W,
Lemma 4.15 Suppose v <y 7, and (v,7v]y does not drop. Let 5 < z(v); then
sup zz,fy “B <w: zl%(ﬁ)

Moreover, setting 6 = sup z,ﬁ’v “B, we have that (0, zﬁ’y(ﬂ)]ww does not drop, and there

is a unique embedding [ : MZV: — MZV; such that

W

_ur b
o s= (5 © L =i, IMg".

Proof. We have

W) =W
because (v,7|y did not drop. If 3 is a successor ordinal, or zlzj’ is continuous at f3,
then 6 = zﬁ’v(ﬁ) and all is trivial. Otherwise, let 7 <y 3 be the site of the last drop;
then it/ (7) is the site of the last drop in [0, (6)]w;, and & (1) <wz 0. Finally,
we can define [ by: if n € (7, B)w: and



then "
IVE W+
Uiy 5 () =i, g (i (2)).

It is easy to see that this works. U
The following diagram illustrates the lemma.

Here j; o jo = . v( ). (The diagram assumes j exists, which is of course not the

general case.) jo is given by the downward closure of {&/_ (E) | E is used in [0, 8)w; }.
We proceed to the general successor step. Suppose we are give ®, for n < ~, and
let us define ®.,;.
For any v+ 1 < ThU, let res, be the map resurrecting ¢ (EY) inside S,. That is

I'GSV (0-77’Y Ly [Mn'vvlv|<lh wZ(E'Z;{)ﬂ 0>]>SW

Recall that v7(z(v)) <w= z*(7) by induction. Let

W*

0,y
)z () © L

Y
th=1, 2()’

so that
"Ry — N,.

Induction Hypothesis f.

(1)y (a) For & <n <7, ®el(ag+1) = &yf(ag + 1).
(b) For all n <, t7 is well defined; that is, v"(2(n)) <w; 2*(n).

(c) Let v < n <=, and v <y n, and suppose that (v,n]y does not drop. Let
o and let 7 = ,,(£); then

(i) if &€ < z(v), then u"(7) = i*(u”(é’)),

(i) if &€ < z(v), setting j = z ()uy ) and k= ZW:E) n(ry» there is an
embedding [: /\/lvy( - M, 7(7 suCh that kol = i*oj, and t)"om" =

lo tg’”, and

Z—Z
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W*

(iii) if & = z(v), then setting j = zvf(g) oy and k=i, .. there
is an embedding [: MUV ) MU{(’T) such that kol = i* o j, and

9 oM =1lot".
(d) Forv<n<n~,t ()[(th +1)=res, ot”[(Ih F, + 1).
(e) For & <, ¢g = t* o 0.

There will be one additional induction hypothesis, but we must develop some nota-
tion before stating it.

Remark 4.16 Literally speaking, (1),.(d) does not make sense, because t”(lh F,)) ¢
dom(res, ). Here and below, we are declaring that if o: P — () is a resurrection map,

then o(o(P)) = o(Q).

(t)-(c)(i) says that p"(e,,(E)) = &, (p*(E)). Here is a diagram to go with the
rest of this clause. In the diagram, 7 = ¢, ,(§). The far right assumes u” () exists,
that is, £ < z(v).

o k

MY —— M > Mo

E Au*
Mg l tun

t )

* J
MY ——— M

— MW”

© ©)

Here j and k are the branch embeddings of W, and W,;. There is a similar
diagram when & = z(v), with z*(v) and z*(n) replacing v”(¢) and u"(7).

Remark 4.17 One can think of (),.(c) as follows. The normalization process yields
a natural psuedo-hull embedding ¥ from W, into W,. The map zzjn yields a full
hull embedding € from W; into Wy. We are keeping track of the sense in which
O, 00 =0Q00,.

Remark 4.18 The embedding along the bottom row of the diagram above is either
t%’” or t¥, depending on whether { < z(v). The embedding along the top is either
t2" or t". So (f),.(c) implies that

1,n U* 1,v
t¢u,n(§) © 7T£ =1 v,n © tf

if £ < z(v), and

n v _ U* v
t"o o) = Yo ot".
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Remark 4.19 (f), implies that for v < n <,
£11(Ih F, + 1) = res, ot [(Ih F, + 1).

This is because o, < z(), and F, = Ex". So on 1h(F,) + 1, tLm agrees with tg’(?]) by
the agreement properties of psuedo-hulls (2.29), and hence with res, ot” by (1),.(d).

If a, < z(v), then since ®, is a pseudo-hull embedding, t“[(IhE} + 1) =
tSY(Mh EY +1). But IhF, <1h E)Y, so ¢ and t}"” agree on 1h(F,) + 1.

Thus ¢5" # t5¥*" in general. (In fact, always.) If a,, = z(v), t5” is not defined,
but ¢yt is. If a,, < z(v), they only agree up to lh F, if res, is the identity on
tL(Ih F,).

This is all consistent with (f),.(a), because t}” is not part of ®,[(c, + 1). The
map t}f is recording how the extender E:;V ¢ is blown up into We. As we go from v to
v+ 1, EX is replaced by F, = E}¥+!. So the map blowing it up must be changed
somewhat — even below 1h F},, if there is resurrection going on in S,. But ngv is
not part of W, [(«, + 1), so this does not affect (a).

Remark 4.20 In most cases, (f),.(d) implies that t" agrees with res, of” on lh(F, )+
1. For letting G, = t}(F,), we have that

*

oW
Crit iy () 2 () = A

Thus in any case, t"7 agrees with res, ot” on Ap,. The stronger agreement will fail iff
crit(izxy(’z(n)) z*(n)) = Ag,. The reader can check that for this to happen, F,, must be
the last extender used in W,, so that n =v + 1, and 2(n) = o, + 1.

In defining ®,;, we shall make use of 4.5, which implies that res, is present in

a branch embedding of some (W, )*".

. WV 07’7 .
Recall that ¢7 = zmzzm)’z* () © L) and t7: R, — N,. Let

H = H, = (B) = (),
where F' = F,. We use here (f),.(e). Let
G =G, =res,(H,),

and
* U*
G* = E7 ,
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so that G is the background for G provided by Z%){w (C). G comes from resurrecting
P inside S, where
P=N,|lhH,.

We apply our lemma on absorbing resurrection maps into the W*‘s. Setting

T =T, = least £ such that P < M?};,

we have that

Claim 4.21 1. Ifa, = 2(7), then 7, € [v7(a,), 2" (7)]w,
2. If ay < 2(7), then 7, € [V7(ay), u” (v )|

Proof.

; W , .
L If ay = 2(y), then v7(ay) <wy 2°(7). 17(F,) =ty () © tg(l)(Fv) is on the

sequence of M:}%). Since lh Eg% <lhFforalé < a,, lh(pV(E;/v”)) < 1ht"(F)
for all § < @,. Cofinally many extenders used in [0,v(a,))w: are in ranp?,
which gives lh tg’&)(F) > lh E;/V; for all £ < v7(a,). So v7(a,) is less than or

*

equal to the least 7 such that ¢?(F') is on the MTW 7 sequence. That 7 is the

least i such that t7(F) = mm o tg’(ff)(F), so that 7 € [v7(ay), 2(7)]wz. (See

proposition 4.1.)

W
2. If o, < 2(), then t7(F) = t37(F) = (0w ()

o to ) (F). In this case
7 =least 3 € [v(ay), u(a,)|w: such that crit(iuia,)) > o) (h F).

This can be shown as in 1. We omit the details.

By Lemma 4.5, there is a normal tree YW;* such that

(1) Wi is by %, and extends WX (7, + 1),

(#4) letting &, = ThW;* — 1, G, is on the Mg;* sequence, and not on the MY
sequence for any a < &,

(i) Ty <z &, and i ¢ (I H, + 1) = res, [(h H, + 1),
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Let

AT
N =M
= (M9,j) 7,

where (0, j) = (Resy, 1, [M,, ., [(lh H,,0)])%". We shall show that W:* is an initial
segment of W, ,, and that G, is used in WZ,,. (So G, = EZ”“.) By induction, the
same has been true at all v < ~. That is, we have

Induction Hypothesis ({),.

(t)y (f) . For all v < v, N} agrees with N, strictly below lhG,. G, is on the
Nj-sequence, but lh G, is a cardinal of IV,. W} * is an initial segment of
WX (v (ay) + 1),

This gives more meaning to (f),.(d). res, ot maps R, || lhF, elementarily
into N} || hG,, and t” maps R, || lh F, elementarily into N, || lhG,. But the
domain and range models here are the same, and the maps agree on the ordinals. So
res, o t"[(R, || W F,) =t"[(R, || Ih F},).

Here is a diagram showing where G came from, in the case that o, = z(y).

(N, H)
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Here k is the branch embedding of W7, and it is the identity on h(H) + 1. [ is the
branch embedding of W;*, and it agrees with res, on Ih(H) + 1.
If vy < z(7), then the corresponding diagram is:

H)

u’Y(a )?

—5 (R, F)

O(»Y)

2

Here again, k is the branch embedding of W2, and it is the identity on Ih(H) + 1. |
is the branch embedding of WJ*, and it agrees with res, on Ih(H)+1. R, and Mz\i”
agree up to 1h(F") + 1, and ¢7 agrees with ¢;7 on Ih(F) + 1. (In fact, on /\EZ:”')

In either case, we get

ok

Claim 4.22 res, ot” agrees with Z:\;(a L€,

oty on1h(F) + 1.

Proof. Suppose a., < z(7). Let k and [ be as in the diagram above. Then for
n < Ih(F),
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res, ot”(n) = res, Oti’:(n)
NA%
= resy O<k % ZU’Y’EaA{),TA, © tg?)(n)

~

W*
= 168y O(Ty (0 ) © ta?)(n)

IV
=lo (me(%);W © tgfj)(ﬁ)

NA% 0,
- vazaw):ﬁw © ta;y(n)’

as desired. The calculation when o, = z() is similar. O

Now let
v = U-pred(y + 1).

Thus we have
Syp1 = Ult(S,, G"),

where G* is the background extender for G = G, provided by i (C). We write

*

g = Z'Z;{ry-i-l
for the canonical embedding.
Case 1. (v,7 + 1]y does not drop in model or degree.

In this case, we have

(7774-17 lv+1> = iG’*(<7]ua lu))
N’Y+1 = iG*(NV)
and

W = i (W),

v

Our goal is to define ®.41, and with it ©7*!, so that the following diagram is
realized (among other things).
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_ _—
M Ry Ny Sy
T ic '
W’y+1 1G*
u Oy R tv N W S
MV v v y+1 v
4% w
Py Py

As we remarked in the case v+ 1 = 1, it is important to see that the resurrection
of the blowup of F', which is in our case G, is used in Wy ;.

Claim 4.23  (a) Wj,,[&, = WI[E,.

(b) G=E. "
Proof. Let p = crit(F), where F' = F,. Let 0,(fi) = p, where fi = crit(EY). Since U
does not drop at y+1, no level of MY beyond Ih EY projects to or below fi. So no level
of R, beyond lh F, projects to or below p. So no level of N, beyond lh H, projects

to or below #(y). Thus res, is the identity on “(u)™"", and N*[(#(p)t)Ne =
N, (7 ()TN, Also, (#"(u)*)M < Ag,. Thus

v Nu * | UV N: v N.
NI () = N (o) = N ()
But also, if v < 7, then no proper initial segment of M%’ projects to or below 1h EY,
so no proper initial segment of NN, projects to or below lh G,, so res, =id on IhG,,

and N, [t7(u")™ = Nz|t7(ut)™> .. Thus in both cases (v < v and v = ),

N ()™ = N[ ()™
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Letting A = 7(u™)™, we have then that ig-(N,|A) = ig-(NZ|\). But Ult(N:,G)
agrees with ig-(NZ|A) up to IhG + 1. (We chose G* so that they would agree at
IhG.) Thus

Ny | IhG = N7 || Ih@

and lh G is a cardinal in N,1y. Since W7, and WJ* are normal trees by the same
strategy >, we get Claim 4.23. O

By lemma 4.2, there is a unique psuedo-hull embedding ¥ of W, .4 [(a, + 2) into
Wi, such that W extends @, [(a,+1), and u” (a,) = &, or equivalently, p¥ (F) = G.
We let ®. 11 [(cv, + 2) be the unique such V.

In order to establish the proper notation related to ®...1[(c, + 2), as well as its
relationship to ®,, we shall now just run through the proof of lemma 4.2 again.

Let’s keep our notation p = crit(F'), and write

pt=1"(p) = t"(n) = crit(G).
Let
§ = pr
so that I is applied to MEV” = M;VVH in W,41. Let
B = W7, -pred(§, + 1),
that G i lied to M = M2 in W
so that G is applied to M. = Mg in Wr_;.
Claim 4.24 (a) 5* <7, and M]ﬁ/\? = M;v” = M?ﬁ = ./\/lgvV
(c) If B < z(v), then B € [v"(B), u”(B)]w; -
(d) If B = z(v), then 5* € W”(B), 2*(V)]w:-
Proof. Let P be the domain of F' and P* the domain of G; that is,

W*
— v+1
= My

P = Rv|(H+)R7

and
PP = N0 () ) = N () )

(N., agrees with N7 this far because we are not dropping when we apply F .) By the
rules of normality,

B* = least « such that P* = MY lo(P*).
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Put another way, WJ*[5* + 1 is unique shortest normal tree on Fy by ¥ such that
P* is an initial segment of its last model, and o(P*) is passive in its last model. But
we showed in the proof of Claim 4.23 that P* = N}|o(P*), and o(P*) < Ag,. We
also showed that (res,)[P* = identity. Thus P* = N,|o(P*), and o(P*) < Ap,. So
P is a passive initial segment of the last models of W, Wy, W2, W™, and W ;.

Thus all these trees agree up to 8* + 1. As o(P*) < lh(H,), p* < 7. This yields (a).
For (b), note that * is a cardinal of S, so |MZV”| < p*in S, for all o < p*. It
follows that pu* < §*, and if s = sz\*}” is the branch extender, then s: p* — V.. If

p*+1=1h(W3) or ME, )"+ > p*, then 8* < p*. So we may assume that E = EZ\:;

exists, and Ay = p*. This implies P* = MZ\:; |1h(E).
Working in S, let
T - iG* (W;)

and

Q = ig- (M) = M,

where 0 = ig«(u*). Since s = ig«(s)[u*, we have that MZ‘:; = M., pw € 0,0)r,

and [u*,0)r has no drops. Thus MZ\:: agrees with ) up to their common value of
w7t and in particular, E is on the Q-sequence. It follows that F is on the sequence
of ig«(P*). But now let

k: Ult(P*,G) — ig+(P)

be the canonical factor map. We have that crit(k) = Ag, and in particular, crit(k) >
o(P*). Since o(P*) is passive in Ult(P*, @), it must be passive in ig«(P*), contrary
to our assumption that F is indexed there. This proves (b).

For (c): if B < z(v), then p < )\Egvu, SO

=t () = 5" (1)
W 0,v
= ly(g)ur(s) O g (H)-

* wy * v * wy wp ;
Also, p* < A(E,u(4)), so B* < u”(B) and P* < M, (5 || A(E,.(5)). But since
Pt € raniy g, )

(we don’t actually need ¢ because in this case [v”(f5),u”(8)]w: does not drop), we
get

f* = least o € [v”(3),u”()}w; such that Crit(iz\zy(ﬁ)) > iﬁ%g)@(tg’y(ﬂ)) or a = u”(f)..
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Proposition 4.1 essentially proves this, but the situation is not quite the same, so we
repeat the argument.

First, note that v(8) < g*. Forif £ = E}Y/V” is used in [0, B)w,, then Ag < u,
and thus Ay (g) = t}]’”()\E) < t"(Ag) < t“(u) = p*. This implies v*(3) < p*.

We have by the agreement of W;* with W; up to 5" + 1 that

B* = least a such that P* = MY |o(P*).

Let o be least such that o € [v”(8),uw”(5)]w: and crit(iz\ji,,(ﬂ)) > Z'Z},/%B)ﬂ(t%’y(ﬂ)) or

a = u’(5). We want to see f* = «. Since P* = MZ‘;LEB)IO(P*), we have 5* < a. We
must see v < *. If o = v”(), this holds, so assume a > v*(3).

If o < « and EY” is used in 0, @)w>, then AEY?) < o(P*). This is true if
o+ 1 < v¥(B) because v”(f) < *. If v”(8) < o+ 1, then E, is used in (v”(8), alw:,
and since P* € ran ivyffﬂ)’uy(ﬁ), o(P*) < crit(E,), and o was not least.

It follows that lh(E;/V’j) < o(P*) for all 0 < a such that Ey is used in 0, ),

and hence for all ¢ < o whatsoever. So if o < a, P* % MY |o(P*), as E, is on the
sequence of the latter model, but not of the former. Thus o < 3%, as desired.

This gives (¢). The proof of (d) is similar. O

With regard to part (b) of the claim: it is perfectly possible that § is a successor
ordinal. We can even have = a + 1, where A\g, = p. In this case v (5) < 5* = u*,
and t%"(u) < p* as well. So f* = p* is strictly between v () and either u”(3) or
2*(v), as the case may be. This is a manifestation of the fact that the psuedo-hull
embeddings ®, are very far from being onto, when v > 0.

Claim 4.25 1. If B < z(v), then * = least a € [W"(B),u"(B)|lws such that
W Wi 0w
CTit (i g (py) > zvy(ﬁ)’a(tg (1)).

2. If B = z(v), then B* = least o € [v"(f), 2" (Vlw: such that Crit(’izvf*(y) >
W5 0,v 7
iwig)alts (1)

3. In either case, the embeddings t”, res, ot”, and iz\j%ﬂ) g+ © t%’” all agree on the
domain of F.

Proof. This is what we actually showed in Claim 4.24. The following diagram
illustrates the situation when f < z(v).
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u _% W, b w;

MY — R, MgY ———— MUV(B)

We have shown that both k£ and res, are the identity on the domain of GG, that

is, on t¥(p)™ of M;\:”. The agreement of ¥ with té’” on lh(Egv”), which is strictly

greater than (u7)%, completes the proof. The case that 8 = z(v) is similar. O
Now let
4% tO,l/
P = toig)p 08

so that p : /\/lgv” — /\/lg\i;. On the domain of F', p agrees with ¢V and with res, ot”.
We can then define ®,; at o, + 1. That is, we set

W e, = ula,
p’H—l | EXt<W'y [Oé'y) =p' | Ext(W, o),
0y+1 _ 40,
ty =" for n < a,
and

Ly+1l 41y
t,7 =1, for n < a.
[hen we set

u'tt () =&,

pHI(F) =G,

and let tgj:ll be given by the Shift Lemma,

MY My

tol i1 (la, flp ") = [res, ot (a), p(f)]g ™ -
We have shown that p agrees with res, of” on the domain of F. By (}),, p agrees
with ¢7 on the domain of F. Since res, is the identity on the domain of H (cf. 4.23),

p agrees with res, ot” on the domain of F', and we can apply the Shift Lemma here.
Let us also set
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VE 0
2] 7’y
2 oty

Qy V7 (ay), &y

Then 47+ MU+ — Mz\ﬁﬂl(av) = Mg:*, and 17! agrees with res, ot” on 1h(F)+
1, by claim 4.22.
This gives us @41 [(ay + 2).

Claim 4.26 ®.,[(a,+2) is a pseudo-hull embedding of W, 1 [(c,+2) into W2, [(§,+
2), and extends @, [(a, + 1).

Proof. We checked some of the psuedo-hull properties as we defined ®,;. We must
still check that ;7" satisfies properties (d) and (e) of definition 2.26. Noting that
Elx” = F and that t};j“ agrees with res, ot” on lh(F') + 1, this is easy to do. See
the proof of lemma 4.2. [l

We can define the remainder of the maps «’*' and p**! of @, right now. If
a,+1 < a < z(r), then we set

u’y+1(¢u,v+1 ((1/)) = Z'G’* (uy(a))v

and
P vy (B)) = ia (0 (E)),
for E = E. Note that this then holds true for any E, since if £ = Eg/v v for some
¢ < B, then p*i(ey 41 (E)) = p*(E) = p"(E) =i (p"(E)).
The definition of the ¢-maps of ®,,, and the proof that everything fits together
properly, must be done by induction.

As we define @, we shall also check the applicable parts of (f),+1. We begin
with

Claim 4.27 &, [(ay + 2) satisfies the applicable clauses of (F)y+41-

Proof. We have ®.[(ay+1) = ®,[(a,+1) by construction, which yields (f),+41(a).
Suppose that (1),+1(b) is applicable, that is, that z(y+1) = a,+1. So z(v) = .
We have 07" (a, +1) = & + 1. So what we must see is that {, +1 <w:  2*"(v+1).
That is, we must see that G is used on the branch to z*(y + 1). We are in the
non-dropping case, so z*(y + 1) = ig«(2*(v)). The relevant diagram here is
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Wi Wi
y+1 v+1
. E—
igx(8*) Mz*(wrl)

M

W*
y+1 ;
Mg’y+1 el

* Wi
Mgt ——— MY

z*(v)

wi
Mv”(ﬁ)

If s is the branch extender s = 3?:;, then ig«(s(i)) = s(i) for all i € dom(s), and

thus s C SW”“* . It follows that
igx(8*)
P gV
Mgr = Mg ™,
and that .
; wo Vo
i Mg =gl o)
The factor map o in our diagram is the identity on the generators of G. It follows
that G is compatible with the first extender used in ZBJ;:* (8% and thus G is that

extender, as desired.

Turning to (1),+1(c), the new applicable cases are (ii) and (iii), when £ = 8 and
T = a, + 1. Let us suppose that it is (ii) that applies, that is, that § < z(v). The
last paragraph showed that G is used on the branch to ig«(5*) in this case as well.
We have the diagram
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i (67) Wt (an +1
ag
0,v+1
Wyt1 ay+l Wi o
MCM,-{-I M£W+1 ZV,’Y+1
€]
> h Wy
[ MB* M'U,V(ﬁ)
p
f
£y
Wy 4%
_
M ()
Wy
Here 747" = ¢2® . The branch embeddings ¢ o o of W, and h o f of Wk
B - 'F : g8 oo v+1 v

play the roles of k£ and j in (f),.(c). The role of [ is played by ig o f. The diagram
commutes, so we are done. The case = z(v) is similar.

Turning to (1),.(d), it is enough to show that tg:ill agrees with res, ot” on 1h(F)+
1. But this follows from the Shift Lemma.

We turn to (),.(e), that ¢/, | =7 o o, 1. This is applicable when z(y 4 1) =

o, + 1, and hence since we didn’t drop, z(v) = . So Mgv” =R, MM = R i1,

ay+1
* 4% . . . .
MZYZV) = N,, and z*z’:—Jlrl) = N,41. Expanding the diagram immediately above a

little, while making these substitutions, we get
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O~41 ay+1
u 7 v u*
%
M’y+1 E— R’\/Jrl M{—y—‘rl 1

U
"+l

We have 't = pooo tg:j:ll and t* = hop.

Note first that ¢¥,, agrees with t7™" 0 0,y on ran(#%/_ ). This is because

u U _ur U
¢7+1 © Zl/,y—l—l - Zl/,"/—l—l © ¢V
U

= o (hopoa)

(by (1).)

_ v+l U
=17 004101 44

The last equality holds because of the commutativity of the non-vy part of the dia-
gram.

MY, | is generated by ran(if, ;) U\, where X\ = Agu. So it is now enough to
show that /%, | agrees with "' 0 o,y on A. But note

“ L TA = res, oA

— 2
=res, ot 00, [\
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(by (1))
=t oo, A
(because 17! agrees with res, ot” on Ar)

= t’erl 9] O"‘/‘i‘l r)\

The last equality holds because 0., agrees with o, on Ih(F)+1, by our earlier work
on normalization. This proves (t)41(e).

For (f),41(f), note that N, agrees with N* = ./\/lg:* below 1h(G), and the latter
is a cardinal in NV,yy. This and (f),(f) give us what we want.

This proves Claim 4.27.
O

For the rest, we define ®,441[n+ 1, for o, + 1 < n < 2(y + 1), by induction on
n, and verify that it is a psuedo-hull embedding. At the same time, we prove those
clauses in (1),41 that make sense by stage . The agreement clauses (a), (d), and (f)
already make sense once we have @, [(a., + 2), and we have already verified them.
So we must consider clauses (b), (c¢), and (e).

First, suppose we are given ®,1[(n+ 1), where a., +2 <n+1 < z(y+1). We
must define @, [(n + 2). Let

¢V7’Y+1 (T) =1,
_ W,
E = E17 +1,
and
K =EM.
Let

E* = p"*YE) and K* = p”(K).
We have already defined p?*! so that ig«(K*) = E*, and v (n) = ig-(u”(7)). We
can simply apply lemma 4.2 to obtain ®.44[(n+2) from ®..;[(n+ 1). For we have
the diagram from (f),41(c).

0,v+1
n

t
Wyt1
%
Mﬂ



Taking £ = w1 (n), we see from the commutativity of this diagram that E;/V =

i:\jﬁ%n)’g o t?l’wl(E:;V ). Thus the condition (2) in 4.2 is fulfilled, and we can let
®,41[(n + 2) be the unique psuedo-hull embedding of W, 1[(n + 2) into W;,, that
extends ®,41[(n + 1), and maps E to ig-(p”(K)).

We now verify the applicable parts of (f),+1. The proofs are like the successor
case 1 = ., that we have already done. We consider first clause (c). The new case
to consider is { = 7+ 1. We have ¢, ,+1(7+1) =n+1. Let 0 = W,-pred(r + 1) and
0 = W,q1-pred(n + 1) index the places K and E are applied. Let ¢* and 6* index
the models in W and W7 to which K* and E* are applied. Let us write i* = ig:.
We have i*(K*) = E* and i*(0*) = 0*.

For purposes of drawing the following diagram, we assume 7+ 1 < z(v). The
situation is

0,v+1
t * *
Wygr 11 Wit Wit
MO =" MUy = MO
ﬂ':’_:fl h
tO,y
E W, T+1
M
Wot1
My (0:7+1
fre 0
T
Wy
M ”
to
P P

There are two cases being covered in this diagram:

(Case A.) crit(F) < crit(K). In this case, = ¢, ,+1(0), and 7 = 7271, The map [ in
our diagram is given by the part of (f)..(c) we have already verified.
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(Case B.) crit(K) < crit(F). In this case, § = o < 3, where 8 = "I, Moreover,
Wyl(o +1) = W,1[(0 + 1), and 7 is the identity. Moreover, 5 < a, by the
way normalization works, so the part of (T)A,.(a) we have already verified tells

us that 2" = tg 7 and /\/l =M ﬂﬁzg) We take [ to be the identity as
well. In other words, the bottom left rectangle in the diagram above consists
of identity embeddings.

We also have dom(FE) = dom(K) < crit(¢*) in this case (though F # K is
perfectly possible). So then dom(E*) = dom(K*), which implies that M) =
/\/lg*”“, and ¢ [MZ\*}: is the identity. Thus the bottom right rectangle also
consists of identity embeddings. ( It is however possible that u”(c) # v (o)

in this case.)

In both cases, our job is to define h so that it fits into the diagram as shown.
Using the notation just established, we can handle the cases in parallel.
We define h using the Shift Lemma:
W21

sz) . . Mo+

h(la, [l ) = [i*(a), 7" ()] ="
Note here that i*(u” (7)) = u?™!(n) by our induction hypotheses, so i* maps MY

u"(T
the model where we found K*, elementarily into M ﬂﬁl the model that had E*.
So the Shift Lemma gives us h, and that hoig+ = ig« 0"

We shall leave it to the reader to show that the rectangle on the upper right of
our diagram commutes. If s is the branch extender of [0, u”(7 + 1)}y and t is the
branch extender of [0, u ™! (n + D]w=, . then i*(s) = t. Moreover, if s(a) = K* and
t(b) = E*, then i*(s[(a+1)) = t[(b+1). This implies that the upper right rectangle

commutes.
So we are left to show that h otV = t?]jfl o) Let x = b, f] " be in
MP¥. Then

ho o (@) = hE (b, 1))
v W5 v M:\’i:
= B[tr" (1), i) 00 © to" ()]ic
* W*+1
=i ()i 0 il e o 0D

The second step uses our definition of t?’il. On the other hand,
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O o 7 () = 07 (7 (b, S14))

n+l1 T+1 = 'n+l T+1
W,
0, 1 M y+1
= 0 ()7 (N )
— tlﬁH vy+1 b Wi tO,vH M::VH
- [ n o T ( )7%%—1(9)79* Oty o W(f)]E* .

Now let’s compare the two expressions above. The function f is moved the same

way in both cases because the bottom rectangles in the diagram above commute.
That is,

*

¥ WV O,v __ -W;+1 0,v+1
1O Uy v © ty” = Ly 19,0+ © Ly oT.

So we just need to see that

1,y+1 vy+1l _ ox 1,v
ty o, =1 ot

But this follows from the part of (f),+1(c) that we have already verified. The relevant
diagram is

t7177’y+1
0,v+1
t * *
Wyt1 " W"Hrl W’v+1
—> M i, >
My M) M)
ﬂ,_l;mﬂrl i*
tO’V Wi *
Wy T v v
% ,,,,,,,
MT \%’y/\/luy i
tl,u

Thus we have verified the new case of (}),+1(c) that is applicable to @, [(n+2).
We turn to (t),4+1(e). If it is applicable, then z(y + 1) = n + 1, and because
we did not drop, z(v) = 7+ 1. We must show that ¢*,, = 7" 0 0,,;. We have

R, = Mmf ' and R, = M. Making these substitutions and expanding the
upper part of the diagram above, we get
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Loy

7+l 2(v+1 wi
Wit

MU, T R M 1))

v,y+1 Sk
/I\ /l\ﬂ-Z(V) /l\h /l\z
tO,V

Oy z(v)
z(v))

M R, M

v

The embedding across the bottom row is # o g,, and hence by induction, it is ¥.
The embedding across the top row is 77! o ,11. The diagram commutes, so

_ U Uu
¢7+1 © ZV e 2117’}/ © ¢V
=" ot'oo,.

_ v+l U
=17 0044107, 49-

Thus 7" 0 0,41 agrees with ¢/, | on ran(#%_,,). So it will be enough to show the

two embeddings agree on A = A BY- For that, we calculate exactly as we did in the
case ) = ay + 1:

gﬂ A = res, O@Ds’ A
=res, ot” 0 o[\
=t oo, A

=t oo [\

The last equality holds because o, agrees with ¢..41 on Ih(F')+1, by our earlier work
on normalization. This proves (f),.(e).
Finally, suppose that A is a limit ordinal, and we have defined ®,;[n for all
17 < A. Then we set
Oopr A= @ogaln

n<A

We are of course assuming ®,1[7 is a subsystem of ®.,,[3 whenever n < 3, and
the psuedo-hull properties clearly pass through limits, so this gives us a psuedo-hull
embedding of W, 41[A into WJ ;[\

In order to define @, [(A + 1), for A < z(y + 1) a limit ordinal, let 7 be such
that

A= ¢V7’Y+1(7—)'

Consider r = pr+t Since @1\ is a psuedo-hull embedding, 7 is C-

preserving on W<, Thus r is the extender of some branch b of W, . In fact, b is

(5377,
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the downward closure of {ig-(v"(€)) | £ <w, 7}. Recall that the v-maps preserve tree
order, so that {ig«(v"(§)) | £ <w, 7} is contained in the branch [0, ig«(v"(7)]w= . of

. v+1
1. S0

V() = supfic: (0¥(9)) | € <w, 7).

0,7+1 . Wo+1 Wi : S :
Moreover, we can define ¢, : M, —- M () using the commutativity given

by (c) of definition 2.26:

BT (G5 (@) = Eiilg e 167 (@)
It is easy to verify the agreement of ti”“ with earlier embeddings specified in clause
(d) of 2.26. Thus ®,41[(A + 1) is a psuedo-hull embedding.

We must check that the applicable parts of (f),41 hold. Let us keep the notation
of the last paragraph. For part (b), we must consider the case z(y+1) = A\. We have
not dropped in (v,y + 1]y, so z(v) = 7, and v"(7) <w: 2*(v) by (f),. We showed
that v7*1(A) <w:, ig+(v”(7)) in the last paragraph. So v™*(\) <y, ig-(2*(v)) =
2*(y+ 1), as desired.

For (c), the new case is £ = 7, and A = ¢, ,41(7). Everything in sight commutes,
so things work out. Let’s work them out. Setting ¢* = izj;H, and letting £ be the

branch embedding from M:\WJEE y to Mx:UtI(T), the relevant diagram is

tO’""H

Wor A Wi k Win
My » Mot » Mis ooy
W\m’{wﬁl l[
0,v
Mo T MO
T ¥ (T)
Wyt1
Ma 107 +1
’{ 0
v,y AL
To
MWV

Fo
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Here we are taking 0 = ¢, ,11(0), where o <y, 7, and o is sufficiently large that
®u.~+1 Preserves tree order above 0. We also take o to be a successor ordinal, so that
i*(v”(0)) = 7 (7). The map [ is defined by

I WV Wi

Loy () v (7) () = Lyr+1(9) 07+ () (1" (2))-

(Where of course we are taking the union over all such successor ordinals ¢.) If we
draw the same diagram with 7 replaced by some sufficiently large 79 <w, 7 and A
replaced by Ao = ¢, ~+1(70), then all parts of our diagram commute, because we have
verified (t),41 that far already. Since all these approximating diagrams commute, [
is well-defined, and the diagram displayed commutes. Moreover, it is easy to check
that kol =¢* [MZ\V)ZT). Thus we have (t),41(c).

The proof of (}),+1(e) is exactly the same as it was in the successor case, so we
omit it.

Remark 4.28 Actually, that proof seems to show that (f),.(e) is redundant, in that
it follows from the other clauses.

Thus 7' 0 011 agrees with ¢, on ran(i, ). So it will be enough to show the
two embeddings agree on A pu. For that, it is enough to see t’*! agrees with # on
Ar. But in fact, £ agrees with ¢ on 1h(F}), for all £ < v, so we are done.

This completes our work associated to the definition of ®41[A+1, for A > a, a
limit. Thus we have completed the definition of ®..;, and the verification of (}),41,

in Case 1.

Case 2. (v, + 1]y drops, in either model or degree.

Let
fL= crit(Ef/’),
P = dom(Eff),
Q = first level of ./\/lz;l beyond P

that projects to or below p.

We have that

_ u U _ u u
P = MZI/4|(M+)MV|1h(EV) _ Mg‘(/fr)Mv“h(Ev).
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Let

poo=o,(p) = crit(F),
P =o0,(P) =dom(F),
Q) = first level of R, beyond P
that projects to or below p.

Since 0, agrees with 0., on Ih(F,), we can replace o, by o, in the first two equations.
( But if v < 7, then ) ¢ dom(o,).) We have that

P = R, |(p") ) = Ry | () I,
In this case, z(y +1) = a, + 1, and

Wit = Wy I, + 1) (UL(Q, F)).

Claim A. res, ot” agrees with res, ot” on Ap,.

Proof. This is clear if v = ~. But if v < v, then 7 agrees with res, ot” on Ag, by
(1)5(d). (See the remarks after the statement of (f),.) But also, res, is the identity
on res, ot”(Ap, ), because v < «. This yields the claim. d

We have H = t7(F) and G = res,(G). We have that res,: N,|lh(H) —
NZ[1h(G), and that res, agrees with i:’zv on lh(H). Let

Q"= M;f,l”, where (n,1) = Res,, 1, [t"(Q)]",
0" = Tl [tV(Q)]SUa
w*=o*(t"(p)), and
P* = o*(t"(P)).
o* is a partial resurrection map at stage v. We had res,: N,|1h(H,) — N}|1h(G,).

o* resurrects more, namely t”(Q), but doesn’t trace it as far back in iff ,(C). Because
no proper level of t¥(Q) projects to t¥(u), o* agrees with res, on t”(P). So

0" ot’|P =res, ot”[P = res, ot” [ P,

the last equality being Claim A. The embeddings displayed also agree at P, where
they have value P*. Note that P = dom(F') and P* = dom(G).
We have that Q* is the last model of (W) Set
T* — ( * )SV‘

n,l

173



Lemma 4.5 tells us that 7 has the following form. Let £ be least such that t(Q) <
M Then T#[€+1 = W€ +1, and letting h(T*) = g+ 1, £ <z nand o* = 7.
We have that

;4—1 = Z.G* (T*), and

Ny = i (@),

by the way that lifting to the background universe works in the dropping case. As
in the non-dropping case, the key is

Claim B.
(1) Wiglé +1=Wr1E, + 1, and

N Wi,
(i) G=E, """

Proof. We have that dom(G) = res, ot?(P) = res, ot”(P) by claim A, so dom(G) =
o* o t'(P) = P* = Q*|(p*")?". P is MZY,”Hh(F) cut off at its pu*. So P* is
res., ot (M| Ih(F)), cut off at its (u*)", that is, P* is ./\/12;7 |1h(G), cut off at
(W)™ -

Thus Q" agrees with M, |1h(G) up to their common value for (u*)*. Tt follows
that ig«(Q*) agrees with Ult(./\/lgﬁ Ih(G), G) up to 1h(G) + 1, with the agreement
at 1h(G) holding by our having chosen a minimal G* for G. Claim B now follows
from the fact that WJ* and W, are normal trees by the same strategy. O

We now get @, by setting p?™(F) = G, and applying Lemma 4.2. We must
see that (f),41 holds. Part (a) is clear.
Let 8* = W,1-pred(&,). Claim C.

N _ o R V%
(1) Ih(T*) = "+ 1, and Q" = My "
(2) f* = p*, and if s = 57, then s: " — Ve

Proof. By definition, * is the least « such that sz:“|0(P*) = P*. But Q" is
the last model of 77, and P* = Q*|o(P*), so since T* and W, are normal trees by
the same strategy, 6* < 1h(7*) and M} = ./\/l;\::“. This gives (1).

Part (2) is proved exactly as in case 1. O

Now consider (1),41(b). We have v’ (a, +1) = &, + 1, and 2*(y + 1) = ig (u*).
So we must see that §, +1 <y ig«(u*), that is, that G is used on the branch of

y+1
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Wi, toig-(u*). But if s = s7., then s = ig(s)u*, so u* is on the branch of W,
to ig+(p*). Moreover, ig«(s )(,u ) is compatible with G, so it is equal to G, as desired.

(t)y+1(c) is vacuous, because we have dropped. We shall leave the agreement
conditions (d) and (f) to the reader, and consider (e). That is, we show %, =

£ 0 g 11. The relevant diagram is

tO»v+1

MY o Ry o Me o —— MZZWE *)
}Z;’Wl }F }G/
Q—" Q)
W;ﬂ /
Fy
Here k = ZV\W}E%%H) (v+1) Thus the embedding along the top row is £t oo, 4.

The lifting process defines w,y b

Vy41([a, f]gg) = [res, o1, (a), 0" Oi%(f)]g«,

where we have dropped a few superscripts for readability. Let us write 2 for iﬁ‘ﬁ 41
Then .41 agrees with 77! o ., on ran(i), because

t”“oawrloi:ig* oc*ot'oo,
= iG O oo by
= 1/)7+1 o1l
The first line comes from the commutativity of the diagram, the second from (1), (e),
and the last from the definition of 1.,1;.

So it is enough to see that 1,1 agrees with 7! 0 0,1 on A, where A = \(EY).
But note that t77! = ko ti’]if, and crit(k) > Ag. So t7*! agrees with the Shift
Lemma map tgjif on Ap. Thus 7! agrees with res, ot” on Ag. So we can calculate

¢'y+1 A = resy O% A
=resy ot oo, [A
=t oo, ]\
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The second line comes from (7). )(e), and the third from our argument above, together
with the fact oy [A = o414 [A.

This finishes case 2, and hence the defintion of ®,,; and verification of (f),41.

We leave the detailed definition of ®, and verification of (1)y, for A a limit ordinal
or A = b, to the reader. The normalization W), is a direct limit of the W, for
v € [0,\)y. The tree W5 is Z,L/{/\(W:), for v past the last drop. So it is a direct limit
too. We define @, to be the direct limit of the ®, for v € [0, \)y past the last drop.
Part (c) of (T) tells us we can do that. We omit further detail.

This finishes our proof of Sublemma 4.12.1, that W, is a psuedo-hull of Wy. O

That in turn proves Lemma 4.12 Il

Lemma 4.29 Let M = M,,x,, and let U be a normal tree on M that is of limit
length, and s by both EWZ} oM and ng,ko‘ Let

lift(U, M, C) = U", (1 | 7 < Iath), (& | 7 < Ihld));
then U* has a cofinal, wellfounded branch.

Proof. Let m: H — Vj be elementary, where H is countable and transitive,
and 6 is sufficiently large, and everything relevant is in ran(w). Let S = 7~} (U),
S*=7YU*), and T = 7 ( ko)

Because ¥ is universally Baire, 771(X) = X N H, so (T,S) is by X. Moreover,

letting
b=3%(T,S)),

we have that b € H. (Because b € H|[g| for all g on Col(w,7), for 7 € H sufficiently
large.) It will be enough to see that M$" is wellfounded, as then the elementarity of
7 yields a cofinal wellfounded branch of U/*.

By [8], 8* has a cofinal, wellfounded branch ¢. The proof of Sublemma 4.12.1
shows that W. is a psuedo-hull of W}, where W, = W(T,S87¢) and W} = i$ (T).
That is because we can run the construction of ®. in H; we don’t need ¢ € H to
do that. But then W is by X, so W, is by X by strong hull condensation, and
c = X((T,S)) since ¥ normalizes well. Thus ¢ = b, and M$ is wellfounded, as
desired. U

We can now finish the proof of Theorem 4.10. We have just shown that EW:O

C
v0,ko

ko’M

agrees with (2 on normal trees. We must see that they agree on finite stacks T
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of normal trees. But for such 71,
T is by QF . < Lift(T) is by Qu2"
& W(Lft(T)) is by QUBR
& life(W (7)) is by QUB%

—

< W(T) is by X.

The first equivalence is our definition of Q(Eo,ko' The second comes from our definition
of QP8H. The third comes from the fact that embedding normalization commutes
with lifting to the background universe, which we proved in the proof of Theorem
3.26. The last comes from the agreement of > with Q‘VCO’,CO on normal trees.

This finishes the proof of Theorem 4.10. U
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5 Fine structure for the least-branch hierarchy

We now adapt the definitions and results of the previous sections to mice that are
being told their own background-induced iteration strategy. This leads to the basic
solidity and universality theorems for such mice.

The main new problem is that in the solidity /universality proof, when we com-
pare (M, H,p) with M, we must do so by iterating them into some background
construction C. Thus disagreements will very often happen when the two sides agree
with each other, but not with C. If we proceed naively, this renders invalid the usual
argument that we can’t end up above M on both sides. Our solution is to mod-
ify the way the phalanx is iterated, so that sometimes we move the whole phalanx
up, including its exchange ordinal. Schlutzenberg has, independently and earlier,
developed this idea much more thoroughly in another context.

This section is organized as follows. First, we define least branch premice, and
the background constructions that produce such objects. We then more or less wave
our hands over the assertion that everything in the previous sections generalizes
routinely, so long as these background constructions do not break down by reaching
some level at which solidity or universality of the standard parameter fails. (We
are of course simply assuming unique iterability for V', as we did in the previous
sections!) We then use the comparison process we get from this hand-waving to
prove solidity and universality.

5.1 Least branch premice

A least branch premouse (lpm) is a variety of acceptable J-structure. Acceptable
J-structures are structures of the form (JZ, €, AN J4) that are amenable, and sat-
isfy a local form of GCH. The basic fine structural notions, like projecta, standard
parameters, and solidity witnesses, can be defined at this level of generality, and
various elementary facts involving them proved. This is done in [23], and we assume
familiarity with that material here. See the preliminaries section for more.

The language L, of least branch premice should therefore have symbols € and
A. Tt is more convenient in our situation to have €, predicate symbols E, F, ¥, B,
and constant symbol 4. If M is an lpm, then M = (N, k), where N is an amenable
structure for Ly, and k = k(M). We often identify M with N. The predicates and
constant of N can be amalgamated in some fixed way into a single amenable AM.
So we are within the framework of [23]. o(M) is of course the ordinal height of M.
We let 6(M) be the « such that o(M) = wa. The index of M is

[(M) = (o(M), k(M)).
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If (v,1) <jex [(M), then M|(v,1) is the initial segment N of M with index [(N) =
(). (So EN=EMAN, FN = EM 2N = %M A N and BY is determined by %M
is a way that will become clear shortly.) In order that M be an lpm, all its initial
segments N must be k(N)-sound. If v < 6(M), then we write M|v for M|(v,0).

As with ordinary premice, if M is an lpm, then EM is the sequence of extenders
that go into constructing M, and F'™ is either empty, or codes a new extender
being added to our model by M. FM must satisfy the Jensen conditions; that is, if
F = F™ is nonempty (i.e., M is extender-active), then M |= crit(F)* exists, and for
p= crit(F)™™ o(M) = iM (). FM is just the graph of iM [(M|u). M must satisfy
the Jensen initial segment condition (ISC). That is, the whole initial segments of F'M
must appear in EM. If there is a largest whole proper initial segment, then 3 is
its index in EM. Otherwise, AM = 0. Finally, an Ipm M must be coherent, in that
iM(EM)o(M) 4+ 1 = EM ().

In other words, the conditions for adding extenders to M are just as in Jensen.

The predicates M and BM are used to record information about an iteration
strategy €2 for M. The strategy €2 will be determined by its action on normal trees,
in an absolute way, so that we need only tell the model we are building how €2 acts
on normal trees, and then the model itself can recover the action of €2 on the various
non-normal trees it sees. Since this simplifies the notation, it is what we shall do.

Let us write M|(v, —1) for (M|(v,0)); that is, for M|(v,0) with its last extender
predicate set to ().

Definition 5.1 An M-tree is a triple s = (v, k,T) such that
(1) (v, k) <iex L(M), and
(2) T is a normal iteration tree on M|(v, k).

We allow here T to be empty. The case k£ = —1 allows us to drop by throwing
away a last extender predicate. Given an M-tree s we write s = (v(s),k(s), T (s)).
We write M (s) for the last model of T (s), if it has one. We say lh(7(s)) is the
length of s.

What we shall feed into an lpm M is information about how its iteration strategy
acts on M-trees.

M is a predicate that codes the strategy information added at earlier stages, with
> M (s,b) meaning that 7 (s) is a normal tree on M|(v(s), k(s)) of limit length, and
T (s)7b is according to the strategy. We write X for the partial iteration strategy
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for M|(v, k) determined by . We write
SM(s) = b iff ©M(s,b)
iff 33005 ) (T(5)) = b.
We say that s is according to XM iff T (s) is according to E%S)’k(s).

We now describe how strategy information is coded into the B predicate. Here
we use the B-operator discovered by Schlutzenberg and Trang in [28]. In the original
version of this paper, we made use of a different coding, one that has fine-structural
problems. The authors of [37] discovered those problems. The discussion to follow
is taken from [37].

Definition 5.2 M is branch-active (or just B-active) iff
(a) there is a largest n < o(M) such that M|n = KP, and letting N = M]|n,

(b) there is a <y-least N-tree s such that s is by XN, T(s) has limit length, and
YN (s) is undefined.

(c) for N and s as above, o(M) < o(N) + lh(T (s)).

Note that being branch-active can be expressed by a X, sentence in £, — {B}.
This contrasts with being extender-active, which is not a property of the premouse
with its top extender removed. In contrast with extenders, we know when branches
must be added before we do so.

Definition 5.3 Suppose that M is branch-active. We set

v ={a|n+ac BM},

n™ = the largest n such that M|n = KP,

s™ = least M|n™ -tree such that nMIn g undefined, and
vM = unique v such that n™ +v = o(M).

Moreover, for s = s™,

(1) M is a potential Ipm iff b™ is a cofinal branch of T (s)|vM.
(2) M is honest iff v™ =1h(T (s)), or v™ < Ih(T(s)) and b™ = [0, ™)1 ().

(8) M is an lpm iff M is an honest potential lpm.
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(4) M is strategy-active iff v™ = 1h(T(s)).

We demand of an Ipm M that if M is not B-active, then BM = ).

The ¥ predicate of an lpm grows at strategy-active stages. More precisely, sup-
pose that 6(Q) is a successor ordinal, and M = Q|(6(Q) —1). If M is strategy-active,
then in order for () to be an lpm, we must have

29 =3 U {(s, M)},

while if M is not strategy-active, we must have 9 = =M If (Q) is a limit ordinal,
then we require that %9 = Un<6(Q)2Q‘”. We see then that if M is an lpm and
v < 6(M), then XM C M and M|v is strategy-active iff SM¥ £ $M

This completes our definition of what it is for M to be a least-branch premouse,
the definition being by induction on the hierarchy of M.

Definition 5.4 M is a least branch premouse (lpm) iff M is an acceptable J struc-
ture meeting the requirements stated above.

Notice that if M is an lpm, then no level of M is both B-active and extender-
active, because B-active stages are additively decomposable.

Returning to the case that M is branch-active, note that n* is a 3! singleton,
because it is the least ordinal in BM (because 0 is in every branch of every iteration
tree), and thus s is also a 3! singleton. We have separated honesty from the other
conditions because it is not expressible by a ()-sentence, whereas the rest is. Honesty
is expressible by a Boolean combination of ¥, sentences. See 5.9 below.

The original version of this monograph required that when o(M) < n™ +1h(T (s)),
BM is empty, whereas here we require that it code [0, 0(M ))1(s), in the same way
that BM will have to code a new branch when o(M) = n™ + Ih(T (s). Of course,
[0, M)y € M when o(M) < 9™ + Ih(T(s)) and M is honest, so the current B
seems equivalent to the original BM = (). However, BM = () leads to ¥ being
too weak, with the consequence that a >; hull of M might collapse to something
that is not an lpm. (The hull could satisfy o(H) = n® + Ih(T (s*)), even though
o(M) < n™ + Ih(T (sM)). But then being an lpm requires B # (.) Our current
choice for BM solves that problem.

Remark 5.5 Suppose N is an lpm, and N = KP. It is very easy to see that »y
is defined on all N-trees s that are by %V iff there are arbitrarily large £ < o(N)
such that N|¢ = KP. If M is branch-active, then n™ is a successor admissible;
moreover, we do add branch information, related to exactly one tree, at each successor
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admissible. Waiting until the next admissible to add branch information is just a
convenient way to make sure we are done coding in the branch information for a
given tree before we move on to the next one. One could go faster.

We say that an Ipm M is (fully) passive if £M = () and BM = (.
We would like to see that being an Ipm is preserved by the appropriate embed-
dings. @-formulae are useful for that.

Definition 5.6 A rQ-formula of Ly is a conjunction of formulae of the form

(a) Yudv(u C v A p), where ¢ is a 3y formula of Lo such that u does not occur

free in o,
or of the form

(b) “F # 0, and for p = crit(F)*, there are cofinally many € < p such that 7,
where Y is .

Formulae of type (a) are usually called Q-formulae. Being a passive lpm can be
expressed by a ()-sentence, but in order to express being an extender-active lpm, we
need type (b) clauses, in order to say that the last extender is total. r@Q formulae are
7o, and hence preserved downward under X;-elementary maps. They are preserved
upward under Yy maps that are strongly cofinal.

Definition 5.7 Let M and N be Ly-structures and w: M — N be g and cofinal.
We say that 7 is strongly cofinal iff M and N are not extender active, or M and N
are extender active, and letting m“(crit(F) )™ is cofinal in (crit(F)T)N.

It is easy to see that

Lemma 5.8 r() formulae are preserved downward under Y1 -elementary maps, and
upward under strongly cofinal ¥q-elementary maps.

Lemma 5.9 (a) There is a Q-sentence ¢ of Ly such that for all transitive Lo
structures M, M = ¢ iff M is a passive lpm.

(b) There is a rQ-sentence @ of Ly such that for all transitive Ly structures M,
M = ¢ iff M is an extender-active lpm.

(c) There is a Q-sentence ¢ of Ly such that for all transitive Ly structures M,
M = ¢ iff M is a potential branch-active lpm.
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Proof. (Sketch.) We omit the proofs of (a) and (b). For (c), note that “B # §” is
$;. One can go on then to say with a ¥, sentence that if 7 is least in B, then M]|n is
admissible, and s exists. One can say with a II; sentence that {a | B(n+ )} is a
branch of 7 (s), perhaps of successor order type. One can say that B is cofinal in the
ordinals with a @-sentence. Collectively, these sentences express the conditions on
potential Ipm-hood related to B. That the rest of M constitutes an extender-passive
Ipm can be expressed by a II; sentence. O

Corollary 5.10 (a) If M is a passive ( resp. extender-active, potential branch-
active ) lpm, and Ultg(M, E) is wellfounded, then Ulto(M, E) is a passive
(resp.extender-active, potential branch-active ) lpm.

(b) Suppose that M is a passive (resp. extender-active, potential branch-active)
Ipm, and m: H — M is ¥q-elementary; then H is a passive (resp. potential
branch-active) lpm.

(c) Let k(M) =k(H) =0, and m: H— M be ¥y elementary; then H is a branch-
active lpm iff M is a branch-active Ipm.

Proof. r@Q)-sentences are preserved upward by strongly cofinal ¥y embeddings, so
we have (a). They are Il,, hence preserved downward by ¥;- elementary embeddings,
so we have (b).

It is easy to see that honesty is expressible by a Boolean combination of ¥,
sentences, so we get (c).

|

Part (c) of Corollary 5.10 is not particularly useful. In general, our embeddings
will preserve honesty of a potential branch active lpm M because ¥ and BM are
determined by a complete iteration strategy for M that has strong hull condensation.
So the more useful preservation theorem in the branch-active case applies to hod pairs,
rather than to hod premice. See 5.21 below.

Remark 5.11 The following examples show that the preservation reults of 5.10 are
optimal in certain respects.

(1) Let M be an extender-active lpm, and N = Ulty(M, E), where E is a long
extender over M whose space is (crit(F)™)™, so that the canonical embedding
7: M — N is discontinuous at (crit(F)*)™. Then = is cofinal and ¥y, so that
M and N satisfy the same )-sentences, but N is not an Ipm, because its last

extender is not total. 7 is not strongly cofinal, of course.

183



(2) The interpolation arguments in [19] yield examples of 7: M — N being a
weakly elementary (with k(M) = k(N) = 0), and N being an extender-active
Ipm, but M not being an lpm. Again, M falls short in that its last extender is
not total.

The copying construction, and the lifting argument in the iterability proof, do
give rise to maps that are only weakly elementary. However, in those cases we know
the structures on both sides are Ipms for other reasons. On the other hand, core maps
and ultrapower maps are fully elementary, so we can apply (a) and (b) of Corollary
5.10 to them. We do need to do this.

5.2 Copying

Given m: M — N weakly elementary, we can copy an M-stack s to an N-stack s,
until we reach an illfounded model on the 7s side. Thus if ) is a complete strategy
for N, we have the complete pullback strategy (2™ for M. We extend the copying
slightly, to incorporate some lifting. This will let us lift weakly normal trees to fully
normal ones.

Let T be a weakly normal tree on the Ipm M, and let k = k(M). Let

m: M — N|(v, k)

be weakly elementary (that is, a weak k-embedding); then we can copy T to a fully
normal tree 4 on N as follows. U has the same tree order as T, so long as it is
defined. Let M, and N, be the a-th models, and E, and F, the a-th extenders, of

T and U. We shall have a weakly elementary
Ta: Mo = No|(Vay ko).

Here my = 7, vy = v, and ky = k. We have the usual agreement and commutativity
conditions:

(1) Whenever 8 < a, mg[A\(Eg) and No|A(Fp) = Ng|A(Fj3), and

(2) whenever  <r «, then 7, 01}, =4, o 7.

(We do not demand any further coordination of the points at which the two trees
drop. 7 may drop gratuitously where U does not, and U may drop where 7 does
not because the dropping point is above some (v, k,).) The successor step is the
following. We are given E, on M,; set

Fa - Wa(Eoz)7
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or F, = FNelvake) if B = [Ma  Let § = T-pred(ar + 1) = least & such that
Kk < A(E¢), where k = crit(£,). By (1) above, § = U-pred(« + 1) according to the
rules of normality for /. Let

Ma+1 - Ult(Mﬁ|<777 l>7 Eoz)a

and
NoHrl = Ult(NgK’}/, n>7 FO!))

where (1, 1) is chosen by I in 7, and (,n) is determined by normality. It is easy to
see that

(ma(n), 1) Siex (v, 7)-
(If (n,1) = I(Mg), we understand mg(n) = v here, and we have | = k. Since 7g
is elementary, and no proper initial segment of Mg projects < x, no proper initial
segment of Ng|(vg,l) projects < mg(k). But mg(k) = crit(F,), so (vs, 1) <iex (7,n).
If (n,1) <jex [(Mp), a similar argument works.) We then set

(Vat1, kar1) = 15 011 ((ma(n). 1))

and we have (Vo11, kat1) <tex {(Nas1). Tar1 comes from the Shift Lemma definition:

mat1([a, f]) = [ma(a), ms(f)];

where the equivalence classes are in Ult(Mg|(n, 1), E,) and Ult(Ng|(v, n), F,) respec-
tively. The proof of the Shift Lemma tells us that 7,1 is weakly elementary. (Even
if we had started with elementary maps, the case that (m3(n),l) <jex (7,n) could
lead to 7,41 not being fully elementary.)

Of course, at limit steps A < 1h(7"), we stop unless [0, A]7 is a wellfounded branch
of U. If it is, we get my, vy and k) from commutativity, and continue.

Definition 5.12 Given 7: M — N|(v, k) weakly elementary and T on M weakly
normal, (7T)" is the normal tree on N defined above. We call it the (7, v, k)-lift of
T. If Q is a strategy for N defined on normal trees, then Q") is the strategy on
weakly normal trees given by pulling back: QYF)(T) = Q((zT)T).

We omit v and k£ from the notation when no confusion can arise.
Similarly, we can w-lift M-stacks, and thus if Q2 is a strategy for N defined on
finite stacks of normal trees, then ()™ exists, and is a complete strategy for M.
With 7 = identity, we get

Lemma 5.13 Let M be an lpm that is 0-iterable for normal trees; then M 1is 0
iterable for weakly normal trees. If M is O-iterable for finite stacks of normal trees,
then M has a complete 0-iteration strategy.
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5.3 Least branch hod pairs

Suppose we reach the Ipm M in a reasonable background construction C. The
strategies €2, for M|(v, k) that we get from C all come from a single strategy for V/,
and are therefore consistent with one another in the following sense.

Definition 5.14 Let M be an lpm, and let ), be an iteration strategy for M|(v, k),
for each (v, k) <iex (M). We say (i | (V,k) <iex {(M)) is self-consistent iff
whenever (v, k) <jex (n,1), then

Qv,k — (Qn,l>( ’[;d,l/,k).

Here the 2’s may be a sequence of strategies acting on normal trees, or a sequence
of complete strategies. They should all be f-strategies, for some fixed 6.

Notice that if the €2, ; constitute a self-consistent system of strategies for M, then
whenever v is a cardinal of non-measurable cofinality in M, all §,; with v < n <
o(M) agree on (stacks of) trees belonging to M|v. This is also true if n = 6(M) and
v < pi(M). Recall from 1.19 that tail strategies are defined by

() = Qs1),

for all M (s)-stacks t. Also, for N = M (s)|[{v, k), we set Qs v = Qs iy = Qoo 1.0y
write 1) for Qg n. When N = M|(v, k), we write Qy or Q) for Qp . Finally,

Qs,<z/ — U{Qs,(m@ \ n<vA k< w}

is our notation for a join of strategies.

Definition 5.15 Let ) be a complete strateqy for M ; then ) is self-consistent iff
whenever s is an M-stack by Q such that M (s) exists, then the family (Qsn |
N < My (s)) is self-consistent.

Definition 5.16 (M,€) is a least branch hod pair (Ibr hod-pair) with scope Hg iff
(1) M is a least branch premouse,
(2) Q is a complete iteration strategy for M, with scope Hs,

(3) Q is self-consistent, normalizes well, and has strong hull condensation, and

(4) If s is by Q and has last model N, then ¥V C Q..
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Of course, § as in (2) is determined by €.
We say that (M, Q) is self-aware just in case it has property (4).

Remark 5.17 This definition records the properties of the hod pairs we construct
needed to prove the Comparison Theorem and the existence of cores. The other
properties one might hope for seem to follow from these.

For example, if (M,€) is an lbr hod pair, then (M, () is strategy coherent, as
remarked above. Its iteration maps are minimal in the appropriate category of em-
beddings (5.27 and 5.28). Q is pullback consistent by 5.25. More elaborate arguments
involving phalanx comparisons show that €2 is positional, and fully normalizes well.

Remark 5.18 One can show that if ¥ is a complete strategy for a premouse M that
condenses well for normal trees, then ¥ has a unique extension to a complete strategy
for M that normalizes well. The proof follows the lines of our proof of 0.18. Thus,
despite the title of this monograph, strong hull condensation is the key property that
makes an iteration strategy well-behaved.

While we are at it, let us formally define pure extender pairs.
Definition 5.19 (M,Q) is a pure extender pair (L[E]-pair) with scope Hys iff
(1) M is a pure extender premouse,

(2) Q) is a complete iteration strategy for M, with scope Hg, and

(3) Q is self-consistent, normalizes well, and has strong hull condensation.
Definition 5.20 (M, Q) is a mouse pair iff it is either a pure extender pair, or an
Ibr hod pair.

One very useful elementary fact is

Lemma 5.21 Let (M,Q) be a mouse pair with scope Hs, let m7: N — M be weakly
elementary, and suppose that if FN # 0, then FN is total over N; then (N,Q7) is a
mouse pair with scope Hsy.

Proof. Let us just consider the case that M is an lpm. In this case, N is an lpm

by 5.10, except perhaps when M is branch-active. In this case, N is a potential
branch-active Ipm, and we must see that NV is honest.
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Solet v =vN b=0b" and T = T(s"). If v = Ih(T), there is nothing to show,
so assume v < lh(7). We must show that b = [0,v)7. We have by induction that
for Q = N|n™, (Q, Q7)) is an lbr hod pair, and in particular, that it is self-aware.
Thus T is by 7, and so we just need to see that for Y = T v, U"b is by 7, or
equivalently, that 7/ b is by 2. But it is easy to see that 7td™b is a psuedo-hull of
7(U)"bM | and 2 has strong hull condensation, so we are done.

Thus N is an lpm. Q7 is a complete iteration strategy defined on all N-stacks in
Hjs, where Hj is the scope of (M, ). Q™ normalizes well by the the proof of 3.3, and
has strong hull condensation by the proof of 3.6.

Self-consistency is straightforward; it’s an instance of lifting commuting with
copying. Let ¥ = Q7. Let s be an N-stack such that M, (s) exists. Let (v, k) <jex
(1) <iex [(Moo(s)). We must show that W, 5 = (\Ifs,<,7,l>)1d’”’k>. We assume for
notational simplicity that s = 0, so M (s) = N. Let U be a normal tree on N|(v, k).
The relevant diagram is:

R . S

/ /\K
M|(m(v), k) M{m(n), 1)
)

Q

T
u
u

N|{v, k)

N|(n,1

id

Here U™ is the lift of U to N|(n,l) under the identity map. The bottom square
represents that process, and 7 is one of its maps. The top square represents the
lifting of 74 from M|(m(v,k) to M|(m(n),l), and 7* is one of its maps. Because
everything commutes, we get

r(U*) = (7U)*,
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i.e. lifting commutes with copying. Therefore

U is by (Q7) @y < U is by iz
= (7TZ/{)Jr is by Q(W(n)l)
& m(UT) is by Qr()
& UT is by () in,1y-

This is what we want. The case that s # () or U is replaced by a stack is no different.

Finally, we must show that (N, Q") is self-aware. Let P be a Q™ iterate of N, via
the stack s. Let () be the corresponding iterate of M via ws, and let 7: P — @ be
the copy map. Then

U is by X = 7(U) is by £°
= 7(U) is by Qrs0
= 17U is by Qrs0
= U is by (Q7)sp,

as desired. O

5.4 Mouse pairs and the Dodd-Jensen Lemma

Mouse is generally taken to mean iterable premouse, and the Comparison Lemma is
taken to say that any two mice M and N can be compared as to how much infor-
mation they contain. But in fact, how M and N are compared depends on which
iteration strategies witnessing their iterability are chosen. There is no mouse order
on iterable premice, even of the pure extender variety, unless we make restrictive
assumptions which imply that the iteration strategy is unique. The canonical infor-
mation levels of the mouse order are occupied not by mice, but by mouse pairs. These
pairs are the objects to which the Comparison Lemma, the Dodd-Jensen Lemma,
and the other basic results of inner model theory apply. In the special case that
M can have at most one strategy, we don’t need to make the pair explicit, but in
general, we do.
Let us introduce some terminology that reflects this conceptual adjustment.

Definition 5.22 Let (P, %) and (Q,€2) be mouse pairs, and w: P — Q; then
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(a) m: (P,X) = (Q, Q) is elementary (resp. weakly elementary ) iff w is elementary
(resp. weakly elementary) as a map from P to @), and X = QT

(b) (Q,Q) is an iterate of (P, X) iff there is a stack s on P by X with last model Q
such that QQ = X, . If s can to be taken to be a single normal tree, then (Q,2)
is a normal iterate of (P,X). If s can be taken so that P-to-Q) in s does not
drop, then (Q,$2) is a non-dropping iterate of (P,Y).

(c) (P,YX) <* (Q,Q) iff there is an iterate (R, V) of Q,Q) and an elementary
m: (P, X) — (R, V). We call <* the mouse pair order.

Here are some elementary facts stated in this language.

Lemma 5.23 Let (P,X) be a mouse pair with scope Hg, and let (Q,2) be an iterate
of (P,%); then (Q,) is a mouse pair with scope Hy.

Proof. If M is an lpm, then N is an lpm by 5.10. The properties in (3) and (4) of
5.16 clearly pass to tail strategies. O

Definition 5.24 Let () be a complete iteration strategy for M. We say that €2 is
pullback consistent iff whenever s is an M-stack by 2, and 7: M?(S)Ku, k) —
Mo (8) is an iteration map of s, then for t = s[(m — 1)~ (Vi (8), km(8), Tm(s)[(a +
D)),

Qt,(u,k) = (str-

A pullback consistent strategy pulls back to itself under its own iteration maps,
where by “iteration map” we mean any map of a branch segment generated some-
where in a stack s by the strategy, from one model to a later one. This is a strength-
ening of the pullback consistency condition from [16].

Lemma 5.25 Let (M, ) be a mouse pair; then € is pullback consistent.

Proof.(Sketch.) For example, suppose s consists of one normal tree 7, and that
™ =1i! 5, where $+1 =1h(T). Let U be a normal tree on M. We want to see that
(TT(a+1),U) is by Qiff (T, 7nU) is by Q.

Let W, = W(T[(a+1),U[(y+ 1)) and Wi = W(T,7nUd](y + 1)). By induction
on v, we construct psuedo-hull embeddings ®., from W, into WJ. The construction
is pretty much the same as that in the proof of the Comparison Lemma, theorem
4.10. Tt works also for v = b, where b is a branch of U.
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We have then that

(T, 7Ul(y+ 1)) is by Q= W(T, 7| (y+ 1)) is by Q
= W(T(a+1),U) is by
= (TT(a+1),U[(y+ 1)) is by Q,

as desired. 0

Corollary 5.26 Let (P,Y) be a mouse pair, and (Q,2) be a non-dropping iterate of
(P,XY), with iteration map m; then w: (P,X) — (Q, ) is elementary (in the category
of mouse pairs).

The appropriate statement of the Dodd-Jensen Lemma on the minimality of
iteration maps is:

Theorem 5.27 (Dodd-Jensen Lemma) Let (P,X) be an mouse pair, let (Q),$2) be
an iterate of (P,X) via the stack s, and let w: (P, X) — (Q, <)) be weakly elementary;
then

(a) the branch P-to-Q of s does not drop, and

(b) letting is: P — Q be the iteration map, for all n < o(M), is(n) < m(n).

We omit the well known proof. Notice that it requires the assumption that
Y% x = 2. This was at one time a nontrivial restriction on the applicability of the
Dodd-Jensen Lemma, and led to the Weak Dodd-Jensen Lemma of [13]. Now that
we can compare iteration strategies, the restriction is less important.

We get the Dodd-Jensen corollary on the uniqueness of iteration maps.

Corollary 5.28 Let (P,X) be a mouse pair, (Q,€2) a non-dropping iterate of (P, X)
via the stack s, and suppose (Q,Q) < (R, W), where (R, V) is an iterate of (P, ) via
the stack t; then

(a) (Q,0) = (R,¥), and the branch P-to-R of t does not drop, and
(b) letting is and i; be the two iteration maps, is = i;.

In the language of mouse pairs, the Comparison Lemma reads
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Theorem 5.29 (Comparison Lemma) Assume ADY, and let (P,X) and (Q, V) be
mouse pairs with scope HC of the same type; then (P, X) and (Q, V) have a common

iterate (R, Q), obtained via normal trees T on P and U on Q) such that at least one
of P-to-R and Q)-to-R does not drop.

This is a mild re-statement of Theorem 5.54, and we shall finish proving it in the
section after next. For now let us assume it. We get

Corollary 5.30 Assume AD™; then
(a) For (P,%) and (Q,¥) mouse pairs with scope HC of the same type,

(P,Y) <" (Q,¥) ©3(R,Q)IT[(R, ) is a dropping iterate of (Q, V)
and m: (P,X) — (R, Q) is weakly elementary).

(b) When restricted to a fized type, <* is a prewellorder of mouse pairs with scope
HC.

Proof. The left-to-right direction of (a) follows from the Comparison Lemma. The
right-to-left direction follows from Dodd-Jensen. For (b), the Comparison Lemma
implies that <* is linear. That it is wellfounded follows from (a), using the proof of
the Dodd-Jensen Lemma. (l

Strategy coherence is defined for mouse pairs just as it was for pure extender
pairs

Definition 5.31 A mouse pair (P, X)) is strategy coherent iff whenever (Q, V) is an
iterate of (P,X), and T is a normal tree by ¥, and N < M! and N < ./\/lg, then

VT iat1),y = Uri(a+1),8-
The proof of Lemma 3.35 gives
Lemma 5.32 Let (P, %) be a mouse pair; then (P,X) is strategy coherent.

This lemma is needed in the comparison proof for strategies, just as the usual
extender coherence is needed in the comparison proof for pure extender mice.

Let (P,X) be a mouse pair. Recall that X is positional iff whenever (Q, ¥) and
(R, Q) are iterates of (P, ), and @Q = R, then ¥ = Q. The property is clearly related

to what is called being positional in [16]. In the present context, with gratuitous
dropping allowed, it implies strategy coherence.
[33] proves
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Lemma 5.33 Assume AD™, and let (P,X) be a mouse pair with scope HC; then ¥
s positional.

Fortunately, this Lemma is not needed in the proof of the Comparison Lemma 5.29.
Its proof instead relies on a comparison argument.

Here are two propositions that explain the relationship between pure extender
mice and pure extender pairs.

Proposition 5.34 Assume ADT, and let P be a countable, w,-iterable pure extender
premouse; then there is a 3 such that (P, ) is a pure extender pair.

Proof. Let ¥ be an arbitrary w; iteration strategy for P. We may assume ¥ is Suslin
and co-Suslin by Woodin’s Basis Theorem. Thus there is a coarse I'-Woodin pair
(N*,%*) that captures ¥. Working in N*, we get that P iterates by ¥ to a level
(Q, V) of the pure extender pair construction of N*. Let w: P — @ be the iteration
map; then (P, U7) is a pure extender pair. O

Proposition 5.35 Assume ADT, LEC, and 6y < 0; then there are pure extender
pairs (P, X) and (P,Q)) such that (P,X) <* (P, Q).

Proof.(Sketch.) By LEC, there is a pure extender pair (P,2) such that 2 is not
ordinal definable from a real. Fix such a pair. By the Basis theorem, there is a
Y such that (P,Y) is a pure extender pair, and ¥ is ordinal definable from a real.
Suppose toward contradiction that (P, ) <* (P, X); then

0= (25>7r

for some stack s and iteration map 7. Thus 2 is ordinal definable from a real,
contradiction. U

It follows that under the hypotheses of 5.35, there are pure extender pairs (P, ¥) and
(P, ) such that for some R, P iterates normally by ¥ to a proper initial segment of
R, and normally by €2 to a proper extension of R.

The Dodd-Jensen Lemma hypothesis that 37 p, = X is too restrictive for use in
the proof of solidity and universality of standard parameters. For that proof, we
need the Weak Dodd-Jensen Lemma of [13].

Note that the proofs we have given that background induced strategies normalize
well and have strong hull condensation actually yield (w;,w;) strategies €2 such that
each ), for 1h(s) < wy, normalizes well and has strong hull condensation. We need
this in the weak Dodd-Jensen argument to come.
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Let N be a countable pure extender premouse or lpm, and (e; | i < w) enumerate
the universe of N. A map n: N — M is e-minimal just in case 7 is elementary,
and whenever o: N — M|(n, k) is elementary, then (n, k) = I[(M), and if o # ,
then for ¢ least such that o(e;) # m(e;), we have m(e;) < o(e;) (in the order of
construction). A complete strategy 2 for N has the weak Dodd-Jensen property
relative to € iff whenever M = M(s) for some stack s by Q, and there is some
elementary embedding fom N to an initial segment of M, then the branch N-to-M
of s does not drop, and the iteration map ¢° is e-minimal.

Lemma 5.36 (Weak Dodd-Jensen) Let (M,Q)) be a mouse pair with scope Hg, and
let € be an enumeration of the universe of M in order type w. Suppose that € is
defined on all countable M-stacks s from Hg, and that for any such s having a last
model, (Mx(s),$2s) is an lbr hod pair. Then there is a countable M-stack s by 2
having last model N = My, (s), and an elementary w: M — N, such that

(1) (N,(Q4)7) is a mouse pair, and

(2) ()™ has the weak Dodd-Jensen property relative to €.

Proof. The proof from [13] goes over verbatim. Notice here that any such (N, (Q2,)™)
is an lbr hod pair, by 5.23 and 5.21. U

We have stated the elementary results about Ibr hod pairs of the last two sections
as results about mouse pairs, because that is their natural context. We are mainly
interested in lbr hod pairs for the rest of this paper, so we shall return to that level
of generality.

5.5 Background constructions

It is easy to modify the background constructions of pure extender premice described
in section 2 so that they produce least branch hod pairs. The background conditions
for adding an extender are unchanged. If we have reached the stage at which M,
is to be defined, then our construction, together with an iteration strategy for the
background universe, will have provided us with complete iteration strategies €,
for M,,,, for all n < v. Each (M, ;,,;) will be a least branch hod pair. If M, is
to be branch-active according to the lpm requirements, then we use the appropriate
Q,; to determine BMvo.

The strategies €2,,; for M, ; are determined by lifting to V, just as before. The
additional strategy predicates in our structures affect what we mean by cores and
resurrection, but otherwise, nothing changes.
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As before, M, j+1 is the core of M, ;. We shall need to show that the standard
parameter of M, ; behaves well, so that this core is sound, and agrees with M, ; up
to &, where & = (p(M,, ;)T )Mvk. Letting m: M, 411 — M, . be the uncoring map, and
v < &, this requires that (£2,4)(,) agree with the m-pullback of (€,x)(r(y),> on all
stacks belonging to M, x|. We shall show this, but we shall not show that these two
strategies agree on all M, ;|(7,[)-stacks in V. We doubt that is true in general, but
we do not have a counterexample.

Let w be a wellorder of Vj, and k < §. Let us assume

Iterability Hypothesis IH, s For any coarsely coherent F such that all F, have
critical point > k, and belong to Vj, V is uniquely F- iterable for normal trees in Vj.

We shall add an assumption regarding the existence of ['-Woodin cardinals later, in
order to have an environment in which we can apply (*)(P,Y).

A least branch w- construction above k is a full background construction in which,
as before, the background extenders are nice, have critical points > k, cohere with
w, have strictly increasing strengths, and are minimal (first in Mitchell order, then
in w).

More precisely, such a construction C consists of least branch premice ME,C and
extenders F-. The length 1h(C) of C is the least (v, k) such that M, is not defined.
M o is the passive premouse with universe V,,, and €2 ¢ is its unique iteration strategy.
The indices are pairs (v, k) such that —1 < k < w.

C determines resurrection maps Res, ; and o, for (v, k) <jex 1h(C), in the same
way as before: we define Res, yy1, 0y +1 by

1. If N = M, k11, then Res, j+1[N] = (v, k + 1) and 0, ;41 [N] = identity.

2. It N< M, ji1|(pT)Mrr+1) where p = p(M, ), then Res, 11[N] = Res, x[N] and
Uu,k+1[N] = Uu,k:[N]-

3. Otherwise, letting 7 : M, 41 — M, be the anti-core map, Res,;11[N] =
Res, x[7(N)] and 0,41 = oy x[m(N)] o 7.

For the definition of Res,o and o, see [I]. The resurrection maps are fully
elementary, and their agreement properties are the same as before.

The sequence (FC | FMv0 = (§) of background extenders will be coarsely coherent.
Thus V' is uniquely F-iterable for stacks of normal trees above x in Vs. Let ©* be the
iteration strategy witnessing this. >* then induces complete strategies Qﬁk for Ml(fk,
for each (v, k) < 1h(C). These are obtained by lifting, as before, with the additional
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feature that gratuitous dropping is treated like ordinary dropping in the definition
of lift(s, M, C), for s an M, j-stack. (The lift of a stack of weakly normal trees is
a stack of normal trees on V'.) That is,

s is by Qp, iff lift(s, M, , C) is by ¥*.

Remark 5.37 For example, let s = (3,1, T) be an M, j-stack of length one, and let
N = M, ,|(B,1). Let

(n,1) = Res, x[N], and 0 = 0, x[N].
So o is elementary from N to M, ;. Then letting
lft (0T, My, €, 2%) = (T, ((ne,le) | § < In T, (me | € < I T),
we have that

(B,1,T) is by Q, iff T* is by ¥*.

IfQ = ./\/lg is the last model of 7, and 7 : Q — MgT is the copy map, then m¢ o7
maps () into a model of the construction ZOQ(C) This enables us to define Q, 4
on stacks extending s; for example, if ¢ = s7(y,n,U), then we handle the possibly
gratuitous drop in @ by resurrecting m¢(Q|(7,n)) from the stage m¢(Q) inside ] . (C),
just as above. Etc.

Our construction determines in this way complete iteration strategies Qﬁk for
M., defined on stacks in V3, for each (v, k) < Ih(C). We demand that (M, x, Q) be

a least branch hod pair; otherwise we stop the construction and leave M, ; undefined.

Suppose now we have M, and Q, ;. Let p = p(M, ;) and p = p(M, ) be the
k + 1-st projectum and parameter. Let u be either the sequence of solidity witnesses
for pr(M, ), or that sequence together with pg_1 (M, ) if the latter is < o(M, ).
Let
T N — M,

where N is transitive and
M,
van(r) = Hull)%}* (o U {p, u}).
We shall prove

())us for & > 0.
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(a) My|(p™)¥* = N|(p*)", and

(b) 7 (p) is solid over N.

Items (a) and (b) of (f) are the universality and solidity of the standard parame-
ter. They are needed to see that the iteration maps of €2, ;41 are elementary, which
goes into the proof that the lifting maps in the construction of €2, ;41 are weakly
clementary. So we need (a) and (b) before we can define €, 1.

Corollary 5.65 below proves (1), under the assumption that for every countable
M and 7: M — M, elementary, letting ¥ = (Q,;)"|HC, L(¥,R) = AD". Note
here that ¥ is (< k)-Universally Baire, where  is our lower bound on the critical
points of background extenders, by the uniqueness implicit in IH,s. So L(¥,R) =
AD™ follows from there being infinitely many Woodin cardinals below .

If (Myy, ) satisfies (f),x, then we let M, ;.1 be the transitive collapse of
Hullﬁ”’l’“ (pU{p,u}), with k(M, x1+1) = k+1. The lifting procedure and our iterability
hypothesis IH,; s yield a complete iteration strategy €2, ;41 for M, ;41 on stacks in V.
The proofs of theorems 3.26 and 3.37 show that €1, ;41 normalizes well, and has
strong hull condensation. In fact, (M, j41,Q,k+1) is a least branch hod pair.

Lemma 5.38 Assume C satisfies (T),.x; then
(1) (N, k11) is a least branch hod pair, and

(2) setting v = (p7)MF, (i) (700 = (k1) (7.0)-

Proof. Part (2) is an immediate consequence of the fact that for & < (pT)Mv*

and Q = M, x(¢, 1), Res,x[Q] = Res, 11[Q] and 0,,4[Q] = 0y541[Q]-

For part (1), we repeat the proofs that background induced strategies normalize
well and have strong hull condensation (3.26 and 3.37) that we gave in the pure
extender model case. What is left is to show that (N, Q) is self-aware, where Q0 =
Ql/,k+1' .

For this, let s be a stack on N by Q, with last model P. Let 7 € ¥¥. We must
see that T is by €. Let

s* = lift(s, N, C),

and let S* be the last model of s*. Let ¥* be the unique FC.iteration strategy for
V', so that ¥, is the unique FD strategy for S*, where DD is the image of C in S*.
We have

T N —Q
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where () is a model of the construction of S*. Let ¥ be the strategy for () induced
by the construction of S*. We have that
Qs = ‘Ijﬂ-a

because this is how € is induced by ¥*. So we are done if we show that 77T is by W.
But 7(7) € £9, so (T is by ¥ because (Q, ¥) is an Ibr hod pair in S*. Moreover,
VU has strong hull condensation, not just in S*, but in V. (That is because a psuedo-
hull W of some U by WV lifts to a psuedo-hull W*, of some U* by X*s*, and even if
W and W* are not in S*, X% chooses unique-in-V" cofinal wellfounded branches, so
W+ is by X%, and hence W is by U.) Since n7 is a hull of 7(7), #7n is by ¥, as
desired.
OJ

If (), is not the case, then we stop the construction, leaving M, ;41 undefined. If
(t)vx holds, then we set
Mu,k—i—l — N7

let €, 11 be its C-induced strategy,and continue.
For k < w sufficiently large, M, = M, ;41, and we set

M, ., = eventual value of M, as k — w,
and
M, 11 = rud closure of M, , U{M,,},
arranged as a fully passive premouse.
Finally, if v is a limit, put
MY = unique fully passive structure P such that for all premice IV,
N < P iff N < M, for all sufficiently large («, 1) < (v,0).

If s is an M <"-stack, then for all sufficiently large (o, 1) < (v,0), s is an M, -stack.
Moreover, Q,;(s) = Qg (s) for (o, 1) < (B,n) < (v,0). Thus we can define

Q<"(s) = eventual value of Q,(s),

for all sufficiently large (a,1) < (v,0).

Case 1. M <" is branch active.

In this case, we have a unique M <”-critical {(«, 1, T), and this triple is not anoma-
lous. Let b = Q<¥({a,l,T)); then

MV,O = (M<V7®a B)7

198



where B = {n+ v |~ € b}, and 7 is the largest admissible level of M<".

Case 2. There is an F such that (M<", F,() is an lpm, crit(F) > &, and F is
certifiable, in the sense of Definition 2.1 of [15].

As we remarked, cases 1 and 2 are mutually exclusive. We shall prove

(t)v.—1. There is at most one F' such that (M<", F, () is an lpm, crit(F) > &, and F
is certifiable, in the sense of Definition 2.1 of [15].

See Corollary 6.5. This is the bicephalus lemma. We are now allowed either to set
My = (M=",0,0),

that is, to pass on the opportunity to add F', or to set
M,o= (M= 0,F).

In the latter case, we add the same demands of our certificate as we had in section
3, and again choose F* to be the unique certificate for F' such that

() FF is a certificate for F', minimal in the Mitchell order among all certificates
for F', and w-least among all Mitchell order minimal certificates for F'.

Thus the sequence of all FC of all FC is coarsely coherent. By a C-iteration, we
mean a FC-iteration in the sense explained above.

Case 3 Otherwise.
Then we set

M, o= (M~",0,0).

In any case, €2, is the C-induced strategy for M, .
This finishes the definition of what it is for C to be a least branch w- construction
above k.

Definition 5.39 The length 1h(C) of a construction C is the lexicographically least
(v, k) such that either M&m does not exist, or M, exists, but (1), is false. In the
latter case, we call C pathological.

Remark 5.40 Clearly we must stop C if (1), fails for some & > 0, that is, some
parameter is ill-behaved. It is not clear that we need to stop if (1), fails. We
might continue by not adding any extenders to M <", or by picking one of the certified
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extenders and adding it. However, such a bicephalus pathology would cause problems
later, in the argument that a certified extender that coheres with M <# must satisfy
the Jensen initial segment condition. Without this, we can’t show the model we
construct reaches even a Woodin cardinal, or, in the I'-Woodin background model
case, is universal. At any rate, we shall show in the next section if IH, s holds, w is
a wellorder of Vy, and C is a w-construction above k, then C is not pathological.

Definition 5.41 A least branch w-construction above r is maximal iff it never
passes on an opportunity to add an extender.

In addition to the Ml(,c,k and FC, we also have complete strategies Qﬁk for (v, k) <
Ih(C). These are induced by the unique FC iteration strategy for V above x we have
assumed exists. That strategy is defined on normal trees, but then has a unique
extension to stacks of normal trees that normalizes well. So it induces complete

strategies on the M, by the lifting procedure.

Remark 5.42 Suppose IH, 5, w is a wellorder of Vs, and C is a maximal, non-
pathological w-construction above k. It is tempting to conclude that each Msk is
ordinal definable, but in fact this is not at all clear. The problem lies in the use of
w to pick background extenders. Although our strategy for V' is unique, different
choices for the F¢ lead to different ways of lifting trees on Mgk to V, and hence
possibly different candidates for Qﬁk.

Remark 5.43 Let M = Mffk and Q) = QSk, and suppose M = ZFC. Then QM
is definable over M, by a definition that is uniform in (v, k). That is because the
restriction of Q to normal trees in M is given by ™, and that determines its re-
striction to stacks of normal trees because €2 normalizes well, and that determines
its restriction to stacks of weakly normal trees in M because ) is self-consistent.

5.6 Comparison and the hod pair order
We can adapt Theorem 4.10 to hod pairs.
Definition 5.44 Let (M,X) and (N,Q) be mouse pairs; then

(a) (M,Y) iterates past (N,Q) iff there is a normal iteration tree T by ¥ on M
with last model Q) such that N < Q, and X1y = (L.

(b) (M,Y) iterates to (N, Q) iff there are T and Q) as in (a), and moreover, N = @,
and the branch M-to-Q of T does not drop.
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(c) (M,X) iterates strictly past (N, Q) iff it iterates past (N, ), but not to (N, ).
(d) (N, ) absorbs (M, X) iff for some Q@ I N, (M,X) iterates to (Q, ).

The normal tree T above is completely determined by N and ¥; it must come by
iterating away the least extender disagreement. We are interested in the case that
(M,¥) and (N, Q) are strategy coherent and self-consistent. In that case, (M,>)
iterates past (IV,Q) iff no strategy disagreements show up as we iterate, and no
non-empty extenders from N participate in least disagreements, so that N does not
move, and N is an initial segment of the final model on the M-side.

The following notation is convenient: let C be a construction such that MZ(SO is
extender-active; then

(Mz(jc 1,95 1) = (M<V,Q<V)-

Setting v = 0(M,), we can write this (M,;_, Q5 1) = (M o[{v, 1)), (Q250)¢7,-1)-
Adapting the proof of Theorem 4.10, we get

Theorem 5.45 Assume ZFC plus IH,, 5, and let let C be a w-construction above K,
where w 1s a wellorder of Vs. Suppose that M(Ck exists. Let (P,Y) be a least branch
hod pair, with P countable and ¥ being < d-universally Baire. Suppose that (P,X)
iterates strictly past (Z\/.I',(?CZ,QCc ), for all (n,1) <wex (v,k); then (P,X) iterates past

Remark 5.46 It is not possible that (P,X) iterates to (M, _,,Q7 ), for some v/
such that FC # (). For if so, then in Ult(V, FX), (P,X) would iterate strictly past
(M _,,QF _,), contradiction.

Remark 5.47 It follows by our work realizing resurrection embeddings as branch
embeddings that if M iterates to MV 1+1, then it iterates strictly past MZ(SZ. This
terminology might be a bit confusing at first, because the iteration tree 7 from M
to My, is an initial segment of the tree U/ from M to My,. Along the branch of U
from M to Mffl we dropped once, at MV 111, from degree [+ 1 to degree [. That drop
meant that M iterates past, but not to, M, ;. This is the case even if M;CJ = M;CJ 41
as an lpm, with only the attached soundness level changing. Then U would be T,
together with one gratuitous drop in degree at the end.

Remark 5.48 We do not know whether there can be more than one (v, k) such that
(P, X) iterates to (M5, Q).

The theorem easily implies theorem 0.5 of the introduction:
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Theorem 5.49 Assume AD", and let (P, Y) be a least branch hod pair; then (*)(P,X)
holds.

Proof. Let N* be a coarse I'-Woodin model that Suslin-co-Suslin captures X, as in
the hypothesis of (*)(P,X). We can then simply apply 5.45 inside N*. O

In order to apply (*)(P,X), we need to know that there are coarse I'~-Woodin
models whose maximal hod-pair construction does not break down before they absorb
(P,X). The following lemma will help with that.

Lemma 5.50 Assume IH, 5, and let let C be a w-construction above k, where w is
a wellorder of Vs. Suppose that Mfk exists. Let (P,X) be a least branch hod pair,
with P countable and % being < d-universally Baire; then for any v, k:
(a) if (P, %) iterates strictly past all (Mg,
(T)l/,—l; and

(b) if (P, %) iterates strictly past (M, 5, ), then C satisfies (T),x.

QSJ) such that p < v, then C satisfies

Proof. For (a), suppose toward contradiction that Fy # Fj, and for i € {0, 1},
(M<¥, F;, () is an lpm, crit(F;) > k, and F; is certifiable, in the sense of Definition

2.1 of [15]. It follows that for ¢ € {0,1} there is a construction C; such that M,% =
(M<¥,F;, (), and for all 4 < v and k, (M/(E%’ngk) = (M5, Q). Tt follows from

Theorem 5.45 that (P, ) iterates past both (MES,QS%) and (M%,QS})). This is
impossible; it has to be the same iteration, but Fy # F7.

For (b), we have a normal tree 7 on P by X, with last model N = M7, such
that either

(i) ME,C is a proper initial segment of N, or
(ii) My, = N, and [0,7]r drops (in model or degree).

We claim that in either case, C satisfies (1),x, a contradiction.

Let p and s be the projectum and standard parameter of M, ;. (That is, the
k + 1-st.) In case (i), M, is sound, so (a) and (b) of (}),x hold trivially.

Suppose we are in case (ii), and let Q = MJ|(6(Q), k) be the last structure we
drop to in [0,7]7r. So k(Q) =k, and @ is sound (i.e. k + 1 sound), and setting

i = ig:v’
we have that i: () — N is elementary, and
p(Q) = p(N) = p < crit(i).
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Since there was no further dropping, @ and N agree to their common value for pu*.
Also, i maps p(Q) to s, so s is solid. This gives us (a) and (b) of (1), 4. O
From this we get

Theorem 5.51 Assume AD", and let (P,X) be an Ibr hod pair with scope HC. Let
(N*,W,0%) be a coarse T'-Woodin that Suslin-co-Suslin captures X3, in the sense of
theorem 10.1 of [30], and let C be the mazimal least branch construction of N*; then
there is an (v, k) such that

(1) v <%,
(i) (MS,,Q5,) exists (that is, the construction has not broken down yet), and

(iii) there is a normal T such that (P, %) iterates via T to (M, Q).

Remark 5.52 Clause (iii) of the conclusion can be understood as a truth in N*
about ¥ N N*. But letting (ka)* be the strategy on all stacks in V' that is induced
by C and W, (iii) implies that in V, X7, , = (,)*

Proof. If not, then by applying 5.45 and 5.50 in N*, we have that C does not
break down at all, and P iterates past M, f%o in N*. This contradicts universality at
a Woodin cardinal. O

We can now prove Theorem 0.2 of the introduction. First, some notation for
cutpoint initial segments:

Definition 5.53 For M and N Ipms, we write M < N iff M < N, and whenever
E is on the N-sequence and Ih(E) > o(M), then crit(E) > o(M).

Theorem 5.54 Assume ADY, and let (P,X) and (Q, V) be Ibr hod pairs with scope
HC; then there are normal trees T and U by X and ¥V respectively, with last models
R and S respectively, such that either

(a) R<*S, X7 r =Yy r, and the branch P-to-R of T does not drop, or
(b) S <L R, ¥y s = Xr.5, and the branch Q-to-S of U does not drop.

Proof. We find I'-Woodin background universe N* having universally Baire rep-
resentations for both strategies. Letting C be the maximal least branch construction
of N* we have that there are (v, k) and (u,[) such that (P,Y) normally iterates to
(M5, QF,), and (Q, ¥) normally iterates to (MF,, QF)). If say (v, k) <iex (1,1), then
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(Q,¥)) normally iterates past (M, Q7,), and the latter is a normal, nondropping
iterate of (P, Y). By perhaps using one more extender on the ()-side, we can arrange
that Mfk is a cutpoint of the last model. This yields a successful comparison of type
(a). If (i, 1) <jex (v, k), then we have a successful comparison of type (b).

O

Theorem 5.54 was phrased in the language of mouse pairs in 5.29. We get at once

Corollary 5.55 Assume AD", and let (M, Q) be an Ibr hod pair with scope HC; then
every real in M is ordinal definable.

It is natural to ask whether M satisfies “every real is ordinal definable”. Borrow-
ing Lemma 7.3 from the future, we have

Theorem 5.56 Assume AD", and let M, Q) be an lbr hod pair with scope HC. Sup-

pose M |= ZFC + “6 is Woodin”. Working in M, let UB be the collection of < §-
universally Baire sets; then

M = there is a (£2)® wellorder of R.

Proof.. Working in M, let N € C iff N < M and p(N) = w. We claim that
N is in C' if and only if there is a ¥ such that (N, ¥) is an lbr hod pair, and W is
< d-universally Baire.

For let N € C. By Lemma 7.3, Qy is < d-universally Baire in M. Clearly,
(N,Qy) is an lbr hod pair in M.

Conversely, let (N, ¥) be an lbr hod pair in M such that p(N) = w, and ¥ is < §
universally Baire in M. Let S be the first initial segment of M that projects to w
and is such that S ¢ N. We apply Theorem 5.45 in M. Letting C be the maximal
construction below ¢ in M, neither side can iterate past Moy because ¢ is Woodin.
It is easy to see then that there must be a (v, k) such that both (N, ¥) and S, Q)
iterate to MESJW otherwise we would get N € S or S € N. This then implies S = N,
as desired. (It also implies ¥ = Qg, by pullback consistency.)

This easily yields the theorem. U

Theorem 5.56 stands in contrast to the situation with pure extender mice, as
described for example in [22].

One feature of our comparison process is that we may often use the same extender
on both sides. That does not happen in an ordinary comparison of premice by
iterating least disagreements. This feature can be awkward. What we gain is that
we never encounter strategy disagreements in our comparison process. A comparison
process that involves iterating away strategy disagreements as we encounter them
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(such as the process of [16]) will also often use the same extender on both sides.
But such a process (if we knew one in general) might have some advantages. In
particular, it might be possible to get by without assuming the existence of a I'-
Woodin background universe, where >y and >; are in I'.

5.7 The existence of cores

As in the case of ordinary premice, we can formulate our solidity and universality
results abstractly, in a theorem about least branch premice having sufficiently good
iteration strategies.

Theorem 5.57 (The existence of cores.) Let M be a countable lpm, and let ¥ be a
complete iteration strateqy for M defined on all countable M -stacks by . Suppose
that whenever s is a countable M-stack by VU having last model N, then (N, V) is
a least branch hod pair. Suppose that V is coded by a set of reals that is Suslin and
co-Suslin in some L(T',R), where L(I',R) = AD". Let p = p(M) and v = p(M) be
the projectum and standard parameter of M, and let

H = transitive collapse of Hull™ (p U r);
then
(1) r is solid, and
(2) H|(p")" = M[(p*)™.
Remark 5.58 We don’t need the full strength of a model of AD" with ¥ in it.

Proof. Let q be the longest solid initial segment of r. Let r = ¢ U s, where either
s = or min(q) > max(s). Let

ap = least 3 such that Thy!,(BUq) ¢ M.

Here k = k(M). We may assume ag € M, as otherwise r = () and g = p(M) =
o(M), in which case the theorem is trivially true. Let

K = transitive collapse of Hull (ag U ¢),

and let m: K — M be the collapse map. We may assume that oy € K, as otherwise
K <M, so Th (apUq) € M.

Claim 0.
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(a) If ¢ = r, then p = ayp.
(b) If ¢ # r, then p < ap < max(s).
(¢) K |= ap is a cardinal.

Proof. (a) is clear. For (b), let W be the solidity witness for ¢ U {max(s)}, that
is, the transitive collapse of Hull™ (max(s) U q). We are assuming W ¢ M. This
implies that Thy%,(max(s) Uq) ¢ M. [Proof: Suppose T' = Thy(max(s) U q) is
in M. Note max(s) is a cardinal of W, and max(s) = crit(w), where 7: W — M
is the uncollapse. So T' € M|n(«a), and M|n(a) = KP. So W € M|r(a).] Thus
ap < max(s).

We have p < o because otherwise p(M) = gq.

(c) is clear if ap = p. So we may assume 7 # id. (c) is clear if oy = crit(n7), so
we may assume «qg < crit(m). Suppose f: f — ap is a surjection, with 8 < ag and
f e K. Let w(f) be r¥., definable from parameters in y U ¢, where § < v < ay.
Then from Th,%; (yUq) one can easily compute Thy. (g Uq), so Thik  (yUq) & M,
contrary to the minmality of ay.

O

We shall show that if ¢ # r, then Thﬁl(ao Ugq) € M. This implies ¢ = r, so r
is solid. We then show that K satisfies conclusion (2). The argument is based on
comparing the phalanx (M, K, ag) with M, as usual.

Let M = {e; | i < w} be an enumeration of M in which for some n, r = (e, ..., €,,)
(in descending order, so ey = max(r)). By Lemma 5.36, we may assume that ¥ has
the weak Dodd-Jensen property relative to €. This involves replacing ¥ by a pullback
of one of its tails, but we stay with the same M, and it is the first order theory of
M that matters in (1) and (2).

Remark 5.59 Under the additional hypothesis that ¥ has the weak Dodd-Jensen
property relative to some €, we can strengthen the strategy agreement part of (2) to:

fOl" Y= (p+)M, \I/<%g> = (\Ifﬂ')wm.

In the comparison argument, we iterate both M and (M, K, ap) into the models
of a common background construction. Additional phalanxes (N, L, ) may appear
above (M, K, «g) in its tree.

The background construction is the following. Working in our model of AD™
having W in it, let (N*, £*) be a witness to (*)(M, ¥). That is, we fix an inductive-
like pointclass I'y with the scale property such that ¥ is coded by a set of reals in
Iy NTy. We then fix a “coarse I';-Woodin” tuple (N*,X* 6%, 7), as in theorem 10.1

206



of [30]. So N* = §* is Woodin, and ¥* is an (wy,w;) iteration strategy for N*|6*, and
fixing a universal Iy set U, i(7)¢ = U Ni(N*)[g| for all g on Col(w,i(6*)), whenever
¢ is an iteration map by ¥*. We also have that the restriction of ¥* to trees that are
definable over N*|0* is in N*. We can assume that there is an F such that

(a) N* |= F is coarsely coherent,
(b) 6% is Woodin in N* via extenders from F, and
(¢) N* = “I am strongly uniquely F-iterable for stacks of trees in Vs..”

Now we work in N*. Let C be the F-maximal least brancl} hod pair construction
done in N*. That is, we only use background extenders from F', and we add extenders
whenever possible subject to this proviso. The construction lasts until we reach some
(v, k) < (0%,0) such that (1), fails, or until we reach (v, k) = (6*,0). Let I(C) be
this (v, k). We write

My, = My, and Q,; = Q).
Claim 1. Let k = k(M). There is an n < 6* such that (n, k) < [(C), and (M, ¥)
iterates to (M, k, Qi)

Proof.

Suppose first that ((C) = (§*,0). Suppose also there is no (n, k) as in the claim.
By theorem 5.45, (M, V) iterates strictly past every (M, x, %) such that n < §*.
It follows that there is a normal tree 7 on M by ¥ with last model N such that
Ms«o < N. We have that 7 € N*. But ¢* is Woodin via ﬁ, and C is F-maximal.
Moreover, C satisfies the uniqueness-of-extenders condition (})v, —1 for all v < §*.
So the usual universality argument shows that M cannot iterate past M- o via a tree
in N*, a contradiction. Thus (M, ¥) iterates to some (M, x, 2, ) with n < 6*.

Suppose next that [(C) = (4,1), where 8 < 6*. So MEZ exists, but (1)g, fails.
It follows then from Theorem 5.45 and Lemma 5.50 that (M, V) iterates to some
(Myk, Q1) with (n, k) < (B,1).

This proves Claim 1. U

Let us fix kg = k(M), and 1y < §* and U a normal tree on M with last model
M, i, witnessing Claim 1. For each (v, 1) <iex (0, ko), let U,,; be the unique normal
tree on M witnessing that (M, V) iterates past (M, ;).

We now want to compare (M, K, o) with the M, for (v,l) <iex (1o, ko). For
cach such (v, 1) we shall define a “psuedo iteration tree” S,; on (M, K, ap). We shall
have complete strategies attached to the models of §,;, and as before, the key will
be that no strategy disagreements with €2,; show up, and that M, ; does not move.
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The rules for forming S,; will be the usual ones for iterating a phalanx, with the
exception that at certain steps we are allowed to move the whole phalanx up. (We
don’t throw away the phalanxes we had before, we just create a new one.) Whenever
we introduce a new phalanx, we continue the construction of S by looking at the
least disagreement between its second model and M,;.

Fix v and [. Let us write Y = U, ;. At the same time that we define § = S,;, we
shall copy it to a normal tree 7 = 7,; on M that is by U. We allow a bit of padding
in T; that is, occasionally Mj = MZH. We shall have copy maps

T MG — M]

with the usual commutativity and agreement properties. We should write ’/Tg’l here,
but will omit the superscripts when we can. The strategy we attach to M is

Yo = (Uri041)™.

We shall have that (M3, Y) is an lbr hod-pair. Finally, we have ordinals A\j for each
0 < 1h(S) that measure agreement between the models of S, and tell us which one
we should apply the next extender to.
We start with
MS = M, M$ =K, and \§ = ay,

and

M = MT =M.

We let 7y = identity, and let w;: K — M be the uncollapse map. Since crit(m) >
ap = A3, mo and 7, agree up to the relevant exchange ordinal. We think of 0 and
1 as distinct roots of §. One additional root will be created each time we move a
phalanx up, and only then.

As we proceed, we define what it is for a node # of S to be unstable. We shall
have that if # is unstable, then 0 <g # and [0, #]s does not drop. We then set

Qg = sup iy 4 “ap.

The idea is that 6 is unstable iff (Mg, Mg, ,, ap) is a phalanx that we are allowed
to move up. If # is unstable, then # 4 1 is stable, and a new root in &, that is, there
are no £ <g # + 1. These are the only roots, except for 0. Our first unstable node is
0, and 1 is stable.

The padding in 7 corresponds exactly to the unstable nodes of S, in that 6 is
unstable iff M] = M], ;.
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We maintain by induction on the construction of § that the current last model is
stable, and conversely, every stable model is the last model at some stage. So really,
we are defining 8", which has a stable last model, by induction on 7, sometimes
adding two models at once, and taking S = U77 S". We shall suppress the superscript
1, however. All extenders used in S will be taken from stable nodes. We also maintain
that if M has been defined, then

Induction hypotheses. If 0 is unstable, then
(i) 0 <s 0, the branch [0,6]s does not drop in model or degree,

(i) A < ap < pp(M$), where k = k(M),

(iii) every 7 <g 6 is unstable,

there is a ¢ such that M5 = MY,

(iv

i)
)
)
(v) p(M3) = supigy“p,

(vi) ay = least § such that Tth(ﬁ Uige(q)) & M3,

Item (ii) explains why [0, f]s does not drop in model or degree, for an extender
applied to M$ must have critical point < A\3. Concerning item (iv), notice

Claim 2. If 0 <g 6, and [0, 0]s does not drop in model or degree, and M5 = MY,
then then [0, ]y does not drop in model or degree; moreover iﬁ g = i%” ¢

Proof. This follows as usual the weak Dodd-Jensen property of W. If for example
that [0,&]y drops, then 209 maps M elementarily mto a dropping W-iterate of M,
contradiction. Similarly, ZO L must be “to the left of” 4§, with respect to & But also,
Ty © 205 is an elementary map from M to M], so ZOTG Ty O i‘gﬂ is to its left. So i‘gﬂ
is to the left of 4, so iSy = e g

The following notation will be useful. For any node v of S, let
st(y) = least stable 6 such that 6 <g 7,

and

S-pred(st(vy)) if S-pred(st(y)) exists
rt(y) = .
st() otherwise.

Note that if 6 is unstable and § + 1 <g 7, then rt(y) = 0 + 1. If 6 is the largest
unstable ordinal <g ~, then rt(y) = 6. Finally, if there are unstable ordinals <g =,
but no largest one, then rt(y) = sup{f | # <g ~ and 6 is unstable }.

The construction of & can end in one of two ways:
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(1) We reach a stable 6 such that either

(a) M,; <t M3 or
(b) M§ < M,,;, and [rt(6),0]s does not drop in model or degree.

In both cases, the full external strategies will be lined up, by Lemma 5.64 below.
Case 1(b) constitutes a successful comparison of (M, K, ag) with M, which iterated
past M,; via U. So in case 1(b), we leave S, ,, undefined for all (n,m) > (v,1).
In case 1(a) our phalanx has iterated strictly past M, ;, and so we go one to define
Suitt

There is a second way the construction of S can end.

(2) We reach a stable § such that for some &, M3 = MY, and neither [r(6), 6] nor
[0, €] has dropped in model or degree. Moreover, letting Q = M |[(6(M$), —1)
be the result of removing the last extender predicate, we have that Q < M,,;.

If M3 is not extender-active, then this is the same as case 1(b) above (and we must
have (v, 1) = (no, ko)). But if M is extender-active, it is a new way to end. We think
of it as a successful comparison, and leave S, ,, undefined for all (n,m) > (v,1).
Note that in the extender-active case, we have not actually lined up the strategies
of M3 and ./\/lzg We've lined up the part of them that acts on @), and we’ve lined
up the last extender predicates themselves, but not how the strategies act on trees
involving the last extender.
In both case (1) and case (2), the last model of S is MS.

Claim 3. Induction hypotheses (i)-(vi) hold for # = 0 and 6 = 1.

Proof.. (i)-(vi) are trivial for § = 0, and vacuous for § = 1. O

The rules for extending S at successor steps are the following. Suppose /\/lf is the
current last model, so that v is stable, and suppose the construction is not required
to stop by (1) or (2) above. So we have a least disagreement between MS and M,,.
Suppose the least disagreement involves only an extender E from the M% sequence.
By this we mean: letting 7 = lh(E),

o M, |(r,0) = M§|(r, —1), and

o ()imoy = (25)(r-1)-

Lemma 5.64 below proves that this is the case. Set

XS = Ag.
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Let £ be least such that crit(£) < )\f. We declare that S-pred(y+1) = €. Let (8, n)
be lex least such that either p(MZ[(3,n)) < crit(E), or (8,n) = (6(M§), k(MZ))

We set
M,\S/Jrl = Ult(M§|<ﬁ7n>7 E)7

and let i? ,+1 be the canonical embedding. We let
MZ/’—&—I = Ult(MgKﬂ-ﬁ(ﬁ)a TL), WV(E))a

and let 7,41 be given by the Shift Lemma, as usual. If £ is stable, or if (5, 1) <jex
(6(MZ), k(MZ)), then we declare v + 1 to be stable, and we just go on now to look
at least disagreement between Mf 41 and M,;. Nothing unusual has happened.

Induction hypotheses (i)-(vi) concern only unstable nodes, so they are vacuously
true at 6 = v + 1.

Remark 5.60 There is an anomalous case to consider here. It occurs also in the
solidity proof for ordinary premice, where Schindler and Zeman found the arguments
that take care of it. (See [21].) This case only occurs when oy = lh(F'), for some
extender F' from the M-sequence. Equivalently, for some (all) unstable &, o = Ih(F)
for some F' from the M-sequence. Then we could have an unstable ¢ and a v such
that S-pred(y+1) = &, and crit(ES) = A(F), where F is the last extender of Mf|a£.
Thus (8,n) = (ag,0), and M5, = Ult(MZ|(ag,0)) is not an Ipm, because F' is a
missing whole initial segment of @‘g ,+1(F). But this is ok. The next disagreement
will force us to apply z'fﬁ 1 (F) to M¢? . and that will produce an lpm; moreover,
ANES) = Aig 41 (F)), so v + 1 is now a dead node. One can cope with the fact
that ifﬁ +1(F) has a missing whole initial segment in the termination arguments; the
argument is the same as that of Schindler-Zeman. We shall not give any further
details of this anomalous case here.

Now suppose ¢ is unstable, and (8, n) = (6(Mg), k(Mg)). (Since ag € M, this
means the anomalous case does not occur.) We look to see whether M‘j 41 s also a
model of Y. If not, then again we declare v + 1 to be stable, and go on. Our new
last node v + 1 is stable, so (i)-(vi) are vacuous for § = v + 1.

Finally, if /\/lf 1 1s also a model of U, then we declare v+ 1 to be unstable, and
v + 2 to be stable. Set

/\/l;9 .o = transitive collapse of HullMirl(awl U igﬁ +1()).
Let also 041 : /\/lf+2 — M:S/H be the collapse map, and
T T
M =M1, and

Ty+2 = Tyl © Ol

211



Our new last node is stable. Our induction hypothesis (i) holds for § = v + 1
because it held for = £, and because A\¢ < ag. (iii) is clear. For (ii), we must
define A\,;1. Suppose that there is a least disagreement between /\/l 4o and M,,;, and
lemma 5.64 applies to it, so it involves only some F' from the sequence of /\/l7 Lo If
there is no such F, M? S+2 1s the last model of S, and we leave AS S+1 as undefined as
)\;SfJr2 is. If F' exists, we set

A2 = A(F),

y+2 =
and
S
A1 = 1nf()\7+2, Qyi1).

This insures that (ii) holds at # = v + 1. It also insures that A, < A1 < Ajyo,
so that the \’s remain nondecreasing, which is something we want. m, o agrees
with 7,41 on )\fﬂ, as required. (Mfﬂ, /\/lf+2, afﬂ) is the result of moving up the
phalanx.

Remark 5.61 It is possible that A\, 41 = A 42, and Ih(F) < a,41. Indeed, this will
happen a lot. In this case, I will immediately move the phalanx (M$,,, ./\/lf +2) Qyi1)
up again. Moreover, since A\,;1 = Ay42, no extender ever gets applied to ./\/l,y o It
is a “dead node”. The phalanx (/\/L{H,/\/lfw, Qy41) May get moved up repeatedly,
along various branches, but that doesn’t really involve M¢ 549 After contributing F,
it became irrelevant.

Induction hypothesis (iv) is clear. Next we verify (v) and (vi). For this we need

Claim 4. For a C Ag finite, E, € M‘g

Proof. Let M$,, = MY By claim 2, [0, ]y does not drop, and s5,, = /. It
follows that £ is also used in U. Say E = Eg’ . Let k = crit(E). We have

sup Ar < Kk < Ag,
T<E

because we are applying E to /\/l‘S

Suppose first that E is not the last extender of /\/lS Then E, € ./\/lf, and
since Kk < )\ < )\£+1, E, C M£+1])\§+1 Thus by the agreement of models in §,
E, € Mg, If ag = crit(og), then ag is a cardinal of Mg, . If Mg = Mg, we get
E, € M{, as desired. If not, then k < a¢ < crit(oe), and crit(o¢) is a cardinal of
ME i1 50 By © Mgy Cl"lt(O'g) which yields E, € /\/lS as desired.

Suppose next that E is the last extender of ./\/lS , and the branch to ~v of § has

dropped. Let n be the site of the last drop, i.e. 7 is least such that 2 va maps the
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full M$ elementarily to M$. Then s € ran(i5_), and v > (£ + 1). This implies
n > &.[Proof: n <g £ is impossible since [0,¢]s does not drop. So if n < ¢, and
F is the first extender used in (n,7]s such that \p > &, then F is applied to MS
where 7 < £. So crit(F) < A; < &, and & ¢ ran(if ] Thus crit(s5,) > . Letting
7 = S-pred(n), this easily yields £, € M?. Then we can argue as we did in the
preceding paragraph under the hypothesis that £, € M$ 5, and we get E, € ./\/lf as
desired.

Thus we may assume that F is the last extender of Mﬁ, and the branch of S to
v (i.e. either [0,7]s or [rt(7),7]s) does not drop in model or degree. By a parallel
argument, we may assume that F is the last extender of MY, and the branch [0, 3]y
does not drop in model or degree. But that means we stop our construction for
reason (2), with /\/l:g/ being the last model of &, contrary to our assumption. This

proves Claim 4.
O

It is precisely in order to insure Claim 4 that we stop the construction for reason

(2).
Claim 5. Ttems (v) and (vi) of our induction hypotheses hold.
Proof. Let i = ZE 1 and k= ko = k(M). Consider first (vi). For 8 < a, let

Mg S
Ts = Th, 5 (B Uig(q)),

and for 8 < ay4q, let

Ry = Thy 1 (U 641(2)).

If B < ag, then T € /\/l‘g, and we can use i(1p) to compute R;g), as usual with
solidity witnesses. Since a1 = supi“ag, this gives half of (vi). For the other half,

— S
assume R = R, ., isin Mg, say

MS
R = [CL, f]E ‘ ’

Letting 7' = T, we then have (¢, u) € T iff {¢,i(u)) € R iff for £, almost every u,
(o, p) € f(u). Slnce E, € M, T € M, a contradiction.

Consider now (v). Let t = p(Mg) and o = p(M¢) be the standard parameter
and projectum. Let 7 = supi“o.

Remark 5.62 Our proof shows that ig f(q) is an initial segment of ¢, but it does not
show ¢ = i§ (r). The standard parameter could move down in its non-solid region.

213



Let for any 5,z € Mf

Ts(x) = k+1(ﬁ U{z}),
and for B,z € ./\/l‘gﬂ, let

Ry(w) = TH (U ().

If R.(i(t)) € MS,,, say R.(i(t)) = [a, f], then using E, we can compute T,(t)
inside M¢, contradiction. Thus p(MS3,;) < 7. On the other hand, let x < f < o
and x = [ , f] in Ult(/\/l‘s7 E). Then Tj(f) € Mg, and we can compute Ry ()
from i(Ts(f)) in MS,,. (First, compute Rig)(i(f)). Then note z = i(f)(a), and
a C i(f).) Since ran(i) is cofinal in 7, we get 7 < p(MS3, ).

This proves Claim 5. U

Now let 6 be a limit ordinal, and let b = W(7 [6) be the branch of 7 chosen by W.
b may have pairs of the form 7,7+ 1 in it where /\/l;r = M;FH? this occurs precisely
when ~ € b is unstable. By construction, the set of such pairs is an initial segment
of b that is closed as a set of ordinals.

Suppose first

Case 1. There is a largest n € b such that 7 is unstable.
Fix this . There are two subcases.

1(b) forally € b— (n+1), rt(y) = n+ 1. In this case, b — (n + 1) is a branch of S.
We let S choose this branch, that is,

m+1,0)s=b—(n+1),

and let M3 be the direct hmlt of the MS for v € b — (n+ 1) sufficiently large
The branch embeddings 2% S¢» for v > nin b, are as usual. my: MG — M]

given by the fact that the copy maps commute with the branch embeddmgs
We declare 6 to be stable.

1(b) forally € b— (n+1), rt(y) =n. We let S choose
[07 6)5 = (b - 7]) U [0777]57

and let M3 be the dlrect limit of the ./\/ls for v € b sufficiently large. The
branch embeddings 2 Zv g, for v > 1 in b, are as usual. mp: M§ — M] is given
by the fact that the copy maps commute with the branch embeddings. Again,
we declare 6 to be stable.
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In this case,  is stable, so (i)-(vi) still hold.

Case 2. There are boundedly many unstable ordinals in b, but no largest one.

Let 1 be the sup of the unstable ordinals in b. We let S choose
[0,05] = (b —n) U[0,7]s,
etc. Again, we declare 6 to be stable, and (i)-(vi) still hold.

Case 3. There are arbitrarily large unstable ordinals in b. In this case b is a disjoint

union of pairs {7,y + 1} such that v is unstable and v + 1 is stable. That is, in S
we have been moving our phalanx up all along b. We set

0,0)s = {£ € b| ¢ is unstable },

and let M$ be the direct limit of the /\/l‘g for ¢ € b unstable. There is no dropping
of any kind in [0, #)s. The branch embeddings z'fﬁ and the copy map 7y are as usual.
If M5 is not a model of U, then we declare § to be stable. Otherwise, we declare 0
to be unstable, and set

M., = transitive collapse of HuHMg()\g U i‘gﬂ(q)).
Ay is defined as it was in the unstable successor case: first we define \g, 1, then set
Ay = inf(Ag, 1, ap).

Let also
09 Mg+1 — Mbs
be the collapse map, and

MJ = M], and

To+1 = Tg © Oy.

Tg+1 agrees with my on /\‘9S , as desired.
(i)-(iv) are clear. Items (v) and (vi) are routine.
We shall use the following proposition in the next section.

Proposition 5.63 Let 0 be a limit ordinal such that 0 is stable in S,;, but every
£ <s,, 0 is unstable in S,;; then cof () = w.
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Proof. Let t = 5‘95”” be the branch extender of [0, §)s, and A = dom(¢). By hypothesis,
tin € Uy for all n < A, but t ¢ U For n < A, let &, be such that

. uu,l
tin = Se, -

Then n < v implies s? C SEW’ and hence §, <y &,. Letting u = sup({§, | n < A}),
and b be the branch of U m determined by the &,’s, we have that ¢ is the branch
extender of b in U, s0 b # s, so b # [0, )y This implies cof (1) = w, so cof(A) = w,
so cof(f) = w, as desired. d

This finishes our construction of the psuedo-tree S, ;, and its lift 7,,;. Notice that
every extender used in S was taken from the sequence of a stable node. Every stable
node, except the last model of S, contributes exactly one extender to be used. The
last model of § is stable.

Recall that we assumed that the construction never reached a strategy disagree-
ment between the current model of S,; and (M,,€2,;), and that the extender dis-
agreements involved only empty extenders on the M, ; side. Let us record this in a
lemma.

Lemma 5.64 Let (M3, %) be defined as above, where 8 = S,;; then either
(1) there is a (1,n) such that (M, |(T,n), (1)) = (MS,5,), 0

(2) there is a mnonempty extender E on the Mf sequence such that, setting T =
Ih(E),

(i) EMY =0, and
(1) (E5)¢r—1) = (Qt)ir0)-

So far as we can see, the lemma can only be proved by going back through the
proof of Theorem 4.10, and extending the arguments so that they apply to S,;. That
involves generalizing strong hull condensation to psuedo-trees like S, and normalizing
well to stacks (S,U), where U is a normal tree on the last model of S. Then we need
to run the construction of 4.10, showing that W (S,U"b) is a psuedo-hull of i;(S),
where b is the branch of U chosen by €2,,;. There is nothing new in these arguments,
but it does not seem possible to get by with quoting our earlier results. We therefore
defer the proof of Lemma 5.64 to the next section.

Claim 6. For some (v,1) <jex (10, ko), the construction of S,; stops for either reason
1(b) (that is, MS < M,,), or reason (2).
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Proof. 1f not, then the construction of § = S, , must reach some M$ such that
M, , is a proper initial segment of Mg. But M,, s, is a U-iterate of M via a branch
of Uy, 1, that does not drop; let j be the iteration map. We have 7y from MG to the
last model of 7y r,. Then my o j maps M elementarily into a proper initial segment
of the last model of 7T, x,, contrary to the weak Dodd-Jensen property of V. U

The following weaker version of induction hypotheses (v) and (vi) holds more
generally.

Claim 7. Let U = U, for some v, l. Suppose [0, 7]y does not drop in model or degree,
and let 4 = iff, ; then

(a) for any 5 < ap, Thﬁﬁ(@(ﬁ) Ui(q)) € M%ﬂ

(b) supi“p(M) < p(M]) < i(p(M)), and
(c) if ¢ # 7, then T, (p(MY) Ui(q)) € MY.

Proof. Part (a) holds because i(Th;! , ; (8Ug)) can be used to compute ThM (i(p)U
i(q)). Part (b) is proved in Claim 5 of the proof of Theorem 6.2 of [10]. If ¢ # r,
then p < ag, and p(M,) < i, (p), so we get (c) by using (a) with § = p. * O

Let us now fix v, as in Claim 6, and let S = S,;,, U = U,;, and T = T,;. Let
Ih(S) = 0 + 1. We have that [rt(), 0]s does not drop in model or degree. If 0 <g 0,
this implies that [0, 0]s does not drop in model or degree.

Claim 8. For some unstable &, rt(0) = & + 1.

Proof. 1f not, then 0 <g 6, and [0,0]s does not drop. If S ended for reason 1(b),
then M5 < MY for some 6. But then MY = M5 and [0, 8] does not drop, by weak
Dodd-Jensen. If S ended for reason (2), then again MY = M5 and [0, 6]y does not
drop.

Standard weak Dodd-Jensen arguments give

059 = igs.
(This involves copying over to 7 in one direction.) But the extenders used in each of
these branches can be recovered from the embeddings, using the hull and definability
properties. So
sy = s4.
Now let 1 be least such that 7 is stable and n <g 6. Then sﬁ = 851y = 41,
for some . But there is 7 such that s¥ = s¥|. Thus Mﬁ = MY. If n is a limit
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ordinal, then by the rules in limit case 3, n was declared unstable, contradiction. If
S-pred(n) = p, then p is unstable, and our rules in the successor case declare 7 to
be unstable. So in any case, we have a contradiction. [l

Fix € as in Claim 8. Since ¢ is unstable, we can fix 7 such that MY = Mf Fix
also v > 7 such that M,; < M%’, and hence M§ < M%‘ Set

1= p(MZ,,),

and
t= U;g_l(ig,g(Q))-

Claim 9. Either

(i) p=ag, or

S
Meya,

(ii) p < ag < crit(oe), and crit(og) = (u™)

S
Proof. By induction hypothesis (vi), Thﬁ:ﬂl(ag Ut) ¢ MZ,,, and therefore

< o
. Mg
Suppose p < . We can then find some finite p C ag such that Thy 1" (uUpUt) ¢

MS
Mg, . Since max(p) < ag, we get from (vi) that R = Thy $,(nUpUi5.(q)) € MZ.
If R € Mg,,, then we have a contradiction, so assume R ¢ Mg, . Since R is
essentially a subset of u, we get (ii) of Claim 9. O

Claim 10. p = p(MS$).

Proof. This follows easily from the fact that all extenders used in [ + 1,6]g are
close to the model to which they are applied, and crit(z'f 10) = Q. g

Claim 11.
(i) M§ = MY, and [0,7]y does not drop in model or degree.

(ii) If 7 < <, then Ih(EY) > a..
Proof. We have by (vi) that

Mg S s
Thy, i1 (0 Uige(q)) & M.
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Suppose M3 < /\/lzj We have that [ + 1,0]s does drop in model or degree, and
crit(ig,, 5) > ag, so we get

MS .
Thy, 1 (ag U Zg,g(‘l)) = Th; {1 (ag Ut) € M%‘
Set
R = Th 7 (g U).

Note that if E ', exists (ie. 6 # £+ 1), then lh(EgH) > a¢. This is because
otherwise )\g = >‘£+1’ so £+ 1is adead node of S, and £ +1 <g # is impossible. So in
any case, M§ agrees with /\/ls below ag. It follows that /\/lu agrees with ./\/ls below
¢, and hence with MY below ag. Thus all EYf for 7 < p <y have length > . But
R is essentially a subset of a¢, and R € Mu so R € MY, contradiction.

Thus MY = Mg The argument also proved (ii).

To see that [0,7v]y does not drop, suppose not, and let the last drop in [0,~]y

occur at 7+ 1. We must have n + 1 < 7, as otherwise R € MY. But then p(Mﬁ’) <
crit(EY) < AMEY) < ag, which yields p(MF) = p(MY) < p, by Claim 9. This
contradicts Claim 10. 0

Claim 12. if, o(t) = 1 (q).

Proof. Let [ be the first (i.e. largest) element of ¢ such that ig’ﬁ(ﬁ) + @'fﬂﬂ o
Ugl o ig’g(ﬂ). If
l,(B) < igi1p00  0ige(B),
then

Ty © ZZOJW(B) < mpo igﬂﬁ o 05_1 ° Zgg(ﬂ) = ioT,e(ﬁ)-

The maps on the two sides above agree at all earlier elements of ¢, and € started out
with 7, so this contradicts the weak Dodd-Jensen property of ¥ relative to €. On

the other hand, suppose
U S -1 _ .8
i0,(B) > igy 190 O¢ O io¢(B)-

Let § = o, ' 0§ (8), and u = t — (B + 1). Since ¢ is solid at 3, and if,, o(u) =
i (g — (6+1)), we get that
M. _ ,
Thkoil (lf—i—l 9((5 + 1) U Z‘(ig(u)) c ./\/lg
It follows that Thk +1(a£ U Z§+1 ot )) E M. But the theory is a subset of a,i, and

it is equal to Thy, fll(ozg Ut). So Thy, +1(oz5 Ui§(q)) € Mg, contradiction. O

Claim 13. Let 1 be such that n+1 <y v and n > 7; then a¢ < crit(EY).
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Proof. Let E = Ef;’ and § = U-pred(n+1). Let k = crit(E£), and suppose k < a.
We have 1h(E) > o, by Claim 11.

If p(MY) < &, then p(/\/lzgs) = p(MY) = p, and so we have p < ag, and thus (ii)
of Claim 9 holds, and (u*)™¢ > ag. Now if F is used in [0,&)s, then A\(F) < ag,
and so A(F) < p < k. Thus if 8 < 7, then )\(Eg’) < u < K, contradiction. So B =
But then P(p)™¢ = P(u)M¥ = P()M¥ = P(p)™Mé = P(u)&1, which contradicts
(ii) of Claim 9.

Thus £ < p(MY). But then

o < supip (k)M < p(MY) = i < ag,

so ¢ = p = lh(F). If ¢ # r, then (c ) of Claim 7, applied with n = ~, implies that

u
Th::]_l(CYg Uig.(q)) € MY. Hence Thy, f{l(ag Ut) € Mg, a contradiction. On the
other hand, if ¢ = r, then o, = p(/\/lg) is a cardinal of /\/lf, SO SUpip “(/ﬁ*)M% =
Ih(E) > ag, contrary to the inequality displayed above. U

It follows from Claim 13 that 7 <y =, and either 7 = ~ or crit(i¥,) > a¢. In
either case

(HME = ()M = (wh)MT = ()M = (uh)Men,

and all models displayed agree to their common value for u*. In particular,

ME|(FME = ME | (uh)Men,

It follows then from Claim 9 that
"= 045.
Claim 14. r is solid; that is, ¢ = r.

Proof. If not, then p(M) < ag. It follows by Claim 7 that
p(MY) < supiff “ap = supif “ag = ag = p = p(M§) = p(MY).

However, crit(i,) > a¢ or v = 7, so p(M¥) = p(MY). This is a contradiction. [

By Claim 14, ap = p. It follows from (v) and (vi) that for all unstable 7,
oy = p(/\/ls) Moreover, by the usual preservation of solid parameters, ign( r) is the
standard parameter of ./\/ls In particular, this is true when n = £. That tells us that
the parameter of ./\/l is unlversal
Claim 15. 4§ (r) is universal over Mg; that is, Mg[n = Mg, |n, where n = (af )MS.
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Proof. This follows from the fact that Mg = MY, and crit(if,) > a¢ and
crit(iff ) > ¢ (and neither branch drops). O

If £ =0, we are done.

Claim 16. r is universal; that is, K|(p™)" = M|(p*)M.

Proof. Let us assume ky = 0 and 6(M) is a limit ordinal to simplify the fine
structure a bit. We may also assume & > 0.

Suppose first that p is regular in M. Let N < M|(p™)M, p(N) = p, and B C p
code ThY (p(N)Up(N)) for n = k(N). We must show N <1 K, and that is equivalent
to

(*) For some ¥; formula ¢, some b < p, and some o < 6(M), there is a unique
(P, C) such that:

(a) P <1 M|o and C C p(P) codes Th (p(P) U p(P)) for n = k(P), and
(b) Mlo | ¢[P,C,b,r].

Moreover, for the unique such (P, C), we have C'Np = B.

We can express (*) as
M = (B, p,r],

where v is 1. Let i = z"g’ ¢» and note that ¢: M — M? is elementary, that is, cofinal

and X;-elementary. Moreover, i(p) = supi“p = ag, because p is regular in M. By
Claim 15

M E ¢li(B),i(p),i(r)].
Thus M | ¢[B, p,r|, as desired.

Now assume that p is singular in M. It will then be enough to show that P(p)M C
K. This is because if 7: K — M is the collapse map, then crit(m) > p, as otherwise
crit(r) = p is regular in K, and hence regular in M because P(p)™ C K. It follows
that crit(m) > (p™)% = (p™)M, which yields Claim 16.

Solet B C p, Be€ M, and B ¢ K. We show by induction on n <g ¢ that
i§,(B) ¢ MS,,. The case 7 is a limit ordinal is easy, so assume S-pred(n) = f3, let
E=ES | andlet A=i§,(B)Nag SoA¢ M3, Let us write ip for igm, and let
s =i g(r). Suppose toward contradiction that ig(A) Nay, € M3, ; then we have
some b < oy, some C, and some >; formula ¢ such that

/\/l‘,f = C is the unique D such that ¢(D,b,ig(s)),
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and CNa, =ip(A)Na,. Fix b,C, and . There are cofinally many ordinals in ./\/l‘g
that are ¥; definable from parameters in ag U s, so we can find such an ordinal o
such that

M‘,?IZE(J) = C is the unique D such that ¢(D,b,ig(s)),

But now let S
b = [CL, f]E 6‘

For E, almost every u,
M§|a = there is a unique D such that ¢(D, f(u), s).

Let C, be the unique such D, when it exists. The function u — C, is definable over
./\/lg|0 from f and s. Since oy, = sup i “og, we may assume that f € M§|Oéﬁ. (ag is
a singular cardinal of M‘g in the present case.) Moreover, E, € Mg]aﬁ by Claim 4.
Then for § < ag,

0 e As for E, a.e. u, § € C,,.

This defines A over /\/l§|a from f,s, and E,. That implies A € Mg 41, a contradic-
tion. U

This completes the proof of Theorem 5.57, modulo Lemma 5.64. U

Corollary 5.65 Assume IH, 5, and there are infinitely many Woodin cardinals below
k. Let w be a wellorder of Vs, and let C be a w-construction above k; then for any
(v,k) < I0(C), (1) holds, that is, the standard parameter of My, is solid and
universal.

Proof. 1f not, we have a countable M and 7: M — M;C,k elementary such that the
standard parameter of M is either non-solid or non-universal. We have that (M, Q7)
is a least branch hod pair by 5.21. Standard arguments using unique iterability
show that (2™ is < k-homogeneously Suslin. Because we have assumed that there are
infinitely many Woodin cardinals below x, L(Q2™,R) = AD". Thus the hypotheses
of 5.57 are satisfied, and the standard parameter of M is solid and universal, a
contradiction. O

Remark 5.66 The argument above really only needs one {2"-Woodin cardinal.

We can prove a condensation lemma for 1br hod pairs by the same method. Rather
than attempt a general statement, we shall content ourselves with the following
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simple one, since it is what we need in the next section. The author and Nam Trang
have proved a stronger condensation theorem in [37], and used it to generalize the
Schimmerling-Zeman characterization of {x | M |= O, } to the case that M is a least
branch hod mouse.

Theorem 5.67 (Condensation lemma) Let M be a countable lpm, and let U be
a complete iteration strategqy for M defined on all countable M -stacks by Y. Suppose
that whenever s is a countable M-stack by ¥ having last model N, then (N, W) is
a least branch hod pair. Suppose that V is coded by a set of reals that is Suslin and
co-Suslin in some L(I',R), where L(T',R) = AD". Let

T H— M

be elementary, with crit(r) = p(H) < p(M), and H being k(H) + 1-sound. Suppose
also that p(H) is a limit cardinal of H; then H < M.

Proof.(Sketch.) We proceed as in the proof of 5.57. Let C be the construc-
tion of some W-Woodin model N*. We have (n, ko) such that (M, V) iterates to
(M% Ko Qm k). We may assume that ¥ has the weak Dodd-Jensen property relative
to some €.

For (v,1) <iex (10, ko) we define a psuedo iteration tree S,; which iterates the
phalanx (M, H, p(H)). S,, is defined exactly as it was in the proof of 5.57, with one
exception with regard to how we move phalanxes up. Note that because p(H) <
p(M), we have H € M .(The theory coding H is a bounded TZ,]CV(IM)H subset of p(M),
hence in M. Since M|p(M) = KP, H € M|p(M).) Now suppose 7 + 1 is unstable,

and £ = S-pred(y 4 1). We have M$,, = Ult(M¢, E,) as before. We then set

Mv+2 =1y 7+1<H)

and

0‘:9,+1 = i37+1<P(H))'
We have

Oy41+ 7+2 - M7+1

determined by: o413, is the identity, and aﬁl(zgvﬂ(p([-[)) =5 1 (m(p (H)) If
H is not an initial segment of M, then ./\/ly .5 is not an initial segment of M3, so
we have successfully moved the bad situation up.

There is a similar change at unstable limit ordinals 0. We set Mg, = i§,(H)
and o = i§ (p(H)), etc.

v+
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The rest of the construction of §,;, and its conditions for termination, are the
same as in the proof of 5.57. Again, the key lemma is the counterpart of Lemma
5.64, according to which no strategy disagreements show up, and least extender
disagreements involve only empty extenders on the Mffl side. We shall prove this
lemma in the next section.

We argue as before that for some v,[, the construction of §,; terminates at a
stable § such that M5 < /\/124, where U = U,;. (We no longer have ./\/lz;’ IMS, as
the proof of that used that K ¢ M, whereas H € M.) Using weak Dodd-Jensen, We
get that for some unstable £, rt(0) = & + 1.

Let MY = M§. We have that Ih(EY) > Ag |, as otherwise £ + 1 would have
been dead. But in the present case, Afﬂ is a limit cardinal of M? = MY, so
Ih(EY) > )\fﬂ.

Now we simply follow the proofs of Claims 1-4 in the proof of Theorem 8.2 of
[10]. We get from that that Mg, is a proper initial segment of MY. This implies
there are no cardinals of MY strictly between A$ , and o(M¢g,,). It follows that
Ih(EY) > o(ME,,), so that Mg, ; < MY = MZ. But then, as we observed above,
H < M, as desired.

O

We get at once

Corollary 5.68 Assume IH, 5, and there are infinitely many Woodin cardinals below
k. Let w be a wellorder of Vs, let C be a w-construction above k, and let M = MSk.
Let

. H—->M

be elementary, with crit(r) = p(H) < p(M), and H being k(H) + 1-sound. Suppose
also that p(H) is a limit cardinal of H; then H < M.

5.8 Proofs of theorems 0.13 and 0.14

We can easily complete the proofs of these theorems modulo Lemma 5.64. Theorem
0.13, slightly extended, is

Theorem 5.69 Assume ADT, let T’ be an inductive-like pointclass with the scale
property, and such that all sets in T are Suslin. Let (N*, W) be a coarse I'-Woodin to-
gether with its unique T-fullness preserving strategy. (cf. 10.1 of [16]) Let (M, Q*) =
(M, Q5 ,) be a level of least branch hod pair construction C done in N* below 6™,
and let 0 be the canonical extension of * to all M-stacks in HC; then

1. (M, Q) is a least branch hod pair, with scope HC,
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2. (*)(M,Q), and
3. M has a core; that is, p(M) is solid and universal.

Proof. Let 6 = 6" be the Woodin of N*. The iterability hypothesis IH,, 5 holds
in N*. Working in N*, we get that

N* = (M,Q%)is an Ibr hod-pair with scope Vj.

The canonical extension €2 of (2* is just the strategy for M induced by lifting to N*
and using W there. ¥ acts on all stacks of trees in HC, not just those in N*, and we
don’t need that the stack is in N* to define its lift to N*.

Now let 1 be an inaccessible cardinal of N* such that v < n < d, where M = Mfk.
Let ® be the iteration strategy for N*|n induced by It will be enough to show that
® normalizes well and has strong hull condensation, not just in N*, but in V, for
then  inherits these properties. In V', ® does not pick unique wellfounded branches,
but rather unique branches b of 7 such that Cr(M(T)) € M,(T), and there is a
Q-structure for M(T) in Cr(M(T)). This is still enough to prove that ® normalizes
well and has strong hull condensation, however, essentially because the existence of
Cr @Q-structures passes to hulls that have a tree for a universal I' set in them. We
omit further detail. This proves (1).

Item (2) follows at once from our comparison theorem 5.45. Item (3) follows from
Theorem 5.57.

0

So least branch constructions done in a coarse I' Woodin model do not break

down. What is missing is a proof that such constructions go far enough; that is, a
proof of HPC. We do get

Theorem 5.70 Assume AD™; then LEC implies HPC.

Proof. 1t is enough to show that whenever (P, Y) is a pure extender mouse pair
with scope HC, then there is an lbr hod pair (@, ¥) with scope HC such that ¥ is
definable from parameters over (HC, €, V).

So fix (P,Y), and let I be an inductive-like pointclass with the scale property
such that ¥ is coded in its A. Let (N*, ®) be a coarse I-Woodin together with its
unique I'-fullness preserving strategy, and such that P € HCY . Let C be the least
branch hod pair construction of N* (relative to its canonical wellorder), and let

(Q, \I’) = (M(gfovgg:,O)a

225



where ¢ is the Woodin of N*. Since ® has scope all of HC, it induces an extension
of ¥ with scope HC. We call this extension ¥ as well.

Now let D be the pure extender L[E] construction of ), where nice extenders from
the @Q-sequence are used as backgrounds. The construction never breaks down, and
each (M}, €2),) is a pure extender pair in @, and hence can be canonically to such
a pair in N*. Working in N*, we can compare (P, ¥) with each (M}, ,). Because
the background extenders of I are assigned background extenders over N* by C,
we can repeat the proof of (*)(P,X), so (P, ) iterates past (Mymfk, Qﬂik), provided it
iterates strictly past all earlier levels of D.

By the @-filtered backgrounding again, (P, ¥) cannot iterate past (M(;H?O, ng’é) ).
It follows that (P,X) iterates to some (M}, €2),). This is true in N*, but it is also
true in V' of (P,X) and the canonical extension (M, ) of (M}, Q),), because N*
is sufficiently correct. But then X is projective in €2, and €2 is projective in ¥, so we
are done. O

Remark 5.71 We do not see how to show that under AD™, HPC implies LEC. That,
together with 5.70, suggests that one should try to prove HPC by proving the osten-
sibly stronger LEC.

Theorem 0.14 is

Theorem 5.72 Suppose V' is normally iterable above p by the strategy of choos-
ing unique cofinal wellfounded branches. Suppose that there is a j: V — N such
that for k = crit(j), & > p, Vi) S N, and j(k) is inaccessible; then there is a
canonical inner model M such that M |= “There is a superstrong cardinal”, and
M = “I am iterable ”.

Proof. Let § = j(k), let w be a wellorder of Vs, and let C be a w-construction
above p that is maximal. Taking w = j(wg) where wy is a wellorder of V,;, we may
assume that j(w) N Vs = w. By 5.57, the construction never breaks down, so M SO
exists. We take M = Mf\c,o.

We must show that M |=“there is a superstrong cardinal”. Let

E={(a,X)]a €< AX e P nae j(X)}
be the length § extender of j, restricted to M.

Claim. If n < 6 and E[n is whole, then the trivial completion of E[n is on the
M-sequence.
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Proof. We prove this by induction on 7. Suppose we know it for 8 < n, and let
F be the trivial completion of E|n, and v = i (k™). We have that Ult(M, F) =

Ult(M, Eln), and there is a natural factor embedding
o: Ult(M, F) — Ult(M, E)

such that on = id, and o(n) = 0. Since 7 is a limit cardinal of Ult(M, F), we have
that n is a limit cardinal of M. Using the Condensation lemma 5.68 applied to o,
we get that

Ult(M, F>|<ryv _1> = U1t<M7 E)N’% _1> = MN’% _1>

Since 7 is a cardinal of M, there must be a stage of C at which we have M|(n,0) =
Ml‘fo. After this stage, no projectum drops strictly below 7, and stages which project
to 1 are initial segments of M. Thus there is a v such that

(M=) = M[(y, -1).

But then (M<", F()) is an lpm. (Coherence we verified above, and the Jensen initial
segment condition holds by our induction hypothesis.) Moreover, F' has a background
certificate that shifts w to itself, namely F;[u, for p the least inaccessible cardinal
strictly greater than 7. By our bicephalus lemma, proved in the next section,

M;‘fo = (M=, F, ().

Since 7 is a cardinal of M and MEO projects to n, M,(SO <t M. Thus Fis on the
M-sequence. O

Since ¢ is inaccessible in V| there are arbitrarily large n < 0 such that E[n is
whole. Any such 7 is a cardinal of M, and hence for any such 7, E[n witnesses that
K is superstrong in M. U
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6 Phalanx iteration into a backgrounded construc-
tion

In this section we prove that there are no nontrivial iterable bicephali, and we prove
Lemma 5.64, thereby completing the proofs of theorems 5.69 and 5.72. Both re-
sults involve showing that certain bicephali and phalanxes iterate into background
constructions in the same way that ordinary lbr hod pairs do.

We shall also use such a phalanx-comparison argument to show that if (M, €2) is an
Ibr hod-pair such that M = ZFC + “there are arbitrarily large Woodin cardinals”,
then whenever g is P-generic over M, MJ[g] = “ UBH holds for all nice, normal
iteration trees that use extenders from E™ with critical points strictly above |P|M”.
That implies that €2 determines itself on generic extensions of M. We shall use this
in the next section to show that if A\ is a limit of cutpoint Woodin cardinals in M,
and N is a derived model of M below A, then HODY is an Q-iterate of M.

6.1 The Bicephalus Lemma

Definition 6.1 An lpm-bicephalus is a structure B = (B, €, EB YB F G) such that
both (B, €, EB Y8 F,0) and (B, €, EB, %5, G, 0) are extender-active least branch pre-
mice. We say that B is nontrivial iff F' # G.

We shall usually drop “lpm” from “lpm-bicephalus”.
We think of B as a structure in the language with € and predicate symbols
S, E,F, and G. We let
B~ = (B,c,E5 %5 0,0)

be the Ipm obtained by removing both top extenders. (To be pedantic, 5 and 5~ have
different languages.) The degree of B is zero, i.e. k(B) = 0. For v < o(B) = 6(B),
we set B|(v,1) = B~|(v,1). The extender sequence of B is Ef together with F¥ and
GB ; it’s not actually a sequence.

A B-tree is a tuple (v, k,T) such that (v, k) <iex (6(B),0), and T is a weakly
normal tree on B|(v, k). That is, MJ = B|(v, k), the extenders used in T are length-
increasing and nonoverlapping along branches, and E/ must come from the sequence
of MT. If M7 is a bicephalus, this means that the extenders from EMe together
with FMe and GMe are eligible. A B-stack is a sequence (i, kiyi ) | i < n) such that
(1o, ko, ) is a B-tree, and (v 11, ki1, Tiv1) is a Moo (T;)-tree. A complete strategy for
B is a strategy {2 defined on all B-stacks s by €2 such that s € N, for some set N. N
is called the scope of (2.
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Definition 6.2 A bicephalus pair is a pair (B,€)) such that B is an lpm-bicephalus,
and 2 1s a complete strategy for B.

Tail strategies are given by €Q,(t) = (s7t). We use Q, x and Qy as before. We
write Q™ for (23—, the complete strategy for B~ induced by 2.

We can define the notions of normalizing well, having strong hull condensation,
being self-consistent, and being self-aware for bicephalus pairs just as we did before.

The main theorem about bicephali is that there aren’t any interesting ones.

Theorem 6.3 Let (B, V) be a bicephalus pair, where W has scope HC. Suppose
that L(¥,R) = AD". Suppose also that ¥ normalizes well and has strong hull
condensation, and that (B, V) is self-consistent and self-aware; then F'® = GE.

Proof. Let us assume toward contradiction that F8 # GB.

We work in L(W¥,R). Fix an inductive-like pointclass [y with the scale property
such that W is coded by a set of reals in 'y N [y. We then fix a “coarse I'y-Woodin”
tuple (N*, X% 6%, 7), as in theorem 10.1 of [30]. So N* |= §* is Woodin, and >*
is an (wp,w;) iteration strategy for N*|0*, and fixing a universal I'y set U, i(7)¢ =
UnNi(N*)[g] for all g on Col(w,i(6*)), whenever i is an iteration map by ¥*. We also
have that the restriction of 3* to trees that are definable over N*|§* is in N*. We
can assume that there is an F' such that

(a) N* |= F is coarsely coherent,
(b) 6% is Woodin in N* via extenders from F, and

(¢) N* = “I am strongly uniquely F-iterable for stacks of trees in Vj..”

Working now in N*, let C be the F-maximal least branch hod pair construction
done in N*. The construction lasts until we reach some (v, k) < (6*,0) such that
(1)u fails, or until we reach (v, k) = (6*,0). Let (1o, lo) be this (v, k). We write

M, = M, and Q,, = Q7
for (v, 1) < (no, lo)-

We now compare (B, V) with itself, by comparing two versions of it with (M, ;,€,).
The result will be two trees S,; and 7,;, each on B and by . We show that only
the two B sides move in our coiteration, and that no strategy disagreements show
up. This is done by induction on (v,[). It is not possible for our coiterations to
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terminate because B is nontrivial, so we end up with B iterating past MT;CO 1o~ This
leads to a contradiction. .
Let C be a premouse. For n < 6(C), we let ES = Ef, and for n = 6(C), we let

7]7
C _ pC ; ; A C _ C A
Ey = F©. If C is a bicephalus, and n < 6(C), then we set £, = E. If n = 6(C), we

leave Eg undefined.

Fix (v, 1), and suppose we have defined S, ,, and 7, for all (u, k) <iex (,1). (The
trees are empty until C has gone well past 0°.) We define normal trees S = S,,; and
T =U,; on B by induction. At stage o, we have §* and 7* with last models

C=MS and D=M"".
We do not assume 1h(S%) = h(7).

Case 1. (Mu,la Qu,l) < C and (Mu,la Qu,l) < D.

In this case, we must have that either (M,,,$2,;) <C, or the branch of S,; to C has
dropped, because C is a bicephalus and M,,; is not. Similarly on the D side. (Our
claim 0 below implies we never get “half” of a bicephalus lining up with an M,,;.)
We stop the construction of S,; and 7,,;, and go on to S, ;41 and 7T,,;4;.

Case 2. Otherwise.

Here the main claim is

Claim 0. There is a 7 such that
(a) M,,|(v,0) is extender-passive,

(b) MVJ|<770> - C|<7’_1> = D|<77—1>, and (QVJ)<’Y,0> - quO‘,(%—l) = \IITO‘7<’Y,—1>’
and

(c) at least one of C|(v,0) and D|(7,0) is extender-active.

We defer proof of Claim 0 for now.
Let v = () be the unique 7 as in Claim 0. We get S*™! and 7t as follows.
Let n = o(M,,|(7,0)). Let

C=M;" and D= MI".

Suppose n < o(C), or n = o(C) but C is not a bicephalus, because [0, {]s dropped.
We set
Satl
ES™ = B,
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if Eg £ (), with S®*! then determined by normality. If Eg = (), then So*! = S°.
Similarly, if n < o(D) or D is not a bicephalus, then we set

Tt _ D
E’ =E,,

if E}; # (), with 7" then determined by normality. If E}f = (), then 7o = T,
If n = o(C) and C is a bicephalus, then if ET""" has already been determined, we
let E5*" be the first of € and GC that is different from EJ """, If also o(D) = 7

and D is a bicephalus, then we set EfaH = I, and

pren _ JFP i FP £ FC
T ]GP  otherwise.

Our definitions guarantee that if one of Eg and E7 is a top extender of a bi-
cephalus, then Ef # ET.

This finishes the definition of S®*! and 7*!. The limit steps in the construction
of S,; and 7, are determined by W¥. Note that o < § = v(a) < v(f); that is, the
common lined up part keeps lengthening.

Eventually, we reach Case 1 above, and the construction of S,; and 7, stops.
(B, V) has iterated strictly past (M,;,€,;), in two ways. As in the proof of 5.50,
this implies (1),;. (When [ = —1 as well.) It follows then that

no = 0" and [y = 0.

However, (B, U) cannot iterate past Ms« o, by the usual universality argument. Note
here that we have (), for all v < §*, so the extenders added to the M, _; are
unique, and the universality argument applies. This contradiction completes the
proof, modulo Claim 0.

Proof of Claim 0. (Sketch) We repeat the proof of Theorem 4.10. Virtually nothing
changes, so we shall just mention the main points here.

The main change is the following. We used many times in the proof of 4.10
that for premice () and R, and X an iteration strategy for (), there is at most one
iteration tree 7 by X such that RAM,(T) for a+1 = 1h(T), and R 4 M whenever
a+ 1 < 1h(7T). This uniqueness for normal iterations past a given R clearly fails for
bicephali; let Q = B and R = Ult(B, FB). What saves us is that in our siuation,
with ¢ = B and R some initial segment of M, ;, the trees S,; and 7,; are being
defined together in a way that completely specifies which extender to use at each
step on both sides, whether that extender is from the top pair of a bicephalus or not.
Moreover, this specification is absolute.

231



Definition 6.4 Let R be a premouse, and suppose S and T are normal iteration
trees on M of lengths oo+ 1 and [ + 1 respectively such that

(a) « is the least ¢ such that R < M,
(b) B is the least & such that R A M,
(¢) S and T are by ¥, and

(d) the extenders used in S and T are chosen according to the rules above, with R
playing the role of M, .

Then we call (S,T) the (R, ¥)- coiteration.

Subclaim A.

(1) If Ry 9 Ry, and (S;,T;) is the (R;, ¥)-coiteration, then Sy is an initial segment
of &1 and 7y is an initial segment of 7.

(2) If Sp and S; are transitive models of ZFC such that B, R € S; and ¥ N S; € S;
for i = 0,1, and Sy |= (S,T) is the (R, ¥ N Sp)-coiteration, then S; = (S, T)
is the (R, ¥ N S;)-coiteration.

Proof. This is obvious. O

Let us assume that Claim 0 is true for (n, k) <jex (v,1). Let (v*, k*) be least (v, k)
such that either (M, 1[(v, k), (1) (yky) # (CI(Y, k) Wsa k), o (Mo a|{v, B)s (Qui) 1)) #
(D|(v, k), Ve (k). We show first that we are not in the bad case for extender dis-
agreement.

Subclaim B. Tt is not the case that k* = 0 and FMvil00.0) £ ¢,

Proof. Suppose otherwise, and let F' = FMvi|(~v* 0).

We claim first that [ = 0. For suppose | = k + 1. F cannot be on the sequence
of M, 1, since otherwise S, ; would agree with S,; on all extenders used with length
< 1h(F'), and similarly for 7, and U,,;. But this would mean Claim 0 failed at (v, k),
contrary to our induction hypothesis. It follows that M, j is not sound. That implies
that M, is the last model of S, , along a branch that dropped to M,,;. Similarly,
M, ). is the last model of 7, along a branch that dropped to M,;. Let a be least
such that M,,; < Mi”’k and f be least such that M, ; < M;—”’“ From Subclaim A(1),
we see that S,; = S, x[(a+ 1) and T,y = Tk [(8 + 1). Thus M, is the last model
of §,; and 7, contradiction.
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But then F' must be the last extender of M, , for otherwise F' is on the sequence
of some M, with n < v, and Claim 0 would fail at (n, k), contrary to induction
hypothesis.

So suppose that M, is extender-active, with last extender F'. Suppose § = Sy
and T = T have last models C and D respectively, and

(Ml/,—lﬂ QV,—l) = (C|<V7 _1>7 \I’S,@,—l)) = (D|<V7 _1>7 WT,(V,—D)'

So (8,T) is the (M, 1, ¥)-coiteration. We want to show that F' is on the sequences
of C and D, and not as a top extender of a bicephalus in either case. For this, let

j: V= Ult(V, FY)

be the canonical embedding, and x = crit(j). (V = N* at this moment.) We have
that M, _1 < j(M, __1) by coherence. (Note j(M, _1)|v is extender passive.) j(S,T)
is the (j(M, 1), V) coiteration, because j(V) C W. So by Subclaim A, S is an initial
segment of j(S) and T is an initial segment of j(T).

We have that MS = M) and JIMS = zi (j()ﬁ), so F' is compatible with the

first extender G used in [k, j(k)];(s). My,—1 < M;ES)

) SO GG cannot be a proper initial

segment of F'. But F' is not on the sequence of M;E‘:)) , so F' cannot be a proper initial

segment of G. Hence F = G. Since S = j(S)[(€ + 1), where C = M$, we have that
F is on the sequence of C.

Similarly, F is on the sequence of D, and used in j(7). But then applying our
observation above in j(V'), we see that it is not the case that C is a bicephalus and F’

is one of its top extenders, or that D is a bicephalus and F' is one of its top extenders.
O

By Subclaim B, we may assume that
My |(7" k™) = Cl(v" k™) = DI(y", k"),
but there is a strategy disagreement. The situation is symmetric, so we may assume
() (e ey 7 U iy k#) -

Let
M = M, |(v*, k").

We consider first the case that M = M,;, then we reduce to this case using the
pullback consistency of ¥. We derive a contradiction in the case M = M,; by
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repeating the proof of Theorem 4.10. We shall try to keep the notation close to that
in the proof of 4.10.

Let (S,T) be the (M, ¥)-coiteration of B. So M is an initial segment of both last
models, but Q,; # ¥ . Note that M is an lpm, not a bicephalus. We suppose for
simplicity that our strategies diverge on a single weakly normal tree ¢/ on M. That
is, letting

Q= (Qu,l)('y*,k*>a
U is by both © and ¥ s, but
QU) # YT, U)).
Let b = Q(U). For v < Ih(U) we have the embedding normalizations
W, =W(T,Ul(y+ 1)) and W, = W(T,U"D).

These are defined just as they were for trees on premice of the ordinary or least
branch variety. The fact that i is only weakly normal affects nothing. We adopt all
the previous notation; for example, R, is the last model of W,, and o, : ./\/lzjf — R,

is the natural map.
Q) is defined by lifting to V. Let

WU, My [{7", k0. ©) = QU (oo | 7 < Tnld), (4 | 7 < Ihd)).
Here (1o, lo) = (v,1) and % = id . Let
Sy = Mﬁ’*,
and for (u, k) <jex (v,1) let
(ViksWii) = the (M, x, ¥)-coiteration of B,
For v < Ih(U) or v = b, let
(VI WV5) = (Vi W)™

So if [0, 7]y does not drop in model or degree, (Vi, W) = if (S, T)).
We define by induction psuedo-hull embeddings @, from W, into W7, for v <
Ih(U) or v = b, just as before. Let
©, = (u, {157 | B < 2(0), {t57 | B < 2(0).p7)-
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Let us just say a few words about how to obtain ®,;, because this is where the
main point lies.

We have t”: R, — N,, where N, is the last model of W2. Let F' = o, (EY), and let
p = U-pred(y+1). (Sadly, we can’t use “v” for this ordinal.) So W,41 = W(W,, F).
Let us assume for simplicity that (u,y + 1]y is not a drop in model or degree. Let

vos, = (o, 1, (M, 1, | (et (E2), 0))%,

and let
G = res, (t7(F)).

We have t7 0 0, = ¢¥, so G = res, (¥ (EY). Let G* be the background extender for
G provided by i (C), so that

S. 1 = Ult(S,, G).

Since we are not dropping,
Wi =ic-W)),

v

. . .u*
where i« =4} ..

Let P = N,|(Ih(t"(F),0), 0 be least such that P < M;};, and 7 least such that

P<aMY . Let (Vi*, W>*) be the (res,(P), ¥)-coiteration of B. By the counterpart
of Lemma 4.5,

The main thing we need to see is that G is used in WJ ;.

(i) Wz extends WX[(7 + 1),

ok

(ii) letting & = ThW>* — 1, G is on the ./\/lzv;* sequence, and not on the MZV”
sequence for any a < &,
(iii) 7 <ws- & and il (W7 (F) + 1) = res, [(Ih7(F) + 1), and
(iv) similarly for V3* vis-a-vis V7.
P res,(P), and N, all agree up to dom(G), so
res, (P)|(Ih(G), —1) Qig«(N,),

and i« (N,)|[(Ih(G),0) is extender-passive, by coherence. We then get that V2™ is
an initial segment of V7 ;, WJ* is an initial segment of W}, and G is used in both
Vi, and W2, . It matters here that res,(P) is a premouse, not a bicephalus, so
both trees are forced to use GG by our rules.
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Now let M = M, |(v*,1*), where (v*,1*) <jex (6(M,,),1). Let
(v0,lo) = Res, [M] and 7 = 0, [M].

(Q0,0) s is defined by (Q2,,)n = €, ;- By induction, the (M,,,, ¥) coiteration is a
pair (V*, W) such that M,,, is the last model of W*, and €4, = U a1, , - By
the counterpart of Lemma 4.5, the last drop along the main branch of W* was to

M, and the branch embedding is the resurrection map 7, that is,
T = ig\g M — My, -

Here ¢ is least such that M < MY, so the (M, ¥) coiteration (S,T) of B is such
that

WHE+1)=T.
But then
\IJT,M = (\IJW*vMVO,l())iZYG
= (QVo,lo)7r
- (QV,Z)M‘

The first equality holds because ¥ normalizes well and has strong hull condensation,
and is therefore pullback consistent.

This finishes our proof of 6.3.
O

Corollary 6.5 Assume IH, 5, and there are infinitely many Woodin cardinals below
k. Let w be a wellorder of Vs, let C be a w-construction above k; then C gives rise
to no nontrivial bicephali. That is, if (v,—1) < 1h(C), then C satisfies (), —1-

6.2 Proof of Lemma 5.64

Recall that we have (M, V) an lbr hod-pair in L(¥,R), and ¥ is Suslin-co-Suslin
captured by (N*, ¥*). We are working in N*, where C is a backgrounded construction
such that (M, V) iterates to (Mv%kmggo,ko)' For (v, 1) < (no, ko), we have the tree
U,,; of minimal length whereby (M, V) iterates past (M,, 2,;).

We have also the psuedo-tree S,; on the phalanx (M, K, a). We had 7: K — M

with crit(m) > a. Implicit in the construction of S is a pullback iteration strategy
b = q](ld,ﬂ)
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for (M, K,«). We used id: M — M and 7: K — M to lift S to a tree
T = (id,7)S
on M, then chose the branch chosen as a branch of 7 by W. That is
®(S) = ¥((id, 7)S).

® is actually a strategy for a slightly stronger iteration game than the usual
game producing a normal tree on a phalanx. Namely, ® wins Gy, where in Gy the
opponent, player I, plays not just the extenders E‘f, but also decides whether nodes
are unstable. We demand that if I declares 6 unstable, then he must have declared
all 7 <g 6 unstable, and 0 <g 0, and [0, 0]s does not drop in model or degree. We
then set g = supi§ o “ov and Mg, = HullMg(ozg Ui 4(g)). I must then declare 6 + 1
to be stable, and take his next extender from M3, ;. If T declares 6 to be stable, he
must take his next extender from M$. The rest of Gy is as in the normal iteration
game. Let us call a play V of Gy in which no one has yet lost a psuedo iteration tree
on (M, K,«).

Remark 6.6 We can generalize Gy much further, to a game in which I is allowed to
gratuitously drop to Skolem hulls whenever he pleases. With some minimal condi-
tions, U will pull back to a strategy for this game. We don’t need that generality, so
we won’t go into it.

The psuedo-tree S,; from the proof of 5.57 was a play by ® in which I followed
certain rules for picking his extenders and declaring nodes unstable.

Let G be the game in which I and II play G, until someone loses, or I decides that
they should play the game G*(N,w, ¢*) for producing finite stacks of weakly normal
trees on the last model N of their play of Gy. Clearly, we can pull back ¥ via (id, )
to a winning strategy for II in this game. We again call this strategy ®, and write

P — pidm

for it.

Let V be a psuedo-tree on (M, K, ap) with last model N, and s = ((v;, ki, U;)|i <
n) an N-stack. We can define the embedding normalization W = W (V, s) in essen-
tially the same way that we did when no psuedo-trees were involved. For example,
suppose that s consists of just one weakly normal tree i on N. Being the last model,
N has been declared stable in V. We define

W, = WOV, Uy +1))
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by induction on . Each W, is a psuedo-tree with last model R,, and we have
oy M{f — R,. We set Wy = W. The successor step is given by

W’er = W’y f(e + 1>A<F>AiF “(Wuzﬁ)v

where F' = o0,(EY), § = ap is the least stable node of W, such that F' is on the
Mng—sequence, v = U-pred(y + 1), and 3 is least such that crit(F) < )\ZV”. (This is
the case that (v,y + 1]y does not drop.) We have ¢: 1Ih(W,) — 1h(W,41) given by

P (0+1)4+(€—0) otherwise.

A node 1 of W, 4, is stable just in case n < 6 and 7 is stable as a node of W,, or
n = ¢(§), where & is stable as a node of W,. We define by induction on £ > ( the
models M:;\z”’“ and maps ¢ MZV” — MV as before.

&) ©(§)
For example, suppose £ = 3. We let

My = Ul (MY, F),

and 7wz be the canonical embedding. If 5 is stable in W,, then E;/Y:f“l = WB(EE;V”),

and
MY = Ul(P, By,

where P is the appropriate initial segment of some M»» We determine 75, using the
Shift Lemma as before. (L.e., mg11([a, f]) = [mo41(a), 7 (f)] if 7 # B, or if 7 = 5 and
crit(F) < crit(ngﬂl“). Otherwise, w11 ([a, f]) = [mo+1(a), f].) So nothing changes.

On the other hand, if 3 is unstable in W, then 6 + 1 is unstable in W, ;. We
set

(agen) V4 = supig gt “(ao),

and as we must,
W,
M;XVQH = collapse of HullMe+1 (ags1 U Zmﬁ(q»

Let o be the uncollapse map. Let 7: Mg‘i”l — MZV” be the uncollapse map. Note
that W, [(8 4+ 2) = W, [(8 + 2) = W,41[(8 + 2) in the present case. We set

_ =1 Wy
Tp1 =0  Ofdgg 0T
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We set E;X”;l = 7r5+1(E};V+”1). (Let’s ignore the case f + 2 = lh(W,).) We have

)\ZV” = inf(agv”, )\(Eg\jr”l)), and we set

Mt = inf (ot MEy5™)).

It is easy to see that Mm;l | Aor1 = Mz\fl“ |Ag11. (We are ingoring the anomalous
case here.) We also have
Wy Wy
malAg" = may1[Ag",

which is the agreement we need to continue defining W (W,,, F).

This finishes our discussion of the normalization W (V, s), for V a psuedo-tree on
(M, K,«a), and s a stack on the last model of V. We say that strategy A for the game
G normalizes well iff whenever (V| s) is according to A, then W (V, s) is according to

A.

Lemma 6.7 Let & = W4™ be the jteration strategqy for (M, K,«) obtained by
pulling back the strateqy W for M ; then ® normalizes well.

Proof.(Sketch.) W itself normalizes well. But normalizing commutes with copying
in this context, as it did in the case of ordinary iteration trees. That is

(id, M)W (T, U) = W((id, m)(T,U)),
where on the right the stack (7,U) is lifted by (id, ) in the natural way. So

W(T,U)isby ® < (id, )W (T,U) is by ¥
< W((id, m)(T,U)) is by ¥
& (id, m)(T,U) is by ¥
< (T,U) is by ¥ |

as desired. See the proof of Theorem 3.3. O

We turn to strong hull condensation. The changes we need to make in order to
accomodate psuedo-trees are straightforward, but we may as well spell them out.

If 7 is a psuedo-tree on (M, K, o), then we set stab(7) = {8 < Ih(T) | 5 is T-stable }.
We let Ext(7) be the set of extenders used, and T the extender tree of 7. T is
determined by stab(7) and Ext(7). (Psuedo-trees are normal, by definition.)

Definition 6.8 For T a psuedo-tree, we put & <5 n iff
((l) f ST n, or
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(b) there is a v <t n such that & and ~ are stable roots of T, and & — 1 <7 v — 1.
In case (b), we let il : ML — MT be given by
ST T 1T
teg = by © (7 ‘o le—14-1° o),

where 0: M¢ — My and 7: M, — M, _; are the maps from the Skolem hulls.

Here is a diagram:

M ——MT
te,y—1 by

T i T
My —— M

i0,e—1 i1e

MJ ——— MT

Thus the stable roots of 7 have a branch structure themselves, with 1 at its root.

Definition 6.9 Let T and U be normal psuedo-iteration trees on (M, K, ap). A
pseudo-hull embedding of T into U is a system

(u, (t3 | B<IhT),(ts| B+1<IhT A € stab(T)),p)

such that

Lu:{ala+1<IhT Aaestab(T)} = {a|a+1<lhid Na € stU)},
a < f=ula) <u(B), and X is limit iff u(X\) is limit.

2. p: Ext(T) — Ext(U) is such that E is used before F' on the same branch
of T iff p(E) is used before p(F) on the same branch of U. Thus p induces
]3 . Text - uext.
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. Letv:1ThT — 1hid be given by

0 if =0
v(f) =< v(a)+1 ff=a+1Ash =0
unique & such that s = p(s})  otherwise.

Then v(a) <j u(a), and

(i) a € stab(T) < v(«) € stab(U),

(i1) if a € stab(T), « is a limit ordinal, and [0,a)r N stab(T) = 0, then
v(a) = u(a).

. For any j3,
0. T U

v

is total and elementary. Moreover, for a < 3,
0 T _ AU 0
tﬁ (¢] Za,,B = Zv(a),v(ﬁ) @) ta.
In particular, the two sides have the same domain.

. Fora+1<1hT and o € stab(T),

1 _ U 0
toz - Zv(oz),u(oa) © tom

and

p(E]) = to(ET)

Moreover, for a < B <1hT and « € stab(T),

5 (E]) + 1=t I 1h(E]).
. If a ¢ stab(T), then
t3+1 = 0_1 © tg oT,

where 7: M7, — M and o: Mi’(a)ﬂ — /\/lff(a) are the Skolem hull maps.

. If 8 = T-pred(a+1) (and hence o € stab(T) ), then letting f* = U-pred(u(a)+
1),
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(i) if B is T -stable, then v(B) <y, 5* <{ u(B),
(111) if B is T -unstable, then v(5) <y [* <y u(f+1) — 1.

In any case,
t3+1([aa f]gg) = [t;(a)aﬁ(ﬁ),ﬁ* © t%(f)]gu J

u(a)

where P < MﬁT is what ET is applied to, and P* < Mg* 18 what Ef:’(a) 1s applied
to.

Here is a diagram that goes with the last clause of the definition, in the case that
a + 1 and 8 are both T-unstable.

0
ta+2

T u
Mo Mat2)

U
B*+1,v(a+2)

U u
B Mas)

T
1541 a2 EZ /

8,6+
t
u .
Mg ’ Mv(ﬂ t(a41),87 41
- / t%_H U
MBH Mv(ﬁ+1)

Definition 6.10 Let A be a winning strategy for 11 in Gy; then A has strong hull
condensation iff whenever U is a psuedo-tree according to A, and there is a psuedo-
hull embedding from T into U, then T is according to A.

Lemma 6.11 Let (N, X) be an lbr hod-pair, let w: K — M with crit(m) > a, and let
A = 20dm) pe the pullback strategy for 11 in Gy; then A has strong hull condensation.
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Proof.(Sketch.) This is like the proof of 3.6. If U is a play by A, and T is a
psuedo-hull of U, then (id, 7)7 is a psuedo-hull of (id, 7). O

Thus our strategy ® = gidm) for (M, K, o) normalizes well and has strong hull
condensation. Returning to the proof of 5.64, we have § = §,;, and v < lh(S). We
want to show that either

(1) there is a (7,n) such that (M, [(T,n), () (rmy) = (MS,5,), or

(2) there is a nonempty extender F on the ./\/lf sequence such that, setting 7 =
Ih(E),

(i) EMet (0, and
(i) (39)(r-1) = (1) (r,0)-

Here ¥, = ®g,41, in the current notation. It is a complete strategy for the Ipm
MS. Assume not. Since (1) fails, there is a least disagreement between (MS, %)
and (M,,$2,;). Since (2) fails, the least disagreement either involves a nonempty
extender from M, ;, or is a strategy disagreement.

As in the proof of the bicephalus lemma, the main thing not present in earlier
arguments is that the way S is formed, and in particular the way stability declarations
are made by I, is sufficiently absolute. To formalize this,

Definition 6.12 For an lpm R, we say that (V, W) is the (®, ¥V, R)-coiteration ( of
(M, K, o) with M) iff

(a) V is a psuedo-tree by ® on (M, K, «) with last model P,

(b) W is a normal tree by W on M with last model @Q,

(c) RIP and RLQ, and V and W are of minimal length such that this is true,
and

(d) stability (and hence the next model) in V is determined by the rules we have
given: 0 is unstable iff [0, 0}y does not drop, and sf = s4 for some 7.

We remark that the internal strategy %7 is relevant in (c), but no external strat-
egy is relevant. (c) tells us that ¥V and W proceed by hitting the least extender
disagreement with R, and that the corresponding R-extenders are all empty.

Suppose now that (2) fails because there is a nonempty extender on the M, side
at the least disagreement between (M$,,) with (M,;,,). As in the proof of the
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bicephalus lemma, we can reduce to the case that [ = 0, and the least disagreement
involves F' = Mo with F # (). Letting U = U,,;, we then have that (S,U) is the
(&, W, M, _1)- coiteration. Let P and @ be the last models of S and U. So

(Mu,flu Qu,fl) = (P’<V7 _1>7q)8,<u,—1>) = (Q? \I]U,Oj,—l))-

Let
j: V= Ult(V, FY)

be the canonical embedding, and xk = crit(j). (V' = N* at this moment.) We have
that M, _1 < j(M, _1) by coherence. (Note j(M, _;)|v is extender passive.) j(S,U)
is the (®, W, j(M, 1)) coiteration, because j(¥) C ¥, and hence j(®) C &. So U
is an initial segment of j(U). It follows that S is an initial segment of j(S). (In
particular, stab(S) = stab(j(S)) N 1h(S).)

We have that MS = ML) and JIMS = Zi (®) so F is compatible with the

J(K)?
first extender G used in [k, j(k)]j(s). My—1 < M;E‘:)), so GG cannot be a proper initial
segment of F'. But F' is not on the sequence of Mjg‘:)) , so F' cannot be a proper initial
segment of G. Hence F' = G, and F is used in j(S). Since S = j(S)[(£ + 1), where
P = M¢?, we have that F is on the sequence of P, contradiction.

So we may assume that we have (y*, k*) such that
My |(7*, By = M|y k)
but there is a strategy disagreement, that is

(QV71)<’7*7"3*> # ¢’5»<7*7k*>'
Let
Q= M, [{(v", k7).

Again we consider first the case that () = M,;, then we reduce to this case using
the pullback consistency of ®. We derive a contradiction in the case () = M,; by
repeating the proof of Theorem 4.10.

Letting U = U,,;, we have that (S,U) is the (@, ¥, Q)))-coiteration of (M, K, «)
with M. We suppose for simplicity that our strategies diverge on a single weakly
normal tree V on (). That is, letting

Q= Qu,lu
V is by both €2 and ®5 ¢, but
QV) # 2((S8,V)).
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Let b = Q(V). For v < 1h(U) we have the embedding normalizations
W, =W(S, VI(y+1)) and W, = W(S, VD).
Q) is defined by lifting to V. Let
lift(V, M,,;,C) = (V*, (-, 1. | 7 < 1h V), (Y | 7 < 1h V)).
Here (1o, ly) = (v,1) and ¥} = id . Let
Sy = M\;*,
and for (u, k) <iex (v,1) let W, be such that
W, x, Upr) = the (@, W, M, ;)-coiteration of (M, K, «) with M.
For v <1h(V) or v = b, let
W5, Uy) = ( ;mlwuwlw)sw-
So if [0,7]y does not drop in model or degree, W:,U,) = iy ((S,U)).
We define by induction psuedo-hull embeddings A, from W, into W, for v <
Ih(V) or v = b, by induction on ~y. Let
Ay = (4857 | 8 < 2(0), 4257 | 8 < 2(0),57).

Again, we shall just describe briefly how to obtain A, ;; from A,.

We have t7: R, — N, where N, is the last model of W*. Let F' = 0, (EY), and
let p = V-pred(y + 1). So Wy = W(W,, F). Let us assume for simplicity that
(i, + 1]y is not a drop in model or degree. Let

res7 (0-77'y lv [Mn'y:l'y|<1h w’]y/(E}y}% 0>])S'y’

and let

G = res, (t"(F)).
We have t7 oo, = 9Y, so G = res, (¥Y(EY)). Let G* be the background extender for
G provided by i V((C) so that

Sy41 = Ult(S,, G7).

Since we are not dropping,

Wi, =i (W),
where ig+ = z}f ++1- The main thing we need to see is that G is used in W

Let @ = N,[(Ih(t7(F),0), 7 be least in stab(WW>) such that Q<1MT : and 6 least

such that @ < /\/lg”. Let W2, U*) be the (@, U, res, (Q))-coiteration of (M, K, «)

v oy
with M. By the counterpart of Lemma 4.5,

245



(i) Wi extends Wi (7 + 1),

*k *k

(ii) letting & = Ih(W;*) — 1, G is on the /\/lzv” sequence, and not on the M
sequence for any a < &,

(iii) 7 <wz- &, and izvg* [(Iht"(F) 4+ 1) =res, [(Iht?(F) + 1), and
(iv) similarly for " vis-a-vis U, .

Proof. (Sketch.) Item (i) includes the agreement on stability declarations and next
models. The point is that the (®, U, res,(Q))-coiteration reaches models extending
@ on both sides by the proof of Lemma 4.5. Let 1 be least such that n <.  and

Q<J -anW We have that from the proof of 4.5 that
vag [(tht"(F) + 1) = res, [(Iht"(F) + 1).

The proof also shows that either n = &, or the first ultrapower taken in (n,ﬁ]W;*
involves a drop in model or degree. In either case, n is stable in W>*. Let also ¢

be least such that P < Mzﬁ*. We then have that (WX*[(n + 1),U*[(0 + 1)) is the

(®, T, Q) coiteration. But @ < N,, so this is an initial segment of the (¢, ¥, N.)

coiteration, that is, of (W>,U,). This implies n =7 and § = 6. O
Q,res,(Q), and N, all agree up to dom(G), so

reS'y(Q)|<lh(G>7 _1> g (N,LL>7

and i+ (N,)|[(Ih(G),0) is extender-passive, by coherence. We then get that U* is
an initial segment of U, 1, W, is an initial segment of W}, and G is used in both
Uy, and WJ 5.

Let /8 be least such that crit(F') < )\EV“, and let 6 be least such that F is on the

/\/l:;/vv sequence. A, 1[(d +1) = A,[(6 + 1), and this is ok because W, [(6 + 1) =
Wy 1(0 + 1) and Wi v7(8) = Wi, [v7+1(5). We set

W (8) = & = hOW) — 1,

so that
pTHF) =G.

Our proof above showed that some 7 <+ § was stable, so that ¢ is stable in Wi,
and hence in Wy ;.
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Let g = WJ,-pred(§ + 1). Let us verify that 3* is located where it should
be in W> ., according to definition 6.9. Basically, we just run through the proof of
Sublemma 4.12.1, taking into account the stability structure now present. So let

K = crit(F),

and

2 Y M‘B’le

P = MP ()M = MV ()M = M () — dom(F).

Recall here we are assuming (p,y + 1]y does not drop. Let
K =tM(k) =t (k) = crit(G),

and
P =t"(P) =t"(P) = dom(G).

We can characterize § and * by

Claim 1. Let 7 be least such that P < MY¥. Say that 7 is special iff 7 is unstable
in W,, P< Mm‘l, and a’* < k. Then either

(i) 7 is special, and =7+ 1, or

(ii) 7 is not special, and g = 7.

Proof. P < /\/l;v“ because kK < /\EV“ = /\EV”, and P < MZ;V”. If it is not the case

that P < MZV“ for some n < B, then § = 7. Moreover, 7 is not special, since if 7
is special, then < o (Note W, [(t + 1) = W,I[(7 + 1) as psuedo-trees, and
the two agree to 7 + 2 if 7 is unstable in one, or equivalently, both.) So A\s < k,
contradiction. So we have alternative (ii).

Suppose P < an“, where n < 3. Note first that 1 cannot be stable in W,. For
otherwise, F, = B exists, and ME,) < k. But if A(E,) = k&, then P 4 MV
because P is passive, and E, is indexed at o(P). Thus lh(E,) < k. But E, is not
on the P-sequence, because it is not on the M;V“—sequence, so again P 4 MZV "
contradiction.

So n is unstable in W,. Arguing as above, we get that x < )\(EK“I), so that
B <mn+ 1. But then, in W,,

Ay = 1inf(oy), Adpr1) <k < Appr.
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It follows that a,, < k. Thus 7 = 7, 7 is special, and f = 7+ 1. So we have
alternative (i).
O

Similarly,

Claim 2. Let 7* be least such that P* < MZV“ Say that 7 is special iff 7 is unstable
in Wy, P* < MZ\:‘jrl, and ozl/\:“ < k*. Then either

(i) 7* is special, and 5* = 7+ 1, or

(ii) 7* is not special, and f* = 7*.

Claim 3. 7 is special iff 7 is special.

Claim 4. If B is unstable in W, then u#[(8 4 2) = w"*'[(6 +2), Wil(f* + 1) =
Wi 18"+ 1), and

(a) v7*H(B) <w;

v+

B* Swe,, WTH(B+1) - L
(b) B* is unstable in W>_,, and

(c) €+ 1is unstable in Wi .

Proof. The agreement between u* and u”™!, and between W and W7, is clear
from the absoluteness of being the (®, ¥, P*))-coiteration.
We have v*(3) <y n, where n = u#(8 +1) — 1 is unstable, in this case. Since F’

is being applied to /\/lgv“, o(P) < /\ZV“ < ozgv“, so P < Mmﬁ moreover

* 1, W 0,
P* =ty (P) =il ot (P).

So P* € ran(iz\(}g)n). We can then argue as before that 7* = 3%, and v*(8) <w:

5 <w; 1, giving (a). Since 5* <w: 1, 8 is unstable in W, and by absoluteness, it
is unstable in W7, ;.
Finally, a key point. Recall that (W3*,U*) is the (@, ¥, res,(Q)) coiteration.

Letting p + 1 = 1h(U**,,), we have that G is on the sequence of /\/l,%**, but not on
the sequence of any earlier model. It follows that

Upil(p+1) = U,
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and
Ef =G

Since 8 is stable in W, we have 7 such that
Mt = M
But then GG must be applied to MET i U,+1, leading to
u wWj
MTIEI _ M£+”r1+17
so that £ + 1 is unstable in W>, , as desired for (c). O

Claim 5. If 3 is stable in W, w*[(B+1) =« [(B+1), Wi(8*+1) = Wi, [(6*+1),

and

(a) v (B) <w;

v+

u(B),
(b) B*is stable in WZ,, and

B <ws=

v+1

(¢) €+ 1is stable in Wi,

Proof. Deferred for now. O

These claims show that A,;1[(d 4+ 1) is a psuedo-hull embedding. The rest of
A 41 is determined by

uH(p(n) = ig (u(n)),

where ¢: Th(W,) = Th(W,41) is the map from embedding normalization. One must
check that the associated 177! preserves stability. Here we use proposition 5.63. In
general, v7(p(n)) = supig- “v*(n). However, if ¢(n) is a stable limit ordinal in
W, 41, then 7 is stable in W, so cof(n) = cof(¢(n)) = w. But then cof(v*(n)) = w,
S0 ig« is continuous at v¥(n). Thus v (¢(n)) = ig-(v*(n)), hence v (p(n)) is
stable in W, ; by the elementarity of ig-.

This ends our sketch of the proof of Lemma 5.64.

6.3 UBH holds in hod mice

In this section, we adapt the proof in [31] that a suitable form of UBH is true
in pure extender models. We show thereby that whenever (M,() is an lbr hod
pair with scope HC, and € is Suslin-co-Suslin in some model of ADT, then the
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corresponding form of UBH holds in M. As in the pure extender case, the proof
involves a comparison of phalanxes of the form ®(7°b) and (7T ¢).

We shall use this theorem to show that if (M, Q) is as above, and A is a limit of
Woodin cardinals in M, then for each £ < A there is a term 7 € M such that for all
g generic over M for a poset belonging to M|\,

79 = Qe N (M|N)[g]-

This generic interpretability result is important in showing that the HOD of the
derived model of M below A is an iterate of M|A. It has other uses as well.

Definition 6.13 Let T be a normal iteration tree on an lpm M. We say that T is
a plus-2 tree on M iff whenever a + 1 < 1h(T), there is an cardinal p of M such
that

M Eptt < NED) <ptt

We write p for the unique such p.

We are only interested in plus-2 trees that do not drop anywhere. In such a tree
T, if T-pred(S + 1) = a, then crit(E}) < pI, because crit(E7) is a limit cardinal of
MT below \(ET).

Theorem 6.14 Assume AD™, and let (M,Q) be a least branch hod pair with scope
HC. Suppose M |= ZFC™, and Q) is coded by a Suslin-co-Suslin set of reals. Let § be
a cutpoint of M, > 0 a reqular cardinal of M, and let (11,0, 7T ) be an M-tree such
that

(a) T is a plus-2 tree of limit length that does not drop anywhere,
(b) T has all critical points > 9, and
(c) T € (M|u)g], for some g that is M-generic over Col(w,9).

Then
Mlg] =T has at most one cofinal, wellfounded branch.

Proof. (Sketch.) Suppose not. Let T e M| be the M-least name such that 1
forces T to be a counterexample. Let g be M-generic over Col(w,d), and T = TY.
Let

m: N — Mlu
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be elementary, and such that crit(r) > 4, and N is pointwise definable from ordinals
< 6. Thus T € ran(m). Let

7: Nlg] — (M|p)lg]

be the canonical extension of 7w, and let
7(S)=T.

By assumption, 7 has distinct, cofinal, wellfounded branches in (M|u)[g], so we have
b, ¢ such that

Nlg] E b and c are distinct cofinal, wellfounded branches of S.

Let ®(S87b) be the weak phalanx ((MS | a < 1h(S)), (05 | a + 1 < 1h(S))). We get
an iteration strategy for ®(S7b) by finding maps 7,: MS — M|y, for a < 1h(S),
along with m,: M§ — M|u so that

Ty = T,

and
malpi M = wpl e,

This is done by working in the wellfounded model M, [g], where we have i/ (7) to
play the role of 7w, and can use condensation and an absoluteness argument to find
the other maps. (It is important here that we dropped the requisite agreement of
the m, by one cardinal.) See [31] for more details on this argument. Our iteration
strategy for ®(S7b) is then just the pullback of 2 under the m,, for a < 1h(S) or
a = b. Call this strategy .

Similarly, we get an iteration strategy > for the weak phalanx ®(S"¢) by pulling
back  under maps o,, for a < 1h(S) or a = c.

Let (N*,X*,0%) be a coarse I' Woodin model, where € is coded by a I' N I set
of reals. Let C be a maximal w-construction below 6* in N*. We compare ®(S57b)
with ®(S87¢) by defining, for each v, 1, the (¥, X, M,;)-coiteration (of ®(S7b) with
®(S7c)). This is a pair of psuedo trees (W,;,V,,;) according to ¥ and X respectively,
obtained by iterating away least disagreements with M;CJ, as in the proof of Theorem
5.57. The process of moving a phalanx up is a little different, so let us look at it
briefly.

Let 6 + 1 = 1h(S7b). We have

MW:MS
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for a < 6, and
MY = M.

The exchange ordinals of W at the outset are

w_  +MS
)\a - pa 1)

for @ < 1h(S). We say that 6 is stable in W, and all o < 6 are unstable. At any stage,
the current last model MKV of W is stable, and we let E;/V be the first extender on its
sequence that is part of a disagreement with Mfl. We show that the corresponding
extender on M;C’l is empty, and no strategy disagreements ever show up.
Let
E=E),

k= crit(E), and a be least such that k < AYY. We set A\ = A(E). We shall have
a = W-pred(y+1). If « is stable, we just proceed as usual, creating one new model
MY, which is stable. Similarly, if « is unstable but Ult(M,, E) does not occur in
V, we create only one new model, and it is stable. So suppose « is unstable, and
Ult(MY, E) does occur in V.

Let (3 be least such that o < 3 and [ is stable. (E.g. if & < 6, then = 6.) For
0<¢<(B—a), we set

ME/XHHE = Ult(/\/lmg, E).

If € < (6 — «), we declare that v + 1 4 £ is unstable, and set

woo_ow w
Mlhive = lareyrire(Aare)-

We declare v+ 1 4 (8 — «) to be stable. It is the new last node of W, from which
we shall take the next extender.

By induction, we have that for every node £ of W, there is a unique root 7 < 6
such that 7 <y, &. If £ is unstable, then so is 7; that is, 7 < 6. Moreover, if ¢ is
unstable, then [7, &)y does not drop in model or degree, and A = g (7).

As before, the maps 7, for a < 1h(S) or a = b, yield a pullback strategy for a
more general iteration game on ®(S7b). We also call this strategy ¥. In the more
general game, I makes stability declarations and creates new models according to the
rules above. Of course, there are no M,; and V in the setting of the general game.
I picks the next extender E freely (subject to normality), and if E is to be applied
to an unstable M,,, I may decide whether Ult(M,, E) is stable as he pleases. If he
decides against stability, he must create new models as above. At limit v such that
the branch to v II has chosen consists of unstable nodes, I is again free to decide

252



whether ~ is stable. If he decides for unstability, he must create new models in the
way we are about to describe.

At limit steps in the construction of W, we use ¥ to pick a branch a to be [0, 7).
We take y to be stable unless every £ € a is unstable ( so a does not drop), and M}
is a model of V. (Equivalently, sV = s, for some 7.) In this case, we declare 7 to
be unstable. Let 7 be the unique root such that 7 <y 7. For 0 < ¢ < (6 —7), we set

MY = Ult(MA,, E),
where E' is the branch extender of a. If £ < (§ — 7), then v + £ is unstable, and

w
Y+ (0-7)
Similarly, the o, for a < Ih(S) or a = ¢ yield a pullback strategy ¥ for the more

general game on ®(S7c). Using X, choosing extenders according to least disagree-
ment with M, ;, and making stability declarations by looking at W, we get a tree V
on ®(87¢). Although the constructions of W and V determine stability by looking
at each other, the reader can check that there is no circularity: when it comes time
to determine whether v is stable in W, the relevant part of V is already determined.

v+ (0 — 7) is stable, and we take the next extender from M

Remark 6.15 Our process of moving phalanxes up amounts to a step of full nor-
malization. We could have used a step of embedding normalization instead, and
thereby arranged that our VW and V are actually normal iteration trees on N. The
cost would be dealing with more embeddings. It may be that as we have defined
them, YV and V are normal trees on N, but we have not shown that, and we do not
need it.

Let us consider how the coiteration can terminate. Note first that M|6 = N|J is
a cutpoint initial segment of N = M§, and § < A\§. So both W and V begin with an
iteration tree ¢ on N |0 that is by €250y and has last model P = M,,;|(do,0), with the
strategy agreement Oy p = (€25)(s,,0y- This follows from Theorem 5.45. We assume
here that (v,l) is large enough that (N|6,{s0)) does not iterate past (M, ).
Thinking of U as a tree on N, its last model is ./\/lzj0 = @, where P is a cutpoint
initial segment of Q). @ is pointwise definable from the ordinals < Jy. (In most cases,
To = 0p.) Let E be the branch extender of ig‘m; then F is also the branch extender

of some branch [0, 7) of both W and V, with

Q=MY=M;,
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and for 0 < ¢ <0,

and

MY, e =Ul(ME ™, E).
(As we have set it up, it is not quite true that 7 = 79, or W|(r + 1) = U, or
WI(r + 1) = V[(r + 1). There are various lifts of ®(S7b) and ®(S7¢) inside W
and ) ocurring before the lifts displayed above. Those earlier lifts play no real role

anywhere. The extenders chosen from their last models could just as well have been
chosen from their first models.) Let

7 = Th (),

and
Zy =Th®(80) = iy, (2) =iy (2).

(@ is pointwise definable from ordinals < dg, so i;a is completely determined by Z.
All critical points in S are above §, so Z = Th™=(4) for all a < 1h(S), and also for
a=0bor a=c. Thus forall £ <0,

Zo = ThM7%e(59) = ThM7+e(4p).

Moreover, for n > 7, the critical points of E)" or E) (if they exist) are > 5. So the
rest of W can be considered as a psuedo-tree on the phalanx ((MY, | £ < 6), (A2,
¢ < 0)), and similarly for V. Let us call the 7 + £ for £ < 6 the new roots of W and
V.

If v is a new root of W, and v <y 7, then for no proper initial segment P of

M)V do we have Z, = Th”(8y). Moreover, Zy = Th™n" (8,) iff [, n)w does not drop.
Similarly for V. Motivated by this, let us call (v, ) relevant iff

() (M1{00, 0), Qurgéo.0)) = (My71(00, 0), (1) (50.0)):
(b) & is a cardinal cutpoint of M, and
(c) for no proper initial segment P of M}, do we have Z, = Th¥ ().

Let us call (v,[) exact iff it is relevant, and Z, = ThMSl(50).
If (v,1) is relevant, then neither W, ; nor V,; can reach a last model that is a
proper initial segment of M, ;.
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Lemma 6.16 If (v,1) is relevant, then in the (\I/,Z,M;CJ) coiteration, no strateqy
disagreements show up, and no nonempty extender on the Mffl side is part of a least
disagreement.

We omit the proof. It is like the proofs of the earlier results along the same lines.

Claim 1. There is an exact (v,1) <jex (0%,0).

Proof.  Otherwise (6*,0) is relevant, so the (\I’,Z,M(E*’O) coiteration produces
(W, V) with last models extending M. ;. This contradicts the universality of M. ;.
U

Now let (v, 1) be the unique exact pair.

Claim 2. 1 = 0 and Th**(6y) = Z,.

Proof. 1f not, then p(M,,;) < . But letting P be the last model of W, we have
that 0y is a cardinal of P, P|éy = M, |0y, and p(P) > &y. It follows that P is a
proper initial segment of M, ;, and the branch of W to P does not drop. But then
(v, 1) is not relevant, contradiction. U

It is easy to see that M, = ZFC™, so p(M,x) = o(M,y) for all k < w, but

p(My41,0) = do-
Let W =W, and V =V, have lengths vy and .

Claim 3. ng = ./\/llj1 = M, o; moreover, the branches of YW and V to 7, and vy, do
not drop.

Proof. Neither side can iterate to a proper initial segment of M, because (v, 0)
is relevant. Neither side can iterate strictly past M, o because (v,0) is exact. O

Let ng <w 7 and 1, <y 7; be the new roots of the two trees below 7 and 7.
Let
1o: Q%MUVX and 17 : Q—>/\/lg1

be the embeddings given by the fact that Z, = ThM’Vig((SO) = Th™n (60). These are
just the lifts under 7 of the branch embeddings i3, . and i, .. We have that

1 01y =

70,70 o1,

-))
71,71

since both embeddings are the embedding given by () being the transitive collapse
of Hull™0(¢).

We now get a contradiction using the hull and definability properties in M, as
usual.
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Definition 6.17 For M an lpm, we say that M has the definability property at a iff
a is first order definable over M from some ordinals b € [a]<, and write Def(M, «)

in this case. We say that M has the hull property at a iff whenever A C « and
A€ M, thereis a B € M such that B is definable over M from some b € [a|<“, and
BnNna=A. We write Hp(M, «) in this case.

Claim 4. no = n;.

Proof. Suppose toward contradiction that ny = 7 + & and 1, = 7 + &, where

&) 7é 51. Let
jo: Mg, — Ult(ME  E) = M),
and

it ME — UM E) = M),

be the canonical embeddings. Suppose first that £ and & are incomparable in
S, and let F = ES and G = Ej, where a +1 <g &, f+1 <g &, a # B,
and S-pred(a + 1) = S-pred(8 + 1) = p. We may assume lh(F) < lh(G). Let
A =sup{\(ES) | a+ 1 <g p}. Letting rg = crit(F), we have

= least p > X such that ﬂDef(MfO,u).
Because the generators of jy (i.e. the generators of E) are contained in &y, we get

Jo(ko) = least pu > jo(A) such that ﬁDef(MZX,u)
= least u > jo(A) such that —Def(M,,, ).

The second line comes from usmg z oo 1O Move up to MW = M, . Note here that
Jo(ko) < Jo(AE) = AP < crit(i)y . ). Slmllarly, letting x, = crlt(G), we get

ji(k1) = least pu > ji(A) such that —Def(M) , )
= least p > j1(A) such that —Def (M, o, it).
So jo(ﬁg) = jl(lil). But kg, k1 < lh(F)7 and ]0[1h(F> =1 rlh(F), SO Ko = K1.
Now let vy be the sup of the generators of F'; that is, the least v such that every
o < M(F) is of the form i (f)(a), for some a € [y]<“. For § < vy, FI3 € Ult(MS3, F),
by closure under initial segment. (This not one of the axioms on premice in the Jensen

theory, but it can be proved to hold of sound, iterable premice.) On the other hand,
Fip ¢ Ult(./\/lf, F[B). From this we get

|1/0| & = least it > Ko such that ﬂHp(MEO, i).
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Similarly, letting 11 be the sup of the generators of GG, we get

|V1\M§1 = least y > kg such that ﬂHp(M‘;, 1).

Using i)Y o jo and @} _ o ji to move up to M,, and considering the hull property
7 7 ; Mg : Mg ME ME
there, we get as above that jo(|vo] "¢0) = ji(|ra]”"¢1). Thus || = || .

However, G was used strictly after ' in S, so Ih(F) is a cardinal of M$|1h(G), and
thus s
v < Ih(F) < |y [Mer.

This is a contradiction.

We are left to consider the case § <g &;. Let G be the extender used in [0,&)s
and applied to Mfo. Let k1 = crit(G) and vy be the sup of the generators of G. Let
A =sup{\ES) | a+1<g5&}. Then again,

Ji(k1) = least p > ji(\) such that ﬁDef(M:?)l’/j/)
= least p > j1(\) such that —Def(,/\/l]jwu)_

Note that ~q is stable, and g is unstable, so 179 <w 0. Let F' be the extender used in
[10, Y0)w and applied to MZX Let ko = crit(F). Then since Mﬁo has the definability
property everywhere above ji(A), using i)V~ we see that rq is the least > j;())
such that —Def(M,, ). Thus ko = ji(k1). But F = E)V for some n > 7 + 6, so
1(AMG)) < MF), so j1(MG)) < v(F), and the hull property fails in Ult(M)Y, F) at
all n such that ko < n < j;(A(G)). Moving up to M, ,

Vn(ko < n < j1(MG)) = ~Hp(M,0,n).

However, J\/lf1 does have the hull property at vy = v(G) < A(G). This gives
Hp(M), ji(11)), and thus Hp(M,,j1(»1)), noting here that crit(i), . ) > ji(11).
This is a contradiction. ]

Claim 5. ng < 1+ 0.

Proof. Otherwise £ = b and & = c¢. Let F' be the first extender used in b — ¢
and G the first extender used in ¢ — b. We get a contradiction just as we did in the
proof of Claim 4, in the case & and &; were S-incomparable. U

Now let s be the increasing enumeration of the extenders used in (7g,7)w and
t the increasing enumeration of the extenders used in (7y,7;)y. Using the hull and
definability properties in M, o, we get that s = ¢t. But this implies that v, and v, are
unstable, a contradiction. That completes the proof of Theorem 6.14. Il
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7 HOD in the derived model of hod mouse

In this section, we prove Theorem 0.16. For the reader’s convenience, we re-state it
here.

Theorem 7.1 Suppose V' is normally iterable above k by the strategy of choosing
unique cofinal wellfounded branches. Suppose there is a superstrong cardinal \ > K,
and suppose there are arbitrarily large Woodin cardinals; then there is a Wadge cut
[’ in Home, such that L(I',R) = ADg, and

HODM®) = GCH + there is a superstrong cardinal.
The theorem follows easily from

Theorem 7.2 Assume AD", and let (M, V) be an lbr hod pair with scope HC, and
such that U is coded by a Suslin-co-Suslin set of reals. Suppose

M = ZFC + X is a limit of Woodin cardinals.

Let g be Col(w,< A)-generic over M, Ry = [J{RN M[glw x o] | a < A}, and
Hom, = {p[T]NR} | 3a < A(M|g|w x a] = T is < A-absolutely complemented }.
Then

L(Hom,R?) = ADg.

and

QL(Hom; p

(a) if X is a limit of cutpoints in M, then HODFHomsRy) Rs) is a non-

dropping iterate of M|\ by W, ), and

(b) if kK < X is least so that o(k) > X in M, then there is an iteration map i: M —
N by ¥ coming from a stack s on M|\ such that HOD*Homg Rg) | gL(Homg Ry) —
Nli(k).

The model L(Homy, RY) above is the “old” derived model of M below A. Because
ADg holds in it, P(R}) N L(Hom},R?) = Homy. It is clear that in case (b) above,
i(k) is regular in HODYHemoR9) - and hence L(Homy,R?) = ADg + “0 is regular”.
[35] produces a model of the “largest Suslin axiom”, or LSA, from a hypothesis on
the existence of lbr hod pairs. (Sargsyan [1%] had already produced a model of LSA
from a somewhat weaker assumption on the existence of hybrid mice.)

We shall need the following generic interpretability lemma. Its proof follows the
same basic outline as Sargsyan’s proof of the corresponding fact for rigidly layered

hod pairs below LSA.( See [10] and [15].)
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Lemma 7.3 (Generic interpretability) Assume AD™, and let (P,X) be an lbr hod
pair with scope HC, and such that X is coded by a Suslin-co-Suslin set of reals. Let

P |=ZFC™ + 4 is Woodin;

then there is a term ™ € P such that whenever i: P — (@ is the iteration map
associated to a non-dropping P-stack s by X, and g is Col(w, < i(0))-generic over Q,
then

i(r)? = Xy <igo) [HCRY,

Proof. For £ <n < ¢ and k < w, we shall define a term 7¢ 5, ,, such that whenever g is
P-generic over Col(w,n), then TZkW = Xie.k) THCT We then take 7 to be the join

of the 7¢,. Clearly then 79 = X _5 THCP whenever ¢ is Col(w, < §) generic over
P. 1t will be clear that this property of 7 is preserved by X-iteration.

So fix £ << dand k < w. Let g be P-generic over Col(w,n). We shall define
e k) THCPW from ¢, k, P|§ and g. The definition will be uniform in ¢, giving us the
desired term.

Let u = (n*)’. We may assume that p is a cutpoint of P. For if not, let
E be the first extender on the P-sequence such that crit(E) < p < lh(FE), and
set @ = Ult(P, E). Then p is a cutpoint of @, HCPl = HCPY and by strategy
coherence, (g ex) = S(ek). A definition of 3igy (e x) THC?Y from Qlig(6), &, k, and
g will then give the desired definition of Y THCTY! So we assume p is a cutpoint
of P.

Let w be the canonical wellorder of P|j, and working in P, let C be a w-
construction of length ¢ that is above p, and such that

(i) Each FC is a plus-2 extender on the P-sequence, and
(ii) C adds extenders whenever possible, subject to (i).

Item (i) involves a slight inconsistency with our previous definition of w-construction.

There we required that the strength of FC be at least an inaccessible cardinal
n > lh(EM»0), and because we minimized in Mitchell order, the strength could
not be more than that. Here we mean to require that the strength be (p™), for
p = Ih(EM»0) and not more, because we minimize in the order of extenders on the
P-sequence. That implies that A\(FS) < (p™+)F. This change does not affect any-
thing we proved about w-constructions earlier. It has the consequence that for any
T on Mfk, the iteration tree 7* on P that is part of lift(7, M, x, C) is a plus-2 tree
using extenders from the P-sequence. So by 6.14, if T € P[g], then UBH holds for
T
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We also have CBH for plus-2 trees 7* on P such that 7* € P. This is because
ZP(T*) is defined, in P, and wellfounded. Thus in P, the Q‘El are total. In P, they
are induced by ©F, but ¥ C %, and ¥ is total on V. So ¥ induces a total-on-V
strategy 0, for M,,; such that QF, € Q. The 7, are Suslin-co-Suslin in V because

3] is. Since they are induced by ¥, they have strong hull condensation and normalize
well. In fact, each (MS Q’Ijl) is an Ibr hod pair in V. Moreover, V |= AD™, so in

v,
V we can carry out the comparisons needed to see each (M, ;, €2 ,) has a core. Thus

(M,;,€,,) has a core in P, and C does not break down in P.

Claim 1. In P, there is a v < § such that (P[{¢, k), 2@,& iterates to (M, Q5 ).

Proof. Suppose not. Working in P, we claim that for all (v,[) such that v <
5, (P|(E, k),i]é’@) iterates strictly past (M,,,2,;). This almost follows from the
comparison theorem 5.45. However, to simply quote 5.45, we would need to know
that 2@ gy 15 < 0 universally Baire in P. That is part of the theorem we are proving
now. Nevertheless, the proof of 5.45 works here. The consequence of universal
Baireness we need is just that if 7 is a normal tree by Z@kw and i: P — (@ is an
iteration map by ¥ with crit(z) > &, then i(7T) is by Zé,m' This much is true by the
strategy coherence of X.

But then (P|(¢, k), 2é7k>) iterates past Mo in P. This contradicts the Woodin-
ness of ¢ in P. O

Let 7 be the normal tree by Z‘lém whose last model is M;C’k given by claim 1,
and let i: P|({, k) — M, be its canonical embedding.

Claim 2. Y7 m,, = ) 4

Proof. The proof that the two strategies agree on all trees in P actually shows
that they agree on all trees in V. [ Let U be by both strategies, and b = €, (T).
Let U* be the tree according to ¥ that is part of lift(U, M, , C); again, we do not
need U € P to make sense of lifting. Then W (T ,U"b) is a psuedo-hull of & (T
by our previous calculations. However, i/ (T) is by Y k) by strategy coherence, so
W(T,U"b) is by Xy because X xy normalizes well, so b = X7, , (U).] O

Now let U be a normal tree on P|(&, k) of limit length that is according to X,
and such that I is countable in P[g]. We wish to find ¥ (/) in P[g], and define

it from the relevant parameters. But ¥ ) is pullback consistent, so

ey (U) = b Spap,, (U) = b
HF Q7 (U) = b.

So it will be enough to show
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Claim 3. If S is countable in P[g], of limit length, and by € ,, and b = Q,1(S),
then b € P[g]. Moreover, b is uniformly definable over P[g] from S and C.

Proof. Let §* be the plus-2 tree on P that it part of lift(S, M, , C). enough to
show b € P[g], and to define there from the relevant parameters, uniformly.

We know from 6.14 that in Plg], S* has at most one cofinal, wellfounded branch.
Since all critical points in S* are strictly above p, we can think of S* as a plus-2
tree on Plg]. Then by [%], since S* is countable in Plg], it has exactly one cofinal

wellfounded branch b in P[g]. Moreover, again by [8], §* is continuously illfounded
off b. Tt follows that b = X(S*), and therefore b = €0, (S), as desired. O
This completes the proof of Lemma 7.3. U

Assume AD™, and let (M, Q) be an Ibr hod pair with scope HC. Suppose s and
t are stacks by 2 on M with last models P and @ such that M-to-P and M-to-Q
do not drop. By 5.54 and Dodd-Jensen, we can then find stacks v and v by €25 and
), with a common last model such that neither stack drops getting to /N, and such
that Q,~, = Q,~,. By Dodd-Jensen, for any such s, t¢,u, and v, i, o5 = 7, 0 i;, where
these are the the iteration maps in question. Thus we have a well-defined direct limit
system.

Definition 7.4 Let (P,X) be an lbr hod pair; then

(1) F(P,X) is the collection of all (Q, V) such that there is an P-stack s by X with
last model QQ, such that P-to-Q) does not drop, and ¥ = .

(2) For (Q,¥) € F(P,X), mpy)Quw): P — Q is the unique iteration map given
by any and all stacks by .

(3) My (P,X) is the direct limit of F(P,X) under the (g w),(r,a)-
(4) T(py)ec: P — Moo(P,X) is the direct limit map.

Of course, M (P, X)) = M (Q, V) for all (Q,V) € F(P,%). Clearly, (P,%) =*
(Q, V) iff M (P, %) = Moo(Q, V). Thus M (P,%) € HOD, being definable from the
rank of (P,Y) in the mouse order.

Not all of 3 is actually used in forming M (P, ). Let us call a normal tree 7
relevant iff T is by X, and there is a normal & by ¥ such that 7 C S, and S has
a last model @), and the branch P-to-() does not drop. Call a P-stack s relevant
if for i +1 < dom(s), the branch of T;(s) to M. (7i(s)) does not drop, and for

i +1 = dom(s), Ti(s) is relevant. Let '€ be the restriction of ¥ to relevant trees.

21‘61

The Y-iterations that go into forming M., (P, ) are all relevant, so is what we

need to construct Mo (P,X). The author has shown in [33]:
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Theorem 7.5 Assume AD™, and let (P,X) be an Ibr hod pair with scope HC. Let k
be the cardinality of o( M (P,3)), and let Code(ETel) be the set of reals coding stacks
by 7€ then

(a) Code(L"®!) and its complement are k-Suslin, and
(b) Code(X) is not a-Suslin, for any o < k.

In particular, k is a Suslin cardinal.

The one can show the irrelevant part of X is also Suslin, but perhaps not o( My (P, ¥))-
Suslin. (It is possible that M, (P,¥) = P, because there are no non-dropping itera-
tions of P!) So one gets

Theorem 7.6 Assume AD™, and let (P,X) be an Ibr hod pair with scope HC. and
let Code(X) be the set of reals coding stacks by ¥; then Code(¥) and its complement
are Suslin.

Note here that since ¥ is total on stacks by X, if Code(X) is S-Suslin, then so is
its complement.

Part (b) of the Theorem 7.5 follows at once from the Kunen-Martin theorem, and
the fact that there is a wellfounded relation W on R of rank at least o( M (P, X))
such that W is arithmetic in Code(X). [Let (¢,b)W(s,a) iff s and ¢ are stacks by %
with last models M and N, s C ¢, P-to-N does not drop, and i}, y(a) > b.] Part (a)
is easy if X has branch condensation. We get it in the general case from some tail
¥¢ fully normalizing well. See [33] for proofs of 7.5 and 7.6.

We mention Theorem 7.6 because we have many theorems under AD* in which
the phrase “let (P, %) be an lbr hod pair such that ¥ is Suslin and co-Suslin” occurs.
Here the “co-Suslin” part is trivially redundant, and the “Suslin” part is nontrivially
redundant.

Proof of Theorem 7.2. The techniques here are pretty well known. Let (M, V) and
g be as in the hypotheses. For v < A, let

\I,Q

M(R*
Y = Yo THC (R3)

Fixing a coding of elements of HC by reals, we can identify \II?V ) with a subset of

R,
Claim 1. If v < A\, then ‘II?VM € Homj.
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Proof. Let h = g N Col(w, < vT). In M[h] we have, for each p < A, a term 7 such
that for all [ that are Col(w, u)-generic over M[h],

7= Wy, THCM P,

For the specific such term 7 given to us by Lemma 7.3, it is not hard to see that for
all sufficiently large ~,

M{[h] |= there are club many generically 7-correct hulls of V.
That is, in M[h], whenever N is countable and transitive, and
m: N[h] — (M]|y)[h]
is elementary, and everything relevant is in ran(r), and
m((7, 1) = (T, 1),
then for any [ that is Col(w, j1)-generic over N,
7= W, NHCN

The proof of this is similar to the proof of Theorem 5.1 of [30]. Working in M, let C
be the background construction and

ii M|(v, k) — M;ﬁk

be the iteration map by ¥,y that is described in 7. Let C = 77 }(C) and i = 7' (i),
etc. So these are described in 7. Suppose U is according to 7. Let
W = lift" (i)

be the plus-2 tree on N that is given to us by 7. W is countable and plus-2 in N|[h, ],
so by 6.14, it picks unique cofinal wellfounded branches there. This implies that W
is continuously illfounded off the branches it chooses. But then 7WV is continuously
illffounded off the branches it chooses, so 7V is by . But lifting commutes with
copying, so
W = mlift" (itd)
= hftM(<7T o i) U)
= lift™ (itd).
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Note here that 7 is the identity on the base model of U, so 7o agrees with 7 (i) = i
on the base model of . This gives the last equality.

So lift* (itd) is by W, and hence iU/ is by (Qg,k)h’l. But we saw in the proof of 7.3
that this means i/ is by the tail strategy (¥, x))7. M, where T is the tree giving
rise to 7. Since Wy, 1 is pullback consistent, U is by \IJ’<,,,;€>, as desired. Il

Remark 7.7 We could also prove Claim 1 by quoting Theorem 7.6, and using the
fact that every Suslin-co-Suslin set of L(Homg, RY) is in Homy,.

Claim 2. The \IJ“Z’MM, for v < A\ are Wadge-cofinal in Homy.
Proof. Let n < A and

Mlglw x n] = T and T™ are < A-absolute complements.

Let n < § <\, and M |= § is Woodin. Let p = (67F)™. Put m € Z iff there is a
non-dropping, normal iteration tree & on M |u such that

(i) U is by \I!?Mm, with last model NV,
(ii) all critical points in U are strictly above n, and
(iii) 7: M[glw x n] — N[glw x n] is the lift of the iteration map.

Standard arguments show that for z € R7,
x € p[T) < I € I(zx € p[r(T Nw x §M))).

This shows that p[T] is projective in \I/?M 0 This easily implies the claim. ]

Working in L(Homz, R;), we define a directed system of Ibr hod pairs whose direct
limit is HOD. Let us say that an lbr hod pair (P, X)) is full iff 3 is Suslin-co-Suslin,
and

(a) P = ZFC™, P has a largest cardinal §, and k(P) = 0, and

(b) whenever s is a P-stack by ¥ with last model @, and the branch P-to-Q of
s does not drop, and is: P — () is the iteration map, then there is no lbr
hod pair (R, ®) such that ® is Suslin-co-Suslin, @ < R, p(R) < i4(d), and
Pio(@).0) = s
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We write §° for the largest cardinal of P.

Claim 3. Let n be a successor cardinal of M, and n < A; then (M|n, \11‘2777 0>) is a full
Ibr hod pair in L(Homy, RY).
Proof. (M|n, ¥, ) is an lbr hod pair in V, so (M|n, \D?mo)) is an 1br hod pair in

L(Homy, R*). We must see that (M|n, ¥, ) is full.
Suppose toward contradiction that in L(Homj, RY) we have

(i) an M|n-stack s by W, with last model @), such that the branch M|n-to-Q of
s does not drop, and

(ii) an Ibr hod pair (R, ®) such that ® is Suslin-co-Suslin, Q@ <°* R, p(R) < 6%, and

Pio(@),0) = Vs (0(0),0)-

Since 7 is a cardinal of M, s is in fact an M-stack, and regarding it this way, it has
a last model S such that @) < .5, and the branch M-to-S of s does not drop. Since
0(Q) is a cardinal of S, R ¢ S.

However, working in V' now, we can find an R}-genericity iteration of S|\ by W,
so that all its critical points are strictly above o(Q). Let W be the final model of
this genericity iteration; then we have h being Col(w, < A) generic over W so that

R; = R?,

where R} are the reals in some W[h N (w x v)], for v < A. Moreover, as in Claim 2,
the strategies (\I/S)Z,’k> for v < A are Wadge cofinal in Hom;, and clearly (\I/S)?Mk) =

(W), sy It follows that
Homj, = Homj.

Note that R is ordinal definable in L(Homg, RY) from Q and W, ). The
following little lemma isolates the familiar reason.

Lemma 7.8 Assume AD'. Let (P,X) and (N,Q) be lbr hod pairs with scope HC
such that for some (Q, ®),

(a) (Q,®) 2 (P, %) and (Q, ®) I (N,Q),
(b) P and N are each o(Q)-sound, and project to o(Q), and
(¢) Po(@)) NN = P(o(Q)) N P;

then (P, X)) = (N,Q).
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Proof. 1f there are any counterexamples, then there is a Suslin-co-Suslin counterex-
ample by Woodin’s basis theorem. Let N* be a coarse I' Woodin, for a sufficiently
large T, and let C be the maximal hod pair construction of N*. Let (P, ) iterate to
(M5, Q5,) and (N, Q) iterate to (M7, Q2 )), and assume without loss of generality
that (v, k) <iex (n,1). Thus (N,Q) iterates past (M, x, Q). Let T and U be the
normal trees by which the two sides iterate to and past (M, x, €2 x). The branch
P-to-M, ) of T does not drop, so 7 is a tree on @ by ®. Let R < M, ;. be the image
of @ along P-to-M, ;. Then T is the initial segment U [y + 1 of U where extenders
disagreeing with R are used, and R = & _(Q). Let Ih(id) = 7 + 1. Since R is a

0,y

cutpoint in MY, crit(i¥ ) > o(R). Since M, is o(R) sound and projects to o(R),

and M, < MY we must have v = 7. That is, T = U. Moreover, M, and /\/lzj

T

have the same subsets of o(R) in them, because P and N had the same subsets of
o(Q). It follows that M, = MZ . So letting E be the branch extender of the main
branch of 7 = U, we have that

Ult(P, E) = Ult(N, E).

It is easy then to see that P = N.
Since > and (2 are pullback consistent, we also get

Y= (Q(E,k)ﬂ = Q?

where 7 is the main branch embedding of 7 = U.
O

Applying the lemma, we have that R is ordinal definable in L(Homj,R}) from

Q and \Ifg’<o(Q),0>. But \Ifg’@(Q)m is definable over W (RR}) from parameters in W, by
7.3. By homogeneity, R € W, and thus R € S, a contradiction.

0

We define in L(Homy, RY): for (P,%),(Q,¥) € F,
(P,Y) <" (Q,9) iff IR, P)[(R,®) < (Q, V) A (P,Y) iterates to (R, ®)].

If (P,Y) <*(Q, V), then
T(P%),(Q,1) P— R ﬁCt Q

is the iteration map. By Dodd-Jensen, it is well-defined, that is, independent of the
choice of stack witnessing that (P,Y) iterates to some (R, ®) < (Q, V). The 7’s
commute, and <* is directed, so we have a direct limit system. Set

My = direct limit of (F, <*) under the m(py5) (@ v),
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and let
T(PX),00 - P— Moo

be the direct limit map. Another way to characterize M, is that it is the Ipm N of
minimal height such that for all (P,X) € F, My (P,X) <° M. Our two definitions
of m(p )00 are consistent with one another.

Let us write
0= QL(Hom;,R;)’

and
HOD = HODX(Homg.Rg)

Claim 4. M., C HOD|®©.
Proof. This is easy. O

For the reverse inclusion, we show first

Claim 5. © = o(M,).

Proof. We must show that © < o(M,). This is easy to do if we appeal to 7.6. For
let @ < ©, and let B € Homg be a prewellorder of length (at)E(HomgRs) - By the proofs

of claims 2 and 3, there is a (P, ¥) € F such that B is Wadge reducible to Code(Erel).
By 7.5, Code(S"¢)) is #-Suslin in L(Hom?,R?), where & = |o(Mo(P,3))|. So B is
k-Suslin, so a™ < k by Kunen-Martin. So o < o(M).
We now give a proof that avoids 7.5. Let n be a cardinal of M, and let
_ g
B = \Ij(n,0>'

Let My = Ult(M, E), for E the first extender on M overlapping 7, if there is one.
Let My = M otherwise. Let

dp = least § > n such that M, = 0 is Woodin.

So n and &, are cutpoints of My. Letting N = M;|(65 )Mo and & = Uiy yord =Wy
as appropriate, we have that (N, ®) € F. We shall show that

7T(N,<I>),oo<50) 2 @(B) .

Here ©(B) is the sup of the lengths of OD(B) prewellorders of R, in L(Homj, R) of
course.

Remark 7.9 We believe that a little more work shows that m(y 3).(d0) = ©(B).

267



To see this, let f: R} — 7 be a surjection, and

f(z) = & iff Lo(Homy, RY) = o[z, &, B].

We must show that 7 < m(na), s(00). Tt is more convenient here to consider the
relativised direct limit system .F"(N ®), in which all iterations must be strictly
above 7. It is not hard to see that F"(N, ®) is directed. Let M7 (N, ®) be its direct
limit, and 7r( N, +, be the direct limit map. We shall show

T<7T(N<I’) (50)

Since F1(N, ®) is a subsystem of the full F(N, ®), this is enough.
Working in V', let
RZ:{$i|i<W},
and let s be a run of G*(N,w,w;) by ® that is cofinal in F7(N, ®), so that
N, = MI(N,®),

where N, is the direct limit along s, and 45, = WE]N@)OO. Let No = N, and N, be
the last model of s[k, for k > 0. Let 6, = 43,(do). We can arrange that whenever
i < k, then z; € Ny[H], for some H that is generic over N}, for the extender algebra
at 5k‘

We have Ny < M. The stack s is according to Wy, so thinking of s as a stack

on My, and letting M, be the last model of sk in this context, we have
Ny, < My,
and
Z'kJ: Mk — Ml

the iteration map given by s, for k, ] < w.

Now we do the usual dovetailed R}- genericity iterations, iterating each (M, Uik 01,, )
strictly above dy to (Q, €2), and arranging that L(Homy, R*) is also a derived model
of Q). Let

Tkt My — Qy
be the map of the R} genericity iteration, and let
ki Qr — Q)

be the copy map, which exists because we dovetailed the genericity iterations to-
gether. ( See for example the proof of Theorem 6.29 of [38] for the details of this
well-known construction.) Here is a diagram.
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00,k Ok,w

Qo Qk Qu
jO Jk jw
10,k Ihw
M, M, M,
id id id
10,k Tk,w
Ny Ny, N,

We have for each k < w a Qy-generic hy, such that R; =R} and Hom;, = Homz.
The latter holds because for each ¢ < A, the critical points in j are eventually above
Jk(€), and the initial segment of the iteration that gets us to this point acts only

on some M|y for v < A. This tells us that <Qk)?fk(5),0) is projective in \D?%OV That

implies Hom;, C Homg. The reverse inclusion comes from the fact that each W, )
is a pullback of some ¢ ).

Note that we have for each k < w a term Bk € @}, such that
B =B
for all I that are Col(w, < A) generic over @}, and such that Rj = R}. Moreover,
Uk,n(Bk) =B,

for k < n < w. This follows from 7.3, the fact that all embeddings in the diagram
above have critical point > 7, and strategy coherence. Let W, be the extender
algebra of () at 0, and put

€Y, iff Qp = 3b e Wolb I (Col(w, < A) IF
¢ is the least  such that Ls(Homy, R%) k= ¢[i, 7, By))]

Because W;, has the d;-chain condition in Q,

Qr = |Yi| < 0.

Now we define an order preserving map
PiT = Ty a).00(00) = 0w (d0)-

Let £ < 7, and pick any x such that f(x) = . Let & < w be sufficiently large that
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(i) @ = z; for some i < k, and
(ii) for kK <m <n <w, opnp(a) =a and 0,,(&) =&

Since @, is wellfounded, we can find such a k. By (i), z is Wy-generic over Q. It
follows that & € Yj; say that

¢ = the ~-th element of Yy

in its increasing enumeration. We then set

P(&) = irw(y) = Orw()-

We must check that p(§) is independent of the choice of z, and that p is order
preserving. For this, let f(y) = 7. Let k,¢ and k,, be as in (i) and (ii) above,
for (x,&) and (y, 7) respectively. Let ~,¢ and 7, ; be the corresponding v‘s. Taking
n > max(k, ¢, ky ), we have £, 7 € Y,,, and

§ = the ok, n(72,6)-th element of V,.

This is because oy . ,(§) = £. Similarly,

x,&,T

T = the o, n(7y,r)-th element of Y,,.

So
§ <7 it ik, 1 (Vag) <y rin(Yyr)
iff Z'kx@w (’Yz,g) < Z.ky,r,w (/yyﬂ')v
as desired. This proves Claim 5. =

Claim 6. HOD|© C M.

Proof. The proof uses ideas from the proof of claim 5. Let A be a bounded subset
of ©, and
¢ € Aff Ly (Hom?, RY) F ¢[e].
Let (N, ¥%) be an initial segment of M such that (N, ¥%,) € F, and setting & = U¥,,

we have
A C T(N)00(00),
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for some 9y that we now fix. Let My = Ult(M, E), where E is the first extender on
the M-sequence overlapping o(NV), if there is one. Otherwise, let My = M. Let s be
a generic run of GT(N,w,w;) by @, so that

Nw = M&(N, (I))a

where N, is the direct limit along s, and 4, = W?N’(I))’oo. Let Ny = N, and N, be
the last model of sk, for k > 0. Let &), = i§ (o). Thinking of s as a stack on Mo,
and letting M} be the last model of s[k in this context, we have

Ny < M,

and
Z‘kJZ Mk — Ml

the iteration map given by s, for k, ! < w.

Again, we do the usual dovetailed RZ— genericity iterations, iterating each (M, Vs az, )
strictly above dy to (Qk, ), and arranging that L(Homy, R¥) is also a derived model
of Q. Let

Tkt My — Qy
be the map of the R} genericity iteration, and let

ok Qr — Q

be the copy map. The diagram in the proof of claim 5 applies to our current situation.
Now let

£ € A iff ip(§) € A}
iff La(HomZa RZ) >: SO[W(N;C,(Q;C)NIC),OO<5)]

Ay can be defined over ), from « and Ny, because the forcing leading from @} to
its derived model L(HomZ,RZ) is homogeneous. So A € Qp, so Ar € Ni. Let [ be
large enough that oy, , (o = o whenever | <m <n < Q. Then for [ <m <n < w,

i (Am) = Ay,
It follows that
A =i (A1) = TNy, (00w, ) 00 (A)-
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So A € M, as desired. O

Claim 6 nearly finishes the proof of Theorem 7.2. What is left is to identify M
as the iterate of M described in clause (a) if A is a limit of cutpoints of M, and in
clause (b) otherwise. This is easy, and we leave it to the reader. Il

Proof of Theorem 7.1

Under the hypotheses of 7.1, we have shown that there is an lbr hod pair (M, ¥)
with scope HC such that for some A\, M | “X is a limit of cutpoint Woodins, and
there is a superstrong < \.” Moreover, we have that Code(¥) is Hom. So we can
apply 7.2, and we get that the HOD of the derived model D(M, < A) is an iterate
of M, and satisfies “there is a superstrong cardinal”. But then via an R-genericity
iteration M-to-M*, we can realize D(M*, < X) as L(I',R), for some I' C Hom,..
This proves the theorem. Il

With more work, this HOD-computation can be localized. That is, assuming the
hypotheses of Theorem 7.1, and letting I' € Hom,, be the pointclass witnessing its
conclusion, then whenever I'y C I', then

L(Ty,R) = VAOP is the universe of an lpm.

This is proved in [33]. What we have done in the present section is analogous, in
the pure extender model case, to Theorem 5.1 of [30], according to which the Mouse
Set Conjecture holds in the derived model of a mouse (provided the mouse has some
natural closure properties). The work of [33] is parallel to Theorem 16.1 of [30],
according to which the Mouse Set Conjecture implies its local versions.

It is also interesting to see what strong determinacy theories are true in the
derived models of Ibr hod pairs (P, ) such that P reaches reasonably large cardinals.
There are some results in this direction in [35].
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IH, s, 195
iterates past, 6, 201
iterates to, 6, 201
iteration strategy
Yo (tail strategy), 5
coherent, 132, 192
complete strategy, 30
GT(M,0), 29
induced by %, 38
positional, 132, 192
pullback consistent, 190
self-consistent, 186
srel 961
Y™ (pullback strategy), 31
Y (tail strategy), 31
Y < (join of strategies), 31
f-iteration strategy, 29
(n, 0)-iteration strategy, 29
iteration tree
“ o (partial iteration map), 25
)\f, 26
Ih(T), 25
M-stack, 30
ms-normal, 26
nice, 10, 32
normal, 26, 32
normal M-stack, 27
plus-2 tree, 250
relevant, 261
UST U, 58

weakly normal, 30

LEC (L[E] capturing), 8
least branch hod pair, 6, 187
least branch premouse
branch-active, 180
definition, 181
language Ly, 178

BN SN EN N 178
M-tree, 179
lift(7, M, C), 37, 196

maximal construction, 200
My (P, Y), 261

mouse pair, 6, 187, 189
ms-1SC, 19

NLE (no long extenders), 9
normalizes well, 4, 104
UBH (HUBH
Q5 ’Qn,ﬁ’ 145
QF,, 146
Qmk) 185

pi(M), p(M) (standard parameter), 20
(7, v, k)-lift, (7)), 185
positional, 132, 192
premouse
least branch, 6
pure extender (Jensen), 17, 18
E(M),l(M),0(M),o(M), 18
< (initial segment), 18
<€ (cutpoint), 203
projectum
reduct M¢, 20
pi(M)7 p(M)7 20
pseudo iteration tree, 207
(v, %, M,(Sl)—coiteration, 251
psuedo iteration tree, 237
psuedo-hull embedding
definition, 66
u®,v?, (tg)q)v (ti)q)apq)a 67
PoWw, 69
of T into W(T, F), 69
dlE, 148
Prsp, 71
pure extender pair, 6, 187, 193
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res,, 150
(R, ¥)-coiteration, 232
rt(y), 209

solid parameter, 21

solid premouse, 21

solidity witness ng, 20

sound, k-sound, 21

stable node, 208

st(y), 209

stab(7), 239

strategy coherence, 132, 192
strong hull condensation, 5, 108

strongly uniquely f-iterable, 33, 108
0, ﬁ—iterable, 113

UBH (Unique Branches Hypothesis), 10
ultrapower

[a, f1i, 24

Ultg(M, E) , 16

Ult, (M, E), Ult(M, E), 24
uniquely f-iterable, 33, 108, 112

weak Dodd-Jensen property, 193
X(T, F) (full normalization), 56, 58

z(v), 2% (v), 121
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