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PREFACE

This book began life as a long research article titled Normalizing iteration trees
and comparing iteration strategies. 1 found the main ideas behind the comparison
process that motivates it in Spring 2015, and circulated a handwritten manuscript
shortly afterward. I circulated a preliminary form of the present book in April 2016,
and have revised and expanded it many times since then, as various significant
gaps and errors showed up. The last major revisions took place in 2020-2021.'

Beyond making the book correct, one of my goals has been to make it accessible.
I was encouraged here by the fact that the new definitions and results are actually
quite elementary. They rest on the theory of Fine structure and iteration trees
(FSIT), and can be seen as completing that theory in a certain way. The comparison
theorem for pure extender mice that is at the heart of FSIT is deficient, in that how
two mice compare depends on which iteration strategies are chosen to compare
them. Here we remedy that defect, by developing a method for comparing the
strategies. The result is a comparison theorem for mouse pairs parallel to the FSIT
comparison theorem for pure extender mice. We then use the comparison process
underlying that theorem to develop a fine structure theory for strategy mice parallel
to the fine structure theory for pure extender mice of FSIT.

There are points at which descriptive set theory under determinacy hypotheses
becomes relevant. At these points, it would help to have read the later sections of
[65]. However, I have included enough material that the reader familiar with FSIT
but shaky on determinacy should be able to follow the exposition. Our work here
is motivated by the problem of analyzing ordinal definability in models of Axiom
of Determinacy, but the prerequisite for following most of it is just inner model
theory at the level of FSIT.

!"This is a pre-publication copy only. The final, published version of the book can be purchased
through Cambridge University Press and other standard distribution channels. This prepublication copy
is made available for personal use only and must not be sold or re-distributed.

X






Chapter 1

INTRODUCTION

In this book we shall develop a general comparison process for iteration strategies,
and show how the process can be used to analyze ordinal definability in models
of the Axiom of Determinacy. In this introduction, we look at the context and
motivation for the technical results to come.

We begin with a broad overview of inner model theory, the subject to which this
book belongs. Eventually we reach an outline of the ideas and results that are new
here. The journey is organized so that the technical background needed to follow
along increases as we proceed.

1.1. Large cardinals and the consistency strength hierarchy

Strong axioms of infinity, or as they are more often called, large cardinal hy-
potheses, play a central role in set theory. There are at least two reasons.

First, large cardinal hypotheses can be used to decide in a natural way many
questions which cannot be decided on the basis of ZFC (the commonly accepted
system of axioms for set theory, and hence all of mathematics). Many such
questions come from descriptive set theory, the theory of simply definable sets of
real numbers. For example, the hypothesis that there are infinitely many Woodin
cardinals yields a systematic and detailed theory of the projective sets of reals, those
that are definable in the language of second order arithmetic from real parameters.
ZFC by itself yields such a theory at only the simplest levels of second order
definability.

Second, large cardinal hypotheses provide a way of organizing and surveying
all possible natural extensions of ZFC. This is due to the following remarkable
phenomenon: for any natural extension 7 of ZFC which set theorists have studied,
there seems to be an extension S of ZFC axiomatized by large cardinal hypotheses
such that the consistency of T is provably (in ZFC) equivalent to that of S. The
consistency strengths of the large cardinal hypotheses are linearly ordered, and
usually easy to compare. Thus all natural extensions of ZFC seem to fall into

1



2 1. INTRODUCTION

a hierarchy linearly ordered by consistency strength, and calibrated by the large
cardinal hypotheses.?

These two aspects of large cardinal hypotheses are connected, in that the con-
sistency strength order on natural theories corresponds to the inclusion order on
the set of their “sufficiently absolute” consequences. For example, if S and T
are natural theories extending ZFC, and S has consistency strength less than or
equal to that of 7', then the arithmetic consequences of S are included in those
of T. If in addition, S and T have consistency strength at least that of “there are
infinitely many Woodin cardinals”, then the consequences of S in the language of
second order arithmetic are included in those of 7. This pattern persists at still
higher consistency strengths, with still more logically complicated consequences
about reals and sets of reals being brought into a uniform order. This beautiful and
suggestive phenomenon has a practical dimension as well: one way to develop the
absolute consequences of a strong theory 7 is to compute a consistency strength
lower bound S for T in terms of large cardinal hypotheses, and then work in the
theory S. For one of many examples, the Proper Forcing Axiom (PFA) yields a
canonical inner model with infinitely many Woodin cardinals that is correct for
statements in the language of second order arithmetic, and therefore PFA implies
all consequences of the existence of infinitely many Woodin cardinals that can be
stated in the language of second order arithmetic.

One can think of the consistency strength of a theory as the degree to which
it is committed to the existence of the higher infinite. Large cardinal hypotheses
make their commitments explicitly: they simply say outright that the infinities in
question exist. It is therefore usually easy to compare their consistency strengths.
Other natural theories often have their commitments to the existence of the infinite
well hidden. Nevertheless, set theorists have developed methods whereby these
commitments can be brought to the surface, and compared. These methods have
revealed the remarkable phenomenon described in the last paragraph, that natural
theories appear to be wellordered by the degrees to which they are committed to
the infinite, and that this degree of commitment corresponds exactly to the power
of the theory to decide questions about concrete objects, like natural numbers, real
numbers, or sets of real numbers.

We should emphasize that the paragraphs above describe a general pattern of
existing theorems. There are many examples of natural theories whose consistency
strengths have not yet been computed, and perhaps they, or some natural theory
yet to be found, will provide counterexamples to the pattern described above.
The pervasiveness of the pattern where we know how to compare consistency
strengths is evidence that this will not happen.> The two methods whereby set

2Let con(T') be some natural formalization of the assertion that T is consistent. The consistency
strength order is given by: S <con T iff ZFC proves con(7") — con(S).

3The pattern extends to weak subtheories of ZFC as well. This book is concerned only with
theories having very strong commitments to infinity, and so we shall ignore subtheories of ZFC, but the
linearity of the consistency strengths below that of ZFC is evidence of linearity higher up.
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theorists compare consistency strengths, forcing and inner model theory, seem to
lead inevitably to the pattern. In particular, the wellorder of natural consistency
strengths seems to correspond to the inclusion order on canonical minimal inner
models for large cardinal hypotheses. Forcing and inner model theory seem
sufficiently general to compare all natural consistency strengths, but at the moment,
this is just informed speculation. So one reasonable approach to understanding
the general pattern of consistency strengths is to develop our comparison methods
further. In particular, inner model theory is in great need of further development,
as there are quite important consistency strengths that it does not yet reach.

1.2. Inner model theory

The inner model program attempts to associate to each large cardinal hypothesis
H a canonical minimal universe of sets My (an inner model) in which H is true.
The stronger H is, the larger My will be; that is, G <oy H if and only if Mg C My.
Some of our deepest understanding of large cardinal hypotheses comes from the
inner model program.

The inner models we have so far constructed have an internal structure which
admits a systematic, detailed analysis, a fine structure theory of the sort pioneered
by Ronald Jensen around 1970 ([16]). Thus being able to construct My gives us
a very good idea as to what a universe satisfying H might look like. Inner model
theory thereby provides evidence of the consistency of the large cardinal hypotheses
to which it applies. (The author believes that this will some day include all the
large cardinal hypotheses currently studied.) Since forcing seems to reduce any
consistency question to the consistency question for some large cardinal hypothesis,
it is important to have evidence that the large cardinal hypotheses themselves are
consistent! No evidence is more convincing than an inner model theory for the
hypothesis in question.

The smallest of the canonical inner models is the universe L of constructible sets,
isolated by Kurt Godel ([14]) in his 1937 proof that CH is consistent with ZFC. It
was not until the mid 1960’s that J. Silver and K. Kunen ([57],[23]) developed the
theory of a canonical inner model going properly beyond L, by constructing My
for H = “there is a measurable cardinal”.* Since then, progressively larger My
for progressively stronger H have been constructed and studied in detail. (See for
example [7],[27], and [28].) At the moment, we have a good theory of canonical
inner models satisfying “there is a Woodin cardinal”, and even slightly stronger
hypotheses. (See [26],[30], and [61], for example.) One of the most important open
problems in set theory is to extend this theory significantly further, with perhaps

4ZFC is of course too weak, consistency-wise, to prove that there is such a model. Silver and
Kunen worked in the theory ZFC+ “there is a measurable cardinal”. In the mid 1970s, Dodd and
Jensen developed general methods for constructing the canonical inner model with a measurable under
a wide assortment of hypotheses. See [7].
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the most well-known target being models satisfying “there is a supercompact
cardinal”.

Inner model theory is a crucial tool in calibrating consistency strengths: in order
to prove that H <.o, T, where H is a large cardinal hypothesis, one generally
constructs a canonical inner model of H inside an arbitrary model of 7. Because
we do not have a full inner model theory very far past Woodin cardinals, we lack
the means to prove many well-known conjectures of the form H <.o, T, where H
is significantly stronger than “there is a Woodin cardinal”. Broadly speaking, there
are great defects in our understanding of the consistency strength hierarchy beyond
Woodin cardinals.

Inner model theory is also a crucial tool in developing the consequences for real
numbers of large cardinal hypotheses. Indeed, the basics of inner model theory
for Woodin cardinals were discovered in 1985-86 by D. A. Martin and the author,
at roughly the same time they discovered their proof of Projective Determinacy,
or PD. (Martin, Moschovakis, and others had shown in the 1960’s and 70’s that
PD decides in a natural way all the classical questions about projective sets left
undecided by ZFC alone.) This simultaneous discovery was not an accident, as
the fundamental new tool in both contexts was the same: iteration trees, and the
iteration strategies which produce them. Since then, progress in inner model theory
has given us a deeper understanding of pure descriptive set theory, and the means
to solve some old problems in that field.

The fundamental open problem of inner model theory is to extend the theory to
models satisfying stronger large cardinal hypotheses. “There is a supercompact
cardinal” is an old and still quite challenging target. One very well known test
question here is whether (ZFC+*“there is a supercompact cardinal””) <o, ZFC+
PFA. The answer is almost certainly yes, and the proof almost certainly involves
an inner model theory that is firing on all cylinders.’ That kind of inner model
theory we have now only at the level of many Woodin cardinals, but significant
parts of the theory do exist already at much higher levels.°

S A parallel, and still older, question is whether (ZFC + “there is a supercompact cardinal”)
<con ZFC+ “there is a strongly compact cardinal”.

67, Baumgartner showed in the early 1980s that ZFC + PFA <., ZFC+“there is a supercompact
cardinal”. Supercompacts are far beyond Woodin cardinals, in the sense that there are many interesting
consistency strengths strictly between the two, and in the sense that constructing canonical inner
models for supercompacts presents significant new difficulties. Many set theoretic principles have
been shown consistent relative to the existence of (sometimes many) supercompact cardinals, so
inner-model-theoretic evidence of their consistency would be valuable.
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1.3. Mice and iteration strategies

The canonical inner models we seek are often called mice. There are two
principal varieties, the pure extender mice and the strategy mice.’

A pure extender premouse is a model of the form Ly [E] where E is a coherent
sequence of extenders. Here an extender is a system of ultrafilters coding an
elementary embedding, and coherence means roughly that the extenders appear in
order of strength, without leaving gaps. These notions were introduced by Mitchell
in the 1970s®, and they have been a foundation for work in inner model theory
since then.

In this book, we shall assume that our premice have no long extenders on their
coherent sequences.” Such premice can model superstrong, and even subcompact,
cardinals. They cannot model k™ -supercompactness. Long extenders lead to an
additional set of difficulties.

An iteration strategy is a winning strategy for player II in the iteration game. For
any premouse M, the iteration game on M is a two player game of length @; + 1.1°
In this game, the players construct a tree of models such that each successive node
on the tree is obtained by an ultrapower of a model that already exists in the tree.
I is the player that describes how to construct this ultrapower. He chooses an
extender E from the sequence of the last model N constructed so far, then chooses
another model P in the tree and takes the ultrapower of P by E. If the ultrapower is
ill-founded then player I wins; otherwise the resulting ultrapower is the next node
on the tree. Player II moves at limit stages A by choosing a branch of the tree that
has been visited cofinally often below A, and is such that the direct limit of the
embeddings along the branch is well-founded. If he fails to do so, he loses. If II
manages to stay in the category of wellfounded models through all w; + 1 moves,
then he wins. A winning strategy for Il in this game is called an iferation strategy
for M, and M is said to be iterable just in case there is an iteration strategy for it.
Iterable pure extender premice are called pure extender mice.

Pure extender mice are canonical objects; for example, any real number belong-
ing to such a mouse is ordinal definable. Let us say that a premouse M is pointwise
definable if every element of M is definable over M. For any axiomatizable theory
T, the minimal mouse satisfying 7T is pointwise definable. The canonicity of pure
extender mice is due to their iterability, which, via the fundamental Comparison
Lemma, implies that the pointwise definable pure extender mice are wellordered
by inclusion. This is the mouse order on pointwise definable pure extender mice.

7Strategy mice are sometimes called od mice, because of their role in analyzing the hereditarily
ordinal definable sets in models of the Axiom of Determinacy.

8See [27] and [28].

9 An extender is short if all its component ultrafilters concentrate on the critical point. Otherwise, it
is long.

107¢eration games of other lengths are also important, but this length is crucial, so we shall focus on
it.
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The consistency strength of T is determined by the minimal mouse M having a
generic extension satisfying 7', and thus the consistency strength order on natural
T is mirrored in the mouse order. However, in the case of the mouse order, we
have proved that we have a wellorder; what we cannot yet do is tie natural T at
high consistency strengths to it. As we climb the mouse order, the mice become
correct (reflect what is true in the full universe of sets) at higher and higher levels
of logical complexity.

Iteration strategies for pointwise definable pure extender mice are also canon-
ical objects; for example, a pointwise definable mouse has exactly one iteration
strategy.!! The existence of iteration strategies is at the heart of the fundamental
problem of inner model theory, and for a pointwise definable M, to prove the
existence of an iteration strategy is to define it. In practice, it seems necessary
to give a definition in the simplest possible logical form. As we go higher in the
mouse order, the logical complexity of iteration strategies must increase, in a way
that keeps pace with the correctness of the mice they identify.

Our most powerful, all-purpose method for constructing iteration strategies is
the core model induction method. Because iteration strategies must act on trees
of length @y, they are not coded by sets of reals. Nevertheless, the fragment of
the iteration strategy for a countable mouse that acts on countable iteration trees
is coded by a set of reals. If this set happens to be absolutely definable (that is,
Universally Baire) then the strategy can be extended to act on uncountable iteration
trees in a unique way. There is no other way known to construct iteration strategies
acting on uncountable trees. Thus, having an absolutely definable iteration strategy
for countable trees is tantamount to having a full iteration strategy. The key
idea in the core model induction is to use the concepts of descriptive set theory,
under determinacy hypotheses, to identify a next relevant level of correctness and
definability for sets of reals, a target level at which the next iteration strategy should
be definable.

Absolute definability leads to determinacy. Thus at reasonably closed limit steps
in a core model induction, one has a model M of AD +V = L(P(IR)) that contains
the restrictions to countable trees of the iteration strategies already constructed.
Understanding the structure of HODM is important for going further.

1.4. HOD in models of determinacy

HOD is the class of all hereditarily ordinal definable sets. It is a model of ZFC!?,
but beyond that, ZFC does not decide its basic theory, and the same is true of ZFC
augmented by any of the known large cardinal hypotheses. The problem is that
the definitions one has allowed are not sufficiently absolute. In contrast, the theory

"'This follows from Theorem 4.11 of [65], and the fact that any iteration strategy for a pointwise
definable M has the Weak Dodd-Jensen property with respect to all enumerations of M.
12See [31].
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of HOD in determinacy models is well-determined, not subject to the vagaries of
forcing.3

The study of HOD in models of AD has a long history. The reader should
see [67] for a survey of this history. HOD was studied by purely descriptive set
theoretic methods in the late 70s and 80s, and partial results on basic questions
such as whether HOD |= GCH were obtained then. It was known then that inner
model theory, if only one could develop it in sufficient generality, would be relevant
to characterizing the reals in HOD. It was known that HODM is close to M in
various ways; for example, if M = AD" +V = L(P(R))'4, then M can be realized
as a symmetric forcing extension of HODY, so that the first order theory of M is
part of the first order theory of its HOD. '3

Just how relevant inner model theory is to the study of HOD in models of AD
became clear in 1994, when the author showed that if there are @ Woodin cardinals
with a measurable above them all, then HODA(®) up to OL®) g a pure extender
mouse.!®(See [60].) Shortly afterward, this result was improved by Hugh Woodin,
who reduced its hypothesis to AD®)_ and identified the full HOD*®) as a model
of the form L[M,X], where M is a pure extender premouse, and X is a partial
iteration strategy for M. HOD!®) is thus a new type of mouse, sometimes called
a strategy mouse, sometimes called a hod mouse. See [77] for an account of this
work.

Since the mid-1990s, there has been a great deal of work devoted to extending
these results to models of determinacy beyond L(R). Woodin analyzed HOD in
models of AD™ below the minimal model of ADg fine structurally, and Sargsyan
extended the analysis further, first to determinacy models below ADg + “8 is
regular” (see [37] and [38]), and more recently, to models of still stronger forms of
determinacy. !7 Part of the motivation for this work is that it seems to be essential
in the core model induction: in general, the next iteration strategy seems to be a
strategy for a hod mouse, not for a pure extender mouse. This idea comes from
work of Woodin and Ketchersid around 2000. (See [21] and [47].)

13We mean here determinacy models of the form M = L(T',R), where I is a proper initial segment
of the universally Baire sets. If there are arbitrarily large Woodin cardinals, then for any sentence ¢,
whether ¢ is true in all such HOD is absolute under set forcing. This follows easily from Woodin’s
theorem on the generic absoluteness of (Z%)uB statements. See [64, Theorem 5.1].

4AD™ is a technical strengthening of AD. Tt is not known whether AD = AD™, but in every
model of AD constructed so far, AD" also holds. In particular, the models of AD that are relevant in
the core model induction satisfy AD ™.

I5This is a theorem of Woodin from the early 1980s. Cf. [67].

161n a determinacy context, 8 denotes the least ordinal that is not the surjective image of the reals.

17See [39]. Part of this work was done in collaboration with the author; see [69],[74], and [70]. The
determinacy principles dealt with here are all weaker than a Woodin limit of Woodin cardinals.
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1.5. Least branch hod pairs

The strategy mice used in the work just described have the form M = L[E DR
where E is a coherent sequence of extenders, and ¥ is an iteration strategy for M.
The strategy information is fed into the model M slowly, in a way that is dictated
in part by the determinacy model whose HOD is being analyzed. One says that the
hierarchy of M is rigidly layered, or extender biased. The object (M,X) is called a
rigidly layered (extender biased) hod pair.

Perhaps the main motivation for the extender biased hierarchy is that it makes it
possible to prove a comparison theorem. There is no inner model theory without
such a theorem. Comparing strategy mice necessarily involves comparing iteration
strategies, and comparing iteration strategies is significantly more difficult than
comparing extender sequences. Rigid layering lets one avoid the difficulties
inherent in the general strategy comparison problem, while proving comparison for
a class of strategy mice adequate to analyze HOD in the minimal model of ADy +
“0 is regular”, and somewhat beyond. The key is that in this region, HOD does not
have cardinals that are strong past a Woodin cardinal.

Unfortunately, rigid layering does not seem to help in comparing strategy mice
that have cardinals that are strong past a Woodin. Moreover, it has serious costs.
The definition of “hod premouse” becomes very complicated, and indeed it is not
clear how to extend the definition of rigidly layered hod pairs much past that given
in [39]. The definition of “rigidly layered hod premouse” is not uniform, in that the
extent of extender bias depends on the determinacy model whose HOD is being
analyzed. Fine structure, and in particular condensation, become more awkward.
For example, it is not true in general that the pointwise definable hull of a level of
M is a level of M. (The problem is that the hull will not generally be sufficiently
extender biased.)

The more naive notion of hod premouse would abandon extender bias, and
simply add the least missing piece of strategy information at essentially every
stage. This was originally suggested by Woodin.!® The focus of this book is a
general comparison theorem for iteration strategies that makes it possible to use
this approach, at least in the realm of short extenders. The resulting premice are
called least branch premice (Ipm’s), and the pairs (M,X) are called least branch
hod pairs (Ibr hod pairs). Combining results of this book and [68], one has

THEOREM 1.5.1 ([68]). Assume AD"+ “there is an (@, @) iteration strategy
for a pure extender premouse with a long extender on its sequence”; then
(1) forany T C P(R) such that L(T',R) = ADg+ “there is no (@, @) iteration
strategy for a pure extender premouse with a long extender on its sequence”,
HODYT'R) is 4 least branch premouse, and

18 There are some fine-structural problems with the precise method for inserting strategy information
originally suggested by Woodin. The method for strategy insertion that is correct in detail is due to
Schlutzenberg and Trang. Cf. [56].
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(2) there is a T C P(R) such that L(T',R) = ADgr+ “there is no (o, ;) it-
eration strategy for a pure extender premouse with a long extender on its
sequence”, and HODA('R) = “there is a subcompact cardinal”.

Of course, one would like to remove the mouse existence hypothesis of 1.5.1,
and prove its conclusion under AD" alone. Finding a way to do this is one
manifestation of the long standing iterability problem we have discussed above.
Although we do not yet know how to do this, the theorem does make it highly likely
that in models of ADg that have not reached an iteration strategy for a pure extender
premouse with a long extender, HOD is a least branch premouse. It also makes it
very likely that there are such HOD’s with subcompact cardinals. Subcompactness
is one of the strongest large cardinal properties that can be represented with short
extenders. !

Although we shall not prove Theorem 1.5.1 here, we shall prove an approxi-
mation to it that makes the same points. That approximation is Theorem 11.3.13
below.

Least branch premice have a fine structure much closer to that of pure extender
models than that of rigidly layered hod premice. In this book we develop the
basics, including the solidity and universality of standard parameters, and a form of
condensation. In [76], the author and N. Trang have proved a sharper condensation
theorem, whose pure extender version was used heavily in the Schimmerling-
Zeman work ([44]) on [ in pure extender mice. It seems likely that the rest of the
Schimmerling-Zeman work extends as well.

Thus least branch hod pairs give us a good theory of HOD in the short extender
realm, provided there are enough such pairs.?’ Below, we formulate a conjecture
that we call Hod Pair Capturing, or HPC, that makes precise the statement that
there are enough least branch hod pairs. HPC is the main open problem in the
theory to which this book contributes.

1.6. Comparison and the mouse pair order

Let us first say more about the nature of least branch hod pairs (M,X). There
are four requirements on X in the definition: strong hull condensation, quasi-
normalizing well, internal lift consistency, and pushforward consistency. We shall
describe these requirements informally, omitting some of the fine points, and give
the full definitions later.

Recall that an iteration tree on a premouse M is normal iff the extenders E}Y
used in W have lengths increasing with @, and each E)} is applied to the longest

19Until now, there was no very strong evidence that the HOD of a determinacy model could satisfy
that there are cardinals that are strong past a Woodin cardinal.

20 At least in the case that the background determinacy model satisfies ADg +V = L(P(R)). Some
form of extender bias may be appropriate in other cases.
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possible initial segment of the earliest possible model in WW. For technical reasons
we need to consider a slight weakening of the length-increasing requirement; we
call the resulting trees quasi-normal. Our iteration strategies will act on finite
stacks of quasi-normal trees, that is, sequences s = (7, ..., 7,) such that for all
k <n—1, Tiy1 is a quasi-normal tree on some initial segment of the last model in
Tr. We write M.(s) for the last model of 7y, if there is one.

DEFINITION 1.6.1. Let X be an iteration strategy for a premouse P.
(1) (Tail strategy) If s is a stack by £ and Q <M., (s), then Z; o is the strategy for
Q given by: T, o(t) = Z(s(Q,1)). 2!
(2) (Pullback strategy) If #: N — P is elementary, then L7 is the strategy for N
given by: X7 (s) = X(ms), where s is the lift of s by 7 to a stack on P.

In (2), elementarity must be understood fine structurally; our convention is that
every premouse P has a degree of soundness attached to it, and elementarity means
elementarity at that quantifier level.

Perhaps the most important regularity property of iteration strategies is strong
hull condensation. To define it we need the notion of a tree embedding ®: T — U,
where 7 and U/ are normal trees on the same M. The idea of course is that ® should
preserve a certain amount of the iteration tree structure, but some care is needed in
spelling out exactly how much. & is determined by a map u: 1h(7) — Ih(X/) and
maps g : MJ — Mﬁ’m) having various properties. See §6.4.

DEFINITION 1.6.2. Let X be an iteration strategy for a premouse M then ¥ has
strong hull condensation iff whenever s is a stack of normal trees by ¥ and N <
Meo(s), and U is a normal tree on N by X, y, and ®: T — U is a tree embedding,
with associated maps g : M7 — Mﬁ’(a), then

(a) T isby Xy, and
(b) forall o < lh(T), Zs’“(N,T[aJrl) = (ZSA<N,Z4[M((Z)+1>)”O"

Strong hull condensation is a stronger version of the hull condensation property
isolated by Sargsyan in [37].

The second important property is quasi-normalizing well. Given an M-stack
(T,U) with last model N such that 7 and U/ are normal, shuffling the extenders
of U into T in a minimal way produces a normal tree W = W (T,U). If U has
a last model R, we get nearly elementary map w: N — R. We call W(T,U)
the embedding normalization of (T,U). The idea is simple, but there are many
technical details.?? It proves useful to consider a slightly less minimal shuffling
V(T,U) that we call the quasi-normalization of (T,U). Even if T and U are
normal, V(7 ,U) may not be length-increasing, but it is nearly so. The reader
should see Chapter 6 for full definitions.

21For premice Q and R, Q <R iff the hierarchy of Q is an initial segment of that of R.
22Much of the general theory of normalization was developed independently by Schlutzenberg. See
[54]. See also [19] and [58].
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DEFINITION 1.6.3. Let X be an iteration strategy for a premouse M. We say
that ¥ quasi-normalizes well iff whenever s is an M-stack by X, and (7 ,U/) is a
2-stack by X such that 7 and U are normal trees having last models, then

(a) V(T,U) is by L, and
(b) letting V =V (T,U) and w: MY — MY be the map generated by quasi-
normalization, we have that X~ 1) = (Zs~1)".

The final basic regularity property of iteration strategies for pure extender
premice is internal lift consistency. Suppose that s is a stack by X and P< Q0
M. (s). Stacks ¢ on P can be lifted to stacks ¢+ on Q in a natural way. We say that
¥ is internally lift consistent iff for all such s, P, and Q, X, p(1) = X, o(¢T). See
§5.4.

For pairs (M,Y) such that M is a strategy mouse, we require also that the
internal strategy predicate of M be consistent with X. More generally, letting ¥
be the predicate symbol used to record strategy information, we say that (M,X)
is pushforward consistent iff whenever s is a stack by £ and N <M.(s), then
ZN c ZS,N .

If M is a pure extender premouse, and X is a strategy for M that has strong hull
condensation, quasi-normalizes well, and is internally lift consistent, then we call
(M,X) a pure extender pair. If M is a least branch premouse, and X is a strategy
for M that has strong hull condensation, quasi-normalizes well, is internally lift
consistent and pushforward consistent, then we call (M, X) a least branch hod pair.
A pair of one of the two types is a mouse pair.

If (M,X) is a mouse pair, and s is a stack by X with last model N, then we call
(N,Xy) an iterate of (M,X). If the branch M-to-N of s does not drop, we call it a
non-dropping iterate. In that case, we have an iteration map i;: M — N. Let us
write

(M,%) < (R,A) iff M<R and £ = Ay.

We have no hope of showing anything about mouse pairs (M,X) unless we
assume absolute definabilty for the iteration strategy. Here we assume X has scope
HC, i.e. that M is countable and ¥ is defined on finite stacks of countable trees,
and we assume that we are in a model of AD".?*> The following is the main new
result of the book.

THEOREM 1.6.4. (Comparison Lemma) Assume AD™, and let (P,£) and (Q,¥)
be strongly stable** mouse pairs with scope HC of the same kind; then there are
iterates (R,A) of (P,X) and (S,Q) of (Q,¥), obtained by normal trees T and U,
such that either

(1) (R,A)<(S,Q) and P-to-R does not drop, or

230ne could require that they be defined on countable stacks.
24Strong stability is a mild fine structural requirement. One can avoid it by slightly complicating
the notion of iterate. See 4.4.5 and 4.6.12.



12 1. INTRODUCTION

(2) (S,Q)<(R,A) and Q-to-S does not drop.

Even for pure extender pairs, this theorem is new, because of the agreement
between tail strategies it requires. In fact, it is no easier to prove the theorem for
pure extender pairs than it is to prove it for least branch hod pairs. The proof in
both cases is the same, and it makes use of the properties of the iteration strategies
we have isolated in the definition of mouse pair.

Working in the category of mouse pairs enables us to state a general Dodd-Jensen
lemma. Let us say w: (P,X) — (Q,¥) is elementary iff 7 is elementary from P to
0, and ¥ = W”. We shall show that an elementary submodel of a mouse pair is a
mouse pair, and that the iteration maps associated to non-dropping iterations of a
mouse pair are elementary.>

THEOREM 1.6.5 (Dodd-Jensen lemma). Let (P,X) be a mouse pair, and (Q,¥)
be an iterate of (P,X) via the stack s. Suppose t: (P,L) — (Q,¥) is elementary;
then s does not drop, and for all ordinals 1 € P, is(n) < w(n).

The proof is just the usual Dodd-Jensen proof; the point is just that the language
of mouse pairs enables us to formulate the theorem in its proper generality. There
is no need to restrict to mice with unique iteration strategies, as is usually done.

Similarly, we can define the mouse order in its proper generality, without re-
stricting to mice with unique iteration strategies. If (P,X) and (Q,¥) are pairs of
the same type, then (P,X) <* (Q, W) iff (P,X) can be elementarily embedded into
an iterate of (Q,¥). The Comparison and Dodd-Jensen theorems imply that <* is
a prewellorder on each type.

1.7. Hod pair capturing

Least branch hod pairs can be used to analyze HOD in models of AD™, provided
that there are enough such pairs.

DEFINITION 1.7.1 (AD").  (a) Hod Pair Capturing (HPC) is the assertion:
for every Suslin-co-Suslin set A, there is a least branch hod pair (P,X) such
that A is definable from parameters over (HC, €,X).

(b) L[E] capturing (LEC) is the assertion: for every Suslin-co-Suslin set A, there
is a pure extender pair (P,X) such that A is definable from parameters over
(HC,€,X).

An equivalent (under AD™) formulation would be that the sets of reals coding
strategies of the type in question, under some natural map of the reals onto HC,
are Wadge cofinal in the Suslin-co-Suslin sets of reals. The restriction to Suslin-
co-Suslin sets A is necessary, for AD" implies that if (P,X) is a pair of one of the

Z5Neither is obvious. That iteration maps are elementary is a property of the iteration strategy
known as pullback consistency. It follows from strong hull condensation.
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two types, then the codeset of X is Suslin and co-Suslin. This is the main result of
[68], where it is also shown that the Suslin representation constructed is of optimal
logical complexity.

Remark 1.7.2. HPC is a cousin of Sargsyan’s Generation of Full Pointclasses.
See [37] and [38], §6.1.

Assuming AD™, LEC is equivalent to the well known Mouse Capturing: for
reals x and y, x is ordinal definable from y iff x is in a pure extender mouse over
y. This equivalence is shown in [63]. (See especially Theorem 16.6.) We show
in Theorem 10.4.3 below that under AD™, LEC implies HPC. We do not know
whether HPC implies LEC.

Granted ADy and HPC, we have enough hod pairs to analyze HOD.

THEOREM 1.7.3 ([68]). Assume ADr and HPC, then Vg N"HOD is the universe
of a least branch premouse.

Some techniques developed in [59] and [68] are needed to prove the theorem, so
we shall not prove it here.

The natural conjecture is that LEC and HPC hold in all models of AD™ that have
not reached an iteration strategy for a premouse with a long extender. Because our
capturing mice have only short extenders on their sequences, LEC and HPC cannot
hold in larger models of AD ™.

DEFINITION 1.7.4. NLE (“No long extenders”) is the assertion: there is no
countable, @; + 1-iterable pure extender premouse M such that there is a long
extender on the M-sequence.

CONJECTURE 1.7.5. Assume AD™ and NLE; then LEC.
CONJECTURE 1.7.6. Assume AD™ and NLE; then HPC.

As we remarked above, 1.7.5 implies 1.7.6. Conjecture 1.7.5 is equivalent to
a slight strengthening of the usual Mouse Set Conjecture MSC. (The hypothesis
of MSC is that there is no iteration strategy for a pure extender premouse with a
superstrong, which is slightly stronger than NLE.) MSC has been a central target
for inner model theorists for a long time.

1.8. Constructing mouse pairs

The basic source for mouse pairs is a background construction. In the simplest
case, such a construction C builds pairs (MVJ{7 Qv,k) inductively, putting extenders
on the My ;-sequence that are restrictions of nice extenders in V. The iteration
strategy Qy i is induced by an iteration strategy for V, and if we are constructing
strategy premice, the relevant information about Q.  is inserted into M, ; at the
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appropriate points. My ;1 is the core of My . The construction breaks down if
the standard parameter of M, ; behaves poorly, so that there is no core.

There is of course more to say here, and we shall do so later in the book. For
now, let us note that the background universe for such a construction should be a
model of ZFC that has lots of extenders, and yet knows how to iterate itself. In the
AD™ context, the following theorem of Woodin applies.

THEOREM 1.8.1 (Woodin). Assume AD™, and let T be a good pointclass such
that all sets in I" are Suslin and co-Suslin; then for any real x there is a coarse
I-Woodin pair (N,X) such that x € N.

Here, roughly speaking, N is a countable transitive model of ZFC with a Woodin
cardinal and a term for a universal I set, and X is an iteration strategy for N that
moves this term correctly, and is such that XN N is definable over N. See Definition
7.2.3.

The following is essentially Theorem 10.4.1 to follow. It too is one of the main
new results of the book.

THEOREM 1.8.2. Assume AD™, and let (N,X) be a coarse T-Woodin pair. Let
C be a least branch construction in N; then C does not break down. Moreover, each
of its levels (Mi(,:_ © Q(S.k) is a least branch hod pair in N, and extends canonically
to a least branch hod pair in V.

Background constructions of the sort described in this theorem have an important
role to play in our comparison process. Assume AD", and let (M, Q) and (N,X)
be mouse pairs of the same type. We compare (M, Q) with (N,X) by putting M
and N into a common [-Woodin universe N*, where £ and Q are in TNT. We
then iterate (M, X) and (N, Q) into levels of a full background construction (of the
appropriate type) of N*. Here are some definitions encapsulating the method.

DEFINITION 1.8.3. Let (M,X) and (N,Q) be mouse pairs of the same type;
then
(a) (M,X) iterates past (N, Q) iff there is a A-separated iteration tree 7 by X on
M whose last pair is (N, Q).
(b) (M,X) iterates to (N,Q) iff there is a A-separated 7 as in (a) such that the
branch M-to-N of T does not drop.
(c) (M,X) iterates strictly past (N, Q) iff it iterates past (N,Q), but not to (N, Q).

A-separation is a small strengthening of normality that is defined in 4.4.8. One
reason that it is important is that if 7 is A-separated and U/ is a normal tree on
MU, then W(T,U) = V(T,U). That is, embedding normalization coincides with
quasi-normalization in this case.

DEFINITION 1.8.4 (AD"). Let (P,X) be a mouse pair; then (*)(P,X) is the
following assertion: Let (N, W) be any coarse I'-Woodin pair such that P € HCV",

268ee [22], and [66, Lemma 3.13].
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and £ € I'NI". Let C be a background construction done in N* of the appropriate
type, and let (R, D) be a level of C. Suppose that (P,X) iterates strictly past all
levels of C that are strictly earlier than (R, ®); then (P,X) iterates past (R, D).

If (M, Q) is a mouse pair, and N is an initial segment of M, then we write Qy
for the iteration strategy for trees on N that is induced by Q. We can unpack the
conclusion of 1.8.4 as follows: suppose the comparison of P with R has produced
anormal tree 7 on P with last model Q, with 7 by X, and S is an initial segment
of both Q and R; then ¥ ¢ = ®s. Thus the least disagreement between Q and R
is an extender disagreement. Moreover, if £ on Q and F on R are the extenders
involved in it, then F' = &.

We shall show (cf. Theorems 8.4.3 and 9.5.6 below)

THEOREM 1.8.5. Assume AD™; then (*)(P,X) holds, for all strongly stable
mouse pairs (P,L).

This theorem lets us compare two (or more) mouse pairs of the same type
indirectly, by comparing them to the levels of an appropriate construction, done
in a [-Woodin model, where both strategies are in ' NI". One can show using the
Woodinness that C reaches non-dropping iterates of both pairs?’. This gives us a
stage (M, Q) of C such that one of the pairs iterates to it, while the other iterates
past it.

1.9. The comparison argument

In what follows, we shall give fairly complete proofs of the theorems above.
The book is long, partly because we wanted to make it accessible, and partly
because we shall be forced to revise the basic definitions of [30] and [81] in various
ways, so there is a limit to what we can simply quote. In addition, the need
to compare strategies adds a layer of complexity to the proofs of the main fine
structural theorems about strategy mice. Nevertheless, the main new ideas behind
the strategy-comparison process itself are reasonably simple. We describe them
now.

The first step is to focus on proving (*)(P,X). That is, rather than directly
comparing two strategies, we iterate them both into a common background con-
struction and its strategy. In the comparison-of-mice context, this method goes
back to Kunen ([23]), and was further developed by Mitchell, Baldwin ([5]), and
the author.”® Woodin and Sargsyan had used the method for strategy comparison
in the hod mouse context. All these comparisons could be replaced by direct
comparisons of the two mice or strategies involved, but in the general case of
comparison of strategies, there are serious advantages to the indirect approach.

ZSee 8.1.4.
281n unpublished 1985 notes titled “Large cardinals and Aé wellorders”.
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There is no need to decide what to do if one encounters a strategy disagreement,
because one is proving that that never happens. The comparison process is just the
usual one of comparing least extender disagreements. Instead of the dual problems
of designing a process and proving it terminates, one has a given process, and
knows why it should terminate: no strategy disagreements show up. The problem
is just to show this. These advantages led the author to focus, since 2009, on trying
to prove (*)(P,X).

The main new idea that makes this possible is motivated by Sargsyan’s proof in
[37] that if ¥ has branch condensation, then (*)(P,X) holds.??Branch condensation
is too strong to hold once P has extenders overlapping Woodin cardinals; we
cannot conclude that £(7) = b from having merely realized M into a E-iterate
of P. We need some kind of realization of the entire phalanx ®(7 "b) in order to
conclude that £(7) = b. This leads to a weakening of branch condensation that
one might call “phalanx condensation”, in which one asks for a family of branch-
condensation-like realizations having some natural agreement with one another.
Phalanx condensation is still strong enough to imply (*)(P,X), and might well
be true in general for background-induced strategies. Unfortunately, Sargsyan’s
construction of strategies with branch condensation does not seem to yield phalanx
condensation in the more general case. For one thing, it involves comparison
arguments, and in the general case, this looks like a vicious circle. It was during
one of the author’s many attempts to break into this circle that he realized that
certain properties related to phalanx condensation, namely normalizing well and
strong hull condensation, could be obtained directly for background-induced
strategies, and that these properties suffice for (*)(P,X).

Let us explain this last part briefly. Suppose that we are in the context of
Theorem 1.8.5. We have a premouse P with iteration strategy ¥ that normalizes
well and has strong hull condensation. We have N a premouse occuring in the
fully backgrounded construction of N*, where P € HCV " and N* captures X. We
compare P with N by iterating away the least extender disagreement. It has
been known since 1985 that only P will move. We must prove that no strategy
disagreement shows up.

Suppose we have produced a A-separated iteration tree 7 on P with last model
O, that Q|ae = N|a., and that { is a normal tree on R = Q|ot = N|a of limit length
played by both X7 ¢ (the tail of X) and Qg, where Q is the N*-induced strategy for
N. We wish to show that 27 z(U) = Qr(U). Because I is internally lift consistent,
we can reduce to the case that Q = R.

Let b = Qp(U). We must see b = X7 g(U), that is, that b = ({7 ,U)). Since
T is A-separated, embedding normalization coincides with quasi-normalization.

29Roughly, an iteration strategy X for M has branch condensation iff whenever T is an iteration tree
of limit length by Z, b is a cofinal branch of 7~ with associated iteration map i, : M — M,T, w:M—N
is an iteration map by X, and there is a k: M;r — N such that T = koij, then X(7) = b. See [37] for
more detail.
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Let us consider
W.=W(T,U ¢c)=V(T,U ¢)
for arbitrary cofinal branches ¢ of U/. We shall see:
(1) Z7gr(U) = ciff W, is by X. The = direction follows at once from the fact
that ¥ quasi-normalizes well, and the <= direction is proved in §6.6.
(2) Letting i}, : N* — N; come from lifting ii’ to N* via the iteration-strategy
construction of [30], there is a tree embedding of W}, into i} (7). This is the
key step in the proof. It is carried out in Chapter 8.
(3) i3(X) C X because X was captured by N*, so i (T) is by X.
(4) Thus W, is by Z, because X has strong hull condensation.
(5) Soby (1), 27 r(U) = b.
Here is a diagram of the situation:

MY ML i; (R) N
u i i
R w, iZ(T) R N*

-
P

FIGURE 1.9.1. Proof of (*)(P,X). W, is a psuedo-hull of i; (7).

1.10. Plan of the book

Chapters 2 and 3 collect and organize some standard definitions and results from
inner model theory. The book is aimed at people who have already encountered
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this material, via [30], [65], or [81] for example, but these chapters will serve as a
bridge to the rest of the book.

In §3.6 we explain why this standard theory is not completely adequate to the
problem of comparing iteration strategies. Roughly speaking, the problem is that
the induced iteration strategies for the levels of a background construction are not
connected sufficiently well to the iteration strategy for the background universe.
§3.7 and §3.8 analyze one of the two sources of this shortfall, and Chapter 4
removes both of them. This involves revising the notions of premouse and iteration
tree slightly, and re-proving the standard fine structural results in the new setting.

Chapter 5 shows that the new definitions lead to background-induced iteration
strategies that are better behaved in several ways. Chapters 6 and 7 push further in
this direction, leading ultimately to Theorem 7.6.2, which says that pure extender
background constructions, done in an appropriately iterable background universe,
produce pure extender pairs.

In Chapter 8 we prove the main comparison theorem for pure extender pairs,
Theorem 8.4.3. We shall adapt the proof of 8.4.3 to least branch hod pairs and
to phalanx comparisons in Chapters 9 and 10, but the main steps all show up in
this simpler situation, so we have begun with it. When we use the proof again in
Chapters 9 and 10, we shall condense long stretches by pointing to the proof of
8.4.3.

Chapters 9 and 10 use the strategy-comparison process to develop the theory
of least branch hod pairs. Chapter 11 uses this theory to analyze HOD in certain
models of ADg, and concludes with a discussion of further results that have been
proved by the methods we develop here.



Chapter 2

PRELIMINARIES

Inner model theory deals with canonical objects, but inner model theorists have
presented them in various ways. The conventions we use here are, for the most
part, fairly common. For basic fine structural notions such as projecta, cores,
standard parameters, fine ultrapowers, and degrees of elementarity, we shall stay
close to Mitchell-Steel [30] and the paper [49] by Schindler and Zeman. We
shall use Jensen indexing for the sequences of extenders from which premice are
constructed; see for example Zeman’s book [81]. In Chapter 4 we shall modify the
notion of premouse slightly, by enlarging the standard parameters and associated
cores. Until we get to that point, our notion of premouse is just the standard one
determined by the conventions of [30], [49], and [81].%°

Most of our terminology to do with iteration trees and iteration strategies traces
back to Martin-Steel [26] and Mitchell-Steel [30], and is by now pretty standard.
We do need to consider carefully iteration strategies defined on a wider class of
iteration trees than is common, and so there is some less familiar terminology
defined in sections 2.6 and 2.7.

2.1. Extenders and ultrapowers

Our notation for extenders is standard.

DEFINITION 2.1.1. Let M be transitive and rudimentarily closed; then E =
(Es | a€[0]<?)is a (k, 0)-extender over M with spaces (U, | a € [8]<®) if and
only if

(1) Each E, is an (M, x)-complete ultrafilter over P([1,]/%!) N M, with y, being
the least u such that [u]! € E,.

(2) (Compatibility) ForaCband X e M, X € E, <= X c Ey,.

(3) (Uniformity) fyy = K.

(4) (Normality) If f € M and f(u) < max(u) for E, a.e. u, then there is a § <
max(a) such that for E, g} a.e. u, fHP} (u) = ulPhaiB),

30The notion of premouse in [81], and its related fine structure, originate in Jensen’s manuscripts
[17] and [18].

19
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The unexplained notation here can be found in [49, §8]. We shall often identify
E with the binary relation (a,X) € E iff X € E,. One can also identify it with
the other section-function of this binary relation, which is essentially the function
X+ i¥(X)N 6. We call 0 the length of E, and write 8 = lh(E). The space of E is

sp(E) = sup{ia | a € [Ih(E)]=}.

The domain of E is the family of sets it measures, that is, dom(E) = {Y | 3(a,X) €
E(Y =X VY = [u,]l9l = X)}. If M is a premouse of some kind, we also write
M|n =dom(E), where 1 is least such that V(a,X) € E(X € M|n). By acceptability,
n = sup({s™ | @ € [8]<®}). We shall further abuse notation by writing n =
dom(E) when M is determined by context.

The critical point of a (x, 8)-extender is k, and we use either crit(E) or kg to
denote it. Given an extender E over M, we form the ¥y ultrapower

Ulto(M,E) = {[a, fI¥ | a € Ih(E)]~? and f € M},

as in [49, 8.4]. Our M will always be rudimentarily closed and satisfy the Axiom
of Choice, so we have Los’ theorem for X formulae, and the canonical embedding

i M — Ulty(M,E)

is cofinal and Xy elementary, and hence X; elementary. By (1) and (3), kg =
crit(i¥). By normality, a = [a,id]¥, so Ih(E) is included in the (always transi-
tivized) wellfounded part of Ulty(M, E). More generally,

[, fI = i (f)(@).
If X CIh(E), then E [ X ={(a,Y) € E|a C X}. E | X has the properties of an
extender, except possibly normality, so we can form Ulty (M, E | X), and there is a
natural factor embedding 7: Ulto(M,E | X) — Ulty(M, E) given by

T([a7f]]lt~?/[[X) = [Cl7f]]g]

In the case that X = v > kg is an ordinal, E | v is an extender, and 7 | v is the
identity. We say Vv is a generator of E iff v is the critical point of 7, that is,
v # [a, f]¥ whenever f € M and a C v. Let

V(E) =sup({v+1| visa generator of E }).

So V(E) <1h(E), and E is equivalent to E | V(E), in that the two produce the same
ultrapower.
We write

A(E) = )VE = l']g(K'E).

Note that although E may be an extender over more than one M, sp(E), kg, Ih(E),
dom(E), v(E), and A(E) depend only on E itself. If N is another transitive,
rudimentarily closed set, and P(u,) "N = P(u,) "M for all a € [Ih(E)]<?, then E
is also an extender over N; moreover i agrees with 7 on dom(E). However, i¥/

and i may disagree beyond that. We say E is short iff v(E) < A(E). Itis easy to
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see that E is shortif h(E) < sup(i¥“((k;")™)). If E is short, then all its interesting
measures concentrate on the critical point. When E is short, i’g’ is continuous at
k™M and if M is a premouse, then dom(E) = M| be M Tn this book, we shall deal
almost exclusively with short extenders.

If we start with j: M — N with critical point k, and an ordinal v such that
K <V < o(N), then for a € [v]<® we let 11, be the least 1 such that a C j(u), and
for X C [u,]1% in M, we put

(a,X) €Ej <= ac j(X).

E; is an extender over M, called the (k, v)-extender derived from j. We have the
diagram

M d N

where § = i%”j, and

k(i(f)(a)) = j(f)(a).
kv is the identity. If E is an extender over M, then E is derived from i%” .
The Jensen completion of a short extender E over some M is the (kg , ¥ (k. My)

extender derived from i¥. E and its Jensen completion E* are equivalent, in that
V(E)=V(E*),and E = E* [1h(E).

2.2. Pure extender premice

Our main results apply to premice of various kinds, both strategy premice
and pure extender premice, with A-indexing or ms-indexing for their extender
sequences.>!-32 The comparison theorem for iteration strategies that is our first
main goal holds in all these contexts. But the proof of this theorem requires a
detailed fine structural analysis, and the particulars of the fine structure become
important at certain points. We shall first prove the comparison theorem in the case
of iteration strategies for what we shall call pfs premice. These are a variant on
pure extender premice with A-indexing, the difference being that the soundness

3lWhy “mouse”? Like “quark”, it is short and easily remembered. It has a fine tradition, going back
to a discoverer of the concept. The longer, colorless “extender model” does have its place, but “mouse”
is more flexible and distinctive.

32People sometimes speak of “strategic” mice or extender models, but this seems wrong to us. A
strategic X (bomber, position, move, etc.) is an X that is incorporated in some strategy, not an X that
has a strategy incorporated in it. A mouse that incorporates a strategy is a strategy mouse, just as a pie
that incorporates apples is an apple pie.
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requirement has been relaxed. They are formally defined in Chapter 4. Until we get
to that chapter, we shall deal primarily with the standard A-indexed pure extender
premice, as defined in [811.33

The reader should see [4, Def. 2.4] for further details on the following definition.
A potential Jensen premouse is an acceptable J-structure

M= <J§767E7Y7F>

with various properties. o(M) = ORNM = @wo. The language Ly of M has €,
predicate symbols £ and F, and a constant symbol y. We call Ly the language of
(pure extender) premice.

If M is a potential Jensen premouse, then EM is a sequence of extenders, and
either F is empty (i.e. M is passive), or FM codes a new extender being added to
our model by M. The main requirements are

(1) (A-indexing) If F = F™ is nonempty (i.e., M is active), then M |= crit(F)*
exists, and for u = crit(F) ™, o(M) = i (u) = Ih(F). F™ is just the graph
of ¥ [(M]p).

(2) (Coherence) ¥ (EM)[o(M)+ 1 =EM™(0).

(3) (Initial segment condition, J-ISC) If G is a whole proper initial segment of
F, then the Jensen completion of G must appear in EM . If there is a largest
whole proper initial segment, then 7 is the index of its Jensen completion
in EM. Otherwise, 7Y = 0.

(4) If N is a proper initial segment of M, then N is a potential Jensen premouse.

Here an initial segment G = F [ 1) of F is whole iff n = Ag.

Since potential Jensen premice are acceptable J-structures, the basic fine struc-
tural notions apply to them. We recall some of them in the next section. We then
define a Jensen premouse as a potential Jensen premouse all of whose proper initial
segments are sound.

Figure 2.2.1 illustrates a common situation, one that occurs at successor steps in
an iteration tree, for example.

There is a significant strengthening of the Jensen initial segment condition (3)
above. If M is an active premouse, then we set

v(M) = max(v(FM), crit(FM) ™M),
FM v(M) is equivalent to F¥, and so it is not in M. But

DEFINITION 2.2.1. Let M be an active premouse with last extender F'; then M
satisfies the ms-1SC (or is ms-solid) iff forany n < v(M), F | € M.

Clearly the ms-ISC implies the weakening of J-ISC in which we only demand
that the whole proper initial segments of F¥ belong to M. But for iterable M, this
then implies the full J-ISC. (See [48].)

3The essential equivalence of A-indexing with ms-indexing has been carefully demonstrated by
Fuchs in [11] and [10].
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Ult() M E)
Ulty(N,E)
o
N\// \lb)LJr
AN /“l
K lE

FIGURE 2.2.1. E is on the coherent sequence of M, Kk =
crit(E), and A = A(E). P(x)" = P(x)V = dom(E), so
Ulty(M,E) and Ulty(N, E) make sense. The ultrapowers agree
with M below 1h(E), and with each other below 1h(E) + 1.

THEOREM 2.2.2 (ms-ISC). Let M be an active premouse with last extender F,
and suppose M is 1-sound and (1, ®, @) + 1)-iterable; then M is ms-solid.

This is essentially the initial segment condition of [30], but stated for Jensen
premice. [30] goes on to say that the trivial completion of F [ 1] is either on the
M-sequence, or an ultrapower away. This is correct unless F [n is type Z. If F [
is type Z, then it is the extender of F [ &-then-U, where € is its largest generator,
and U is an ultrafilter on &, and we still get F [ ) € M. (See [48]. Theorem 2.7 of
[48] is essentially 2.2.2 above.)

If M is active, we let its initial segment ordinal be

uM) = sup({n+1|F"[nem}).
So M is ms-solid iff 1(M) = v(M). Theorem 2.2.2 becomes false when its sound-
ness hypothesis is removed, since if N = Ultg(M, E) where v(M) < crit(E) < Ar,
then 1(N) = 1(M) = v(M), but crit(E) is a generator of i¥ (F).

The proof of Theorem 2.2.2 requires a comparison argument based on iterability,
and so in the context of this book, it is closer to the end of the development than to
the beginning. In the theory of [30], the strong form of ms-solidity is an axiom on
premice from the beginning, but comparison arguments are needed to show that
the premice one constructs satisfy it.3* One might similarly make ms-solidity an
axiom on Jensen premice from the beginning, and so have it available earlier in the

34These are the results of [30, §9, §10] concerning bicephali and psuedo-premice.
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game, so to speak. This would simplify a few things, but it is not standard, and we
shall not do it here.?

We shall not use ms-premice, so henceforth we shall refer to potential Jensen
premice as potential premice, or later, when we need to distinguish them from
strategy premice, as potential pure extender premice.

2.3. Projecta and cores

Fine structure theory relies on a careful analysis of the condensation properties
of mice; that is, of the extent to which Skolem hulls of a mouse M collapse to
initial segments of M. Jensen’s theory of projecta, standard parameters, and cores
is the foundation for this analysis.

Sound premice and their reducts

Let M be an acceptable J-structure.’® We define the projecta p;(M), standard
parameters p;(M), and reducts (“; mastercodes”) M = M“PiM) by induction. At
the same time we define k-solidity and k-soundness for M. We start with AV =0,
and

M° = (M,A%),  po(M)=o(M),  po(M)=0.
M is automatically O-sound and 0-solid. The successor step is
Pitr1(M) = least o s.t. 3A C o/(A is boldface Z/}W and A ¢ M),
= pi(M)
and
pit1(M) = pi(M) Urit1,
where r;1 is the lexicographically least descending sequence of ordinals from

which a new subset of p; (Mi) can be ¥; defined over M. (rix1 = 0 is possible.)
We then set

M™ = (M||piyi (M),A™1),
where
AT = THY (M| piy Uri)
= {(9.x) | @(u,v) is 2y AM' = @[x, 711}
We say that M is i+ 1-solid iff ri is solid and universal, and so is its image in

350ur definition of pfs premice in Chapter 4 does include a small fragment of ms-solidity. See 4.1.2.
Dodd solidity is a useful and still stronger form of the initial segment condition that iterable premice
satisfy. See for example [48].

See [49].
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the collapse of Hull}’' (p;,1 (M) Ur;41).> In general, we don’t care about M* for
k> i+ 1if M is not i + 1-solid; fine structure has broken down. One of our main
tasks in any construction of premice will be to show that the premice we produce
are k-solid for all k. We say that M is i + 1-sound iff M is i-sound, i + 1-solid, and
and M = Hull}'' (p; 1 (M) Ur;y1). In general, we won’t care about M2 unless M
is i + 1-sound.

Notice that o(M") = p;(M), and r;11 C [pi+1(M),p;(M)). We may sometimes
identify A’ with a subset of p;. We let

ri(M) = pi(M) N [pi, pi-1),
pi(M) = p(M) U [pi,o(M)) = r:.

k<i

This completes our inductive definition of the M’ for i < @. If M is i-solid and
i-sound for all i < o, then we say that M is ®-sound. In this case, we let pg, (M)
be the eventual value of p;(M) as i — ®. We define the reduct M® by

M® = (M||po(M),A )i,
where k is least such that p; (M) = pp(M).

DEFINITION 2.3.1. A Jensen premouse is a pair M = (M, k) such that k <
and

(1) M is a k-sound potential premouse, and
(2) every proper initial segment of M is an ®-sound potential premouse.

We write k = k(M).

We shall drop the qualifier “Jensen” until we start considering another sort of
premouse in Chapter 4.

What we are calling a premouse is just a A-indexed premouse in the usual
sense, paired with a degree of soundness that it has. We usually abuse notation by
identifying M with M .38

Abusing notation this way, if M is a premouse, then we set o(M) = ORDNM,
so that o(M) = wa for M = (J4,...). (The [49] convention differs slightly here.)
We write 6(M) for o itself. The index of M is

[(M) = (6(M),k(M)).

If (v,[) <jex [(M), then M|(v,I) is the initial segment N of M with index [(N) =
(v,0). (So EN = EMNN, and when v < 6(M), FN = EM ) If v < 6(M), then we
write M|v for M|(v,0). We write M||v, or sometimes M|({v,—1), for the structure

¥See Definitions 2.3.10 and 2.3.11.
38The convention that each premouse has a distinguished degree of soundness is due to Itay Neeman.
It is quite useful for simplifying statements about premice, while retaining precision.
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that agrees with M|v except possibly on the interpretation of F, and satisfies
FMIlv — @. By convention, k(M||v) = 0.3

Remark 2.3.2. (M,®) is a premouse iff for all k < @, (M,k) is a premouse.
In contexts in which we care about k(M), the important case is k(M) < . If
k(M) = w, one can usually just replace M with N = (rud(M U {M}),0). For
example, an ultrapower of M using M-definable functions is equivalent to an
ultrapower of N using functions belonging to N. Some of the general statements
about premice we make below may need small adjustments when k(M) = o.

We occasionally want to raise or lower a soundness degree.

DEFINITION 2.3.3. Let M = (M, k) be a premouse;
(a) fori <k,M |i=(M,i),
(b) M~ = (M,k-1),

(c) MT = (M,k+1).

Of course, M is a premouse iff M is sound.*0

DEFINITION 2.3.4. If P and Q are Jensen premice, then

(1) P <y Q iff there are u and / such that P = Q|{u,1).
(ii) P<loQiff P<gQ and P # Q.
(iii) P<Q iff there are u and / > 0 such that P = Q|{u, ).
(iv) P<Qiff PAQand P # Q.

The difference between the two initial segment notions lies in whether we
regard Q|{u, —1) as an initial segment of Q. In other words, if Q|u is active, then
0|l <o O, but Q|| AQ. Both notions have a role. If P < Q we say that P is an
initial segment of Q, and if P < Q we say it is a proper initial segment. If P <o Q
we say that P is a weak initial segment of Q, and if P <y Q, it is a proper weak
initial segment.

Note that if 2 = 0 but k(P) < k(Q), then P <iy Q.

If M = (M, k) is a premouse, then its extender sequence is EY = EM together
with a last, or top, extender FM = FM. We speak of p;(M),M, etc., instead of
pi (M ),Mi, etc. Our soundness hypothesis means that for n < k, there is a natural
surjection of M" onto M.

DEFINITION 2.3.5. (a) If Q is an amenable J-structure, then h1Q is its canoni-
cal X; Skolem function.*!

39Many authors, for example [81], reverse the meanings of M|v and M||v. We find it more logical
to let M||v stand for cutting M twice, first to M|v, and then again by throwing away the top extender.

OIf k(M) = @, then M* =M~ = M.

“'For @ (u,v) = Iw6 (u,v,w) where 8 is o, ho(@,a) = b iff there is ¢ such that (b, c) is <g least
such that Q = 0]a, b, c].
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(b) If M is a premouse and 0 < n < k(M), then we define dy . M" (ﬂ?

dy = id,
Ay ((9,x)) = diyp(hagn (@, (X, Fag1 (M)

M

(c) Let M be a premouse, n < k(M), and R be a relation on M. Let R" be the
relation on M" given by

R(x1, o) © R (x1), .o, d" (1))

Then R is r¥,; iff R" is T}".
(d) A function is rZ¥ just in case its graph in rZM.

The soundness requirement on premice is that when k < k(M), then M =
ran(d¥).*?> One can think of df, as giving us a system of names for the elements of
M, the names being parametrized by ordinals < py(M) and involving a fixed name
for pi(M).** The predicate AF of M* tells us the rX; truths of M about the objects
named, which is somewhat more than just the ¥ truths.

M M
r¥, | versus X

It is possible to characterize the definability levels er.‘il, without directly re-
ferring to the coding structures M’. This is what is done in [30]. That has the
advantage that we are primarily interested in premice, not codes for them. Also,
the definition of rX;; in [30] makes sense even when M is not i-sound.** On
the other hand, certain things stand out better when we use the M. For example,
234 " has nice closure properties, and the prewellordering property for Z]]” " is often
useful. A good compromise in many fine structural arguments is to focus on the
case [ = (0, where M is its own coding structure, and r¥; = X;. Usually, if this case
works out, then the case i > 0 will work out too.

Jensen introduced the reducts M’, and hence implicitly the definability levels
r¥i+1 in the sound case, in order to prove ¥;; uniformization for M < L. (See
[16].) But it has turned out that the rY; stratification of definability is more useful
for inner model theory than the usual ¥; stratification. One wants level 2 formulae
to be allowed a name for p;, for example. In order to get a feel for what can be
said in an rX, way, let us look more closely at rX;.%

PROPOSITION 2.3.6. Let M be a premouse and k(M) > 1; then

“Clearly df,“M* = df;“pr (M) when k > 1.

43 )% has a name for ry, and a name for a name for r4_;, and so on. Putting them together, it has a
name for py.

“But the definition of rZﬁl in [30] would not be very natural unless one were trying to capture
211” '. Moreover, [30] only proves a few things about the unsound case.

“Jensen’s £* theory provides a treatment of the higher levels of definability over premice that is
somewhat more general. See [78].
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(1) d' =h[M', for some h that is 211"1 in p1. Thus d' NM" is Zg’ll.
(2) ForRCM', Ris Z/l"’l iff R is r¥y; more generally
(3) let S C M' x M, and let R(x,y) iff S(x,d" (y)); then R is 211”1 iff S is r¥,.
(4) The predicates x = pjl"[, X # p]l"’, xeM', and x < p{” are each r¥;.
(5) Every XM (pM) relation is re}.
(6) The predicate R(x,,q) < (a0 < pM Ax=ThY (aU{p¥,q})) is rZa.
(7) d,b is an r¥; function.
Moreover, these statements are all true uniformly in M.

PROOF. For (1): d'(x) =y iff A (x, p1) = y iff (@, (x,y)) € A!, where @(u,v)
is a X; formula expressing ' ((u)o,v) = (u);.

For (2): Let R C M', and let S C M be its coded version, i.e. S(x) iff R(d"(x)).
We must see that R is £ iff S is £'. But S(x) iff 3y € M'(d' (x) = y AR(y)),
and R(x) iff Iy € M'(d" (y) = x AS(y)), so this is true.

For (3): This is a calculation like that in (2). We omit it.

For (4): Clearly x < p; and x € M" are £, so they are rZ, by (2). To see that
x = py is r¥,, we must see that d' (x) = py is 211\/11. Butd'(x) = py iff (@,x) € Al,
where @ (u,v) expresses h' (u, p1) = v.

(5) follows easily from (6). For (6): Let S(x, «,z) iff R(x, &,d' (z)). By (3), it
is enough to show that S is 211”1. But it is easy to see that Th¥ (U {d'(z)}) can
be reduced to Th¥ (U {z, p1}) via a simple ¥y function, and the latter can be
computed easily from A' N M||B whenever x, o,z € M||B. So S(x, @, z) iff there is
a B < o(M") such that A' N B certifies S(x, o, z). We are done if we show that the
function B — A' NM||B is =V ' (Note M! is closed under this function!) That is
clear.

For (7), let S(x,y) iff d' (x) = y. By (3), it is enough to show the relation R(x,z)
iff S(x,d'(z)) is 211"11. But R(x,z) iff (@, (x,z)) € A', where @ (u,v) is a £; formula
expressing ' ((u)o,v) = h' ((u)1,v).

_|

The predicates x < p; and x = p; are not (lightface) 212"’ in general. The predicate
R identifying X}/ theories in (6) is ITY, but not £ in general. So rX, goes strictly
beyond X,.46

Part (6) of 2.3.6 yields a normal form for rX; predicates: a predicate R(x) is
rEM iff there is a £} predicate P such that for all x,

R(x) & 3a < p"3q[P(x, Th (o U {g, pi'}))]-

See [30], where this is essentially taken as the definition of Y

460ne can show that the predicate x = p{” is not rZ‘fz‘” in general, because it is not always preserved
by X; ultrapowers.

#TIn [30] the formulae in Th; (ot U {g}) are allowed to have Skolem terms in them. But one arrives
at the same class rX,, as explained in the appendix to §2 of [30].
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One can analyze rX for n > 2 is a similar way. For n < k(M), the /" relations

. n—1 . . onto
on M" decode into the rX5"" " relations on M"~!, using &' M" — M"~ L.

Those decode into the % relations on M2, using d"1"=2 and so on. Eventually
we have decoded the £}f" relations on M" into the rZ, | relations on M® = M. At
each decoding, an analog of Proposition 2.3.6 applies. This leads to:

LEMMA 2.3.7. Let M be a premouse and 1 < n < k(M); then
(1) d" = h[M", for some function h that is r¥, in p,(M). Thus d"M" is Zg’ln.
(2) ForRCM" Ris Z’l"’n iff R is r¥,11, more generally
(3) let S C M" x M, and let R(x,y) iff S(x,d"(y)); then R is Z’l"ln iff Sis r¥, 1.
(4) The predicates x = pM, x # pM, x € M", and x < pM are each r¥, 1.
(5) Every XM, (pM) relation is rEM, |.
(6) The predicate R(x,o,q) < (o < pM Ax = Th (aU{p¥,q})) is rE,. 1.
(7) djyis an r):%rlfunction.
Moreover, these statements are all true uniformly in M.

Part (6) yields a normal form for rZ%rl if we interpret ThY as referring to the

rE, theory in M. This is how rEY, | is defined in [30].3

LEMMA 2.3.8. Let M be a premouse, and 0 < n < k(M); then

(1) Every Boolean combination of r¥L, relations is r¥,|.

(2) The class of rEﬁ‘l’I+1 relations is closed under A,V ,3x, and substitution of
partial r¥, 1 functions.

(3) Every r¥,; relation can be uniformized by a r¥, . function.

PROOF. (1) and (2) are easy. For (3), let us first uniformize the r¥, | relation
R(y,x) iff d"(x) = y. (We omit M from the notation for readability.) Put

¢(y) = x & (d"(x) = y AW <y X(d"(w) £ d"(x))).

The first conjunct on the right is X, 1. The second conjunct is Zﬂ‘”", because one
only needs A" N"M||f8 where x € M||B to determine its truth. Thus the second
conjunct is rX, 1, so " is a r¥, | function.

Now let R(x,y) be rZ, 11, and S(u,v) iff R(d"(u),d"(v)), so that S is Z}". Let h

be a E]]” ! function that uniformizes S. / is r¥,+1 by 2.3.7(2). Clearly
g=d"ohoe"
uniformizes R, and is 7X,,; 1. =

We can use the name-finding function e” to produce an rX, | Skolem function.
If (u,v) is a £; formula in the language of M", let ¢*(u,v) be the natural X,

“8Lemma 2.3.7 holds trivially when n = 0, except possibly (6). If 0(M) is a limit ordinal, then (6)
holds.
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formula expressing “Ix3y(d"(x) = uAd"(y) =vA@(x,y))”. The r¥,; relations
are naturally indexed by the X; formulae of the form ¢*. We set

Wy (0% ,x) = d" (hyn (9%, " (x))).
DEFINITION 2.3.9. Let M be a premouse and 0 < n < k(M); then

€))] hz’jl is the canonical rZ%rl Skolem function for M.
(2) For X C M, Hull, | (X) = {1 (@,s) | sEX“P A € Vp}.

(3) cHull’ | (X) is the transitive collapse of Hull/, | (X).

It is clear that Hullﬁl(X ) is closed under (lightface) rX,.; functions, and
in particular, p¥ € Hull’, | (X), and Hull’”, | (X) is closed under the coding and

decoding functions " and d”. Also*
Hull’ | (X)NM" <5, M",
and under a natural notion of X, formulae,
Hull), | (X) <5, M.

Solidity, universality, and cores

DEFINITION 2.3.10. Let M be a premouse, k < k(M), o0 < py(M) and r €
[ (M)]=®; then

Wyr" = cHull) | (aUrU pi(M)).

If & € pr1 (M) and r = py 1 (M) — (¢ + 1), then we call W,;" the standard solidity
witness for . We say py1 (M) is solid iff all its standard solidity witnesses belong
to M1

DEFINITION 2.3.11. Let M be a premouse and k < k(M). We say that r is
k+ 1-universal over M if for p = py, (M) and W = WJ}",
(a) Mlp™M =w[p*¥, and
(b) forany A C p, A is boldface rZ}, , iff A is boldface r}’, ;.

This strengthens the notion of universality employed in [30] a bit. The strength-
ening will be useful later. The proof in [30] that premice produced in a background
construction have universal parameters shows that the parameters are universal in
this stronger sense.

The soundness required to qualify as a premouse is that for all {o,k) < [(M),
pr(M|{o,1)) is solid and k-universal over M|(c, k). In particular, M must be
k(M)-sound. It need not be k(M) + 1-sound.

4We are diverging here from the terminology of [49]. Their h"}\,;rl is essentially our denotation
function dj’,’jl . They call it the canonical rZ%, Skolem function, but it is not actually a Skolem function.
Our h}:j’l is the Skolem function, so the divergent terminology seems justified.

50The notation cHull for the transitive collapse of a Skolem hull is due to Schlutzenberg.

31Here we assume k(M) < o, as we often do without mention. Cf. Remark 2.3.2.
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DEFINITION 2.3.12. Let M be a premouse; then

(@) p~ (M) = proy(M),
(b) p(M) = pr(ar)1(M),
(©) p(M) = prmy+1(M), and
(d) hyy = KM

We call p(M), p(M), and hy; the projectum, parameter, and Skolem function of
M.
Let M be a premouse. We define

(M) = Capy1 (M) = CHUllkM(M)+1(P(M) Up(M)),

considered as an Ly-structure. Let w: €(M) — M be the anticollapse, and 7 =
7~ (p(M)). We say that M is k + 1-solid, or M has a core, iff p; 1 (M) is k+ 1-
universal over M, and ¢ is k+ 1-solid over €(M). This implies that ¢ is k + 1-
universal over €(M), that py (M) is k+ 1-solid over M, and that t = py (€(M)).
If M is k(M) + 1-solid, then we call €(M) the core of M, and the associated 7 is
the anticore map. If M is k(M) + 1-solid, then setting

k(E(M)) = k(M) +1,
¢(M) is a premouse. We say
M is sound iff M = HUH%M).H (p(M)Up(M)).

Equivalently, M is sound iff €(M) exists, and M = C(M)~.

We may occasionally say that M is k + 1-solid for some k > k(M). This just
means that M*! exists, that is, that the process of starting with M and iteratively
taking cores, setting €y (M) = M and &;; (M) = &(&;(M)), does not break
down by reaching some non-solid &;(M) with i < k. M**! is the reduct which
codes €1 (M). We say that M is k+ 1 sound if M is k+ 1 solid, and M = €| (M).
(If we ignore the distinguished soundness degrees, that is.)

For the notion of generalized solidity witness, see [49]. Roughly speaking, a
generalized solidity witness for o € p(M) is a transitive structure whose the-
ory includes Th{!(a U p;(M) — (¢ +1)). If W is a generalized witness, then
ThY! (U p1 (M) — (a+ 1)) is an initial segment of Th}' (U p1 (W) — (a+1)) in
the natural prewellordering of £}/, so we can recover the standard witness from
any generalized witness. Generalized witnesses are important because being a
generalized witness for an o € py (M) is an rII; condition, hence preserved by rZ;
embeddings. Such embeddings may not preserve being a standard witness.>>

52[30] defines the solidity witnesses to be theories: instead of W,S;'r, the witness is Thjk"'+1 (aUr).
This doesn’t quite work in all contexts, because one needs that the wellfoundedness of the € relation
coded into this theory is preserved under embeddings mapping M into wellfounded models. Without
knowing W,f,),” € M, this is not clear. The corrected definition is due to Jensen.
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Remark 2.3.13. We have defined cores here as they are defined in [49]. In [30]
they are defined in slightly different fashion. First, [30] works directly with the
€41 (M), rather than with the reducts which code them. The translations indicated
above show that is not a real difference; see [30], page 40. Second, if k > 1,
then [30] puts the standard solidity witnesses for p;(M) into the hull collapsing
to €441 (M), and if k > 2, it also puts py_; (M) into this hull if px_1 (M) < o(M).
The definition from [49] used above does not do this directly. We are grateful
to Schindler and Zeman for pointing out that nevertheless these objects do get
into the cores as defined in [49], and therefore the two definitions of €. (M) are
equivalent. (For example, let k =2 and let M be 1-sound, with & € p;(M). Let
r=pi(M)\ (a+1). Let T: €;(M) — M be the anticore map, and 7(f8) = « and
7(s) = r. The relation “W is a generalized solidity witness for o, r” is I1; over
M. (It is important to add generalized here. Being a standard witness is only II,.)
Since 7 is X, elementary, there is a generalized solidity witness for 3, s over €, (M)
in C2(M). But any generalized witness generates the standard one ([49], 7.4), so
the standard solidity witness U for f3,s is in €,(M). Being the standard witness
is ITy, so w(U) is the standard witness for a,r, and this witness is in ran(7x), as
desired. A similar calculation shows that being equal to p; can be expressed by a
IT; formula, the I3 clause being “for all o@ < p; there is a generalized witness for
Th; (U p;)”. But 7 is rX; elementary, so m(p; (€2(M))) = p1(M).)

Remark 2.3.14. The pfs premice defined in Chapter 4 will differ from Jensen
premice in that all the p;(M) for i < k+ 1 are added as points to the hull collapsing
to the counterpart of €| (M).

Extension of embeddings

The extension-of-embeddings lemmas relate reducts to the structures they code.
The downward extension of embeddings lemma tells us that if S is amenable
and w: S — N" is X, then there is a (unique) M such that S = M". The upward
extension lemma tells us that if 7: M" — S'is X and preserves the wellfoundedness
of certain relations (the important one being € as it is described in the predicate of
M™), then there is a unique N such that S = N". See 5.10 and 5.11 of [49]. In both
cases, there is a unique #: M — N extending &, given by #(d},(x)) = dj(7(x))
for all x € M".

Some care is needed in applying these lemmas. In the downward case, it is
possible that 7: S — N is X, N is a premouse, and S is not. The problem is that
FS may not measure all sets in S.°3 But if 7 is X1 elementary, then S is a premouse,
and this will pretty much always be the case in this book.

The importance of solidity shows up in our statement of the upward extension

330ne important context in which this happens is in the proof that iterable premice satisfy Jensen’s
O principle. See [44]. Premouse-like structures with a partial top extender are called protomice, and
they are responsible for many of the difficulties overcome in [44].
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lemma. In order to conclude that N is a premouse and 7 is rX, | -elementary, we
need to use the solidity of p,(M). When we decode the name for p,, that is part
of S, we do indeed get a parameter r = #(p,(M)) that generates all of N modulo
o(S), simply by construction. S = N"™". So p,(N) < o(S), and o(S) < p,(N) can
be shown using the amenability of S. Thus p,(N) < r in the parameter order.*
But it is the fact that being a generalized solidity witness is preserved that lets us
conclude that r is solid over N, and hence p,(N) = r. It is easy to see no ¢ <jex r
can generate r modulo o(S), so if r # p,(N), then N is not n-sound, hence not a
premouse.

Schindler and Zeman prove a more abstract upward extension lemma in [49].
They first define M*4 for arbitrary g, and then set M* = M*P«M) _Their upward
extension lemma then just asserts the existence of a premouse N such that S =
N™™en(M)) The more abstract lemma is useful in practice, because it separates the
elementary facts to do with coding and decoding from the much less elementary,
premouse-specific question as to whether 7 preserves the standard parameter.

We shall discuss the extension of embeddings lemmas in more detail in Section
4.1.

2.4. Elementarity of maps

Given premice M and N, n = k(M) =k(N) < ®, and
w:M"— N"
a Xy elementary embedding on their n-th reducts, then by decoding the reducts we
get a unique
:M—N

that is X, elementary and is such that # C &. If 7 is X; elementary, then 7 is
Y,+1 elementary. The decoding is done iteratively, and yields that for k < n,
f: M* — N*is X, or X, i1, respectively. 7 is called the n-completion of ©.5
See lemmas 5.8 and 5.9 of [49]. These lemmas record additional elementarity
properties of &, namely r¥, | -elementarity if 7w is X1, and weak r¥, ; -elementarity
if 7w is only Xy. (See [49, 5.12].) Such maps are cardinal preserving , in that
M = “yis a cardinal” iff N = “n(7) is a cardinal”, except possibly the weakly rXg
maps. In this case, we shall always just add cardinal preservation as an additional
hypothesis. This leads us to:

DEFINITION 2.4.1. Let M and N be Jensen premice such that k(M) = k(N),
and 7: M — N; then letting n = k(M),

54Regarding parameters as finite descending sequences of ordinals, this is the lexicographic order,
so we often write p <jx ¢ for it.

3SIf k(M) = k(N) = o, then a £ elementary 7t: M® — N® determines a £, elementary #£: M — N.
As usual, our discussion is focused on the case n < ®.
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(a) misweakly elementary iff 7 is the n-completionof 7 [ M",and © | M" : M" —
N"is X and cardinal preserving.

(b) 7 is elementary iff w is weakly elementary, and w [ M": M" — N" is X|.

(c) mis cofinal iff sup w“p, (M) = p,(N).

We should note that the reduct M" has a name for p, (M) built into its language™®,
so a weakly elementary 7: M — N must by definition preserve p;(M) for k < k(M).
Weakly elementary maps are X; elementary maps that preserve the p; for k < k(M),
although this is not quite all there is to the concept.

Formally, Definition 2.4.1 only applies when M and N have the same distin-
guished soundness degree. However, it is easy to see that if 7: M — N is weakly
elementary and i < k(M), then 7: M | i — N | i is elementary (and more). One
could be pedantic and associate a degree to 7 itself, but we won’t do that. The one
caution is that 7 could be cofinal as a map from M to N, but not as a map from
M | itoN | i, where i < k(M). That is quite common, in fact.

The elementary maps correspond to those which are near n-embeddings in the
sense of [42]. The cofinal elementary maps correspond to the n-embeddings of
[30]. When n > 1, the weakly elementary embeddings correspond to those that
are n-apt in the sense of [42], Z(()"> in the sense of [81], or n-lifting in the sense of
[52]. There are many other levels of elementarity isolated in these references. The
elementarity notions that will come up in this book are defined in this and the next
section in the context of Jensen premice. We adapt them to pfs premice in §4.3.
There are essentially two: elementarity, and what we shall call near elementarity.>’

Here are two basic sources of cofinal elementary maps.

LEMMA 2.4.2. Let M be a solid premouse, N = €(M)~, and let t: N — M be
the anticore map; then letting k = k(M) = k(N),
(a) T is cofinal and elementary,
(b) if prr1(M) = pi(M), then T = id, and
(c) if © # id, then pry1(N) < crit(m) < pg(N).

PROOF. We start with (a). By construction, 7 is the completion of 7 = 7 [Nk,
which is X; elementary as a map from N* to M. So & is elementary. Clearly
crit(m) > pre1(M) = pri1(N). If pry1(M) = pi(M), then N¥ = M* and since
M and N are k-sound, 7 is the identity, hence cofinal. If py (M) < pi(M) and

k
sup(ran(#)) < o < pr(M), then Th’lwk(p(M) Ur)= Thllu HO‘(p(M) Ur), where
p(M) = pe(M)™r and M*||at = (M||, AN ). But M¥||at € M*, 50 the new ZM"

Directly, only a name for r, (M), but indirectly a name for p,(M).

5TWe shall not use the notion of weak n-embedding defined in [30]. In the end, that notion is not
very natural, and in a number of places it does not do the work that the authors of [30] thought that it did.
In particular, there are problems with how it was used in the Shift Lemma, the copying construction,
and the Weak Dodd-Jensen Lemma. These problems are discussed in [52], and a variety of ways to
repair the earlier proofs are given.
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subset of p (M) was not new after all. Thus again 7 is cofinal, and we have proved
(a).

We have already observed that (b) holds. For (c): if crit(7) > pi(N), then since
7 is cofinal and elementary, N* = M¥. But as we noted, this implies M = N and
= id. n

The second basic source is fine structural ultrapowers. If M is a premouse with
n=k(M), and E is a short extender over M with kg < p,(M) and P(kg)™ C
dom(E), then we set

Ult(M,E) = Ult,(M,E)
= decoding of Ulty(M",E)
i = completion of canonical i: M" — Ult(M",E).
By convention, k(Ult(M,E)) = k(M).

LEMMA 2.4.3. Let M be a premouse and E be a short extender over M such that
crit(E) < prury (M) and Ult(M, E) is wellfounded; then Ult(M,E) is a premouse,
and the canonical embedding i%” : M — Ult(M,E) is cofinal and elementary.

PROOF. We assume here that Ult(M, E) is wellfounded, but one could make
sense of these statements even if it is not. Let n = k(M). It is easy to see from £.os’s
Theorem that the canonical embedding i: M" — Ulto(M",E) is £ and cofinal. If
n=0and M is active, with k¥ = crit(F™), then also i“x ™ is cofinal in i(k ).
This implies that i preserves rQ sentences, and hence Ult(M, E) is a premouse.’8

Let S = Ultg(M",E) and N = Ult(M, E). We must see that S = N". The abstract
part of the upward extension lemma tells us that S = N"*(P), where p = p,(M).(Cf.
[49, §4].) So we just need to see that (p) = p,(N). But this follows from the
fact that M is n sound, as we saw above: p,(N) < o(S) because S = N"*(P)_ and
0(S) < pn(N) can be shown using the amenability of S. So p,(N) <jex (p) in the
parameter order. But the solidity witnesses for p are moved by 7 to generalized
solidity witnesses for 7(p), so 7(p) is solid, and hence 7(p) <jex pu(N).

Thus ¥ : M — Ult(M, E) is the n-completion of i, and hence it is cofinal and
elementary. -

The coding and decoding involved in the definition of Ult(M, E) can obscure its
properties. It is sometimes better to think of Ult(M, E) as an ordinary ultrapower
formed using rX; ) functions, as in [30]. More precisely, letting n = k(M) and
K = crit(E),

Ult(M,E) = {[a, f]¥ | a € [\]=® Adom(f) = [«]I% A f is boldface rE,}.

Of course, the coding into M" is still present in the rX, definition of f, but it

38See [30, §2].
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can sometimes help to think of Ult(M, E) this way. We do indeed get the same
ultrapower. Each function g € M" used in Ulty(M",E) corresponds to the function

8" (u) =d"(g(u))),
which is rX, in the parameters g and p,(M). The decoding of [a,g¥" is [a,g*]¥.
Conversely, if f is a boldface r¥X, function on [x] 4l then f = g* for some g € M".

DEFINITION 2.4.4. Let M be a premouse and n < k(M), then

(1) sk, ={(n,7(u,v)) | T(u,v) is Z; in the language of reducts}.
(2) Foru,q € M" and 7 € sk, f%(u) =dy,((t,{(q,u)).

The f?:’q parametrize the partial boldface rX, functions with domain contained
in M".>° One can think of 7 as an rZ, definition of f from ¢. One only needs pa-
rameters ¢ € M" because M is n-sound. Clearly é‘f’q = g*, where g(u) = (1, (g, u)),
so our two versions of Ult(M, E) are isomorphic, and we have

Ult(M,E) = {[a, L]} | T € sky Aq € M" Adom(f}),) = RS

One has the usual Los theorem for 7%, formulae, so the ultrapower map is rX, ;-

elementary. Letting i = i¥, we get

@, P = () () = FOE),

Let us return to the general setting. Here are some basic facts regarding preser-
vation of parameters and projecta. In stating them, we adopt the convention that if
: M — N, where M and N are premice, then 7(o(M)) = o(N).

PROPOSITION 2.4.5. Let M and N be Jensen premice with n = k(M) = k(N),
and w: M — N be weakly elementary; then
(1) &is X, elementary,
(2) w(pr(M)) = pi(N) for all k < n, and
(3) (a) supm“pr(M) < pp(N) for all k <n,
(b) m(pi(M)) = pi(N) for k <n—1, and
(¢) Po_1(N) < T(pn_1(M)).
(4) Forany o < p,(M) and r € M, m(Th (a U {r}) = ThY (x(o) U{m(r)}).

PROOF. (1) and (2) are part of the extension of embeddings lemmas. (3)(a) is
also implicit there, since 7w | M*: M* — N* is a stage in completing 7 [ M".
(3)(c) is true by convention if p,_1 (M) = o(M). For k < n, let

o (u,v) = “VxIa < u(x = I (o, v))".

Here /* is the canonical rX; Skolem function.%® ¢ is the natural 71Ty | formula

3Qur definition of f%‘fq here is slightly different than that in [30], but not in any important way.
%00ne could also use the decoding function d* at this point.
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expressing the quoted one. M = @[pr(M),pr(M)], soif k <n—1then N =
ok [m(pr(M)), pr(N)], and therefore pr(N) < w(px(M)). This gives us (3)(c).

For (3)(b), note that “x = Thy(y)” can be expressed by a boolean combination
of IT; formulae. So “v < p;” can be expressed by a I, formula, namely

Wi (v) =Va < vax(x = Thy (o U py))”,

and “py = OR” can be expressed by a IT;,, sentence, namely 6; = “VoIx(x =
Thy (U py))”. If k < n— 1 then 7 preserves ¢y, Wi, and 0. This yields (3)(b).
(4) follows from the fact that “x = Th,(y)” can be expressed by a Boolean
combination of I, formulae. Or we can just note that as a predicate on the reduct
M", x =Th,(aU p,(M)) is is Xy, so preserved by 7, and take o large enough that
r=h},(B, pa(M)) for some B < ct. .

Note that we do not necessarily have that 7(p,—(M)) = py—1(N), or p,(N) <
(p,(M)), or that 7t is r¥,|-elementary on a set cofinal in p,(M). These are the
additional requirements from [30] on weak n-embeddings. We do need to make
use of the first two of these requirements later, so we make a definition.

DEFINITION 2.4.6. Let m: M — N be weakly elementary, and k = k(M); then

(a) m respects projecta iff m(p;j(M)) = p;(N) for all j <k,
(b) 7 is almost exact iff pi(N) < w(px(M)), and
(c) mis exact iff pp(N) = n(pr(M))

We use here the convention that w(o(M)) = o(N). Thus if k(M) = 0, then
7 respects projecta and is exact, and if k(M) = 1, then 7 respects projecta. So
exactness only come into play when k(M) > 1, and respecting projecta only comes
into play when k(M) > 2. By Proposition 2.4.5, preservation of py(y_; is the
only issue in (a). However, so far as we can see, weakly elementary maps may not
Preserve Py(y)—1-

Elementary maps respect projecta and are almost exact, by the calculations we
just did.5!

PROPOSITION 2.4.7. If m: M — N is elementary, then T respects projecta and
is almost exact.

PROOF. Let n = k(M). We have p,(N) < m(p,(M)) because “p, < v is ex-
pressed by the IT,,.; formula @, (v, p,,) displayed above. We get that 7w(p,,—1(M)) =
Pn—1(N) from the fact that 7 preserves @,_1, W,—1, and 6,_;. _

As we shall see in the next section, the ultrapower map 7: M — Ult(M, E) may
be discontinuous at p~ (M). In that case, it is a cofinal, elementary map that is not
exact.

In a similar vein,

611n fact, elementary maps are weak n-embeddings in the sense of [30].
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PROPOSITION 2.4.8. Let m: M — N be weakly elementary, n = k(M), and
suppose that if n > 2, then either p,_1(N) = o(N) or p,_1(N) € ran(w). Then &
respects projecta.

PROOF. If p,_i(N) = o(N), then N = 6,_;. But 6,_; is IT,+| and 7 is X,-
elementary, so M = 6,_1, so p,—1 (M) = o(M). Similarly, if p,—;(N) = n(u), we
get that M = (Qu—1 A Y1) 1], s0 = pp1 (M). .

The lifting maps that occur in the construction of background-induced iteration
strategies are weakly elementary and respect projecta, but may not be elementary
or almost exact. One can see why by considering the following simple examples.

EXAMPLE 2.4.9. Let M be a premouse and let E be an extender on the M-
sequence. Suppose that E [ Ag = (E* | Ag) "M, where E* is an extender over V.
Let

o: Ult(M,E) — iy (M)

be the natural map, given by completing

k
o(la.f1i") = la, flE-
where k = k(M), a C Ag is finite, and f € M¥. Suppose k =0, so M* = M. Ttis clear
that o is Xp-elementary, but it may not be X -elementary. For example, let k¥ =
crit(E), and suppose o(M) = 1 + k for some 7; then o(Ult(M,E)) = i¥ (n) + k,
but o(if.. (M)) = iy.(n) + iy (k). We have o(i¥(n)) = i%..(n) and o(x) = k.
Thus if @(u,v) is the £; formula “u+v exists”, then Ult(M,E) = —o[i¥ (n), k]
but iz.. (M) = @[a (if! (1)), 0 ()]
One can construct similar failures of elementarity with k(M) > 0.

EXAMPLE 2.4.10. Let M, E, E*, and ¢ be as in 2.4.9, but suppose now that
k(M) =1, crit(E) < p1(M), and p; (M) has X; cofinality crit(E) in M. By Lemma
2.5.6, ¥ is discontinuous at p; (M), so

p1(UL(M, E)) = supig™p1 (M) < i (py (M)).

On the other hand, 6 (ig(p1(M)) = ig+(p1(M)) = p1 (ig+(M)). 1t follows that o is
not almost exact.

Itis easy to see that the lifting maps ¢ in these examples do respect projecta. That
is true in general of the lifting maps that occur in the construction of background-
induced iteration strategies.

Note that if 7: M — N is weakly elementary, and k = k(M) = k(N), then ©
moves generalized solidity witnesses for py(M) to generalized solidity witnesses
for py(N). For example, being a generalized witness for p; (M) is a I1; fact, so
preserved by X; embeddings. If 7 is elementary, then it will move the standard
solidity witnesses for p (M) to the standard solidity witnesses for py(N).

The preservation results above were confined to py (M) and py(M) for k < k(M).
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We also need to consider what happens to p 1 (M) and py1(M). Here is the main
fact concerning preservation by ultrapower maps.

DEFINITION 2.4.11. An extender E is close to M iff

(1) dom(E) = dom(F), for some F' on the sequence of M, and
(2) for all finite a C A(E),
(@) E,is £} in parameters, and
(b) forall a < KE’M, E,NM|la e M.
We say that E is very close to M iff E is close to M, and for all finite a C A(E),
E,eM.

We have added item (1) to the standard definition of closeness from [30]. In
Lemma 4.5.3 we show that all extenders used in a normal iteration tree are close to
the models to which they are applied in this slightly stronger sense. We show also
that they are often very close.

LEMMA 2.4.12. Let M be a premouse and let E be an extender that is close to
M such that p(M) < crit(E), and let N = Ult(M, E); then

(a) for AC p(M), Ais M iff A is TV,

(b) p(M) = p(N), and
(c) if p(M) is solid, then i¥ (p(M)) = p(N), and p(N) is solid.

PROOF. We assume k(M) = O for simplicity. Let p = p(M) and i = i¥. If
AC p(M)andAis XV in the parameter [a, f]¥, then by Los’s theorem, A is £}/ in
f and ¢, where ¢ is such that E,, is 211” in ¢. This is because

E€AiIff M ETJgIX € E,;Yue XO[E, f(u),g(u)],

where 3v0 is the £; formula defining A from [, f] in N. The other direction in (a)
is immediate.

This implies that p < p(N). On the other hand, the amenability clause (2)(b) in
closeness implies that P(p)¥ = P(p)V. So if A C p is T} but not in M, then A is
¥ butnotin N. So p = p(N).

Toward (c), let p = p(M) and ¢ = i(p). Let ¢ be a ¥; formula such that
{o|M = ola,p]}np ¢ M. Then {a | N = ¢[ct,q]} Np ¢ N, since the two sets
are the same below p, and P(p)” = P(p)V. It follows that p(N) <iex g. But if
o € p, then there is a generalized solidity witness W for o such that W in M.
Being a generalized witness is Iy, so i(W) is a generalized witness for i() in g.
It is easy to see that the existence of these witnesses implies that g <jex p(N). So
g = p(N); moreover, p(N) has solidity witnesses. o

The solidity of p(M) was crucial in showing that it is preserved this way by
ultrapowers. This is perhaps the main reason one must prove that p(M) is solid in
order to get a reasonable theory going.

We shall resume our discussion of levels of elementarity at the end of the next
section, after we have introduced a stronger notion of respect for projecta.
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2.5. r¥; cofinality and near elementarity

It is natural to ask whether there are ordinals that measure definable cofinalities
in the same way that projecta measure definable cardinalities. There are, and we
shall make use of them later.%2

DEFINITION 2.5.1. Let M be a premouse and k < k(M).
(a) For any v < o(M), coko (7) is the least i) such that there is a partial boldface
r224 function f such that f*“n is cofinal in 7.
(b) vis r¥-singular in M iff cof}! (y) < v, and r¥;-regular otherwise.
(b) m! = cofy(pr(M))M.
We say that an f as in (a) is a witness that cofy(y) = 1.

We allow ¥ = o(M) here. cofy(o(M)) = o(M), and cofy(y) is just the usual
cofinality of y with respect to functions f € M if ¥ < o(M). When k = 1, the
rX; functions are just the ¥ functions, and this is a good special case to keep in
mind.®

Clearly if y < px (M), where k < k(M), then cofl! (y) = cof}! (7). Equally clearly,
coff{"’ (7) < pr(M) for all 7, but this is somewhat misleading, because one cannot
always take the witnessing function to be order preserving.

DEFINITION 2.5.2. Let f witness that cofi(y) = 1. We say that f is nice iff
f:n — 7, and f is total and strictly order preserving,

PROPOSITION 2.5.3. If cof! (y) < pr(M), then there is a nice witness to this
fact. Moreover, cofl! (y) is the unique 1 < py(M) such that 1 is Zo-regular in M,
and there is a total, strictly order preserving, r¥; function f: n — vy with range
cofinal in .

PROOF. Let f witness that cofy(y) = 1. Let R be the prewellorder of 1 induced
by f:
aRB iff f(a) < f(B).
Because 1 < p}, R € M. No X € M such that [X|™ < 7 can be R-cofinal, by the
minimality of 1. We define #: n — 1 by induction:

h(y) = least & such that VB < y(BRE ANh(B)RE).

h(7) is defined because otherwise, X = yUh“y is R-cofinal. It is clear that i1 is
R-cofinal, and h € M, and a < 8 implies h(c)RA(P). So setting

g(y) =foh(y),
g is a nice witness that cofl! (y) < p(M).
%2Many of the mildly new lemmas in this section were proved independently by Farmer Schlutzen-

berg. See [50].
3We may occasionally use 17, pM, and p¥ interchangeably with 1, (M), pi(M), and pi(M).
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To see the uniqueness assertion, suppose that ( fy, 1) and (f1, 1) were two such
pairs. We define i: 19 — 1y by h(o) = least § such that fo(at) < f1(B). Since
we are below py(M), h € M. Clearly h is non-decreasing and ran(k) is cofinal in
M. Since 7 is O-regular, n; < 1Mo. Symmetrically, 19 < 1y, so o = N1. n

One can arrange that the nice witness to cof}! (px(M)) = nM is continuous at
limit ordinals.

LEMMA 2.5.4. Let M be a premouse and k = k(M). Suppose N} < py(M);
then there is a nice witness f to this fact such that f is continuous at limit ordinals.

PROOF. Since nM < o(M), k > 0. Let

k—1
n=n=n"",

p = p(M) = pr (M),
Let f be a nice witness that cofﬁ""ki1 (p) =n, say

fly)=¢&ifft M = [&,7.4]

where ¢ is X; and ¢ € M¥ 1.

If M |= “p is singular”, then we can take f € M and the lemma is obvious, so
assume p is regular in M. For 6 < py_; (M), let M*~!||6 = (M||6,A¥ N M||0)
and

Jo(y) =& iff M |0 = 9, 7,4].

Each fy is in M*~!, and the function 6 — fy is £; over M*~!. For any a < 1) there
isa 6 < pr_1(M) such that a C dom(fy), since otherwise the function sending
B < « to the least 8 such that B € dom(fp) witnesses that cof}! (p) < 1. For
a<n,let

g(a) = least 6 such that o« C dom(fy),

and

h(a) = sup({fe()(§) | 6 < a}).

h(a) < p because fo(a) € M*=1_ Clearly h is a continuous nice witness that

cof}(p) = 1. E

Remark 2.5.5. Here is an example that shows the hypothesis cofy(y) < py in
2.5.3 is needed. Let M be a premouse such that k(M) = 1, M = KP, and such
that for p = p; (M), M |= “p™ exists”. (M could be the first initial segment of L
satisfying KP plus “w; exists”. Then p = @, and p; (M) = {@!}.) Let y= p™M.
By our definition, cofllu (7) < p, but there can be no partial order preserving witness.
This is because if f is order preserving, ¥ —ran(f) is also X, so ran(f) € M by
A;-comprehension. But cofy(y)Y = v, so ran(f) ¢ M.
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In this book, we shall only need to deal with r¥;-singularity when the cofinalities
are < P, and hence nicely witnessed. The following lemma explains where it
comes up.

LEMMA 2.5.6. Let M be a premouse, k = k(M), and let E be an extender over
M such that crit(E) < pp(M). Suppose that Ult(M, E) is wellfounded; then for any
v < o(M) the following are equivalent:

(a) cof! (y) = crit(E),
(b) i% is discontinuous at y.

PROOF. Let x = crit(E). We use the representation of Ult(M,E) in terms of
equivalence classes [a, f]¥, where f is a total boldface rZQl function with domain
[K]lel.

Suppose first that cof} (y) = k, and let f be a nice witness to this fact. By Los’
theorem, supig*y < [{k}, fI¥ < i¥(y), so i¥ is discontinuous at .

Conversely, suppose i% is discontinuous at ¥, and let

supiy “y < [a, fIif <if (7).

We may assume ran(f) C y. By Los’ theorem, ran(f) is cofinal in ¥, so cofi(y) < k.
Suppose toward contradiction that cofi(y) = 1 < k, and let g be a nice witness to
this fact. For u € [«]1 and & < 7, let

H(u,a) iff g(a) < f(u).

H is r¥; and bounded in M||pM, so H € M. Letting Hy = {u | H(u,)}, we
have Hy € E, for all & <1, so we can find u € (g Ho- But then fw) >,
contradiction.

_|

We allowed ¥ = 0(M) in Lemma 2.5.6. Here our understanding is that i¥ (o(M)) =
o(Ult(M,E)). Clearly cof})f (o(M)) = o(M), so the Lemma says that i/ is con-
tinuous at o(M) when k(M) = 0, which is of course true. If k(M) > 0, then it is
possible that % is discontinuous at o(M).

Lemma 2.5.6 provides us with an example of a cofinal, elementary w: M — N
such that for k = k(M), n(px(M)) # pr(N). Starting with a premouse Q |= ZFC+
“K is measurable”, let M = Q|n + 1, where 7 is the Kth cardinal of M above k. It
is easy to see that 1 = p; (M) and & = cof}!(n). Letting 7= = i¥ where E € M and
crit(E) = k, we have that 7%p; (M) = p. ") < (p, (M)). By taking a X, hull
of M, we can arrange that p,(M) = ®, and 7 is an anticore map.

In the examples of the last paragraph, cofy(p; (M)) = k. It is somwhat harder to
construct an example of such a discontinuity when p; (M) is regular in M. That
situation will be cause us some trouble in Section 3.2, so we digress here to show
that it can indeed occur.

Recall that nM = cof)! (px(M)). One can construct an initial segment M of L
such that N < p; (M) = coflf (p;(M)). In order to have measurable cardinals or
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nontrivial anticore maps one must go beyond L, or course, but the same construction
works if one starts with measurable cardinals.

PROPOSITION 2.5.7. There is an M <L such that N < p; (M) = cofy (p1 (M)).

PROOF. (Sketch.) Work in L. Let u < k, with u regular and x inaccessible.
Let N = Jiiy, X = Hull) ({k}) and Y = Hull) (YU {k}), where y = X N k. Let
M be the transitive collapse of Y, and ©: M — N the uncollapse. Then p; (M) =
v = crit(m) and n(y) = k. yis O-regular in M. It is 1-singular with cofinality
U because if we let Yy = sup(Hull{“"‘ ({x})) Nk, then the function f(¢t) = Yy
witnesses cof}! () = . =

In the troublesome situation later on, both p; (M) and N are measurable in M.

PROPOSITION 2.5.8. There is a premouse M such that k(M) =2, p,(M) = o,
p2(M) <M < py(M) < o(M), and n"™ and p\ (M) are measurable in M.

PROOF. The same construction works, starting with ¢ and k¥ measurable in N,
and o(N) = 1h(D) + u, where D has critical point k. (Now X = Hull) ({D}).) -

Proposition 2.5.8 gives us an anticore map 7: M — Ult; (M, E) that is discon-
tinuous at p¥, while p; (M) is measurable in M. We discuss such anticore maps
further in Section 3.2.

We shall need some facts about preservation of cofy () under maps with some
degree of elementarity. For elementary = we have

LEMMA 2.5.9. Let w: M — N be elementary, k < k(M), and let f be a nice
witness that cof}! (y) = 1, where N < py(M); then n(f) is a nice witness that
coff (z(y)) = x(n).

PROOF. Let f be a nice witness that cof}! (y) = n. If k = 0, then f € M and
n(f) is a nice witness that cof) (7(y)) = 7(n). Suppose now k > 0; we can still
make sense of 7(f) by moving a definition of f. For example, suppose k = 1
and f = @M where @ is X;; then the fact that f is strictly order preserving with
ran(f) C yis ITj, and the fact that it is total and has range cofinal in ¥ is IT,. Since
k(M) > 1, m is £, elementary. Thus ¢V witnesses cof) (n(y)) = n(n).

In general, we can fix ¢ € M* such that for all & < 7,

f(a) = Hyg(ot,q, ).
Let also r € M* be such that
Y= hl[i/[ (r7 pit/l) :
The fact that f is total, strictly order preserving, and maps into Y is a X fact about

ThY (nU{q,r,p¥'}). This theory is coded into the reduct M*||€, where & < py (M)
is large enough.%* The fact that ran(f) is cofinal in 7 is IT; over M*.6

%4Totality reduces to a £y fact about M||& because the outer universal quantifier is bounded by 7.
5The IT; fact is that for all B < o(M¥) and s € M||B, if “K(s, py) is defined” is in AX, N M| B, then
“aa(hk(‘Y»pk) < hk(asqvpk))” isin Al}i/[ ﬂM| ‘ﬁ
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So letting

g(a) = hy(a,m(q), py)
for @ < (M), we see that g is a nice witness that cofy (7(y)) = (). o

Lemma 2.5.9 leaves open whether the rX;-regularity of p,’c"’ is preserved. Here
we need a little more elementarity for w. If we assume that 7 is cofinal, as
ultrapower and anticore maps are, then we can say more.

LEMMA 2.5.10. Let w: M — N be cofinal and elementary, and k = k(M) > 0;
then
(1) px(M) is ri;-regular in M iff px(N) is r¥y-regular in N.
(2) If 7 is continuous at pr(M), then w(px(M)) = px(N) and m(n(M)) = n}.
(3) If @ is continuous at py(M), then T is continuous at M.

PROOF. For (1): Suppose f is a nice witness that cof}! (px(M)) = 1, where n <
Pc(M). Letting f = f2* and 7(f) = fé\fﬂ(q), we showed in the proof of 2.5.9 that
7(f) is total and order preserving on (). It is clear that 7(f(a)) = n(f)(7(x)),
and from this we get that 7t(f) [ sup 7“7 is total and order preserving, with range
cofinal in sup ﬂ“p}("’ = p,’(v. Thus p,lcv is r¥ singular in N.

Conversely, suppose ?’ 4 With domain 1) is a nice witness that p,iv is r¥;-singular
in N. Let B < px(M) be large enough that n,q € w(M||3). By the elementarity
of 7 and the fact that sup wpx (M) = p(N), we see that { fM.(§) | €,r € M||B} is
cofinal in pg(M). Thus py(M) is r¥;-singular in M. '

For (2): Since 7 is cofinal, py(N) = sup“pp(M) = m(px(N)). If pp(M) is
rEi-regular in M, then by (1), z(nM) = n). If n} < py(M), then w(n}) =nV
by Lemma 2.5.9.

For (3): We have 7t(px(M)) = pr(N). So if ) < py(M), (3) follows from
Lemma 2.5.9, and if nM = p(M), it is trivial.

_|

Remark 2.5.11. We do not know whether the converse to (3) in 2.5.10 is true in
general. We showed in 2.5.6 that it holds for ultrapower maps. We shall show in
Section 3.2 that it holds for anticore maps, granted that N is iterable.

Finally, if we assume elementarity one level up, the situation simplifies.

LEMMA 2.5.12. Let w: M — N be elementary, and 1 <k < k(M); then
(1) 7(px(M)) = pi(N),
(2) n(n}') =ny, and
(3) i1 (M) < iff per i (N) <.
PROOF. 7 respects projecta by Lemma 2.4.7, so we have (1). If n,ﬁ” < pr(M),

we get (2) from Lemma 2.5.9. Suppose then that p (M) is r¥;-regular in M. We
show that this fact is “TT, over M*”, hence preserved by 7.



2.5. r¥; COFINALITY AND NEAR ELEMENTARITY 45

Let us assume first that p; (M) < px_1(M). Let (t,q) € M* be a name for pi(M),
in the sense that 2!, (t,{(q,p¥)) = px(M). For B < py(M), we have that

k-1
Bg = {hyu1 (7. (r.p{)) | r € M||B}

is bounded in p (M), because coft (px(M)) > B. For y < py(M), there is a natural
¥ formula 6 ,(u,v) in the language of M*~! such that

Bﬁ mpljcu C W:’Mkfl }: _'Gﬁ,y[<ﬁv%q>7p24]
& (65, (B, 1,9)) & Ay N M| (Y+1).

Moreover the map (f8,y) ~ 65 , is £; over M. We have that

M* =vB3y(65 . (B.7.9)) & Al N MI|(y+1).

Since the right hand side is IT, over M*, and k < k(M), it passes to N¥. But
(t,7(q)) is a name in N*~! for 7(p(M)), and 7(px(M)) = pr(N). Thus the
fact that N* |= VB3y(6p 4, (B,7.7(q))) & Ay NN||(y+ 1) implies that p(N) is
r¥-regular in N.

If pr(M) = pr_1 (M), the same proof works, but we no longer need the M*~!-
name for p(M). From the point of view of M*~!, it is just the class of ordinals.
Thus we have (2).

(3) follows easily from (1) and (2) if n,’y = pi(M), so assume n,’cw < pr(M).
Because 7 is elementary and k < k(M),

Sup “py+1(M) < Pyt (N) < 7(pri1 (M)

So if i1 (M) < mf then i1 (N) < m(prs1(M)) < w(ne(M)) = !, while if
N < prey1(M), then nY = () < sup w“pry1 (M) < i1 (N). This proves (3).
_|

Lemmas 2.5.9 and 2.5.12 mark a level of elementarity enjoyed by the lifting
maps in the standard conversion systems of Chapter 3.

~—

DEFINITION 2.5.13. Let 7: M — N, where M and N are premice with k(M) =
k(N); then 7 strongly respects projecta iff for all k < k(M),
(1) m(px(M)) = pi(N),
2) m(nM)=nY, and
(3) Prg1 (M) < (M) 3ff presy (N) < Y.

DEFINITION 2.5.14. Let 7: M — N, where M and N are premice with k(M) =
k(N); then 7 is nearly elementary iff
(1) mis weakly elementary and strongly respects projecta, and
(2) for k=k(M),if f is a nice witness that cof}! (pi(M)) = 1, where n < px(M),
then 7(f) is a nice witness that cofy (7(px(M))) = 7(n).
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Remark 2.5.15. If m: M — N is weakly elementary and 7 preserves at least one
nice witness that cof}! (y) = n, where k = k(M) and 1 < p;(M), then 7 preserves
all nice witnesses that cofl,fl (7) = n. For let f and g be such witnesses, and suppose
that 72(f) is a nice witness that cof} ((y)) = 7(n). Since 7 is weakly elementary,
7(g) is a total, order preserving rXy function with domain 77(1). But the fact that
ran(g) is cofinal in ran(f) is coded into Thi(n U{g}), where f and g are X} in
g € M¥. So this fact is Xy over M, hence passes to N¥. This implies ran(7(g)) is
cofinal in ran(7(f)), so 7(g) is a nice witness that cofy (7(7)) = 7(n).

Lemmas 2.5.9 and 2.5.12 imply that every elementary map is nearly elemen-
tary.%® Examples 2.4.9 and 2.4.10 in the last section show that the converse is
not true. These examples are typical of how nearly elementary maps that are
not elementary arise. They come from factor embeddings from one ultrapower
into another ultrapower that has been formed using a larger class of functions.
The lifting maps that occur in the construction of background induced iteration
strategies arise this way, and they are always nearly elementary, but generally not
almost exact. Indeed, for such lift maps 7(p~(M)) can be strictly above, equal to,
or strictly below p~(N).

Remark 2.5.16. Definition 2.5.14 records more information about the lifting
maps of a standard conversion system than is customary. This additional informa-
tion is useful if one wants to construct iteration strategies for Jensen premice that
normalize well, using the standard background constructions of Jensen premice.
One can see how it plays a role in that in Sections 3.7 and 3.8. But from Chapter
4 onward, we shall shift to a slightly different sort of premouse and background
construction, because the construction of iteration strategies that normalize well is
more natural in that context. Near elementarity is defined in that context in Section
4.3.

We do not have an example of a weakly elementary map that is not nearly
elementary, but would guess that there must be one. Such maps do not play a role
in this book, in any case. The levels of elementarity that are most important in
what follows are: cofinal and elementary, elementary, nearly elementary.

Each of the classes of maps above (cofinal elementary, elementary, nearly
elementary, and weakly elementary) are closed under composition.

Copying and the Shift Lemma

The copying construction propagates each level of elementarity. For example,
let us look at one step of copying, as codified in the Shift Lemma.
Let us introduce some notation from Zeman’s book [81].67

%1n fact 2.5.9 implies that (2) holds for all ¥, not just y = px(M). But it is not clear that the lift
maps of Section 3.5 preserve ¥; cofinality in this stronger sense.
67See Sections 2.5 and 3.4.
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DEFINITION 2.5.17. Let P and Q be acceptable J-structures, and E and F be
extenders over P and Q respectively; then we say that (7, Q) embeds (P,E) into
(Q,F), and write

(m,0): (P.E) = (Q,F),
iff P C dom(x), T [ P: P — Qis Xy elementary, ¢ : Az — Ag is order preserving,
and for all a € [A£]<? and X,

X €E, & n(X) € Fyq.
We say (7, @) Li-embeds (P,E) into (Q, F), and write

(m,0): (PE) = (Q.F),

iff in addition 7 is X; elementary, E and F are close to P and Q respectively, and
for all a € [Ag]<® there is a g € P and a X, formula 6 such that

E,={X|P}0[X,q]}
and
Fpa={X|Q = 0[X,7(q)]}.

DEFINITION 2.5.18. Let (7, 9): (P,E) — (Q,F); then we define o: Ulty(P,E) —

o(la. /1) = [@"a, 7(f)]?
and call o the copy map associated to 7, ¢, P,Q,E, and F.
It is easy to see that ¢ is well defined.
LEMMA 2.5.19. (Shift Lemma 1) Suppose that (n,@): (P,E) — (Q,F), and let
o: Ulty(P,E) — Ulty(Q, F) be the associated copy map; then
(1) o is Xy elementary,
(2) o[Ih(E) = @[Ih(E),
(3) O'Oiz = igom and
(4) © is cofinal iff w is cofinal.
Moreover; if (,@): (P,E) = (Q,F), then & is £ elementary.
PROOF. See [81, 2.5.6, 3.4.5]. To see the “moreover” part, notice that if 6 (v)
is X1 and Ult(Q, F) |= 0[[¢“a,n(f)]], then there is an & < 0o(Q) and a Z € Fy+,

such that for all u € Z, Q||a = 0[f(u)]. This fact can be pulled back to P, f, and
E, because (7, @) is a £ embedding. o

In practice, we often start with maps 7 and ¢ acting on premice or their reducts,
as in the following immediate corollary.

COROLLARY 2.5.20. (Shift Lemma 2) Let M,N,R, and S be premice. Let
©: M — N be ¥ elementary, E and extender on the sequence of M, and F = ¢(E).
Suppose w: R — S is nearly elementary, and let k = k(R). Suppose also that
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(a) R||dom(E) = M||dom(E), and crit(E) < pr(R),

(b) N||dom(F) = S||dom(F), and

(¢c) wldom(E)+ 1= 0 [dom(E)+ 1.
Let 6y be the copy map associated to w|R*: R* — S: then oy has a unique
completion

o: Ult(R,E) — Ult(S, F),
and

(1) o is nearly elementary,
(2) o [h(E) = ¢ [Ih(E),
(3) GOi§ = ilspom and
(4) o is cofinal iff W is cofinal.
Moreover, if (11, ¢): (R, E) = (SX,F), then & is elementary.

Remark 2.5.21. Internal ultrapowers are the special case in which M =R, N =S,
and 7w = ¢. In this case, if 7 is elementary, then (1, @) : (R*,E) = (S¥, F) holds
simply because w(E) = F, so the copy map ¢ must be elementary.

We shall say that the Shift Lemma applies to (¢,n,E) iff the hypotheses of
2.5.20 hold. ( Here M, N, R and S must be understood from context.) If we regard
the ultrapowers as having been formed using definable functions, rather than coding
into reducts, then the formula

a(la, 1) = [@(a), 2(£)]2 )

holds, provided we let 7(f2,) = /2.

There are further results on the elementarity of copy maps in [42, 1.3], [81, 9.2],
and [52].

Elementarity in various contexts

Here is a summary of some natural contexts in which these levels of elementarity
play arole.

(i) The natural map from the core of M to M is elementary and cofinal.
(ii) Fine ultrapower maps, and more generally, the maps fg B along branches of
an iteration tree, are elementary and cofinal.

(iii) If m: M — N is nearly elementary, and 7 is a semi-normal tree on M,
then 77 is semi-normal, and the copy maps 7tq : M}, — MZ7 are nearly
elementary. But it is possible that 7(p~(M)) < p~ (N), which in turn means
that 7 may be normal while 77 is not. (See Remark 2.7.8 below.)

(iv) The Dodd-Jensen and Weak Dodd-Jensen lemmas hold in the category of
nearly elementary maps.

%8See Definition 2.6.4.
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(v) If m,M,N, and T are as in (iii), and in addition 7 is elementary, then all the
Ty are elementary. Hence by 2.4.7 they are almost exact, so if 7 is normal,
then 7’7 is normal.

(vi) If m,M,N, and T are as in (iii), and 7 is cofinal and elementary, and [0, &t) 7
does not drop in model or degree, then the copy map 7y is cofinal and
elementary. The no-dropping hypothesis is necessary here.

(vii) The maps 7y'? occuring in an embedding normalization are elementary. The
maps oy are nearly elementary, but may not be elementary or almost exact,
so far as we can see. See Chapter 6.

(viii) The lifting maps that occur in a conversion system are nearly elementary.
They are not in general elementary or almost exact. (See Section 3.4.)

2.6. Iteration trees on premice

Our notation and terminology regarding iteration trees is essentially that of [65].
In an iteration tree 7 on a premouse M, we repeatedly form fine-structural
ultrapowers. The a-th model of 7 is M, ; the base model is M = MOT. EJ is the

exit extender taken from the sequence of M, and used to form

*T
MZ;+1 = Ult(Ma+17Eg)v

where

at+l =
for some 3 = T-pred(a + 1), and some (&,k) < l(/\/lz;) such that crit(E] ) <
PeM|E). Weput a+ 1 € DT iff M T < M it I(MT}) < 1(MF), and we
say 7 drops at & + 1 in this case. So unlike [65], drops in degree yield elements of

D7 too. If <7 B and (&, B]7 N D7 = 0, then the canonical embedding

M = MEI(E k)

is cofinal and elementary; that is, it is an n-embedding, where n = k(./\/lz;) =
k(M)

Remark 2.6.1. All extenders in T are close to the models to which they are
applied, so if crit(if, ;) > p(M,), then p(M]) = p(M[) and if, 5 (p(M])) =
p(/\/ll?) In this case (“dropping to a mouse”), the core of MZ; is the pointwise
image of the core of MZ; In particular, if ./\/laT is sound, then z:xr B is the anticore
embedding from C(M;) to M; Thus the last mouse we dropped to, and the

branch embedding acting on it, can be recovered from the final model along that
branch. This is important in the comparison proof.

We shall also have a use for the natural partial embeddings that exist along
branches that have dropped.
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DEFINITION 2.6.2. Let U be an iteration tree, and o <y . Then ig.ﬁ is the
natural map from a (perhaps proper!) weak initial segment of MY into Mlg More
precisely, letting

s U, * U * U u
igyy: ./\/lﬁJrl — Ult(Mﬁ+1>EB )

be the canonical embedding,
U _sU U
lO{,B+1 = lﬁ+l Ola#

ifoao <y y=U-pred(f +1), and

igp(x) = if gigc(x)
if B is a limit ordinal, and & is past the last drop in [0, )y .

It might have been more natural to have originally defined ilé‘ B the way we just
defined ig. B but it is too late for that now. The difference between “7”” and “i” is
barely visible anyway.

As we have defined it, the domain D of iz(;’ B is a set, not a premouse. Clearly
D is closed downward in the order of constructibility of MY, and thus there is a
unique weak initial segment

D <o MY
such that D is the universe of D, k(D) = 0, and
ia,ﬁ :D— MZ[/;{
is weakly elementary. Often it is possible to take k(D) > 0. On the other hand, it
could happen that D is the universe of M¥|v, but ilgc’ B is only weakly elementary

on MY¥||v, and not on MY¥|v.
If 7 is an iteration tree, then 1h(7") is the domain of its tree order, that is,
Ih(7) = {a | M], exists}. Soif In(T) = o+ 1, then M exists, but EJ does not.

T | B is the initial segment U of T such that Ih(if) = . So M exists, but
[a+1

there is no exit extender Eg;

Remark 2.6.3. We allow iteration trees of length 1. Such a degenerate tree has
no extenders, and thus consists of only its base model. This convention plays some
role in the definitions of tree embeddings and strong hull condensation.

We don’t need all the freedom to choose exit extenders and the models they are
applied to that would make sense. The following definition discards some of it.

DEFINITION 2.6.4. Let M be a premouse, then a semi-normal iteration tree on
Mis asystem T = (T,((Eq,M;, ;) | «+1 <1h(T))) such that there are My for
o < 1h(7) and D satisfying:

(1) My =M, and T is a tree order;
(2) if o < B <Ih(T)—1,then A(Ey) < A(Ep);
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(3) if a+ 1 < 1h(T), then Ey is on the My-sequence, and letting 3 be least such
that either 8 = a, or crit(Eq) < A(Ep),
(a) T-pred(oc+1) = B, Mg|Ih(Eg) IM, | IMg, P(crit(Eq)) "My | C

dom(Eq), and crit(Eq) < px(My,, ), where k = k(M ),

(b) Mgy1 = Ult(M,, |, Eq),
(©) a+1eDiff My, | # Mp:

(4) if A <1h(7) is a limit ordinal, then DN [0, 4)7 is finite, and M), is the direct
limit of the M, for & <7 A under the i;n; moreover A ¢ D.

We write Ey = EZ;, D = D", and so on. For the tree order T we also write <7.
[a,B)r ={y| a <r y<r B}, and so on. If Ih(T) = a + 1, then we call [0, &t|7
the main branch of T.

The agreement of models in a semi-normal tree is given by

LEMMA 2.6.5. Let T be a semi-normal iteration tree, with models My and
extenders Eq. Let a < B < 1h(T);
(a) Mg|A(Eq) +1=Mg|A(Eq)+1, and A(Eq) < p~ (Mp), and
Mﬁ|1h(Ea), and lh(Eq) < p*(Mﬁ).

We omit the routine proof. The main point for (b) is that Ih(Ey) is a succes-
sor cardinal in My 41, and A(Eq41) is a limit cardinal in Mg 1|1h(Eq ). Part
(a) shows that our requirement 2.6.4(3) on T-pred(f + 1) does not restrict the
extenders we can take to be as EﬁT Note also that 2.6.5(b) implies that the de-
creasing lengths in 7 must occur in finite intervals of the form [¢, @ + 1], ending
when Th(Eg+,) < A(Eg+nt1), after which all lengths are > A(Eg4,+1). Thus
semi-normal trees are very nearly length-increasing.

Clause (3)(a) of 2.6.4 implies that if F is used after E along the same branch of
T, then A(E) < crit(F). One sometimes says that 7 is non-overlapping, or that
(Jensen) generators are not moved. Clause (3)(b) says that M, | is somewhere
between the shortest and longest initial segments of Mg to which we can apply the
full Eg.

DEFINITION 2.6.6. Let 7 be a semi-normal iteration tree on a Jensen premouse;
then for any 8 < 1nh(7),

Ad =sup{Ar | In(N+1<r BAF =E])}
=sup{Ar | In(M+1<BAF=E])}.
The two characterizations of lg— are equivalent because we have demanded that

semi-normal trees be A-nondecreasing. /'LBT is the sup of the “Jensen generators”

of extenders used to produce ME We call them generators because

LEMMA 2.6.7. Let T be semi-normal, o <7 y+1 <7 B, T-pred(y+1) = «,
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and DT N\(y+1,B)r = 0; then for k = k(M}])), (M]) = {iap(f)(a) | f €

7+1
(MyTDEna e A])<0).

The proof is a simple induction on f3.

Remark 2.6.8. The non-overlapping requirement is important because it implies
that if the branch [, )7 does not drop, then from the branch embedding iZz—.B
we can recover the sequence of models and extenders used along [a, B)7. For
example, let E be the first extender used, that is, E = E, where y+1 <7 B and
T-pred(y+ 1) = a. Because generators are not moved, E is an initial segment of
the extender G of iz; B That is, for x C crit(E) in My and a C A finite,

XE€EE, & acig(x)
Sac ierl,ﬁ OiE()C)
Sacigp(x)
S x e G

By the Jensen initial segment condition, E is then the first whole initial segment
of G that is not on the sequence of M. Having now recovered E, we can recover

the factor embedding iz,:rl_ B its extender G, and then the next extender used in
[ct, B]r, and so on.

If 7 is semi-normal, then 7-pred (B + 1) is the largest o such that 4] < crit(Eg).
Another useful characterization is the following. Let 8 be crit(EBT)*, as computed
in MJ|Ih(E]). Then

T-pred(B + 1) = least & such that M7 |6 = ME|9

Note here that 0 is passive in ME, so for a as on the right, 6 is passive in
MY . The formula may fail if we replace the | by

T-pred(f+1)is oo+ 1, not a.
For the most part, we are interested in normal iteration trees.

, for when )LEOT = crit(Eg—),

DEFINITION 2.6.9. Let 7 be a semi-normal iteration tree; then
(1) T is quasi-normal iff whenever o+ 1 < 1h(7), and B = T-pred(c+ 1), then

MT, = M;\(n,k), where (k) < (M) is largest so that crit(E] ) <

pr(MFIn).

(2) T is length-increasing iff whenever a < B < 1h(7) — 1, then 1h(E]) <
Ih(E] ), and

(3) T is normal iff T is quasi-normal and length-increasing.

Another way of putting (1) is: My, | is the longest P < Mg such that Ult(P, Ey)
makes sense. So we sometimes say that 7 is maximal if (1) holds. If T is a quasi-
normal tree on M, then we can identify it with (T, (Eq | ¢+ 1 < 1h(T))), the ME’T
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being determined by maximality. We shall do this. Of course, M is relevant too,
but often it will be understood from context. 7 can be a tree on more than one M.

If the maximality clause (1) fails, then we say that 7 has a gratuitous drop
at o+ 1. The possibility of such drops doesn’t cause significant problems for
the theorems we shall prove below, but it does further complicate the notation,
along with a number of fine structural arguments. For that reason, we shall avoid
non-maximal trees. There is some care needed in order to do that; see for example
Remark 2.7.8. But in the end, the semi-normal iteration trees we deal with seriously
will all be quasi-normal.

If 7 is normal, then for & < B, M, agrees with M below Ih(E]). They

disagree at h(E ). If T is merely quasi-normal, then only agreement up to A (E_ )
is guaranteed. If 7" is normal, then o < 8 implies Ih(Eq) < A(Ep).

We do need to consider quasi-normal trees that are not normal, but only in
limited circumstances.

Figure 2.6.1 shows how the agreement of models in a normal iteration tree is
propagated when the tree is augmented by one new extender. (Figures like this
were first drawn by Itay Neeman.)

-
d Ih(Ep)
o A(Ep) P
Iy o
0 B o a+l

\_/

FIGURE 2.6.1. A normal tree 7, extended normally by F.
The vertical lines represent the models, and the horizontal ones
represent their levels of agreement. crit(F) = u, and f is least
such that u < A (EﬁT) The arrow at the bottom represents the
ultrapower embedding generated by F'.

If one replaces the condition crit(E7 ) < A(E] ) by the condition crit(Eg ) <
V(Eg—) in the definition of (Jensen) normality, one obtains a definition of ms-
normality. (This is called s-normality in [10, §5].) In an ms-normal tree, if E is
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used before F on a branch, then F cannot move the generators of E, but it may
move ordinals between V(E) and A(E). In fact, there are some advantages to
working with ms-normal trees, even in the context of Jensen premice. One is
that full background constructions of Jensen-normally iterable M seem to require
superstrong extenders in V (but see [36]). On the other hand, one can show granted
only a Woodin with a measurable above that there is a ms-normally iterable
Jensen mouse with a Woodin cardinal, granted that there is in V a Woodin with a
measurable above it. ([30] yields an ms-iterable ms-mouse with a Woodin, and
[11] and [10] then translates it to an ms-normally iterable Jensen mouse with a
Woodin.) Nevertheless, 2.6.9 is the more common notion of normality in the
setting of Jensen premice, and we are using it in this book. When we get to §4.4
we shall bring ms-normality back into the picture, in a subsidiary role. We believe
that there are elementary simulations of Jensen normal trees by ms-normal trees,
and vice-versa, but we have not verified this carefully.

Remark 2.6.10. ms-normal iterations preserve ms-solidity. As we remarked
earlier, Jensen normal iterations may not.

We also need stacks of iteration trees.

DEFINITION 2.6.11. Let M be a premouse; then s is an semi-normal M-stack
iff s=((Py |00 < B),(Ta | 0+ 1< B)), where
() =M,
(2) if @+ 1 < B, then Tq is a semi-normal tree on Py having a last model N, and
Pyt1 = N|(v,k) for some v,k,
(3) if @ < B and « is a limit ordinal, then letting N be the direct limit of the Pg
for B < a, Py = N|{v,k) for some v and k.

In (3), the direct limit is under the obvious partial maps i%.y: Pg — Py, for
& <y < a. We demand that for o« < 8 a limit, there are only finitely many drops
along the branches producing these maps, and that the direct limit is wellfounded.

In clauses (2) and (3) we allow k = —1, with the convention that N|(v,—1) =
N||v. We may identify s with (7o, P;, T2, P>, ....), and we may identify P, with
the pair (vq,kq) that determines it as in (2) or (3). So for example, if 7 is a
quasi-normal tree on M, P = MZ|(v,k) for some Vv,k, and U is a semi-normal
tree on P, then s = (T, P,U) = (T, (v,k),U) is a semi-normal M-stack.

If each 7 is quasi-normal, then we call s a quasi-normal M-stack. Similarly, a
normal M-stack is one whose component trees are all normal. We need nothing
more than quasi-normal M stacks in this book, but we do need to allow gratuitous
drops at the beginning of each quasi-normal tree T If s is a semi-normal M-stack
such that there are no such gratuitous drops, then we say s is a maximal M-stack.

For notational reasons, we allow some or all of the semi-normal trees in our M-
stack to be empty. The empty tree is normal. Given an M-stack s as above, we write
Po(5), Ta(s), va(s), and kg (s) for the associated objects. Mo(s) =M, Mg+1(s)
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is the last model of 7¢(s), and M (s) is the direct limit of the M (s) for & < a
if o is a limit ordinal. (So Py(s) I Mg(s).) We write U(s) for Tgom(s)—1(s), the
last semi-normal tree in s. (s) could have no last model. We write M. (s) for the
last model of U (s), if it has one. If s has limit length, we let M. (s) be the direct
limit of the M (s) for a < 1h(s) sufficiently large, provided this limit exists and
is wellfounded.

If s is a maximal M-stack, then we identify s with its sequence of trees 7;(s), the
P,(s) being determined by maximality. If s is not maximal, we must specify the
base models of the T;(s) as well.

2.7. Iteration strategies

What qualifies a premouse as a mouse, comparable with others of its kind, is an
iteration strategy.

Let M be a premouse. G(M,0) is the game of length 6 in which I and II
cooperate to produce a normal iteration tree on M, with II picking branches at limit
steps, and being obliged to stay in the category of wellfounded models. See [65],
where the game is called Gx(M, 0), for k = k(M). A O-iteration strategy for M
is a winning strategy for Il in G(M,0). M is O-iterable iff there is a O-iteration
strategy for M.

If A is a limit ordinal, then G(M, A, 0) is the game in which the players play
A rounds, the ¢-th round being a play of G(N, 0), where N is an initial segment,
chosen by I, of the direct limit along the branch produced by the prior rounds. I
moves at successor stages, by playing an extender or starting a new round if he
wishes.® If the current round lasts ® moves, then there are no further rounds, and
the game is over.””

IT picks branches at limit stages, and his obligation is just to insure all models
are wellfounded, including the direct limit of the base models in the final stack
of length A. Thus s is a normal M-stack of length a whose component normal
trees have length < 0 iff s is a position in G(M, A, 0) that represents o completed
rounds and is not yet a loss for I. A (A, 0)-iteration strategy for M is a winning
strategy for Il in G(M, A, 0), and M is (A, 6)-iterable iff there is such a strategy.
See [65]. Clearly G(M,1,0) = G(M,6).”!

DEFINITION 2.7.1. Let M be a premouse; then M is countably iterable iff every
countable elementary submodel of M is (®;, ®; + 1)-iterable.

% For notational reasons, we allow I to move immediately from round e to round a + 1, without
playing any extenders.

T0Thus if M is countable, a position in G(M, @;, o, ) is a member of HC, and a strategy for it is a
subset of HC.

71Up to minor details in how they are presented.
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Countable iterability is what one needs to prove that M is well-behaved in a fine
structural sense; for example, that its standard parameter is solid and universal.

Clearly one can modify these standard iteration games so that their outputs can
be merely quasi-normal trees, or stacks of them. For example, if M is a premouse,
we let GI"(M, 6) be the variant of G(M, 0) in which player II must pick cofinal
wellfounded branches at limit steps as before, and given that 7 with Ih(7) = o + 1
is the play so far, I is allowed to pick E from the My = /\/lg sequence such that
A(Eg) < A(Eq) forall & < a. (Here Mo = M.) As before, we set

§ =T-pred(a+ 1) = least B s.t. crit(Eq) < A(Ep),
and letting (v, k) be least such that p(/\/l?\(\/,k» <crit(Eq), or (v,k) = [(Mg),

Ma1 = Ult(Me| (v, k), Eq).

We write M |(v,k) = M:;L II plays at limit ordinals as before. A quasi-normal

tree on M is just a position in some G (M, 0) in which II has not yet lost.

For A alimit ordinal or A = 1, we let G9"(M, A, 0) be the variant of G(M,A,0)
whose output now is a stack of quasi-normal trees on M, that is, an M-stack, of
length A. IT wins iff all models reached are wellfounded, and if A > 1, there are
finitely many drops along the sequence of base models, and their direct limit is
wellfounded. Player I decides when new rounds begin, and may drop gratuitously
in the model produced by the prior rounds before starting the next one. We
allow him to move to the next round without playing any extenders. With these
conventions, s is an M-stack iff s is a position representing a sequence of rounds in
some G9"(M, A, 0). Up to details in presentation, G4"(M, 6) and GI"(M, 1,0) are
the same game.

Clearly, one could generalize further.

DEFINITION 2.7.2. G™(M,0) and G*"(M, A, 6) are the analogs of GI"(M, 6)
and G4"(M, A, 0) whose outputs are merely semi-normal trees, or stacks of them,
respectively.

DEFINITION 2.7.3. Let M be a premouse; then a (A, 0)-iteration strategy for
M is a winning strategy for II in one of the games G(M,1,0), G¥(M,A,0), or
G*(M,A,0).

Definition 2.7.3 should be regarded as provisional, in that we shall introduce
iteration strategies defined on wider classes of iteration trees in Chapter 4. Defini-
tion 2.7.3 covers the sorts of iteration strategies for premice that we shall encounter
before we get to Chapter 4.

Tail strategies

Iterates of an iterable structure are iterable, via a rail strategy. In general, if
G is any game, Q is a strategy for G, and p is a position in G, then we get a tail
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strategy €, acting on extensions of p by setting Q,(¢) = Q(p~¢). In the case
that G = G (M, A, 0) and Q is a strategy for II, we shall for now just consider
tail strategies determined by positions in which I has just begun a new round, and
declared a base model for the tree to be played in that round.

DEFINITION 2.7.4. Let Q be a winning strategy for Il in G4"(M, 1, 60), let s be
an M-stack according to Q with 1h(s) < A, and let N = M..(s)|(v, k) for some v,k;
then Q, y is the strategy for GI"(N,A —1h(s),0) given by:

Qun(t) =Q(s™(N)1),
for all N-stacks 7. We set Q; = Qg y_ (). If N <M, then

Qy = Q<0> N-

We are assuming here that the position s~(N) does include the information that
N is the base model for a new round. There are other tails of Q one might consider.
For example, if p represents quasi-normal tree on M played by Q as part of round
1, to which I has not declared an end, then we have a tail strategy €,,. In this case,
€, would act on quasi-normal extensions of the phalanx of 7. It will be some
time before we consider tail strategies of that sort, and we are not introducing any
notation for them now.

When N = M..(s)|(v, k), we may write Q (, ) for Q; y. We write Qy or Qy 1
for Qg y. So if Q is a strategy for GI"(M,2,0), then Qy is just the strategy for
GI"(M, 0) that is its “M-tail”.

It is also useful to have a notation for a join of strategies:

DEFINITION 2.7.5. Let Q be a winning strategy for II in one of the games
G(M,A,0), G (M,A,0), or G*(M,A,0), and let s be an M-stack by Q; then
Qs cv = (& qu [N <VAKk L @).

Note that in general, 2 < is strictly weaker than Qg (, o).

Our definitions so far allow the tails of an iteration strategy to be inconsistent
with the strategy itself; for example, one could have a strategy Q for G4"(M, A, 0)
such that Q # Q@_M.n One could have more subtle inconsistencies, for example,
N <IM and some normal 7 by both Qy; and Qy such that Q; (7)) # Qu(T). The
iteration strategies that we shall construct in Chapter 3 do not have such internal
inconsistencies, and one of our main tasks will be to spell that out precisely and
prove it. For example,

DEFINITION 2.7.6. Let Q be a winning strategy for I in G9"(M, A, 0); then Q
is positional iff whenever s and ¢ are M-stacks by Q of length < A, and N <M (s)
and N IM..(1), then Q; y = Q; .

72For N I M, Qy is the part of Q that acts on plays where I exits the first round without playing
any extenders, then drops to N at the beginning of the second round. Even if N = M, the change of
rounds could affect how Q plays.



58 2. PRELIMINARIES

The iteration strategies we shall construct are positional, but it is beyond the
scope of this book to show that. We shall instead use some approximations to
positionality here. We shall discuss this further in Sections 3.5 and 3.6.

Pullback strategies

Given w: M — N weakly elementary, we can copy an M-stack s to an N-stack
7s, until we reach an illfounded model on the 7s side. Thus if Q is an strategy for
N, we have the pullback strategy Q" for M.

More precisely, let 7 be a semi-normal tree on M. We define a semi-normal tree
7’7 on N with the same tree order as 7, together with weakly elementary copy
maps

To: Mo — N,
where Mg = M7 and Ny = M%7 . my = &, and if T-pred(a + 1) = B, then we
let M1 = m5(M(;7 ). By induction, we have that , [A(E]) = M(ET)
whenever y < &, with the agreement being up to Th(E])) if Ih(E] T) <Ih(E], ). Tt

follows that the Shift Lemma applies to (75 [ M

Y+1

aL, e, EJ ), so we can let

EgT = T, (Egc—)a
and

Te+1 = cOpy map associated to (nﬁ [M;’L,ﬂaaEI)

By induction, the copy maps commute with the branch embeddings, that is, 7z o

)7,—5 = 1”75— ome when y <r §. So at limit steps A we have a unique 7, that

commutes with the branch embeddings of 7 and #7 along [0,A)r. If T ever
reaches an illfounded model, we stop the construction.

To copy a stack, we just repeat this process. For example, given w: M —
N and 7 semi-normal on M with length o + 1, and P < M}, n(T ,(PU)) =
(nT,{ma(P),(7g | P)U)). Continuing this way, we can define 7s for any M-stack
s, so long as we do not encounter illfounded models in 7s.

The Shift Lemma leads to

LEMMA 2.7.7. Let w: M — N be weakly elementary, and let T be semi-normal
on M; then

(1) nT is semi-normal, and if T is length-increasing, then so is TT .

(2) The copy maps 7ty are weakly elementary, and if T is nearly elementary, then
so are the Tty. If T is elementary, then so are the T,

(3) If wis elementary and T is maximal, then T'T is maximal.

We omit the proof. Most of it is straightforward, but the part devoted to propa-
gating the elementarity properties of the copy maps requires some fine structural
analysis. See §4.5 for a proof of the Lemma 2.7.7 in the context of pfs premice.
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Remark 2.7.8. There is a caution here. It is possible that 7 is normal, but 7
is not even quasi-normal, because it is not maximal. Lemma 2.7.7 implies that
if 7 is elementary, then the m-copy of a (quasi) normal tree is (quasi) normal.
But one might have a nearly elementary 7 for which maximality is not preserved.
For example, we might have k(M) = 1, and E on the M-sequence such that
p1 (M) <crit(E), but m(crit(E)) < pi (N). If T starts normally with E, it will drop
to M, that is, to M with its degree reduced by one, and form Ult(M~,E). Our
copying process then requires 77 to start by forming Ult(N~,n(E)), which for
7T is a gratuitous drop.”?

Nevertheless, if 7 is semi-normal and 7 is nearly elementary, then 77 is semi-
normal. Moreover, D7 = D*7 . The drops occur at the same places, and to models
of the same degree, it’s just that 77 may sometimes drop further than it has to.
If T is length-increasing, then there is a natural normal tree on N into which 77
embeds. It is defined in 4.5.19.

DEFINITION 2.7.9. [Pullback strategies] If Q is a strategy for N,and 7: M — N
is nearly elementary, then Q7 is the pullback strategy for M, given by

Q" (s) = Q(ms),
for all s such that 7s € dom(€).

We have not specified here what sort of iteration strategy Q is, so Definition
2.7.9 is really a family of definitions. If 7 is elementary, then Q7 is a strategy
of the same type as Q. If 7 is only nearly elementary, then 77 may fail to be
maximal, even if 7 is maximal, so setting Q" (s) = Q(xs) will only make sense
if Q is defined on stacks of possibly non-maximal trees. See Section 4.5 and
Definition 4.6.5.

Universally Baire iteration strategies

We shall often be working with a countable premouse M, and an iteration
strategy X for M that is defined on countable trees of some sort, with AD™ as our
background assumption. We can then extend X so that it acts on trees of length @,
because under AD™, @; is measurable. Here is a simple proposition along these
lines.

PROPOSITION 2.7.10. Assume AD, and let X be an @;-iteration strategy for a
countable premouse M; then ¥ can be extended to an ) + 1 strategy for M.

PROOF. Let 7 be a normal tree of length @; on M that is played by X. It
will suffice to show 7 has a cofinal, wellfounded branch. But let j: V — N with
crit(j) = @, witness the measurability of @;. The pair (7, M) can be coded by a set

73Schlutzenberg [52] calls a semi-normal tree T~ model maximal iff whenever T-pred(ot+ 1) = B,

then MZII = MﬁT\ (v,k) where v (but perhaps not k) is as large as possible. If 7~ is model maximal

and 7 is nearly elementary, then 77 is model maximal.
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of ordinals A, and Los’s Theorem holds for ultrapowers of wellordered structures,
so j: L[A] — L[j(A)] is elementary. It follows that j(7) is an iteration tree on M,
T =j(T) I o1, and @ <1h(j(7)). But this implies that [0, ®;) jr) is a cofinal,
wellfounded branch of 7. -
Although it is quite easy to prove, this proposition stands at a key junction in inner
model theory. The direct proofs of iterability only produce branches for countable
iteration trees, even in the realm of linear iterations. Yet @; + 1-iterability is the
minimal useful kind of iterability; for example, it is the kind needed to compare
countable premice. All known proofs of w; + 1-iterability involve at some point
producing an @;-strategy X, and showing that ¥ is sufficiently absolutely definable
that one can extend it to an @; + 1 strategy. In the proposition above, the absolute
definability of X is evidenced by its membership in a model of AD. In contexts
where one’s goal is more ambitious than analyzing HOD in models of AD, the
absolute definability of X has to be more finely calibrated, and a model of some
fragment of AD that contains X constructed along with X. This leads into the core
model induction method, our most all-purpose method for constructing iteration
strategies.

Proposition 2.7.10, simple as it is, is one important reason that inner model
theory and descriptive set theory have become so entangled in recent years.

When calibrating definablity in terms of pointclasses, the standard procedure
is to code elements of HC (e.g. premice) by reals, and subsets of HC (e.g. w;-
iteration strategies) by sets of reals. Of course, any reasonable way of doing
this is fine, but we may as well spell one out. For x € R = 0®, we say Cd(x)
iff Ey =gr {{n,m) | x(2"3™) = 0} is a wellfounded, extensional relation on @. If
Cd(x), then

T (0,E) = (M, €)
is the transitive collapse map, and
set(x) = M and sety(x) = m,(0).
So Cdis H{, and setgp maps Cd onto HC. For A C HC, we let
Code(A) = {x e R | Cd(x) Asetp(x) € A}.

If X is an iteration strategy with scope HC for a countable M, and I" is a pointclass,
then we sometimes say “L € I’ when we mean Code(X) € T".

Recall that a set A C R is k-Universally Baire (k-UB) iff there are trees T and
U on some @ x Z such that p[T] =R\ p[U] holds in V[g] whenever g is V-generic
for a poset of size < k, and p[T] = A holds in V. We call such a pair (T,U) a
k-UB code of A.7* If k is a limit of Woodin cardinals, then the x-UB are the same
as the < k-homogeneously Suslin sets; moreover, if A is k-UB, as witnessed by
the pair of trees (T,U), then the theory of (HC, €, p[T]) is absolute for forcing of

74The concept was first isolated and studied for its own sake by Q. Feng, M. Magidor, and W. H.
Woodin. See [9]. There are earlier related results due to K. Schilling and R. Vaught in [40].
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size < K (cf. [64]). This enables us to extend @ -iteration strategies that are k-UB
to Kk-iteration strategies. As is well known, the extension is independent of the
partucular UB code chosen. In fact, with a little care, we do not need the Woodin
cardinals to make it.

PROPOSITION 2.7.11. Let A C HC, and suppose (T,U) is a k-UB code of
Code(A). For b € Hy, put

b € B iff Col(w, < k) I- 3x € p[T](sety(x) = b).
Then (HC,€,A) <5, (Hx,€,B).

PROOF. (Sketch.) Note that p[T] and p[U] remain invariant in VCI(@:<%) in
that if sety(x) = seto(y), then x € p[T] iff y € p[T], and similarly for U. Also,
whether x € p[T] for any and all x such that sety(x) = b is decided by the empty
condition. Suppose (Hy, €,B) = @|a], where ¢ is X and a € HC. Let m: N — Vj
with N countable and transitive, and 7((T,U)) = (T,U). Let (M) = H, and
7(B) = B. We have @(a) = a, and (M, €,B) |= ¢[a]. Using T and U and a simple
absoluteness argument, we see that B=ANM. So (M,€,ANM) |= @[a]. But @ is
¥, so (HC, €,A) = ¢[a], as desired. -

In order to apply the proposition to iteration strategies, we have to be careful

about how we present them. Given an @; strategy X, let Ay be the set of all pairs
(T, o) such that T is a tree of limit length by X, and & € £(T).

COROLLARY 2.7.12. Let ¥ be an -iteration strategy for a countable pre-
mouse P, and suppose that Code(Ay) is k-UB; then there is a K-iteration strategy
W extending ¥.

PROOF. Let B C Hy be such that (HC, €,Ax) <y, (Hy, €,B). It is not hard to
see that B = Ay, where W is the desired extension of X. -

Clearly, the extension W to Hy is independent of the particular k-UB code of Ay
chosen. We call W the canonical k-extension of ¥. Abusing language somewhat,
we may say that a k-iteration strategy is k-UB when it is the canonical k-extension
of an @;-strategy. The extension process works equally well for (A4, @;)-strategies.

The following simple fact about such strategies is useful.

PROPOSITION 2.7.13. Let ¥ be a k-UB Kx-iteration strategy for some countable
P, and j: V — M with M transitive; then j(£) NHyx C ¥.

PROOF. Let (T,U) be a k-UB code for Code(Ay). Suppose T € Hy is by both
¥ and j(X), and has limit length 4. If @ < A, and & € j(X)(7T), then letting
set(x) = (T, ) with x in VEU@<K) we get x € p[j(T)]. As usual, this implies
x ¢ p[U], and hence x € p[T]. Thus a € X(T), as desired. =

We shall show in 7.6.7 below that the conclusion j(X) NH, C X also follows
from strong hull condensation for X.
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2.8. Comparison and genericity iterations

For the sake of completeness, we sketch a proof of the Comparison Theorem for
pure extender mice. The reader can find full details in [65].

THEOREM 2.8.1. Let P and Q be premice of size < 0, and suppose ¥ and ¥
are O 4 1-iteration strategies for P and Q respectively; then there are normal
trees T by X and U by W of size 0, with last models R and S, such that either

(a) RS, and P-to-R does not drop, or
(b) S<R, and Q-to-S does not drop.

PROOF. (Sketch.) We build 7 and U inductively, by “iterating away the least
disagreement” at successor steps, and using our iteration strategies at limit steps.
At step o0 we have Ty and Uy with last models Py and Q, respectively. We begin
with Py = P, Qo = Q, and T = Uy being the empty tree. At step o+ 1, let

y= least 8 such that Py|B # Qq/|B.

If there is no such 3, the comparison is complete. Otherwise, let

7:X+1 = 7-05,-\ <E’)€(x>’ and

Uot1 :u&\<E$a>-
Here S (E) stands for the unique normal extension of S whose last extender
used is E, with the understanding that S™(E) = S if E = 0. At limit steps we let
T be Ug<a Ta- extended by the branch (U, ., 7Tq) if this tree has limit length.
Similarly on the U/ side.

We claim that the comparison is complete at some stage o < 6. For suppose
not, and let 7 = Tg+_ | and U = Ug+ | be the normal trees of length 61 + 1 that
result. Let

N=MJ.|6" = MY |oF

be the common lined up part at stage O1. Let 7: H — Ve be elementary, where
& is large, everything relevant is in ran(7), H is transitive, and 6 < crit() < 0.
Let a = crit(x). We have 7((P,Q)) = (P,Q) and 7(@) = 67, and it is not hard to
see that

(T To+1) ,

rtUla+1)=U,

T T
T rM(X la79+,

and

u U
T {M(X = 106,9+'
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Also,
P(a)ME = p(a)™e+ = P(a)Me+ = P(a)M¥

Thus 7, i;9+, and il&{79+ all generate the same (o, 01 )-extender; call it G. Let E
be the first extender used in 7 along the branch [a, 6 7|7, and F the first extender
used in U along [, 07 ]y. As we observed in 2.6.8, E is the first whole initial
segment of G that is not on the N-sequence, and similarly for F. Thus E = F.
Since Ih(E) = 1h(F), they were used at the same stage in the comparison. But we
were iterating away disagreements, so E # F, contradiction.

This gives us T = Tg and U = Uy with last models R and S such that R S or
S<R. If RS, then R is sound, and therefore the branch P-to-R did not drop, so
we have conclusion (a). Similarly, if § <R we get conclusion (b). Thus we may
assume R = S. It is now enough to show that one of the two branches P-to-R and
0-to-§ did not drop. Assume otherwise, and let

C=¢(R) = ¢(S)

be the core, and 7 the anticore map. We have that C occurs on both branches, and
that 7 is the iteration map of the branch C-to-R of 7, and the iteration map of the
branch C-to-S of /. But as in the termination proof, this means the first extenders
used in these two branches are the same, a contradiction. =

Notice that although the successful comparison only involves trees of size 8, we
really did need 6 + 1-iterability to show that it exists. In particular, to compare
countable mice, we need @; + 1-iterability.

COROLLARY 2.8.2. Let M and N be countably iterable premice such that
p~ (M) =p~(N) = o; then either M <N or N IM.

PROOF. Let T on M with last model R and &/ on N with last model S be as in
2.8.1, and suppose without loss of generality that R < S and M-to-R does not drop.
Since p~ (M) = w, it is impossible to take an ultrapower of M without dropping,
so T is empty and M = R. It is enough to show that I/ is also empty. But otherwise,
N-to-S must drop, and letting C = €(S), the last drop is to C, and the anticore map
n: C — S is the same as the branch embedding of 2/.”> We have

p- (M) =0 <crit(r) <p~(C) <p (),
so if M = S, then k(S) < k(M), contrary to M <S. Thus M =+ S, which implies
that M € S. But this means M < S|®;. Since S|of = C|of, we get that M <IC, so

M < Mz}j’ for y = U-pred(a + 1), so the comparison was over before we reached
S, contradiction. =

COROLLARY 2.8.3. Let M and N be countably iterable premice such that
p~(M)=p~(N)= o and o(M) = o(N); then M = N. Thus M is ordinal de-
finable from o(M).

75Tn other words, 7 = iz(;{H 50 i;’fl, where C = M;"gl and S = MZI;[
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COROLLARY 2.8.4. Let M be a countably iterable premouse; and x € P(®) N
M; then x is ordinal definable.

PROOF. Let o be least such that x is definable over M|c; then py(M|at) = @
for some k, so M| is ordinal definable, so x is ordinal definable. -

To what extent is the converse of this corollary true? Does every ordinal definable
real belong to an iterable premouse? In practice, the reals in mice are not just
ordinal definable, but ordinal definable in a generically absolute way, because the
) + 1-iteration strategies for countable premice that we have constructed so far are
canonical extensions of Universally Baire ®;-strategies. So the more reasonable
question is whether every real that is ordinal definable in some L(I',R), where
I' is a proper Wadge initial segment of the Universally Baire sets, belongs to a
mouse. This seems quite plausible, but we do not as of now have a definition of
mouse sufficiently general to state a precise conjecture here. The mouse capturing
conjectures stated in §1.7 are the best we can do.

The Comparison Theorem gives us upper bounds on the definability of mice
and the reals that belong to them. We get lower bounds from the capturing and
correctness properties of the mice. One of the main tools for proving mouse
capturing and correctness is the extender algebra.

Genericity iterations

The reader should see [65, §7] for basic information on the extender algebra and
genericity iterations. The paper [8] gives a much more extensive treatment.

[65] and other expositions of genericity iterations of premice use ms-indexing
and ms-normal trees. There is a small subtlety involved in carrying out the argu-
ments using Jensen-normal trees, as we are doing in this book. Jensen-normal
genericity iterations must be allowed to drop, unless our identities are generated
by superstrong extenders. However, this dropping will not occur along the main
branch, so it is harmless. We explain this briefly now.

Let M be a premouse, and 4 < 6 cardinals of M. We let B = BZ’{ s be the
-generator extender algebra determined by the extenders on the M|§-sequence
with critical point > pt. B is the Lindenbaum algebra of a certain infinitary theory
T in the propositional language L5 generated by the sentence symbols A, for
n< . Forx C 0, x EA, iff n € x, and then x |= ¢ for ¢ an arbitrary sentence of
L has the natural meaning. The axioms of 7" are those sentences of the form

V ¢a— V ie((9:: & <x)) I,
a<K a<i
whenever E is on the M|§-sequence, crit(E) = k > p, ip((¢z: § < x)) [ A € M|n,
for some cardinal ) of M such that n < Ag. Let us write T = T (M|0, 1t).
The usual argument shows that if § is Woodin in M, then M = “B is §-c.c.”.
It is also clear that if M comes from a background construction in V, then every
x € V satisfies all axioms of 7. This is because if E generates an axiom as above,



2.9. COARSE STRUCTURE 65

and E* is its background extender, then E [ N = E* [ n N M, for all M-cardinals
n. It is important here that 7 is a cardinal of M, since otherwise the connection
between E and E* may be less direct.

THEOREM 2.8.5. Let M be a countable premouse, and ¥. an ®; + l-iteration
strategy for M. Suppose (L < & and M =8 is Woodin”, and let x C @; then there
is a countable, normal iteration tree U of length o + 1 such that

(a) [0, ]y does not drop,
(b) crit(il(fa) > U, and
(c) xis izéfa(B%S)- generic over MY.

PROOF. We form U/ by iterating away the least disagreement between the theory
T(MZ| sup ig: o 0, 1) and the truth about x. More precisely, EY! is the first extender
on the sequence of MY with critical point above y that induces an axiom of
T (MY |supdl ,“8, 1) not satisfied by x. The rest is determined by the rules of
Jensen normal trees. Note the hat above the i in the formula! [0, &)y may have
dropped. 7y o (1) = p, but it may happen that i ¢ () is undefined.

Just as in the proof of the Comparison Theorem, the construction of I/ terminates
at some countable stage with a last model MY such that x satisfies all the axioms
of T (MY¥|sup i((jfa“S, U). We must see that in this case, [0, &)y has not dropped.
Suppose that it has, and let & + 1 <y @ be the site of the last drop, and U-pred(& +
1)=7. Let E = EY, and let

v="\ ¢u— \ ic((pv: v<x)) [ 2
<K a<A
be the bad axiom induced by E, and 71 a cardinal of quf such that y € M%,’|n
Since we dropped when applying E? n < crit(E? ), so i%x |  is the identity. But
also, MY[Ih(E) <M, so &, (E) exists. Clearly, &, (E) still induces ¥ as an

e+1° 50 lya
axiom of T (MY sup i%){a“& u). Since x does not satisfy v, the genericity iteration
did not terminate at o, contradiction. -

2.9. Coarse structure

One must consider also iteration trees on transitive models M that are not
equipped with any distinguished fine structural hierarchy. In that case, we shall
always assume M |= ZFC, for simplicity. In general, V) plays the role that M|a
would in the fine structural case. All extenders are total on the models to which they
are applied, and all embeddings are fully elementary in the €-language. We shall
sometimes call such M, and associated objects like iteration trees or embeddings
acting on them, coarse, in order to distinguish them from their fine-structural
cousins.
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DEFINITION 2.9.1. Let E be an extender over V; then E is nice iff

(a) E is strictly short, that is, In(E) < A(E),
(b) for some v, Ih(E) is the least strongly inaccessible 1 such that v < 7,
(©) Vi) € UI(V,E).

Nice E can be used to background extenders in a Jensen premouse, even though
Ih(E) < A(E). The requirement of (b) enables us to avoid a counterexample to
UBH for stacks of normal trees due to Woodin. See 7.3.17 below.

DEFINITION 2.9.2. Let 7 be an iteration tree on a coarse M; then
(a) T is nice iff whenever o+ 1 < 1h(7"), then M7 |= “E] is nice”.
(b) T is quasi-normal iff
() if @ < Band B+1<1h(T), thenlh(E]) < lh(EE), and
(i) if &+ 1 < 1h(T), then T-pred(a + 1) is the least 8 such that crit(E] ) <
Ih(E]).

(c) T is normal iff T is quasi-normal, and if o < 8 and B + 1 < Ih(7), then

Ih(E]) <Ih(E]).

This definition of normality and quasi-normality is only appropriate for nice
trees, but all our coarse iteration trees will be nice, so that is ok. It would be
possible to allow gratuitous dropping, but we shall not do that. Nice iteration trees
do not drop anywhere. Moreover, we shall often restrict the choice of extenders in
T even further.

DEFINITION 2.9.3. Let 7 be an iteration tree on M, where M |= ZFC is transi-
tive, and let (M, F) be amenable; then
(a) T is an F-tree iff whenever o+ 1 < In(T), then EJ € if ,,(F).
(b) T is above x iff T is an F-tree, where F = {E | crit(E) > k}.
(¢) T is based on Vé"’ iff 7 is an F-tree, where F = Vé” .
(d) A putative F-tree on M is a system having all the properties of an F-tree on
M, except that its last model may be illfounded.

We sometimes think of an F tree on M as a tree on the pair (M, F), with models
of the form (MY, ig o (F)).

In Definition 2.9.3 we are not assuming that 7 is quasi-normal. It may be a
stack of quasi-normal trees, in which case we may call it an F-stack, or a putative
JF-stack. The non-quasi—normal iteration trees on coarse premice that we consider
will always be stacks of quasi-normal trees. One could venture further into the
wilds, but we shall not do that. However, we do need to work with coarse trees
that are quasi-normal but not normal.

DEFINITION 2.9.4. Let M |= ZFC be transitive, and (M, F) be amenable; then

(a) G™(M,n,0,F) is the variant of G (M, 7, 0) in which I must choose his
exit extenders from the current image of F, and
(b) an (n, 6, F)-iteration strategy for M is a winning strategy for [l in G4"(M,n,0,F).
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Player I is allowed to drop gratuitously at the beginning of a round of G (M, 7, 0, .F).
In this coarse case, we demand that if (P,G) is the current last model, I can only
drop to models of the form (VZ,GN VL) such that ¢ is an inaccessible cardinal in

P.76

In general, we shall only make use of iteration strategies for coarse M that

choose branches that, when allowed to act on the largest possible base model,
become the unique cofinal wellfounded branch.

DEFINITION 2.9.5. Let M be transitive and (M, F) = ZFC(A), and let 1,0 €

OR; then

(a) M is strongly uniquely (A,0,F)-iterable iff there is a (4,0, F)-iteration
strategy X for M such that whenever 7T is a tree by X of limit length, then
X(T) is the unique cofinal, wellfounded branch of 7.

(b) M is strongly uniquely (0,F)-iterable for normal trees iff M is strongly
uniquely (1,0, F)-iterable.

We say that M is strongly uniquely (A, 0)-iterable above k., or for trees based
on V¥ iff M is strongly uniquely (4,6, F)-iterable for the associated F. Notice

that strong unique iterability is more than just having a unique iteration strategy;
that strategy must be to choose the unique cofinal, wellfounded branch.

It will sometimes help to restrict the sort of F we consider.

DEFINITION 2.9.6. (w,F) is a coherent pair iff F is a set of nice extenders,

and w is a wellorder of some Vg such that 7 C Vg, and for all E € F,

(a) If n <1h(E) and E [ 7 is nice, then E [N € F,
moreover, letting i : V — M = Ult(V, E) be the canonical embedding,
®) ir(F)N V{}?(E) L =FN VI{‘f(E)
() ip(w) mvlg‘f(E)+1 = wmvlff(E)

H,and

+1°

We let 6 (w) be the O such that w wellorders V.

DEFINITION 2.9.7. (M, €,w, F) is a coarse extender premouse iff M is a tran-
sitive model of ZFC, and M |= (w, F) is a coherent pair.

Coarse extender premice will serve as the background universes in which we

construct fine structural, pure extender premice. F will serve as the class of
background extenders used to certify extenders that we add to the sequence of our
evolving premouse.

DEFINITION 2.9.8. Let F be a set of extenders and A C Vg, and k < J; then K
is A-reflecting in 8 via extenders in F iff VB < 63E € F(crit(E) = k Aiy(A)N
Vg =ANVg). We say 6 is Woodin via extenders in F (or & is F-Woodin) iff
VA C 83k < 8 (x is A reflecting in § via extenders in F).

76The inaccessibility requirement just simplifies a few things.
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PROPOSITION 2.9.9. Let 6 be Woodin, and w be a wellorder of V. Let

UI(VE) _ UI(V,E)
nEy1 =NV }

F ={E € Vs | E is nice and iy (w) ny Ih(E)+1

Then (w, F) is a coherent pair, and 8 is Woodin via extenders in F.

PROOF. Let E € F and suppose ) < lh(E) and E [ 7 is nice. Since 7 is the least
inaccessible above some Vv, the factor embedding 7: Ult(V,E [1) — Ult(V,E) is
such that crit(7) > 1. Thus igjn (W) "V = ig(W) Vi1, s0 E [N € F.

Any E € F satisfies part (c) in 2.9.6 by definition. But also, if G € Ult(V,E)
and 1h(G) < 1h(E), part (c) for E implies that G € ig(F) iff G € F. Thus (w, F)
is a coherent pair.

To see that 6 is F-Woodin, fix A C §, and let kK be (A,w)-reflecting in 6.
Standard arguments then show that x is A-reflecting via extenders in F. =

DEFINITION 2.9.10. Let (w, F) be a coherent pair and 6 = §(w); then (w, F)

is maximal iff F = {E € Vg | Eis nice and i} (w) N Vlﬁ{é()‘ﬁ) —wn Vlg('l‘s()vfl)}

We have not made it part of the definition of coherent pair that the extenders in
F be linearly ordered by the Mitchell order, that is, that for all E, F € F such that
E #F,E e Ult(V,F) or F € Ult(V,E). This is because, as the proposition shows,
one can obtain coherent pairs witnessing the Woodinness of a Woodin cardinal
directly, without going into inner model theory. If one adds Mitchell linearity to
the requirements, it is not clear how to do this, whatever large cardinal one starts
with. It seems necessary to replace V by a canonical inner model M constructed
from F, and prove a comparison lemma (the Bicephalus Lemma) that guarantees
that Fy, N M is unique in some sense.

Perhaps the simplest way to obtain a Mitchell linear coarse premouse (M, w, F)
with a F-Woodin cardinal is to start with a fine premouse M with a Woodin cardinal
8, and then let w be its canonical wellorder, and F consist of those extenders E
such that M |= “E is nice” and the Jensen completion of E is on the M-sequence.”’

The Mitchell order is wellfounded, so if F is Mitchell linear, then we can
enumerate it in increasing Mitchell order. The resulting F' is coarsely coherent, in
the following sense.

DEFINITION 2.9.11. A sequence F = (Fy | @ < p) is coarsely coherent iff each
Fy, is a nice extender over V, and
(1) if G is a nice initial segment of Fy, then G = Fp for some f§ < a,
(2) if B < @, then 1h(Fg) < lh(Fg), and
(3) i: V — Ult(V,Fy) is the canonical embedding, and E = i(F), then (E¢ |
Ih(Eg) <1h(Fq)) = (Fz | § < o).

7By a theorem due to Schlutzenberg and the author, if M is countably iterable, then F = {E|M =
“E is nice”}. Schlutzenberg proved a much stronger result in this direction in [53].
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An iteration tree on a coarse extender premouse (M, w, F), is just an F -iteration
tree on M. That is, all extenders used must be taken from JF and its images.
Similarly for F-stacks of quasi-normal trees. So the trees in an F-stack are nice.
In the coarse case, iteration trees do not have any necessary drops, and we prohibit
gratuitous dropping and decreasing lengths just to keep things simple. Thus all
JF-stacks are maximal.

The following lemma shows one way Mitchell linearity is useful.

LEMMA 2.9.12. Let (M,w,F) be a Mitchell linear coarse premouse, and let
Y be an F-iteration strategy for M; then for any N, there is at most one normal
F-iteration tree played according to ¥ whose last model is N.

PROOF. Let F be the coarsely coherent sequence associated to F. 7 and U/ be
distinct such trees. Because both are played by ¥ and normal, there must be a

such that T [B+1=U[B+1, but G # H, where G:Eg— andH:EZl;’. Both

G and H are taken from i(F), where i = i(;r g = ig’ﬁ. Say G occurs before H in
i(F). Then G € N because U is strictly length increasing. But G ¢ N because
G¢ MEH, and 7 is length non-decreasing. -

Assuming AD™, one can construct Mitchell linear coarse premice (M,w, F) via
the T-Woodin construction. /8 These M can have a Woodin cardinal &, and yet
be correct for predicates in some complicated pointclass I'. We shall have that 6
is countable in V, and (M, w, F) is strongly uniquely (®;, @; )-iterable. The same
construction also produces coarse strategy premice.”” We say more about this in
§7.2.

78See [66][§3] and [63](§10].
7However, it does not directly produce coarse strategy mice with Woodin cardinals.






Chapter 3

BACKGROUND-INDUCED ITERATION STRATEGIES

We construct a mouse M by adding extenders to its coherent sequence, one by one.
If we add E, then M|1h(E) must be a premouse, and this imposes a fairly severe
restriction on E. Nevertheless, no first-order requirement like premousehood can
guarantee that we are building a standard structure, one that can be compared with
others of its kind. We need to be building an iterable premouse. Moreover, it is not
enough that M|1h(E) be iterable, for we need the full M to be iterable, and when
we add E, we don’t know what M will be.

The standard way to solve these difficulties is to demand a background certificate
E* for E. What exactly one demands of E* depends on the context. In this book
we shall ask that E* be a nice extender over V such that E C E*. In contexts where
one is trying to construct mice without assuming there are large cardinals at all,
much more care is needed at this point, and the iterability proofs become more
difficult.

In any of its forms, the background certificate demand conflicts with the demand
that our mice be sound. The standard way to solve that difficulty is to “core down”
at every step, replacing the current approximation to M by its core. There are
highly nontrivial comparison arguments involved in showing that this core exists,
and agrees sufficiently with M that the process of adding certified extenders and
coring down converges to anything.3° These arguments rely on the iterability of
M.

The existence of full background extender certificates means that we can lift
iteration trees on M to iteration trees on V, and thus use an iteration strategy X*
for V to induce an iteration strategy X for M. This of course does not solve the
iterability problem for M, it just reduces it to the problem for V. But some such
reduction, ideally using weaker background certificates, seems inevitable in any
construction of iteration strategies for premice. M cannot see the iteration trees
with respect to which it must be iterable, but V can see their lifts. Moreover, those
lifts can be taken to be simple (for example, use only nice extenders) in ways that
the trees on M being lifted are not.

80These are the solidity, universality, and condensation theorems of [30, §8]. The analogous results
for pfs mice are proved in §4.10, and those for strategy mice are proved in §9.6 and §10.3.

71
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In this book, we shall be looking very carefully at how an iteration strategy X*
for V induces iteration strategies for the premice occurring in a full background
extender construction. In our applications, V will satisfy “I am strongly uniquely F-
iterable”, where Fis the sequence of background extenders used in the construction,
and X* will be the corresponding F -iteration strategy. In §3.1 we describe the well
known construction of pure extender premice. In §3.2 through §3.4 we describe the
standard lifting procedure, and in §3.5 we define the iteration strategies induced by
this procedure.

§3.6 describes two ways in which this framework can lead to ill-behaved iteration
strategies. §3.7 analyzes the first of these two problems more closely.?! It seems
essential to our method for comparing iteration strategies that they not exhibit such
behavior, and this will lead us in Chapter 4 to modify many of our basic definitions,
including the definitions of premouse, background construction, iteration tree, and
induced strategy. Thus the background-induced iteration strategies we describe in
this chapter will not literally play any role in the rest of the book. Nevertheless, it
seems best to introduce the standard notions first. They are not too far from the
revised notions.

3.1. Full background extender constructions

We shall use much of the notation of [36] in this context. The reader might also
look at [4], on which it relies, and at [30, §11].

DEFINITION 3.1.1. Let (w, F) be a coherent pair A (w, F)-construction above
Kk is a full background construction in which the background extenders are nice
extenders in F, have critical points > «, have strictly increasing strengths, and are
minimal (first in Mitchell order, then in w).

More precisely, such a construction C consists of w, F, premice Mi(,: © With
k(My k) = k, and extenders F‘ﬂc obtained as follows. (In the notation of [30],

My j = Ci(Ny), and Fv(C is a choice of background extender for the last extender of
My = Ny.) We let Mo be the passive premouse with universe V. For any k, v,

My i1 = core(My i) =def €(My 1).

We stop the construction if this core does not exist, that is, if the standard parameter
of My x is not solid and universal. Supposing that C does not stop, that is, My, ¢ is
defined, we have that M, ;| agrees with My ; to their common value for p,j - df
there are no cardinals of M,  strictly greater than p (M, x), then My j 1 = (My 4)";
that is, the two are equal, except the distinguished soundness degree is increased
by one.)

81We call them the resurrection consistency problem and the background coherence problem.
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For k < o sufficiently large, My j = My ;+1, except of course that its associated
k has changed. That is, Mv_’k is eventually constant as k — . We set

M, o = eventual value of MVJ{ as k — o,
and

My 0 = rud closure of My o U{My ,},
arranged as a passive premouse,

and
Myi10= (My410,0).
Finally, if v is a limit, put

M= = unique passive P such that for all premice N,
N QP iff N<AMgy o for all sufficiently large ot < v.

One can use the agreement between mice and their cores to show that if v is a
cardinal, then v < o(M<"). We explain further below.

There are two possibilities now: we may add a new extender to the sequence, or
we may not.

Extender-active option. We may set

MV,O = (M<V7F>7
where F is such that (M<",F) is a Jensen premouse, and F has a certificate in the
sense of 3.1.2 below. The Bicephalus Lemma states that, under a natural iterability
hypothesis, there is at most one certifiable F such that (M<Y F) is a premouse.

Nevertheless, this unique F may have many certificates. We let F© be the unique
certificate for F specified below.

Extender-passive option. We may set
Mv’() == M<V.

In this case, we let F‘ﬁc =0.

We say that C is extender-active at v iff FC # 0, and extender-passive at v
otherwise. We say C is maximal iff C is extender-active at v whenever there is an
F meeting the requirements of the extender-active option at V.

The requirements on certificates are®”

DEFINITION 3.1.2. A background certificate for F (relative to C, at v) is an
extender F* with the following properties.
(i) F*e F,
(i) F* FA'F NM<Y =F [AF, and

82See Definition 2.1 of [36].
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(iii) Ar <1h(F*),and V7 < v (Ih(FY) < Ih(F*)).

Regarding (ii), notice that ip+(kr) > Ar because F* is short, so F* [(Ag +1)N
M<Y #F [(Ar +1). Also, F* is nice, so {Ih(EL) | T < v} is bounded in Ih(F*).

If C is extender-active at v, then we then let Féc be the unique certificate for '
such that

(%) F‘(,C is a certificate for F', is minimal in the Mitchell order among all certificates
for F, and is w-least among all Mitchell order minimal certificates for F.

Since F is closed under initial segment, it follows that Th(FC) is the least strongly
inaccessible 1 such that Ar < 17 and V7 < v(IhFS < 7).

DEFINITION 3.1.3. C is a background construction (for pure extender mice) if
and only if C = (W, F,(My 4, Fy | (V,k) <iex Ih(C))), where
(1) (w,F) is a coherent pair, and
(2) (Myx,Fy | (v,k) <iex In(C)) meets the requirements above.
We say that C is maximal iff it adds an extender whenever there is one that meets the
requirements of the extender-active case. We write w = WC, F=F C, My = ME ©
and F, = FC.

Remark 3.1.4. w is only used if there is more than one Mitchell minimal cer-
tificate for F. So if F is Mitchell linear, then w plays no role, and we call C an
JF-construction.

v.kaF \(/C |

(v, k) <jex Ih(C)) a background construction. 1h(C) is the length of C, and FC is
the sequence of all background certificates F* actually used by C.

Here is a simple lemma on the agreement of models in a construction. Recall

that p~ (M) = py(r)(M).
LEMMA 3.1.5. Let C be a background construction, with levels My , = Mgk.

(a) Let (U,l) <iex (v, k) <1h(C), and suppose that whenever (lt,1) <iex (1, J) <iex
(v,k), then p~ (M ;) < p~(My j); then My ; <My .

(b) Let 'y < o(My ) be a cardinal of My j such that y < p~(My ), and suppose
P <M, i is such that p~ (P) = v; then
(i) there is a unique (l,1) <iex (V,k) such that P = M,, ;, moreover
(ii) if P =My, then y < p~(My, ;) whenever (l,1) <iex (N, J) <tex (V,k),

If context permits, we may suppress mention of (w, F), and call (M$

PROOF. For (a): We have Mu,lﬂ = MM, $0 My ; <AMy, ;1. The agreement of
a mouse with its core then gives My, ; <My ; by induction on (7, j).

For (b): Let (u,1) be least such that P <My, ;. We claim that P = M, ;. Suppose
that P<<M,, ;; then [ > 0, say / = n+ 1. Since P is not an initial segment of M}, ,,,
P(My,) =p~ (My 1) <. Since yis a cardinal and < py(My x), we cannot have
My ny1 <My k. But then by part (a), we have a least (17, j) between (u,n+ 1)
and (Vv,k) such that p~(My ;) < p~ (Myus1). So My ; collapses p~ (M u11),
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which by (a) again gives us (11, ji) strictly between (1, j) and (v,k) such that
p~(My, ;) <p~(Mpy,;). And so on. We get an infinite descending sequence of
projecta realized between (u,/) and (v, k), contradiction.

This shows that P = My, ;. The proof also showed (b)(ii) for (u,/). But this
implies that (u,!) is unique, for otherwise we have (n, j) strictly between (u,/)
and (v, k) such that P = My ;. We can then apply (a) to see that M, ; <My, ;, that
is, P <1 P, contradiction. -

LEMMA 3.1.6. Let C be a background construction; then for any premouse N,
there is at most one (v,k) such that N = MS,.

PROOF. Notice that N = My, ; implies that that k = k(N). It is certainly possible
that MvAk = Mv,k—H-
If the lemma fails, we have v < u and k such that N = M\, , = M, ;. Let

p =inf{p;(Mn ) | (V,k) <iex (0,J) <tex (1K)}

Since v < u, Lemma 3.1.5(a) yields y < o(Mv’k) such that y is a cardinal of M, ;
and p <y < pr(My ). But now let (17, j) be least such that p;(M; ;) = p and
(v,k) <iex (n,J). We have that My ; <M ;. If n < p, then 7y is no longer a
cardinal in My, ;, so My, # My , contradiction. Thus 7 = u, and j < k. But then
we have

PiMy) =p < pe(Myx) = pe(Myu k),
contradiction. -
By the lemma, we may define

DEFINITION 3.1.7. Let C be a background construction; then
(a) lev(C) = {ME,( (v,k) <1n(C)}, and
(b) for P,Q €lev(C), P <c Qiff Iv,k,u,I(P =My, NQ = My N (v, k) <lex
(w,0)).

Lemma 3.1.5 gives us a useful way to think about C. Let M be a level of
C, and let Py enumerate in <l-increasing increasing order the Q <M such that
p~(Q) <p (M) and p~ (Q) is a cardinal of M. Lemma 3.1.5 implies that each
Py is alevel of C. If p~ (M) = o(M) (for example, if k(M) = 0), then the set of
Py’s is cofinal in <¢ below M. The P, and their limit points are what M itself can
see of the construction below M. The levels of C between the P are a part of the
connection between M and its background universe, and in general only visible in
the background universe. What M can see are its cardinals, and the levels of C that
added new subsets of the cardinals that are below p~(M).

Lemma 3.1.6 implies that any extender F' can be the last extender of at most one
Mi(/:,o’ so we may define

DEFINITION 3.1.8. Let C be a background construction, and suppose MEO is
active, with last extender F; then B®(F) = FC.
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The Mitchell minimality of our certificates has some simple consequences.

LEMMA 3.1.9. Let C be a background construction, MEO = (M<V,F), and
F* =FC; then
(a) Ih(F*) is the least strongly inaccessible N such that Ap < N and VT <
v(Ih(FF) <),
(b) {Ih(FE) | T < v} is bounded in Th(F*), and
(c) iy (M=V) | Ap is not measurable.

PROOF. Let M = M<V,F, and F* be as in the hypothesis. Let 1 be the least
strongly inaccessible 1 such that Az < 1 and V7 < v(Ih(FC) < 17). F* is nice,
so the lengths are bounded in 1. Clearly F* [ 7 is also a certificate for F, and
F*|1n € F because (w,.F) is a coherent pair. By Mitchell minimality, F* = F* [ n,
as desired in (a). This also proves (b).

For (c), suppose toward contradiction that i+ (M) = A is measurable ; then
in ip+(V) we have a background E* for the order zero total measure on Az of
ir-(M). By the agreement lemma 3.1.5, crit(E*) = Ap. Let n = 1h(F*). We
have Vi, C ip+(V), so 1 is still the least inaccessible above Ar in ip+(V). So
Vy CUIt(V,E*) holds in ip+(V), and hence in V. E* € ip«(F),s0 E* [N € ip+(F),
so E* [ € F by coherence. But then let

G* =g (F) 1.

G* € F by the coherence of F. It is easy to see that G* still backgrounds F', and
satisfies (i)-(iii), so that it is a certificate for F'. However,

G* =g (F* 1 Ar) I,
so G* € Ult(V,F*). This contradicts the Mitchell minimality of F*. 4

Part (c¢) of this lemma will be important in Chapter 4.

There is a natural coherence lemma for maximal w-constructions. Its hypotheses
include the uniqueness of certified extenders that is the conclusion of the Bicephalus
Lemma.

DEFINITION 3.1.10. Let C = (W, F, (M, Fz) | (1,k) < 1h(C))) be a back-
ground construction, and (7,0) < 1h(C); then

Cly= wnNVy, FOVy, (Mey, Fr) | T < YNk < @),
where
n=ny =sup({lh(Fy) +1]7<7}).
We call (M<7,0) the last model of C | y.
If (77,0) < 1h(C), then the last model of C [ yis just M;(,fo\ |0(M$0).

LEMMA 3.1.11. Let C be a maximal background construction above K. Sup-
pose MSO = (M<Y,F) where F # 0, and let F* = FE and D = ip+(C); then
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(1) DIv=Clyv,

(2) M?io #* MEO; moreover, if F is the unique FC-certifiable G such that (M< ,G)
is a premouse, then M2, = (M<",0),

(3) (M<Y,0) < ip(M<"), and

(4) if & < v, and C1& has last model N such that o(N) < crit(F*), then C € €
Vcrit(F*)'

PROOF. Let 71 be the least strongly inaccessible such that Ay < 11 and V7 <
v(IhFE < 1), so that 1 = Ih(F*) by 3.1.9. C | v uses only extenders in 7 NV;, as
backgrounds, moreover, it uses one whenever possible. Since ig=(w) N Vi =wnVy,
ip+(F)NVy = FNVy, and D adds an extender whenever possible, C[v =D v.

For (2), suppose M2, = (M<V,G). If G # 0, then the certificate G* for G in
D satisfies Ih(G*) = n by 3.1.9 in Ult(V, F*), so G* € F by coherence. Thus G*
is also a certificate for G in V, so if F = G then F* is not a Mitchell minimal
certificate for F, contradiction. Thus F # G, and if G # 0 then F is not the unique
FC-certifiable G such that (M<",G) is a premouse.

For (3): By (2), it is enough to show that there is no P € lev(D) such that
(M<V,0) <p P <p ip=(M<") and p(P) < Ap. Suppose there were, and let u be
the infimum of all such p(P). Let y = ut¥~"_ Since Ay is a limit cardinal in M<",
¥ < Ar, and hence 7 is a cardinal in Ult(M <", F) by coherence. On the other hand,
v is not a cardinal of ip+ (M <") because some P as above collapsed it. But we have
a factor embedding 7: Ult(M<Y,F) — ip-(M<"), with crit(7) = Ap, so T(y) = 7.
This is a contradiction.

For (4): In Ult(V,F*), N is the last model of ip«(C) & = C &, moreover,
C[& € Vip(p)42 by the way we chose F*. Thus letting k = crit(F*),

Ult(V,F*) = “N is the last model of some C [ £ in V; (1)
But ip+(N) = N, so pulling this back under ip+ yields (4). o

Remark 3.1.12. Once we have iteration strategies and comparison in place, we
can strengthen Lemma 3.1.11. The extender uniqueness hypothesis of (2) is true,
so M)y = (M=",0). In fact, Ih(F) is a cardinal in ip+ (M<"). See §4.9.

Remark 3.1.13. From one point of view, our background constructions are very
slow to add extenders. There must be a nice background extender that coheres
with the construction so far. Nevertheless, we shall see in Section 8.1 that they can
capture much of the strength of their background universes.

In general, if F is an extender somewhere on the MS « sequence, then the
certificate that justifies F is B®(6(F)), where G is a resurrection map. We obtain
the resurrection maps by composing anticore maps, but there are some subtleties,
which we discuss in the next section, where we give the full definition.
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3.2. Resurrection maps

Associated to a construction C we have resurrection maps that act on initial
segments N of some M) 4, and trace them back via anticore maps to an origin
as some My ;. The picture is somewhat complicated by the fact that a given N
may have more than one origin. Our definitions have the effect that we always
trace back to the earliest possible origin, which is the only reasonable thing to do,
because there may be no last origin.

Our definitions are very close to those of [30]. Our notation is close to that of [4],
with a few changes that will reduce the number of subscripts in various formulae.

Let C be a background construction, Q a model of C and N < Q. We shall define
R =Resg[N] and 6 = 0¢[N]. We shall have R <¢ Q, k(R) =k(N),and6: N - R
is elementary.?> We call Resy[N] the complete resurrection of N from stage Q.
For S such that Resq[N] <¢ S <¢ Q, we shall also define the partial resurrection
Resg s[V] and its map oq s[N]. The complete resurrection results from composing
partial resurrections.

Any level of C is its own complete resurrection, so

Resq[0] = Q, and 6,[Q] = id.
The remainder of the definition is by induction on the place of Q in <c. We
maintain inductively

(*) If R <c Q and p~(R) < p(S) for all S such that R <¢ S <¢ O, then
(i) RQQ,
and for all N <R and Y such that Resg[N] <c Y <c R,
(i) Resq y[N] = Resg y[N], and
(iii) O'Q,Y[N] = O'R,Y[N].

This enables us to resurrect from limit levels in an unambiguous way.
Suppose first that Q = My 1, and let

T: 0 —X
be the anticore map, where X = M, ;. 7 is cofinal and elementary. Let
p=p(X)"* =p~(0)*2.

X|u = Q|u by solidity and universality.3* We define Resq x[N] and oq x[N] for
N<Q by

N, forN<Q|u
m(N), otherwise,

Resq x[N] = {

831t may not be cofinal.
8411 = 0(X) is possible.
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and

Gox[N] = id[N, forN<Q|u,
QX T[N, otherwise.

We are allowing here N ¢ Q, that is, we may have N = (Q,n) where n < k. In that
case 7(N) = (X,n).

Remark 3.2.1. If crit(7) # p(X), then N = m(N) when N < Q|u, so there is
no real case split. It is possible that crit(7) = p(X), however. That leads to the
resurrection consistency problem, and will ultimately force us to change the way
we take cores.

If N = O, then Resq x[N] = X is the complete resurrection of N from Q, and
we write Resg [N] for it, and 04 [N] for its map. (I.e. m.) More generally,

Resq[N] = Resx[Resq x[N]],
0[N] = ox[Resq x[N]] 0 0,x[N],
and for ¥ such that Resg[N] <c ¥ <¢ X,
Resq,y[N] = Resy y[Resq x[N]], and
Oq,v[N] = Ox y[Resq x[N]] 0 0o x[N].

It is easy to verify our induction hypothesis (*). The key is that for N < Q|u, we
have set Resg x[N] = N, so Resq[N] = Resx[N]. In other words, we are following
N backward under the earliest anticore maps that apply to it.

Now let us consider the limit case, that is, the case that Q = My o for some V.
Let N<Q, and let N <R <1 Q be such that

p=(R) = inf({p(s) [N IS 0}).
By Lemma 3.1.5, R < S for all § such that R <¢ S <¢ Q. We let
Resg[N] = Resg[N],
O[N] = or[N],
and for Y such Resy[N] <c Y <c¢ R,
Resq vy [N] = Resg yv[N],
Og,v[N] = Or v[N].
Finally, for S such that R <¢ S <¢ Q, we set
Resg 5[N] =N, and
Oos[N] = id.

By (*), the definitions of Resqy[N] and the rest are independent of the choice of
R. It is easy to verify that (*) continues to hold.
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PROPOSITION 3.2.2.  (a) Resq[N] is the <c-least X such that Resq x[N] is
defined.

(b) k(N)=k(Resqx[N]), and 6o x|N] is elementary.

(¢) If P<IN, then Resq[P] <c Resg[N].

(d) If P<AN and Resq x|N] is defined, then Resq x[P] <<Resq x[N].

(e) Suppose that Resg[N] <c X <c Y <c Q; then
(i) Resq x[N] = Resy x[Resq v[N]], and
(ii) Oqx[N] = Oy x[Resq y[N]]ooq v[N].

(f) Suppose k(N) >0 andResq x[N] is defined; then Resq x[N~] = (Resq x[N]) .

(g) IfResq[N| =My i1, then Resq[N~| = My . Moreover, if m: (My j11)” —
M, . is the anticore map, then Tt o Go[N] = 0[N~ |.

These are easy to prove by induction on the rank of Q in <c.

The resurrection map Gg[N] can be naturally factored using the N-dropdown
sequence of Q. The dropdown sequence is the trace in Q of those corings between
Resq[N] and Q that contributed directly to replacing Resq[N] by N.

DEFINITION 3.2.3. Let N <1 Q. The N-dropdown sequence of Q is given by
(a) Ap =N,
(b) A;41 is the least B<AQ such that A; <B and p~(B) < p~ (4;).
We write A; = A;(Q,N), and let n(Q,N) be the largest i such that A; is defined.

One place dropdown sequences show up is the following. Suppose 7T is a
maximal iteration tree, Q = Mg, N = Q|lh(Eg), T-pred(oc+ 1) = B; then T
drops at a + 1 iff p~(A;(Q,N)) < crit(E] ) for some i. In the case that 7~ does
drop, E will be applied to A;(Q,N)~, where i is least such that p~(4;(Q,N)) <
crit(E]).

Let Q be a level of a background construction C. Let N < Q, and let (A4; | i < n)
be the N-dropdown sequence of Q. We can factor the partial resurrections Resg[A;]
and 0g[A;], starting with i = n and working down to i = 0, where we reach a natural
factoring of the complete resurrection of Ag = N. This was done in [30, §11]. There
are some complications, and we don’t really need this analysis here, so we omit it.
The revised resurrection maps of Chapter 4 factor in a simpler way, as we show in
Lemma 4.7.13.

Ths case split in the definition of o, x [P] leads to the possibility of inconsistent
resurrection maps.

DEFINITION 3.2.4. Let C be a background construction, X <¢ Q,and P<IN <
Q. We say that the (Q,X) resurrections of P and N are consistent iff
(a) Resqx[P] = 0 x[N](P), and
(b) Oox[P] = 0o x[N][P.

We shall see in Section 3.6 why such inconsistencies are a problem for us,
and in Section 3.7 that they actually do occur in the standard constructions we
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are describing now. We do get a limited form of resurrection consistency in the
standard constructions.

LEMMA 3.2.5. Let C be a background construction and P <IN < Q. Suppose
that Resg[N] <c Y <c Q; then
(a) Resqy[P]<0qy[N](P), and
(b) Gy P]1p = Go[N] | p, where p = inf({p(S) | PIS<IN}).

PROOF. By induction on Q. Let us just consider the successor step.®> Let
Q=¢(X). Let k = p(X) and u = kX, and let 7: Q~ — X be the anticore map.

For (a): If u < o(P), then Resq x[P] = m(P) and Resq x[N] = m(N), so we
have (a) when X =Y. We get (a) for Y <c X by induction. If o(N) < u, then
Resq x[P] = P, Resqx[N] = N, so again we have (a) by induction. Finally, if
o(P) < u < o(N), then P <1 (P) because X is solid, so

Resq x[P] =PI m(P) A m(N) = Resq x[N].

This and induction yield (a).

For (b): N<1Q, so N <Q~. Assume first 4 < o(P), so that Resq x[P] = ©(P),
Resq x[N] = m(N), and 6 x[P] and 0, x[N] are restrictions of 7, so we have (b)
when X =Y. To apply our induction hypothesis and get (b) when ¥ <c X, we
must show that

supzp < inf({p(S) | (P) IS <A 7(N)}).

This follows from the elementarity of 7.8

Assume next o(N) < p. Then all the relevant one-step resurrections are the
identity, so we can apply induction.

Finally, we have the case o(P) < u < o(N). By the definition of p we have
p < x < crit(x), so supm“p = p. Resqx[P| =P and Resq x[N] = w(N). The
elementarity of 7 guarantees that for all S such that P<IS <IN, p~(S) > k. We
have then by induction that for all relevant Y <¢ X, ox v[P] | p = ox y[T(N)] [ p.
and this finishes the proof of (b). -

We shall use part (b) of the lemma in Section 3.4.

3.3. A Shift Lemma for conversion stages

Let C be a background construction, Q be a level of C, and let y: M — Q be
sufficiently elementary. Given a quasi-normal tree 7 on M, we shall use y and
the background extenders provided by C to lift 7 to a nice, normal iteration tree

85The limit step is trivial.

86If N € Q the statement is clearly preserved. Otherwise we have N = Q|(5(Q),n) for some n < k,
where k = k(Q). The statement VS € Q(P JIS<IN) = v < p~ (P)) is IT;, hence preserved. But
p0(Q), ..., Pr—2(Q) are also preserved because 7 is elementary on O, and this covers all the remaining
cases except S =N = Q™. In this case, pr_1(X) = sup“pr_1(Q) > supz“p, so it works out too.



82 3. BACKGROUND-INDUCED ITERATION STRATEGIES

T* on V. The apparatus associated to such a lifting is called a conversion system,
and we shall describe it in detail in the next section. Such systems are generated
in an inductive process that produces at each stage ¢ a lift map Wy : MZ; — Qa,
where Qy is a level of the construction ioT, «(C) of M7". The information here
constitutes something we shall call a conversion stage.

DEFINITION 3.3.1. (M, y,Q,C,R) is a conversion stage iff,

(1) R is a transitive model of ZFC, and (R, C) is amenable,
(2) (R,C) [=“C is a maximal background construction”, and
(3) Q €lev(C), and y: M — Q is nearly elementary.

It is convenient here to allow Ih(C) = o(R). In practice, (R,w,C) will satisfy
the relativised form of ZFC, and most often, C € R. In that case, (R, e, wC, F C) is
a coarse premouse, and C is its unique maximal (w®, F©)-construction.

Definition 3.3.1 includes the requirement that (w, C) be maximal because it is
needed in Lemma 3.1.11 on the coherence properties of constructions, and that
lemma is useful. One could convert iteration trees using arbitrary constructions,
but it is convenient to assume maximality. If we need to restrict the extenders
added in C, we do so by restricting FC.

We now prove a relative of the Shift Lemma that captures some of what happens
at the successor step in a conversion process.

LEMMA 3.3.2. [Shift Lemma for Conversion Systems] Let (M, y,Q,C,R) be
a conversion stage. Let E be an extender over M such that E is close to M,
crit(E) < p~ (M), and y(crit(E)) < p~(Q). Let E* be an extender over R, and
¢: dom(E)UA(E) — dom(E*) Ulh(E*) be such that

(i) (a,X) € E iff (p(a), @(X)) € E, and

(ii) @ [dom(E) = y [dom(E).
Leti = i}f and i* = ik, be the ultrapower embeddings, and assume that Ult(R,E*)
is wellfounded. There is then a nearly elementary map o: Ult(M,E) — i*(Q)
given by®’

o(la, f1E) = [@(a), w(F)]E-.
Moreover
(a) OIA(E) = @[ A(E),
(b) coi=i"ovy,
(c) (Ut(M,E),0,i*(Q),i"(C),Ult(R,E*)) is a conversion stage, and
(d) forall x € Q, x € ran(y) iff i*(x) € ran(0o).
PROOF. The agreement between y and ¢ implies that ¢ is well defined and

weakly elementary. Parts (a) and (b) are straightforward. Part (c) is clear, once we
check that ¢ is nearly elementary.

87The definition of & can be understood either by means of reducts, or by letting y/( fé‘:’q) = fgv(q)
for 7 € sky and g € M.
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Let us show that ¢ strongly respects projecta. For let M| = Ult(M,E), Q) =
i*(Q), and n < k(M). Since i is elementary, it strongly respects projecta, so
(MM, pa(M))) = (M p,(M})). i* strongly respects projecta because it is £, ele-
mentary, and y strongly respects projecta by hypothesis. Thus y; (<n,1,u L pn(M)))) =

yioi(n,pu(M))) = i* o w((m, pu(M))) = (M pa(Q1)). Also, pu1 (M) <
M Pt (M) < M FF Py 1 (Q) < M HfF i1 (1) < n'. Thus yy strongly
respects projecta.

Let us check clause (2) in 2.5.14, that o preserves nice cofinality witnesses
appropriately. Let k = k(M), p = pr(M), N = (M), p1 = pr(M}), and n; = T],iul.
Let suppose first that i is continuous at p. It follows that i is continuous at 7,
and i maps p and 1 to p; and n;. If n = p, then 1n; = p1, so clause (2) in
the definition of near elementarity is vacuously true. Assume then that n < p,
and let f be a nice witness to the fact that cofﬁ/[ (p) = n. Because y is nearly
elementary, y(f) is a nice witness that coka(l//(p)) =y(n), so i*oy(f) is a nice
witness that cokal (i*oy(p)) =i*ow(n). Since i is elementary, i(f) is a nice
witness that cofy(p;)) = 1;. By commutativity, o (i(f)) is therefore a nice witness
that cofg' (o(p1)) = 1. By Remark 2.5.15, ¢ preserves all nice witnesses that
cofy"! (p1) = 1.

Suppose next that i is discontinuous at p. It follows that n < p, crit(E) =1, and
p1 = supi“p. Letting f be a nice witness that cof)! (p) = 1, we get that 7, =
and i(f) [ n is a nice witness that cofi/l1 (p1) = M1. By near elementarity, y(f) is a

nice witness that coka(l//(p)) =y(n). Butcrit(E*) = y(n), so * o y(f) [ w(N)
is a nice witness that coﬁk21 (v) = w(n), where y = sup(ran(i* o w(f) [ w(n)).
Since o (i(f)) = i*(w(f)), the nice witness i(f) [N will be preserved by o if
o(n) = y(n) and o(p1) = v. But

o(n) =o([{n}, idl) = {y(m)},idE. = w(n),

and
o(p1) = o(sup(i(f)*n)) = sup(coi(f)“o(n)) =sup(i* o y(f)“w(n)) = 7.

Thus o preserves some nice witness that coff[ '(p1) = N1, so by Remark 2.5.15, it
preserves all such nice witnesses.

Thus o is nearly elementary. For part (d) of the lemma: x € ran(y) implies
i*(x) € ran(o) by commutativity. Suppose i*(x) € ran(0o), say i*(x) = o (y), where
y = [a, f]¥). Fixing f, we can assume that a is <o minimal such that y = [a, f]¥,
where < is the parameter order, that is, the lexicographic order on descending
sequences of ordinals. It is enough by commutativity to see that y € ran(i), that is,
that f is constant on a set X € E,,.

Suppose not; then we get a set X € E, such that f is 1-1 on X as follows: for
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u € [crit(E)]19, let

o) = {o if v <o u(f(v) = f(u))

f(u) otherwise.

It is important here that g remains an rX; function, of course. But ThY/ (crit(E) U
q) € M, where f = ﬁj’q, and from this theory we can define g in an rX; way. Since
we chose a to be <(¢ minimal,

i(g)(a) = i(f)(a),
and so f agrees with g on a set X € E,, namely X = {u | g(u) # 0}. Clearly f is
1-1on X.

But vy is sufficiently elementary that y(f) is 1-1 on y(X); moreover y(X) €
Eg > and i (x) =o(y) = [@(a), w(f)]R.. It follows that y(f)(u) = x for E, a.e.
u, so y(f) is not 1-1, contradiction. 4

We pause to describe briefly how this lemma fits into the construction of con-
version systems in the next section. Suppose that (M, y, 0, C, R) is a conversion
stage, and that we are at the first stage in our conversion process, so that M is the
base model of the tree 7 we are converting. Let E = EOT , so that E is on the M
sequence. We have y(E) on the Q sequence. We resurrect a background extender
for y(E) by setting

¢ = 0o[0|Th(y(E))] oy,
and
E* = B%(g(E)).

Let k = k(M), and suppose crit(E) < pg(M). Since crit(y(E)) < pr(Q), we
have dom(y(E)) < px(Q), so since k = k(Q), 0,[Q|1h(y(E)] is the identity on
dom(y(E)), and ¢ [dom(E) = v [dom(E). Thus the hypotheses of Lemma 3.3.2
hold, and it produces (Ult(M,E), y1,ig+(Q),ig+(C),Ult(R,E*)) as our next con-
version stage.

Suppose next that k = k(M) = k(Q) and py(M) < crit(E) < py—1(M). In this
case we let Qg = Reso[Q ] and yy = 0o[Q | o w. We get that (M, o, Qo,C,R)
is a conversion stage, and that yg has the agreement with ¢ needed for Lemma
3.3.2. Applying that lemma yields (Ult(M~,E), y1,ig=(Qo),ig+(C), Ult(R,E*))
as the next conversion stage. We have dropped at both levels, although the drop at
the O-level may be unnecessary.

Of course it is possible that one needs to drop further than one degree when E is
applied to an initial segment of M. It is also possible that M is not the base model
of T, and that E comes from some model of 7 strictly after M. We deal with the
general case in the next section.

831f w(crit(E)) < pi(Q), we also have the option of not dropping at the Q level, thereby producing
a different kind of conversion stage. Conversion systems that never drop at the Q level unless they must
have some interest.
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3.4. Conversion systems

Let C be a maximal (w, F)-construction, and M be a level of C. Given a quasi-
normal tree 7 on M, we can use the background extenders provided by C to lift
T to a nice, normal iteration tree 7* on V. More generally, we shall start with
a conversion stage ¢ = (M, y,0,C,R), and then lift a quasi-normal 7 on M to
a nice, normal tree 7* on R, using ¥ and the background extenders of C. The
apparatus associated to such a lifting is called a conversion system.

The particular conversion system we introduce here is essentially the same as the
used in [30].% Still other conversion systems are possible.” We call the system
we are about to define 1ift(7,¢), or lift(7T,w,M,Q,C,R) if we want to display
the components of c. If the lifting process does not break down by producing an
illfounded model, we shall have

ift(T,¢) = (T, {ca | & <1h(T))),
where ¢ = cp, and the ¢4, are conversion stages. For o < 1h(7), let
ca = {Ma,Wa,0q,Ca,Rq).

We shall maintain by induction
(1)a (@) T*la-+1isanice, normal iteration tree on R with the same tree order

as T,

(b) forall v < a, ¢y is a conversion stage, moreover, My, = MVT, R, = Mzﬁ*,

and Cy = ig;((C).

The lifting maps commute appropriately with the embeddings of 7 and 7.
Drops in model in 7~ are mirrored by drops in the construction at the background
level. Let ig \, = ’Z—v and i’é v= zg—*v
(2)g Leté <7 v < «; then

@ Ov <c, i, (Qz).

(b) (&, V]r drops in model or degree iff Oy <c, i ,(Q¢), and

(¢) if (&,V]r does not drop in model or degree, then Q, = iE‘V(Qé) and

Wyoigy =1z, 0 V.
Having defined lift(7 [+ 1,¢), where ot + 1 < 1h(7T"), we set

Ho = Ya(Eq),
Xo = th‘ lh(Hoc)>
Ga = GQa [XOC](HOZ)7
Ya - ReSQa [Xa],

C
G:; - B « (Ga ) .
89See also Definition 2.2 of [36].

90ne could convert arbitrary semi-normal trees in essentially the same way, but doing so adds
some complications that we have decided to avoid.
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Here og, is the resurrection map of Cy. Hy is the last extender of Xy, and its
complete resurrection G, is the last extender of Y,. We then proceed as in [30], by
setting

E] =G,

The vy, will agree with one another in a way that lets us keep the conversion
going. The agreement involves maps resq € Ry, defined when o+ 1 < 1h(7), that
connect the ordinals below 0(Xy) to the background universe Ry. We set °!

resq = Gy [Xe]©?,
so that
resy : Xog — Ya,

and Gy =resq(Hy) =T1esq oWu (Eg).

As with the other induction hypotheses, our agreement hypotheses at o concern
T | @+ 1 and the objects which depend on it. In other words, they are hypotheses
on lift(7 [ ot + 1,¢), and objects which depend on E do not play a role in them.
Notice that the ordinals associated to Gy are ordered by

A(Gy) <o(Yy) =1h(Gy) <1h(G}) < A(G}).
Let
&y = unique & such that ¥, = Mg{).

3)a If v<pu<a,then
(@) Yv|lo(Yy) = Qulo(Yy),
(b) resyoyy [A(Ey) = wyu [A(Ey),
(¢) A(Gy) and A(GY) are cardinals of Oy, and A(Gy) < p~(Qy),
(d) A(Gy) < yu(A(Ey)), and
(e) Cy & =Cy &y, and M;Cv‘fo is passive.

By (d), resyoyy(A(Ey)) < Wu(A(Ey)), so the agreement in (b) cannot be
strengthened. Clause (c) is useful because it implies the resurrection map G, [Xy]
of Cy has critical point > A(Gy,). This means that replacing X, by ¥;, does not
disturb the agreement with ¥, we had already.

In addition to (3)4, we have the agreement of models implicit in the fact that
T [ a+1is quasi-normal, and 7* [ o + 1 is normal. In particular, R, agrees below
lh(Gy) with all Ry, for u > v.

Notation: ()¢ is the conjunction of (1) through (3)g.
Again, (1) involves objects that are associated to lift(7 [+ 1,c¢).

91We shall often omit superscripts like C, in the displayed formula. The construction in which a
resurrection is taking place is usually clear from context.
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CLAIM 1. Assume (1)q, and let v < u < o; then
(a) A(Gy) < A(Hy), andres, [A(GY) = id,
(b) Yv||0(Yv) = Y#‘O(Yv),
(c) & < &u.
PROOF. By (3)(d),
A(Gy) < Yu(A(Ev)) < Wu(A(Ep)) = A(Hy).
Also, A(G}) < p~(Qu) by (3)a, so resy = g, [X,] is the identity on A(G,) by
Lemma 3.2.5. Thus we have (a) of the claim.

For (b): we have Yy ||o(Yy) = Qulo(Yy) by (3)q. But o(Yy) = 1h(Gy), so we
have just shown that o(Yy) < o(X,), and res; is the identity on o(Yy). Hence
Vello(ty) = Yulo(¥,).

For (¢): Cy [ &, = Cy [ &y has last model Yy ||o(Yy). Since 1h(Gy) < A (Hy) <
I(Gu). & # & 16 &, < &y, then Yy lo(¥,) <c, Yollo(¥y). and yet Yulo(¥,) s
not an initial segment of Yy ||o(Yy). It follows that there is k < A (G ) such that K is
a cardinal in ¥, but notin Yy,. (Take Kk = p Y, where p is the smallest projectum
associated to a stage of Cy between &, and &,. We must have p < 1(Gy).) But
Yy|lo(Yy) QY by (b), so this is impossible.

The step from o to o + 1 in the conversion process goes as follows. Let

(E7H7XaY7G7G*) = (EOHHOHXOHYOHGOC’G:;);

and let B = T-pred(a + 1). We shall apply 3.3.2, the Shift Lemma for Conversions,
with @ = resy oYy as the embedding of E, into G*. If we are not forced to drop
at the M level, then the conversion stage we move up by i+ is just cg. Otherwise
the conversion stage we move up from 8 to a + 1 is obtained from cg via an
appropriate resurrection inside Cg.

Let us show that we obtain a normal extension of 7* [ a + 1 by setting f =
T*-pred(o+1). Let

K = crit(E),
K" = crit(G) = resq oWy (k).

CLAIM 2. (1) Suppose v < o, then
(a) 1h(Gy) < A(Gy) <1h(G"), and
(b) k <A(Ey) iff x* < lh(G’;,).
(2) T*To+2 is normal.
PROOF. We have
lh(G;) < A(G;) < A(H) < A(G) <1h(G"Y),

by Claim 1.
For (1)(b), suppose first k < A(Ey); then resyoyy (k) < A(Gy), so Wu(Kk) <
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A(Gy) by (3)a- Butresq [A(Gy) = id by Claim 1. So k* < A(G) < 1h(G"), as
desired. Suppose next A (Ey) < k; then W (A(Ey)) < yu(K), so

A(Gy) < Yo (K) <rtesqoya(k) = K7,

as desired.
Clearly (1) implies that 7* [ & 4 2 is normal. —

Remark 3.4.1. We have simply assumed here that Ry is wellfounded. This
then implies that My and the Q4 we are about to define are wellfounded. If
R+ is illfounded, we just stop the construction of lift(7, c).

(1) also implies

CLAIM 3. (a) resq oWy [A(Eg) =Ttesgoypg [ A(Ep).
(b) Suppose a+1 ¢ D7 ; then
(i) wg[dom(E)+ 1=y, [dom(E)+ 1, and
(ii) resg and resq are the identity on yg(dom(E) + 1).

PROOF. For (a): this is clear if B = o, so assume 8 < a. Then (3), implies
that yy agrees with resg oy on A(Eg), and Claim 1(a) implies that resq is the
identity on resg oy (A (Eg)). This proves (a).

For (b): Note that dom(E) < A(Eg), so yg(dom(E)) < A(Hp). Since we are not
dropping in T, E is total on Mg and dom(E) < p~ (Mg). Since yj is nearly elemen-

)-
tary, sup Wg“p~ (Mg) < p~(Qp). Thus yg (dom( )) < p~(Qp) and yp(dom(E))
is a cardinal initial segment of Qg. It follows that

v (dom(E)) < inf({p(S) | X5 95 < 0p}).

This implies that 6o, [Xg] | y(dom(E)) + 1 =id.>* If B = e, we have (b)(ii). If
< a, then resy is the identity on A(Gg) by Claim 1, so res, is the identity on
B y p) by y
resgoyg(dom(E)) + 1 = yg(dom(E)) + 1. Thus we have (b)(ii) in either case.
From this and (a) we get (b)(1). -

We define Wy 11 and Qg+ by cases.

The non-dropping case: « +1 ¢ D7 .

We are in case (b) of Claim 3. So vy, agrees with yg on dom(E), wg(dom(E)) =
dom(H), and res,, is the identity on dom(H ), so that dom(H) = dom(G). This
means we can apply 3.3.2, the Shift Lemma for Conversions, with its inputs being
(Mg, wg,0p,Cg,Rpg) and @ = resq oYy That is, we set

Qat1 = i;ﬁ,aJrl(Qﬁ)

92See 3.2.5(b). It is possible that yp(dom(E)) = p~(Mp), but in this case p~ (Mp) is a successor
cardinal in Mg, so it cannot be equal to crit(oq [Xp]).
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and

Vot ([a f13°)) = [resa oWa(a), wa(f)]c:

By Lemma 3.3.2, (Mg41, Wat1, Qa+1;Cat1,Ra+1) is a conversion stage.
One can factor Yy in a natural way. By the usual Shift Lemma we have a map

o: Ult(Mﬁ,E) — Ult(Qﬁ,G)
given by
o ((a f1z") = [resa oWa(a), v (NG
We also have
7: Ult(Qp,G) — ig+(Qp)
given by
t((a. f1F) = la. fct.

7| Ag = id and 7(Ag) = Ag+. (The restriction of 7 to Ih(G) is just the factor map
that certified G by G* in Cy.) Clearly yy41 = 7o 0. We have the diagram

Vot1

M(x.i,.] *} Ult Qﬁ7 4) Q(X-‘rl

|, A

Mg —" ., 0p

Let us check that our induction hypotheses continue to hold.
CLAIM 4. In case 1, (T)g+1 holds.

PROOF. We have already verified (1) of (1)g+1. The commutativity condition
(2) is easy based on the diagram above.
Let us now check the agreement hypotheses (3). Clause (a): We must show that

Yollo(Ye) = Qq+1]|o(Yy). By 3.1.11, this is true if we replace Qg1 with ig (Yy).
But Qg|k* =Yg [ K" = Qq [ K" = Yo [ K*. 0(Ya) < iG+(K"), sO
Yo|lo(Ya) = ic+(Ya)|o(Ya)
=ic+(Qp)lo(Ya)
= Qa+1lo(Ya).
By induction, we then get that ¥y ||o(Yy = Qq+1]o(Yy) forall v < a.

Clause (b): W1 agrees with resq oWy on A(Gy). If v < «, then (3)q implies
that resy oy, agrees with Y on A(Gy ), and hence with resq oy on A(Gy, ). Thus
resy oy, agrees with Yy on A(Gy), as desired.
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Clause (c): Let us just consider the case v = o and t = o + 1, since the rest then
follows easily by induction. We must see that A(G) is a limit cardinal in Qg .
But A(G) is inaccessible in Ult(Qp,G), and T[A(G) = id, so this follows. A(G*)
is a cardinal of Ry 1”3, so it is a cardinal of Qg . Finally, A(G*) < p~(Qq+1)
because crit(G*) < p~(Qg) and Qg1 = ic+(Qp)-
Clause (d): The new case is 4 = @+ 1. Yu11(A(Gy)) = A(G},) by the definition
of Yu41. Now let v < ar. We have

A(Gy) < Wa(A(Ey))
by induction, so if A(Ey) < A(Eq), then

Var1(A(Ey)) =resa oWu(A(Ev)) = Wa(A(Ev)) = A(Gy),
as desired. If A(Ey) = A(Eg), then using Claim 2, part (1)(a),
Wa+1(l(Ev)) = V’a—&-l(l(Ea)) = )L(G:;) > A’(Gt)a

which is again what we want.*

Clause (e): It is enough to show Cgq [ = Cy1 [ &g, and Mg"fgl is passive, since
the rest of (e) then follows from (3)4(e). But letting D = ig&f (Cq), Cqlla=D]&q
and Mgo is passive, by Lemma 3.1.11. Thus we are done if § = &, so assume
B < a. This implies k* = crit(G*) < 1h(Gy), so k* < &g, so Cp [ k" = Cq [ K7,
80 Coi1 lig(K*) =D lig+(x*). But &y < ig+(K*), so we are done. =

The dropping case: o+ 1€ D7
LetJ = M:;’L, so that J <t Mg and
Myy1 = Ult(J,E),
and let
K =yg(J).
Here if J = Mg | n, then we understand K to be Qg | n. Since yg is nearly
elementary, Vg [ J is elementary, and”?

crit(H) < supyg“p ™ (J) =p~ (K).
g, [K] 0 yp is elementary, so

d= <Ja GQﬁ [K] o Wﬁ7ResQﬁ [K]aCﬁaRﬁ>

9SBecause Rg 1 and Ult(Rg, G*) have the same VaGH)+1-

%4This shows why (d) of (3), cannot be strengthened to v < u = Wy (A(Ey)) = A(G}). This is
only true when 7 is normal.

91t is possible that J = Mg, K =Qg, and crit(H) < p(K) = p~(Qp)- In that case, what we are
about to do will constitute an unneccessary drop at the Q-level, one that a different conversion system
might avoid.
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is a conversion stage. This is the stage we shall move up to cg+1 via ig+. In order
to do that we must see that resq oY agrees with oo, [K] o Y on dom(E). But
resq oY agrees with resg oyg on dom(E), so it is enough to show

CLAIM 5. resg agrees with 0o [K] on dom(H).

PROOF. resg = 0q,[Xg], so by Lemma 3.2.5, it is enough to show that for all
S such that Xg IS <K, dom(H) < p(S). Our definition of J guarantees that for
all S such that Mg|lh(Eg) IS <1/, dom(E) < p(S). Since yp is nearly elementary
as a map on the whole of Mg, it preserves this fact. (In the worst case, S =J,
so p(S) = p~~ (Mp), which is mapped by yg to p~~(Qp) = p(K~).) So indeed
dom(H) < p(S) for all S such that Xg IS < K. o
By the Shift Lemma for conversion stages, letting

Vo1 ([a, f1£) = [resa 0Wa(a), 6o, [K] o s (Nl

and
Qa+1 = ig-(Resqg[K]),

we get the next conversion stage ¢+ 1. The induction hypotheses (1)q1 are easy
to verify.

This completes the successor step in our inductive definition of lift(7,¢). Now
suppose 7 is a limit ordinal < 1h(7). We define 7* [ y+ | by setting [0, y]7+ =
[0,7]7. If this results in /\/l;,r* being illfounded, then we stop the conversion. So
suppose that MYT* is wellfounded. Induction hypothesis (2) then tells us that
D7 N[0,y)r is finite. Let o <7 7 be large enough that D7 Ny C «. By (2) we
have iz,g(Qa) = Q¢ forall § € [, y)r. We set

QV = ia,y(QG)’
and define v, : My, — Q, by letting

Wy (if ,(0) = it (We (x))

forall & € [, y)r. By (2), vy is well-defined. It is now easy to check that (),
holds.

DEFINITION 3.4.2. Letc = (M, y,Q,C,R) be a conversion stage, and let 7 be
a quasi-normal iteration tree on M; then

(1) Lft(T,c) = (T*,{ca | @ <1h(T))) is the conversion system defined above.
We write T* = lift(T, c)o for its tree component, and C¢ = igz (C).

(2) stg(T,c,) =cq = (ML, Wo,0q,Cq, MT") is the conversion stage occur-
ring at o in lift(7,¢).

(3) resg (T, c) =resg = 0, [Q¢ [ Th(y (Eg)]cf. We call res the &-th generator
map associated to lift(7, c).
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We need only determine 7 *, and the W and Qy, in order to determine lift(7, c),
so we may abuse notation by writing

ift(7,y,M,Q,C,R) = (T",(Qa | @ <1h(T)),(yqy | o <1h(T))).
DEFINITION 3.4.3. In the special case of 3.4.2 that M = Q and y = id, we set
lift(7,M,C,R) = 1ift(7,M,id,M,C,R).
We also let
lift(7,M,C) =1ift(T,M,C,V)

in the case that R = V (the universe of all sets).

3.5. Induced iteration strategies

We are most interested in the case that the background universe is iterable.
Suppose that ¢ = (M, y,Q,C,R) is a conversion stage, and that £* is a (0, FC)
iteration strategy for the background universe R; then X* induces a strategy X for
M as follows: for T quasi-normal on M,

T isby ¥ < lift(T,c)o is by L*.
We write
Y2 =0Q(c,X")
for this induced strategy. When M € lev(C), we set
Q(C,M,R,X") =Q({M,id,M,C,R),%").

We write Q(C,M,X*) when R can be understood from context. We may occasion-
ally use the notation lift(7,c,X*) for the largest initial segment of 1ift(7,¢) that is
by X*. So T is by Q(C,M,X*) iff 1ift(7,c) =1ift(7T,c,L*). We have shown above
that the lifted tree 7" is normal, even if 7 itself is only quasi-normal. So ¥* need
only be defined on nice, normal iteration trees, and in fact, only on those produced
by the conversion process.

If X* is defined on stacks of normal trees, of any length, then we can extend the

lifting process and the induced strategy X for M so that it is defined on stacks of
quasi-normal trees of the same length. For example, let

¢ = <M7 w’ Q7(C7R>

be a conversion stage, and X* an (1, 0,F C) iteration strategy for R, where 7 > 1.
Let Q = Q(c,X*), and 7 be a quasi-normal tree on M by Q having last model
M, and let N <M. We get a tail strategy for quasi-normal trees on N as follows.
Letting

Stg(T,Q (X) = <M0h Waa QOC,(COMROC>;
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we set
d = (N,resq, [N] o Wg,Resq, [N],Cq,Ra),
and define the tail strategy 7 5 on quasi-normal trees of length < 6 by
Uisby Qr y <= lift(Ud,d)o is by 7 g,

where of course 7" = 1ift(7,¢)o. Clearly we can continue this process so as to
define a tail strategy Q7 1/, p, for any P that is an initial segment of the last model
of U, and so on.

DEFINITION 3.5.1. Letc = (M, y,Q,C,R) be a conversion stage, and let ©* be
an (A, 0, FC)-iteration strategy for R; then Q(c,X*) is the (1, 0)-iteration strategy
induced by L* as above.

Q(c,X*) acts on stacks of trees of the same sort that £* acts on. Again, when
M € lev(C) and R can be understood from context, we write

Q(C,M,x") =Q((M,id,M,C,R),L")

In our case of interest, ©* chooses unique wellfounded branches. This implies
that £* has important internal consistency properties. We shall elaborate in Chapter
7, but the proofs that coarse strategies witnessing unique iterability have these
properties are quite straightforward. What takes a lot of effort is showing that
these properties of X* pass to induced strategies of the form Q(C,M,X*). We shall
discuss the obstacles in the next section.

3.6. Internal consistency for iteration strategies

Suppose ¢ = (M, y,Q,C,R) is a conversion stage, and £* is a (4, 0) iteration
strategy for R that chooses unique wellfounded branches. Uniqueness implies that
¥* has various useful internal consistency properties, such as positionality, pullback
consistency, strategy coherence, normalizing well, and strong hull condensation.
We would like to show that these properties pass to the induced strategy Q(c,X*)
for M, but unfortunately, in many cases the connection between X* and Q(c,X*) is
not sufficiently tight that one can do this directly.

To illustrate the problems, let’s look at some special cases of positionality.
Let c = (M,y,Q,C,R) and Q = Q(c,X*). It is easy to see that Q = Q. For
Qu = Qg ) is obtained by lifting the empty tree on M to the empty tree on R,
with lift map id : M — M, then resurrecting M to itself with resurrection map
id : M — M. Thus Qy is the pullback of Q(c,X*) under the identity map, so
Q=Qy.

But now suppose P <IN <{M. Must we have (Qy)p = Qp? A little thought shows
that this is not at all obvious. Suppose for example that M = Q and y = id, so
that Q = Q(C, M, X*). At the background level, we are executing either one or two
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empty trees, so we are not leaving R and C. Let X = Resy[N], Q(X) = Q(C,X,X*),
Y =Resy[P], and Q(Y) = Q(C,Y,X*). By definition

Qp = Q(y)onl”!
= (Q(X)ResMA’X[P])GM‘X[P]y
because oy [P] = Ox,y[Resy x[P]] © Ou x[P]. On the other hand
(Qv)p = (@) ™M),

= (QX) gy i) M.

If the (M, X) resurrections of N and P are consistent, that is, oy [N](P) = Resy x[P]
and oy [N] | P = oy x[P], then we get Qp = (Qu)p. Otherwise, there seems to be
no reason they should be equal.

Here is a definition that rules out these simple pathologies.

DEFINITION 3.6.1. Let Q be a (A4, 0)-iteration strategy for M; then Q is mildly
positional iff
(a) Q=Qy, and
(b) whenever s is a stack by Q and P IN < M.(s), then (Qn)p = Qs p.

Mild positionality seems like something one would want near the beginning.

In addition to possible resurrection inconsistency, there is a second obstacle to
a direct proof of positionality for background-induced strategies. The following
simple example illustrates the problem. Let M € lev(C), where C is a background
construction in V, and let Q = Q(C,M,X*). Let E be a total extender on the
M-sequence, let (E) be the iteration tree on M whose only extender is E, and
let N <<M|1h(E). By coherence, N < Ult(M, E). Positionality would imply that
Q) Ny = Q. Can one show this directly?%°

The answer is yes in one central case. Suppose that o(N) < Ag, E = FM, and
k(M) =0, so that E = E* N ([A£]<® x M), where E* = B®(E) is the background
extender. Let D = ig+(C). Letting Q = M||o(M), we have by coherence at the
background level that for some v,

C D
Q=M,_=M,,
and C[v=D]v, FF = E*, and V agrees with Ult(V, E*) to lh(E*). Thus we may
set
X =Reso[N]® = Reso[N]P,
C D
0 = 0y[N]" = 0g[N]".
Let R =ig+(M) and 7: Ult(M,E) — R be the lift map, so that # [ Az = id by the
96That Qpy v = Q is an instance of strategy coherence. Strategy coherence is a consequence of

positionality which, unlike full positionality, is essential for a theory of strategy mice. That Qg y = Qn
is also an instance of normalizing well, and this too is essential to the theory we are developing.
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simplifying assumptions on E that we have made. No level of D past v projects to
or below Az, so

X = Resg[N]”,
o = cx[N]P.
We then get
Q(D,Resg[n(N)], i (Z*))GR[W(N)]OE
(D, X, ig+(X%))°
(C,x,z9°

QN

Q
Q
Q.
Here we use that X* and ig+(X*) agree on Vin(e+), because they choose unique
wellfounded branches.

There are two problems with converting this argument into a general one.
First, if M # M|1h(E), then we must connect E to E* using the resurrection map
oyu|[M|1h(E)]. This works out fine unless the (M,Resy[M|1h(E)]) resurrections of
M|1h(E) and N are inconsistent. We then have a problem like that above.

There is a second problem that has nothing to do with dropping and resurrection.
Namely, the central case assumed o(N) < Ag, but we need this form of positionality
in the case that Az < o(N) < Ih(E) too. Under the assumptions of the central
case, the lift map 7: Ult(M,E) — ig.(M) has critical point Ag, so if Az < o(N),
then 7(N) # N. This means that the background extenders used in computing
Q(D, g+ (M), ig+(X*))z(v) may be completely different from those involved in
computing Q(C,M,X*)y.

One might call the first problem the resurrection consistency problem, and the
second one the background coherence problem. Both problems have to do with the
behavior of background-induced iteration strategies on stacks of normal trees. We
shall address them in the next chapter.

3.7. Measurable projecta

We shall solve the resurrection consistency problem by moving to a slightly
different notion of premouse. The transition is fairly simple: the main new re-
quirement is that premice have no measurable projecta. We shall describe the new
premice in detail in the next chapter.

This transition is motivated by the root cause of resurrection inconsistency in the
background constructions of standard premice, namely, the existence of anticore
maps with critical point the current projectum. We shall see in this section that
such anticore maps occur precisely when py.,(My x41) is measurable in My 1.
In the next section we look at how p(My 4+ ) might be measurable in My g4 .

We shall use some of the ideas in these two sections when we get to the new
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premice, but not the results themselves. The main idea is present in the proof of
the following theorem.

THEOREM 3.7.1. Let C be a background construction with levels My ;. Suppose
p(Myy) < p~(Myy), and let : M, 1 = My k be the anticore map; then for
p=pMyp),

(1) there is no My y-total E on the M\ y-sequence such that crit(E) = p, and
(2) the following are equivalent:
(a) crit(m) = p,
(b) there is an My jy1-total E on the My y,1-sequence such that crit(E) = p,
(c) the My 41 sequence has a total order zero measure D on p, and there is
a (unique) elementary ¢: Ul(M,, |, D) — My x such that 6(p) = p
and T = o oip.

PROOF. For (1), we use the amenable closure argument.®’ Let E be a total-on-
M, ; extender from the M, y-sequence such that p = crit(E). We may assume E
has order zero. Let
/}/ — p+7MV,k
and

P =M, lh(E).

Suppose first that P = M, 4, so that k = k(P) = 0. Let E* = B®(E) be the back-
ground extender, and A C p the new Z’f subset of p. We have that AN o € P for
all ¢ < p,but ANp ¢ P. By coherence and the fact that E C E*, we get

P = Uli(P.E)||In(E) = i+ (P)][Ih(E).
But ig«(A) is amenable to ig«(P) below ig«(p), so
A= iE*(A)ﬁp S lE*(P)

The factor embedding from Ult(P, E) to ig+(P) has critical point Az, and so yis a
cardinal of ig«(P), and thus A € ig«(P)||y. But then A € P, contradiction.

So we may assume P <1 My ;. We have that p(P) < y because E has order
zero, and if p(P) < p = p(My ), then P = M, ; for j < k is impossible because
pk(Myx) > p,and P € M, \ is impossible because 7 is a cardinal of M, x, so we
have a contradiction. Thus p(P) = ¥.

But now we have P* <M, 4, and p~ (P") = y. We can therefore apply Lemma

3.1.5 to find p < v such that P* = M, ;. Thatis, P=M, |, and p(P) =y =

p(Myo). Let T: M, | — My, o be the anticore map, and let E* = B(n(E)).

Again, let A C p be the new Zﬁ:’l" subset of p. We have AN o € M, for all

o <pand ANp ¢ M, . However, My |y = P|y = M, 0|7, and 7 is a cardinal in

97This sort of argument was first discovered and exploited by Hugh Woodin in the fine structure
theory of mice with long extenders. See [36].
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all these models. SoANa € My g forall o <p and ANp ¢ M, o. But then we
can apply the amenable closure argument above: A = ip+(A) NP, s0 A € ip+(My0)
by the elementarity of ip«. But My, o and ig- (M, o) agree to their common p™,
namely y. Hence A € M, contradiction.

For (2), clearly (c) implies (b), and (b) implies (a) by part (1). So we must see
that (a) implies (c). For this, we just inspect the standard proof that My ;| is
solid and universal.”® Let M = My and H =M, . We compare the phalanx
(M,H,p) with M. We can assume here that M is countable, and that our iteration
strategy X for M has the Weak Dodd-Jensen property.”® ¥ induces a pullback
strategy »d.m) for (M,H,p). Let T and U be the resulting trees on (M,H,p) and
M.

The standard proof shows that the final model on both sides is the same. Call it
Q. We also get that Q is above H in T, and the branches H-to-Q of 7 and M-to-Q
of U do not drop. The branch embeddings i: H — Q and j: M — Q are such that
crit(i) > p and crit(j) > p.!%0 We have also that i(p(H)) = j(p(M)) = p(Q).

Since i(p(H)) = j(p(M)),and i[p = j[p = id, we get

n=j loi
But crit(j) > p by part (1), and crit(7) = p, so crit(i) = p.

By (1) and crit(j) > p, p is not the critical point of a total on Q extender from
Q. It follows that the first extender used in i is the order zero total measure on
p from the H-sequence. Call this D. We get the desired o: Ult(H,D) — M by
setting ¢ = j’1 ok, where k is the branch tail of H-to-Q, that is, i = koip. -

Remark 3.7.2. The equivalence of (2)(a) and (2)(b) requires only that we are
dealing with a mouse and its core. Part (1), and the equivalent (2)(c), rely on
amenable closure. So these only work for the cores taken in a background construc-
tion. It is easy to produce a counterexample otherwise, by taking M = Ult(H, E)
for E not of order zero.

DEFINITION 3.7.3. For M a premouse,

(a) M is projectum-measurable iff there is a total-on-M extender E on the M-

sequence such that crit(E) = p~(M).

(b) (M,D) is a pfs violation iff D is a total-on-M extender on the M-sequence,
and crit(D) =p~ (M) < p~(M™).

(c) A pfs violation (M, D) has order zero iff D has order zero.

%8See [30, §8] or [65, §5].

9See Lemma 4.6.10, and [34].

100For the reader who would like his memory jogged: We apply the Weak Dodd-Jensen property to
the iteration maps in I/ and the (id, 7)-lift of 7. This and the fact that we were iterating disagreements
shows that 7~ ends with Q above H, and that H-to-Q does not drop. The M side cannot end with P such
that Q <1 P because otherwise the new subset of p would be in P, hence M. So P = Q, and the M-to-P
branch of U does not drop. Its embedding j has crit(j) > p because p = p(H) = p(Q) = p(P).
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Clearly, N is projectum-measurable iff there is a (unique) order zero pfs violation
of the form (N, D). We will sometimes say that (N, k, D) is a pfs violation, if (N, D)
is a pfs violation and k = crit(D) = py(y)(N).

COROLLARY 3.7.4. Let C be a background construction, X € lev(C), M =
C(X), and let m: M~ — X be the anticore map. Equivalent are

(a) crit(m) = p(X),
(b) M is projectum-measurable,
(c) there is a D such that (M, D) is an order zero pfs violation.

PROOF. This is immediate from Theorem 3.7.1. The only thing to check is
that if crit(zr) = p(X) = p~ (M), then p~ (M) < p~(M~). Say k = k(X), so
that k+1 = k(M) and k = k(M~). We must see that p;.1(M) < pr(M). But
Pk+1(M) = pr11(X) < pr(X) because 7 is not the identity, and 7*“py (M) is cofinal
in pk(X) while 7 FPk+1(M) = id. Thus pk+1(M) < pk(M) b

We should note that although p (M) is officially the projectum of M, itis p~ (M)
that is relevant for projectum-measurability. 0!

“pfs” stands for “projectum-free spaces”. In one version of fine structure theory
for mice with long extenders, it is important that no projectum be the space
corresponding to a long generator. See for example [36]. It turns out that one can
also avoid projecta being spaces, that is, critical points, in the short extender realm.

When we first add E, as the top extender of M&O, we have kg # p(Myp)
by amenable closure. If E is the image of E in M, ; under some corings that
correspond to projecta > K, then still kz = kg # p(My ;). But we may reach a
first stage where p (M, ;) < Kg, and it may be that kg collapses to p(M,, ;) when
we core down in the standard way, making p;; (Mv,l+1) measurable in My .

Our revised background constructions will avoid this by putting p;1 1 (My ;) as
a point into the hull that collapses to My ;1. A straightforward generalization
of Theorem 3.7.1 then implies that p;,|(My ;1) is not measurable in M, ;.
Doing just this does not rule out measurable projecta in My, ;1 1, however, because
pi(My 1) might be measurable in M, ;. This could happen if the anticore
map from M w1 O My does not preserve p;, or equivalently, is discontinuous
at p;(My ;11). In other words, there can be measurable projecta that do not trace
back to the critical points of anticore maps, but rather to their discontinuities.

Our solution here will be to put p;(M, ;) into the hull collapsing to My 11 as
well. Of course, our solutions involve relaxing the standard soundness requirements
on premice, so we shall need to see that we still have a fine structure theory. This
amounts to showing that the new parameters are preserved by the relevant maps.
The proof of Theorem 3.7.1 will help with that, as will the ideas in the next section.

1011f (M, D) is a pfs violation, then k(M) > 1, so our previous advice to focus on the case k(M) =0
needs to be adjusted. The case k(M) = 1 seems to be representative of the general case.
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3.8. Projecta with measurable cofinality

Let C be a background construction in the sense of Definition 3.1.3. We wish to
characterize the measurable projecta of initial segments of levels of C that do not
trace back to a projectum-critical anticore map. The source for them is an anticore
map T: M\;k+1 — M,y ; that is discontinuous at py(My x+1), and so we shall need
some lemmas on the X cofinality of py.

Our notation for the r¥; cofinality of p; (M) is n,ﬂ”’ . Section 2.5 contains a general
discussion of the notion, and some elementary preservation lemmas that we shall
use here. We shall also need two further, less elementary results concerning the
preservation of 17,1(” under anticore maps.

THEOREM 3.8.1. Let X be an (;, w; + 1) iterable premouse, Q = C(X) be its
core, and T: Q= — X be the anticore map. Let k = k(X), and suppose that Tt is
discontinuous at py(Q); then for = n},

(1) pet1(Q) < 1 < pi(Q), and
(2) Q k= U is measurable.

PROOF. The case k = 1 is typical of the general one, so the reader could just
assume k = 1 below. Since we wish to prove a first order property of X, we may
assume X is countable, and by [34], we have an iteration strategy X for X with the
Weak Dodd-Jensen property relative to some enumeration € of X. We assume that
€ begins with p(X).

The key is that 7 can be derived from an iteration map. More precisely, let
P = Pr+1(X), and consider the comparison of (X,0~,p) with X, using X and the
iteration strategy for (X,Q,p) that X induces.

The solidity/universality argument of [30] shows that the resulting iteration trees
T on (X,0,p) and U on X have a common last model R, that R is above O~ in
T, and that neither Q™ -to-R nor X-to-R drops. Let

i:Q0” —R
and
j: X—R

be the branch embeddings. crit(i) > p by the rules of 7, and crit(j) > p because
p = p(R). Using the Weak Dodd-Jensen property together with the solidity of the
standard parameter, we get

i=joTm.
These claims are all proved in full in [30].

Now suppose 7 is discontinuous at p;(Q). It follows from the elementarity of
the iteration maps 7 and j that

i(pr(Q)) = jom(pr(Q)) > j(pr(X)) > pr(R) > supi“pr(Q).



100 3. BACKGROUND-INDUCED ITERATION STRATEGIES

Thus i is discontinuous at pi(Q).

Let us look at the first discontinuity along the branch Q™ -to-Rin 7. We get Y
on the branch and E such that Ult(Y, E) is also on the branch, with

i=loitoh,

where 1: O~ — Y is continuous at px(Q), i%. is discontinuous at 4(p(Q)), and
I: Ult(Y,E) — R is the branch tail embedding. All models in Q™ -to-R have
degree k, and ultrapower embeddings are cofinal and elementary, so px(Y) =
suph“pr(Q) = h(pr(Q)). Let u = crit(E). We must have pu < h(px(Q)), since
otherwise our branch from Q to R would have a drop. Since Ult(Y,E) = Ul (Y, E)
consists of [a, f]% such that f is rXy, i¢ is discontinuous at ¥ iff cof} () = . ( See
Lemma 2.5.6.) Thus n,f = W. The normal measure Ey, isinY, and p,fﬂ =p<u
because Y is above Q™ in 7. So we have what we want at Y, and we just need to
pull this back under 4.

Lemma 2.5.9 lets us do that. By induction on models Z in the branch Q™ -to-
Y, letting I: O~ — Z be the branch embedding, we show that I(p,(Q)) = pr(Z)
and / (nkg) = nkZ . The lemma takes us past successor steps, and limit steps are

easy. It follows that u € ran(h), and A~ ! (u) = nkQ. Since py+1(Q) < crit(h) and

Pri1(Q) = pry1 (Y) <, we get pry1(Q) < b ' (u). -

The converse to the theorem does not hold in general. If you start with Q
such that k(Q) = 2 and p;(Q) has measurable cofinality u in Q, with p,(Q) <
U < p1(Q), and then take X = Ult; (Q~, E) where po(Q) < crit(E) < p1(Q) and
crit(E) # U, then the anticore map 7 = ig is continuous at p;(Q).

Butif O = MSkH and X = Mi(,{k and w: Q- — X is the anticore map, then
we do get the converse. The difference here is that the iteration from which 7 is
derived has to hit all measurable cardinals in the interval [p;1(Q),px(Q)) along
its main branch (many times). But we can prove the converse without going into

that:

THEOREM 3.8.2. Let C be a background construction, and let Q = Mg_k“,
X = ME o and ©: Q7 — X be the anticore map. The following are equivaleni:
(1) m is discontinuous at pi(Q),
(2) prr1(Q) < 771? < pe(Q) and Q = “nkQ is measurable”.

PROOF. (1) implies (2) by 3.8.1. Assume (2). Since X is a level of C and
n(nkQ) < Prx)(X), n(nkQ) is measurable in V. We must have p;1(Q) < n(nkg),
since otherwise py+1(Q) = nkQ = n(nkQ), and we can use the amenable closure
argument to get a contradiction.'%> But |nkQ| = |px+1(Q)|in V, so leQ < n(nkQ).

ﬂ(nkQ) is regular in V and |nkQ| = |pk+1(Q)|, so 7 is discontinuous at 77kQ- By
Lemma 2.5.10(3), 7 is discontinuous at p(Q). -

1021 et A C pry1(Q) be the new set. Let E* background the resurrection of the order zero measure of
X on 7r(nkQ ). We get A € ig«(X) because A was amenable to X, so A € X by coherence, contradiction.
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We have shown in Theorem 3.7.1 that projectum-critical uncorings give rise to
pfs violations, but Theorem 3.8.2 shows that not every pfs violation in an initial
segment of some Q € lev(C) resurrects to a projectum-critical uncoring. In the
situation described in (1) and (2) of 3.8.2, it could be that (Q~, D) is a pfs violation,
but T(p~(Q7)) # p~ (X), so (X, m(D)) is not a pfs violation. This leads to the
following definition.

DEFINITION 3.8.3. Let (M,D) be an order zero pfs violation, and k = k(M).
We say that (M, D) is weak iff
(@) prs1(M) <M < pe(M), and
(b) there is a total measure on the M-sequence with critical point n,i” .

(M, D) is strong iff it is not weak.

One can show that the weak pfs violations are precisely those whose resurrection
does not end with a projectum-critical uncoring.

By pursuing these ideas further, one can obtain well-behaved iteration strategies
for the premice M reached in a background construction C done in a coarse
premouse R that itself has a coarsely well-behaved iteration strategy. “Well-
behaved” means having the internal consistency properties discussed in Section
3.6, as well as others we shall discuss later. But in order to do this, one must
restrict the class of iteration trees on M to which its strategy applies, and one must
change the way we have converted trees on M to trees on R. The changes involve
keeping close track of which pfs violations in M and its iterates lift to strong pfs
violations under the maps of our conversion system.

One could probably develop a theory of strategy comparison along these lines,
but it becomes quite complicated. There is a better way to solve the resurrection
consistency problem.






Chapter 4

MORE MICE AND ITERATION TREES

Let C be a background construction. Resurrection inconsistency arises in C when
we have X € lev(C) with projectum p = p(X),and forQ=C(X)and7w: Q- — X
the anticore map, 7(p) # p. For P such that X|p <P <1 X|p** we then have
Resq x[P] = P, whereas Resq x[N](P) = 7(P) # P whenever X|p™* <N< Q.
All resurrection inconsistencies in C trace back to situations of this kind, that is, to
anticore maps whose critical point is the current projectum.

This suggests that we modify our constructions by always putting pj41(My )
as a point into the hull collapsing to My ;1. This would suffice to eliminate
resurrection inconsistency, but it turns out that the definitions and basic facts are
simpler if we also put py(My x) into the hull as a point. The p;(My ) for i < k
get into the hull automatically, so the net effect is that our revised background
constructions will set

MV. .
My i1 = cHUll, ' (Pt U{pi(My 1), pi(My ) | i < k+1}).

The anticollapse map'® now has critical point > p. For such revised constructions
we can define resurrection maps that always follow the anticore maps, and hence
are all consistent with one another.

We shall see that such constructions produce premice M such that no projectum
of M is measurable in M. We call this property projectum-free spaces, and the new
premice pfs premice.

Since we do not always core down “all the way”, the new M, ;| will not always
be k+ I-sound in the old sense. We must therefore isolate the sense in which
the new My ;1 is sound, and develop the basic fine structure theory around this
notion. This is mostly a matter of adapting known techniques, but there are some
new issues related to the preservation of projecta by iteration maps. Part of the
difficulty is that the proofs must generalize to the context of strategy mice.

Many of the deeper theorems in fine structure are proved by combining phalanx
comparisons with the Dodd-Jensen property. We saw two such proofs at the end
of the last chapter, and we shall see several more as we develop the fine structure

103Recall that cHull stands for the transitive collapse of the hull in question.

103
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of pfs premice in this chapter. The method is very powerful. 1% Some of the less

straightforward points in the fine structure of pfs premice have to do with their
behavior in phalanx comparisons.

4.1. Mice with projectum-free spaces

We are now going to revise our background constructions so that p; (My ) and
Pr+1(My k) are always put into the hull collapsing to My x4 1. In this respect, the
new constructions are similar to those in the long extender fine structure theory of
[36], in which one sometimes does not core down “all the way”.

We call the new constructions PFS constructions, and the new premice that they
produce pfs premice. Here “pfs” stands for “projectum-free spaces”.

At bottom, the new constructions and premice are the same as the old ones, it
is just that the old ones are being presented differently. Theorems 3.7.1, 3.8.1,
and 3.8.2 tell us how to translate between the two hierarchies. We shall need their
main elements in the basic fine structure of the new premice, but we don’t need to
make the translation between hierarchies explicit. At various points we do need to
look at structures obtained by taking one or two steps back toward the standard
hierarchy.

What does change when we move to PFS constructions and premice is what
extenders are available on the coherent sequence to be used in forming iteration
trees, and how those iteration trees are converted to iteration trees on the back-
ground universe. One could instead stick to the old constructions and premice,
while making changes in which iteration trees on them are allowed, and how those
trees are are converted to trees on the background universe, that reflect what would
happen with their PFS equivalents. This seems to lead to a maze of special cases
whose only motivation is a suppressed translation to the pfs hierarchy. So we have
elected not to go that route.'%

Projecta, cores, and premice

Let us describe in more detail the first order properties of pfs premice. Many of
the elementary definitions, lemmas, and definability calculations in Chapter 2 go
over to the new premice with little change, but there are some new elements.

A potential pfs premouse is a potential Jensen premouse in the sense of Section
2.2, but we want to impose a weak form ms-solidity from the beginning.

DEFINITION 4.1.1. Let M be a potential Jensen premouse, and E be an extender

104The author first encountered this method in the unpublished paper [6] by Dodd. The method was
more fully developed in [30] and [34].

105 After developing it in some detail. The results of the last two sections in Chapter 3 are useful, but
there is more to it.
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on the M-sequence. We say that E has the weak ms-ISC iff letting x = crit(E), the
Jensen completion of Ey, is on the M|1h(E)-sequence.

Notice that E determines M|1h(E), so the terminology makes sense. If E is
itself the Jensen completion of E{yy, then E has the weak ms-ISC.

DEFINITION 4.1.2. M is a potential pfs premouse iff M is a potential Jensen
premouse in the sense of §2.2, and whenever E is an extender on the sequence EY,
then E has the weak ms-1SC.

Notice that we do not require that FM have the weak ms-ISC. This would
be wrong, because if E = F¥ is the Jensen completion of Eqy, and it M —
Ulto(M, G) is such that kg < crit(i) < Ag, then i(E) does not have the weak ms-
ISC. In a similar vein, if C is a background construction, then the last extender of
MSO may not have the weak ms-ISC. We shall show below that the last extender of

Mi% does have the weak ms-ISC, and more generally, if M is 1-sound and iterable,

then FM has the weak ms-ISC.

Iterable Jensen premice satisfy the full ms-ISC, but one needs a comparison
argument to show this. It is better for our exposition to record this fragment of it
as an axiom before we get to comparison.'%

DEFINITION 4.1.3. Let M be a potential pfs premouse; then

(a) xis measurable by the M-sequence iff k is the critical point of an M-total
extender on the M-sequence, and

(b) the order zero measure of M on K is the first M-total extender on the M
sequence that has critical point k.

(As usual, the M-sequence includes F¥.) We may later slip into writing “M |= k
is measurable” or “k is measurable in M”” when we mean that K is measurable by
the M-sequence. This is not so bad, because for iterable M the two are equivalent,
by a comparison argument.107 But in our current pre-comparison stage we need to
make the distinction, and it is pretty much always measurability by the M-sequence
that matters.

The weak ms-ISC justifies the terminology in (b).

PROPOSITION 4.1.4. Let M be a potential pfs premouse, and E be on the M-
sequence, with K = K.

(1) The following are equivalent:

196We are aiming to show that PES constructions produce structures M, ; with a complete fine
structure theory. The proof is an induction on (v, k), and the function of the premouse axioms is to
isolate enough about the first order theory M, ; that we can use this information, together with an
iteration strategy for M, x, to develop the theory of My ;.. We are therefore free to include in the
premouse axioms anything we can prove is part the theory of My ;. Of course it is nice to have a
small set of axioms.

107 This is a theorem that traces back to Kunen and Mitchell. The modern, definitive form of it was
proved by Farmer Schlutzenberg in [51].
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(a) E is the order zero measure of M on K,

(b) E is total on M, and K is not measurable by the Ulty(M,E) sequence.
(2) IfE is the order zero measure of M on , and E # FM then E is the Jensen

completion of Eqy.

PROOF. For (1): Let E be the first M-total measure on the M-sequence, and
suppose toward contradiction that F witnesses that k is measurable by the sequence
N = Ulty(M,E). Since k ¢ ran(ig), F # FV, and thus F has the weak ms-ISC. So
letting G be the Jensen completion of Fy, G is on the sequence of N. It follows
that p(N|1h(G)) < k™ = k™M But G € N, so |Ih(G)| = k™ in N. On the other
hand, A (E) is an inaccessible cardinal in N, so In(G) < A(E). By coherence, G is
on the sequence of M before E, contradiction. Thus (a) implies (b). (b) implies (a)
follows easily from coherence.

For (2): Let G be the Jensen completion of Eyy. Since E # FM_ G is on the
sequence of M|Ih(E). If G # E, then G is on the sequence of Ulty(M, E), contrary
to (1)(b). Thus G = E, as desired. —

We shall use these simple facts about measures of order zero quite often as we
develop the theory of pfs premice, and this is why we have built the weak ms-1SC
into the definition of potential pfs premice.

PROPOSITION 4.1.5. There are sentences 0 and ¢ in the language of potential
premice such that 0 is Iy, @ is Xy, and for any potential pfs premouse M,

M |= 0V ¢ iff FM satisfies the weak ms-1SC.

PROOF. 6 says that F is the Jensen completion of Fy,y, for k = crit(F). It
has the form Yo3g([{x},g]r = ), so it is [T,. @ says that for some E on EM,
Eq = F{K}. Because all E € EM have the weak ms-ISC, this is equivalent to the
Jensen completion of F{K} being on EM 108 Clearly, ¢ is X, in the language of
potential premice. -
Proposition 4.1.5 shows that the weak ms-ISC for F is preserved under ¥; ultra-
powers and X, hulls. As we saw above, it is not preserved under X ultrapowers.
The requirement on potential premice is that all E € EM satisfy the weak ms-ISC,
and the proposition yields a Il sentence capturing it. So like the other clauses in
potential premouse-hood, this one is preserved under Xy ultrapowers and X; hulls.

One can define projecta and cores using either the rX, hierarchy, or iterated X
definabilty over coding structures. Both (closely related!) points of view are useful.
Our official definition here will use iterated ¥; definability. Let us recall some
terminology from [49]: for any acceptable J-structure (N, B)'®°

P1(N,B) = least ¢ s.t. JA C ax(A € ZEN’B) NA ¢ N),
p1(N,B) = first standard parameter of (N, B)

1080ne can think of ¢ as asserting that there is a generalized weak ms-solidity witness for F'.
1097t is enough for us to consider the case that N is a potential premouse and B is amenable to N.
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= lex-least descending sequence of ordinals 7 such that

JAC pi(N,B)(A¢NAAis E<1N’B) definable from r.),

h(lN’ ) = canonical X; Skolem function of (N, B).

We allow p1(N,B) = o(N) and p;(N,B) = 0. We define solidity and universality
by

DEFINITION 4.1.6. Let M = (N, B) be an acceptable J-structure, and r € [o(N)]<¢;
then

Wy" = cHullY (aUr\ (a+1)).

We call W);'" the standard solidity witness for r at a.. We say r is solid over M iff
all its standard solidity witnesses belong to M.

DEFINITION 4.1.7. Let M = (N, B) be an acceptable J-structure, and r € [o(N)]<?.
We say that r is universal over M if for p = p; (M) and W = W),
(@) Mlp™™ =w|p*W, and
(b) forany A C p, A is boldface £ iff A is boldface EYV.

It is easy to see that there is at most one parameter r € [o(M)]<® that is both
solid and universal over M.'°

Now let M be a potential pfs premouse; we define its projecta py = pr(M), its
cores €, = & (M), its standard parameters py = py(M), and a parameter wy =
wy (M) that codes objects associated to p; and py. ''! Simultaneously we define
k-solidity and k-soundness for M, along with the k-th strong core €, = €(M)
of M. M is k-solid iff € (M) exists and is well behaved in certain ways, and M
is k-sound iff M = €;(M). The strong core is like the one we took in ordinary
premice.

As we go, we also define the reducts

Mk = (M‘ |pkaAk)7
and surjections d*: M||p; — € that decode M* into &;.
We start with
po=o0(M), C=C=M,
POZWOZQ, AO:Q)

and we say that M is 0-sound and 0-solid.

110suppose r and s were distinct such parameters, and let & be largest in 7/\s. Suppose o € r; then
for p = p1 (M), one can compute WP* from W*”, so WP € M, contrary to the universality of s.

1'To be pedantic, one should at this point distinguish potential pfs premice from potential Jensen
premice with a label of some sort, because € (M) etc. have already been defined for potential Jensen
premice. We shall just let context make the distinction.
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Now let
p1=pi1(M°) = p1(M),
p1=p1(M°) = p1(M),
€ = cHully!(p1 U{p1}),
and

¢ = cHuli (p1 U{p1,p1})-

Let6: ¢ — M and 7: ¢; — M be the anticollapse maps, and p; = 6~ (py).
We say that M© is parameter solid if py is solid and universal over M and p is solid
and universal over €. We say that M? is projectum solid iff p; is not measurable
by the M-sequence, and either

¢ =¢,
or

¢ = Ulty(¢,D)
where D is the order zero measure of &; on p1, and

O =Tolip.

We say that M is weakly ms-solid iff either M is passive, or the last extenders of €
and € satisfy the weak ms-ISC.

We say that M is I-solid iff M is parameter solid, projectum solid, and weakly
ms-solid. If M is not 1-solid, we stop our inductive definition. We say that M is
1-sound iff M is 1-solid and M = &, (M).

Let T = ! 0 0, so that either 7 is the identity, or T = ip for D the order zero
measure of €| on p;. Using the elementarity of 7, we see that 7(p;) = p;(€),
and hence p;(€;) is solid and universal over €;.!1? Since 7(p;) = p1, p1 is not
measurable by the €;-sequence. Thus if M is 1-solid, then &; (M) is 1-sound.

Remark 4.1.8. We shall show that if M is reached in a PFS construction, then
granted iterability, M is solid. The proof of projectum solidity is essentially the
same as that of Theorem 3.7.1.

For any N, 2-solidity and €, (N) will be defined by looking at definability over
M = €| (N), which is 1-sound. So let us assume now that M is 1-sound. For ¢ a
¥, formula and x € M||p;, let

d'(< @.x>) = hy (@, (x,p1,p1)).

U21f b is a solidity witness for jy, then T(b) is a generalized solidity witness for p;. See Lemma
4.3.6.
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d' is a partial map of M||p; onto M that is £ in the parameters p; and p;.!!3 Let

wi = (nt",p1,p1),
Al={{p,b) | @isZiAbeM|p
AM ': (P[b,W]]},

and
M' = (M||p1,A").

M is amenable, and codes the whole of M by soundness and the X definability of
d' "% We let

p2(M) = pi1(M"),
p2(M) = p1(M"),
&, (M) = transitive collapse of d' o h 1“(p2U{p2}), and
€ (M) = transitive collapse of d' o h1 1“(p2U{p2,p2}).

Leto: €, — M and 7: ¢, — M be the anticollapse maps, and 5, = 6~ !(p>); then

(a) M is parameter solid iff p, is solid and universal over M' and p» is solid
and universal over the reduct (&;)! of &,.

(b) M is projectum solid iff p is not measurable by the M-sequence, and either
¢ = &, or €, = Ult(¢,,D) and 6 = moip, for ip the order zero measure
of & on pa.-

(c) M!is stable iff either nM < p,, or N is not measurable by the M-sequence.

We say that M is 2-solid iff M is parameter solid, projectum solid, and stable.''

If M is not 2-solid then we stop the inductive definition, and otherwise we continue.
We say that M is 2-sound iff M is 2-solid and M = &,(M).

We shall show in Lemma 4.3.6 below that €,(M) is 2-sound, and letting
7: € (M) — M be the anticollapse map, w(w; (€2(M))) =w; (M) and (p2(€2(M))) =
p2(M).

Remark 4.1.9. Even when &1 (M) = €;(M), €, is not the usual second core of
M described in Section 2.3, because w; codes p; and 1, and M ! has a name for
wi. The usual second core need not contain 717 or p;. Including names for p;
and 7, also affects what is meant by p,(M). When €;(M) = & (M), €, can be
as many as two ultrapowers away from the usual second core H, by order zero
measures on Py, an . See §3.8. The usual second core will appear in our proof of
parameter solidity.

130ur definition of d! ignores the case p; = o(M). In that case, p; should be dropped from the
right hand side. We shall ignore similar special cases in some of the formulae below.

114130] would include the solidity witnesses for p; in wy, but this is redundant. See Remark 2.3.13.

ST M is active, then since it is 1-sound, F has the weak ms-ISC. This passes automatically to ¢,
and &, by 4.1.5, so we don’t need to make it part of the definition of 2-solidity.
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The general inductive step is the same. Suppose M is k-sound. For ¢ a ¥
formula and x € M||p, let

dk(< (P7X >) = dki] Oh}wk—] ((P7 <x7Pk7Pk>)a
so that d* is a partial map of M||py onto M. Let

wi = (e, Py Pi),s
A = {(@.b) | @is Z1 Ab € M||py

AME olb,wil},

and
M* = (M||py, AY).
Then 116
Prs1 = p1 (M),
Prs1 = p1 (M),
Q_ﬁkH = transitive collapse of do /’l}wk“(pk+1 Upks1)s
Pre1 =0 (Pes1),
and

€11 = transitive collapse of dFo h}wk“(pkH U{Pk+1,Prkt+1})-

Here o: €, — M is the anticollapse map.!!” Let 7: ¢;,; — M be the anticol-
lapse. Soundness and solidity at K+ 1 are defined by

DEFINITION 4.1.10. Let M be a k-sound potential pfs premouse; then

(a) M* is parameter solid iff py, | and py, are solid and universal over M* and
(Cry1)* respectively,

(b) M* is projectum solid iff py, is not measurable by the M-sequence, and
either
(1) Sy = €k+1,_0r _
(ii) €41 = Ultg(C411,D), where D is the order zero measure of € on

Pk+1, and 6 = woip, and

(c) M* is stable iff either N} < py1, or N} is not measurable by the M-

sequence.

V6If py = py_1. then one should omit the constant symbol for py from A, Similarly, if 1],1(” = Pk—1
then there is no constant for n,f” in Ak,
7Notice that wy, € ran(o).
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We say that M is k + 1-solid iff M° is weakly ms-solid, and M* is parameter solid,
projectum solid, and stable. (Stability holds trivially if k(M) = 0.) We say that M
is k+ 1-sound iff M is k+ 1-solid and M = €| (M). We say that M is w-sound
iff M is k-sound for all k < ®.

By Lemma 4.3.6 below, if M is k — 1-sound and k-solid, then € (M) is k-sound,
so the definitions above apply to it. We define
€1 (M) = Cep1 (G(M)),
Cr1 (M) = €1 (C1(M)),
and so on. This lets us define & (M) for all k, even if M is not 1-sound.'!8

DEFINITION 4.1.11. A pfs premouse of type 1 is a pair M = (M, k) such that
M is a potential pfs premouse, and
(a) M is k-sound,
(b) whenever P is an initial segment of M such that o(P) < o(M), then P is an
w-sound potential pfs premouse.

We write k(M) = k, and say that M is the bare premouse associated to M, and
identify M with M when context permits.'°

If M is an active premouse and k(M) > 1, then by 4.1.5, FM has the weak
ms-ISC.

All levels of the model we construct in §4.7 will be type 1 pfs premice. However,
ultrapowers can produce a second, less important type, as we shall discuss in the
next section.

The notations M|(v,k), M|v, M||v for initial segments of ordinary premice
apply to pfs premice as well. So does our notation for degree changes:

DEFINITION 4.1.12. Let M = (M, k) be a pfs premouse; then M~ = (M, k+ 1),
M~ = (M,k—1),and M | n= (M,n). (Here ®+1 =0 —1=®,and 0— 1 =0.)

Our k-free conventions also apply:
DEFINITION 4.1.13. Let M be a pfs premouse and k = k(M); then

P (M) = pir1 (M),
p(M) = pr+1 (M),
(M) =41 (M), and
(M) = T4 (M)
are the projectum, standard parameter, core, and strong core of M. k(€(M)) =
1181t is important, however, that if M is not k-sound, then X definability over M itself plays no

role in the definition of € (M).
19Note that by 4.1.5, if M is active and k > 1, then FM has the weak ms-1SC.
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k(€(M)) =k+1. We let p~ (M) = py(M). We say that M is solid iff M is k+ 1-
solid, M is sound iff M is k+ 1-sound. Similarly, we say that M is parameter
solid (respectively projectum solid, stable) iff M* is parameter solid (respectively
projectum solid, stable).

So M is solid iff M is stable, parameter solid, and projectum solid, and if
k(M) = 0, then M is weakly ms-solid. Our definitions are such that €(M) and
¢(M) may exist even though M is not solid. This is not our case of interest, but it
is convenient when we are proving solidity.

If M is a pfs premouse, then its projecta are not measurable in M. In fact, we
have

LEMMA 4.1.14. Let M be a pfs premouse; then whenever E on the M sequence
and is not total on M, then crit(E) is not a cardinal of M.

PROOF. Let E be an extender on the M sequence that is not total on M. We
then have N such that M|1h(E) SN <<M||o(M) and p(N) < crit(E). Since N7 is
a pfs premouse, p(N) < crit(E). This implies that crit(E) is not a cardinal of M,
as desired. .

We can go on to define the class of rX; relations by

DEFINITION 4.1.15. Let M be a pfs premouse, k = k(M), and R be a relation
on M. Let d* be the decoding function defined above, and let R¥ be the relation on
MF given by

RE(x1, . x0) & R(d¥(x1), .. d* (x0)).

: M
Then R is r):kle

iff Rk is TV
A% s essentially the rE, | theory of parameters in py4 (M) U{pi(M), p:(M),1n;(M) |
i<k+1}.
The class of rZ%Ll relations has various closure and structural properties that
help to calculate definability over premice. These are laid out in Section 2.3 for
ordinary premice, and those results all go over to the context of pfs premice. The
main difference is that now rX; . definitions are allowed to use names for 7n; and
Pr-
In particular, suppose k = k(M); then d* is r):ﬁ’l in the parameters pg, px, and 7y.
It has an inverse that is also r):ff in these parameters, given by

(y) = x& (d*(x) = y AV <pg x(d(w) # d*(x))).

We can use e* to produce an r¥; | Skolem function. If ¢ (u,v) is a £; formula in the
language of M*, let ¢* (u,v) be the natural £; formula expressing “IxTy(d*(x) =
d*(u) Ad*(y) = d*(v) A@(x,y))”. The rE}’ , relations are naturally indexed by the
Y| formulae of the form ¢*. We set

Iyt (9",x) = d* (e (97, ¢ (x))),



4.2. OTHER SOUNDNESS PATTERNS 113

and call hﬁ 1'is the canonical rZﬁc"{H Skolem function for M. For X C M, the
associated Skolem hull is

Hull)  (X) = {i*(,5) | s€X“P A €V},
and
cHull}’, | (X) = transitive collapse of Hull!., (X).

Hully’, | (X) is closed under (lightface) r¥;. | functions, and in particular, py(M), p(M),
and N are all in Hull!,, (X), and Hull)’. | (X) is closed under the coding and de-
coding functions e* and d*.

We can then characterize the core and strong core of M, where M has type 1 and
k = k(M), by

Cir1 (M) = cHull, | (i1 (M) U pri1 (M)

and

1 (M) = cHUllY | (i1 (M) U{piy1 (M), prs1 (M)}).
wi(M) = (Me(M), pr(M), p(M)) belongs to both hulls.

4.2. Other soundness patterns

The levels of our model will all be pfs premice of type 1, but ultrapowers of
limited elementarity can produce a second type. Here “type” refers to soundness
pattern, not to the structure as a bare premouse. For the most part we can avoid
bare premice with this unusual soundness pattern, but it smooths some definitions
if we call them, when paired with their degree k, pfs premice of type 2. 20

To see how type 2 premice arise, suppose M is a pfs premouse of type 1 and
k(M) = 1. Suppose that E is an extender over M such that crit(E) = nM < p; (M),
and let

0= Ult](M,E).

We can produce Q by decoding Ulty(M',E), or more directly as the set of all
[a, f1¥ such that f is £} in some parameter.'?! Then

p1(Q) = supig™“p1(M) <ig(p1(M)).
For the moment, let’s regard Q as a bare premouse. How should we define k(Q)?
It M # & (M), that is, pi(M) ¢ Hull¥ (pi (M) U {py(M)}), then iz (py (M) ¢

HulllQ(pl (Q)U{p1(Q),p1(Q)}), so Qis not 1-sound. If we set k(Q) = 1, then we
don’t get a pfs premouse of type 1.

120Type 2 premice can also be produced by Skolem hulls of limited elementarity, such as those that
show up in the proof of U, or in the full normalization argument sketched in 6.1.8.
121The discussion after 2.4.4 explains why the two versions of Ult; (M, E) are isomorphic.
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Ultrapowers like this show up in the proofs of solidity and universality. In that
context, we can replace Q by Q = Ult; (€} (M), E), which becomes a pfs premouse
of type 1 when we set k(Q) = 1. So far as we know, this replacement can be done
without loss whenever ultrapowers like Q appear. That is what we shall do in
practice. Nevertheless, some definitions work better if we set k(Q) = 1, and call
(Q,1) a pfs premouse of type 2. Q is is almost 1-sound, in that it is £; generated
by one additional point, and ¥ ultrapowers will preserve this.

DEFINITION 4.2.1. Let N be a pfs premouse of type 1; then

(a) N strongly sound iff N is sound and N = €(N)~,
(b) N has type IAiff k(N) =0, or k(N) > 0 and N~ is strongly sound. Otherwise
N has type IB.

Thus N is strongly sound iff it is its own strong core, up to the degree change.
Letting k =k(N), N has type 1A iff pp(N) = pr_1 (N) or pp(N) € Hullllvk_I (pr(N)U
pr(N)).

DEFINITION 4.2.2. Let (M,A) be an acceptable J-structure. If Hull(lM’A) (p1(M,A)U
p1(M,A)) =M, then we set p1(M,A)) =0 =1 (M,A). Otherwise, let

p1(M,A) = least & such that £ ¢ Hull'™ (p, (M, A) U p) (M, A)),
and
A1 (M, A) = cof ") (p, (M, A)).
DEFINITION 4.2.3. Let N be a pfs premouse of type 1; then
P(N) = pr(N*™))
and
A(N) = A (NN).

If k = k(N), then we shall also write Py 1 (N) = p1 (N¥) and fjg, 1 (N) = 71 (NF).

DEFINITION 4.2.4. Let N be a pfs premouse of type 1 and k(N) = k < ®; then
N is almost sound iff

(a) N is solid,
k A
(b) N*=Hully" (p1 (N) U{p1(Ng), p1(N¥)}),
(c) if py(N¥) < py(NF), then letting
k
(H,B) = cHull}" (p; (N*) U p1 (V).
with anticollapse map 7: (H,B) — N, we have
Nt = Ul((H,B), D),
where D is the order zero measure of H on p; (Nk ), and @ = ip, and
i
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(d) if p1(N¥) < p1(N¥), then A (NK) < py (NFK).

PROPOSITION 4.2.5. Let N be a pfs premouse of type 1 and k(N) = m < ®;

then the following are equivalent:
(1) N is sound,
(2) N is almost sound and p(N) < p(N).

PROOF. This is follows at once from the definitions. -

DEFINITION 4.2.6. N is a pfs premouse iff N is a potential pfs premouse and
k(N) =0, or k(N) > 0 and N~ is an almost sound pfs premouse of type 1. We let
P (N) = p(N") = pywy (N) and p~ (N) = p(N") = Py (V).

DEFINITION 4.2.7. Let M be a pfs premouse; then M has type 2 iff M~ is not
sound.

Let k = k(N). Our definitions are such that N has type 1A iff p;(N) =0, type
1B iff Py = px(N), and type 2 iff pp(N) > pr(N). All proper initial segments of a
pfs premouse have type 1. Clearly, if k(N) = 0 then N has type 1. Here are two
more simple consequences of the definitions:

PROPOSITION 4.2.8. Let N be a pfs premouse of type 2; then

(a) Q_ﬁ(N’):Qf(IY’), and _
(b) N =Uly_1(E€(N"),D)", where D is the order zero measure of €(N~) on
Pc(N).

PROOF. Letk=k(N). Since pi(N) < pr(N), pr(N) € Hullllkal (P (N)U{pc(\N)})
by the definition of Py (N). This implies that the core and strong core of N~ coin-
cide, so we have (a).

Part (b) follows from clause (c) in Definition 4.2.4. =

PROPOSITION 4.2.9. Let N be a pfs premouse and k = k(N) > 0. Suppose that
Pr(N) < pu(N), and let A C pi(N) be Z’lkal in parameters; then A = BN pr(N),
where B is £ ' in parameters from Pr(N)U pi(N).

PROOF. By soundness, A is ZIIVH in parameters from p(N) U {px(N), px(N)}.
Since N is almost sound, N¥~! = Ult(R*~! D), where R™ is the strong core of N,
and crit(D) = pr(N). It is enough to show there is a B such that BN pr(N) = A
and B is V" in parameters from ran(ip). But let

é €A <:>Nk_1 >: HVG[V,é,ﬁk(N),pk(N), OZ]
where a < p; (N*~1) and 6 is £y. By Los,
£ cAe3gIX e DVu e XRE = 0[g(u), &,u, p(R*1)).
So for & < pr(N),
EcAe N =3g3X ci(D)Vu € X0[g(u), &, u, p(N*1)).
&—
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Letting B be the set of £ such that the right hand side holds, B is Z’lv “'in parameters
in {i(D)}Upr(N)U pr(N), hence in parameters from ran(ip), and BN Pg(N) =
A. B

Let define another set of coding structures.
DEFINITION 4.2.10. Let M be a pfs premouse and k = k(M) > 0; then
Wi (M) = (A, pe(M), pi (M),
Ay ={{(9.b) | @is Z1 Ab € M|pu(M)

AMYE oo, wi(M)]},

and
M* = (M||pr, AY).

For k > 1, M¥ is decoded by the function d* = df,, where for ¢ a £; formula
and x € M||px(M),

d*((@,x)) =d" " ohyu i (@, (x, pr, P (M))).

Thus d* is a partial map of M||p; onto M.'?2

The notations M|{v,k), M|v, M||v for initial segments of type 1 premice apply
to type 2 premice as well. So does our notation for degree changes, our k-free
notation for projecta, cores, and parameters, and so on.

4.3. Elementarity for premouse embeddings

Let us define elementarity and near elementarity for maps on pfs premice. As
before, anticore and ultrapower maps are elementary, while the lifting maps in a
conversion system may be only nearly elementary.

DEFINITION 4.3.1. Let M and N be pfs premice, and k = k(M) = k(N). Let
n: M* — N* be I elementary, and let 6: M — N be given by

o (dy(x)) = dy(m(x))
for all x € M*; then we call & the completion of .

Notice that “d,(x) = d¥,(y)” is decided by the Xy theory of M¥, so the com-
pletion of 7 is well defined. Equivalently o is the unique map extending 7 such

that
k—1

oW G, pr(M), (M) = BY (0 (x), pr(N), e (V)

1221f M is of type 1B, M* = M*, so cf,'f,l = d,@. If M is of type 1A, then A’,{,I and Aj‘w are simply
interdefinable, but not equal. We used M* in forming the core €y 1(M). We shall use M when keeping
track of elementarity for the ultrapower Ul (M, E).
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and for all i < k such thati > 0,

S (e, pi(M),wi(M))) = WY (m(x), pi(N), i (N)).

It is easy to see that o [M*~1: M1 — Nk=1is ¥ elementary, and o is also its
completion.!?? The full & is thus X; elementary.

Suppose that 6: M — N is the completion of some 7w: M* — N*. Clearly
o(wi(M)) = w;(N) for all i < k, and o (Wi (M)) = Wi (N). Ultrapower maps that
are discontinuous at py (M) show that & (wy(M)) # wi(N) is possible. Some other
simple observations:

(i) If M has type 1A, then M~ is strongly sound and v (M) = (0,0, px(M)).
This implies N has type 1A. In this case, ¢ may or may not preserve wy.

(ii) If M has type 1B, that is, px(M) = pr(M), then N has type 1B or type 2,
both being possible. In this case wi(M) = Wi (M), and N has type 1B iff
wi(N) = Wi (N) iff o/(wi(M)) = wi(N).

DEFINITION 4.3.2. Let M and N be pfs premice such that k = k(M) = k(N),
and let T: M — N; then

(a) 7 is nearly elementary iff 7w | M* is a ¥y elementary and cardinal preserving
map from M¥ to N¥, and 7 is its completion.

(b) 7 is elementary iff 7 is nearly elementary, and 7 [ M* is £; elementary as a
map from M* to N¥.

(c) mis cofinal iff w“py(M) is cofinal in pg(N).

(d) 7 is almost exact iff pi(N) < w(pp(M)).

(e) mis exactiff wi(N) = m(wi(M)).

Of course, elementarity is really a property of (,M,N), not just T. T may be
elementary as a map from M~ to N—, but not as a map from M to N. When M and
N are not clear from context, we shall specify them.

Clearly if 7 is either exact or cofinal, then 7 is almost exact. The proof of
Lemma 2.4.7 shows that if 7 is elementary, then 7 is almost exact. Almost exact
embeddings preserve type 2.

PROPOSITION 4.3.3. Suppose M has type 2, and 6: M — N is nearly elemen-
tary and almost exact; then N has type 2.

PROOF. Letting k =k(M), we have pi(M) < pr(M). But then px(N) < 6(pr(N)) <

o (Pr(M)) = pr(N), as desired. o
The lifting maps of a conversion system will be nearly elementary maps whose
target models always have type 1, but whose domain models may have type 2.

Exactness requires that both 1 and py be preserved, but in practice, preservation
of one implies preservation of the other. The elementarity hypothesis in the
following lemma will come up very often as we proceed.

123 pr%=1 must have type 1, so M*~! and M*~! are simply interdefinable.
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LEMMA 4.3.4. Let t: M — N be the completion of T | M¥. Suppose that as a
map from M* to N, 1t is either X5 elementary, or cofinal and X elementary; then
equivalent are

(a) m(px(M)) = p(N),
(b) () =ny,

(c) T is exact.

PROOF. If 7 [ M is cofinal and X; elementary, then the proof is essentially
identical to the proof of Lemma 2.5.10. (Notice that in this case 7 is continuous at
p1(Q).) If & is ¥, elementary, then the proof of Lemma 2.5.12 applies. We shall
not go through the definability calculations in those proofs again here. They do
need our stronger elementarity hypothesis on 7 | M*. —

Given pfs premice M and N of degree k, and a X elementary, cardinal preserving
map 7: M* — N¥, there is a unique nearly elementary 6 : M — N that completes
o. But we may only be given 7 and one of the two premice, and want to construct
the other. If we start with N, we are taking a hull to get M. If we start with M,
we are taking an ultrapower to produce N. The upward and downward extension
lemmas describe the basic facts about these constructions.

Downward extension and anticore maps

Let (P, B) be Xo-elementarily equivalent to M*, where M is a pfs premouse. Can
we conclude that (P,B) = N* for some pfs premouse N? The predicate of M* codes

M*1 because M1 = Hull™ ™" (pe (M) U {#(M)}), so
M*=! = Dec(M*),
where Dec stands for a certain simple decoding procedure whose details can be

found in [49].'%* AK codes enough about this procedure that we can apply the
procedure to (P,B), and let

(Q,C) = Dec((P,B)).

B is a theory containing a name w = (7, p, p) that was interpreted in M*~! as
standing for w; (M), as well as names for each ordinal < o(P).!?*> The decoding
(Q,C) is determined by the fact that

0 =Hull® (o(P)U {#(2V)),

and by the fact that the X theory in (Q,C) of parameters in o(P) U {Ww(2€)} is B.

If k = 1, we are done decoding, and if k£ > 1, we can just decode again, because
(Q,C) is X;-elementarily equivalent to M*~!. In the end we should get (N,0) such
that k(N) = 0 and (P,B) = N*.

12411 the notation of [49], M* = M*4, where ¢ = Wy (M).
1251 jterally speaking, the “names” 1], 0, p are variables that were assigned to the corresponding
objects in M*~1,
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There are two issues here. First, Q or the further decodings of (P, B) may be
illfounded. Second, the parameter names occuring in B may not get correctly
interpreted in Q by the decoding function. In the case of downward extension, Q
is embedded into M||px—1 (M), so wellfoundedness is not a problem, but we must
strengthen the ¥y elementarity requirement of [49, 3.1] in order to insure that w is
correctly interpreted. We also require that M is of type 1.

LEMMA 4.3.5. (Downward extension of embeddings) Let M be a pfs premouse
of type 1, k(M) = k < @, and w: (P,B) — M* be such that either

(a) ®is Xy elementary, or
(b) mis cofinal and ¥ elementary;

then there is a unique type 1 pfs premouse N such that k(N) = k and N* = (P,B),
and a unique elementary and exact map ¢: N — M extending 7.

PROOF. If k = 0, then this is simply the assertion that P is a pfs premouse of
degree zero. Our assumptions imply that & preserves rQ formulae, so this follows
by the standard proof. See [81] or [30].

The rest of the proof is by induction on k. The case k = 1 is representative, so
let us first assume that k = 1. Let (Q,C) = Dec((P,B)), so that C =0 and Q is a
pfs premouse of degree zero. Let 6: Q — M~ be the one step completion of 7,
given by

o(hp(,w)) = hy- (o), w1 (M7)).
o is at least X, elementary, since 7 is at least £; elementary. We must see that
Q is 1-sound and W€ = w{(Q), or equivalently, o(w(Q)) = w;(M). Q is weakly
ms-solid by Proposition 4.1.5, so we are left with parameter solidity and projectum
solidity.

CLaM 1. p2 =o(P) = p1(Q).

PROOF. Q = th“(o(P) U{w?}), so pi(Q) < o(P). Since B is amenable to P,
o(P) < p1(Q), so o(P) = p;(Q). On the other hand, it is a IT, fact about M' that
pM" = o(M"), so this passes to (P, B), and we get that p¢ = o(P). o

Thus 6(p1(0)) = p1 (M).

CLAIM 2. p? = p(Q), and Q is parameter solid.

PROOF. The standard parameter of the strong core €(M ) is universal, so

P(p1(M7)) M C iy “(p1(M™) U {p1(M7)}).
This is a I fact in M about p; (M~ ) and p; (M), so it goes down under o, and
P(p1(Q))NQ S hp“(p1(Q) U{p?}).

It follows that Th? (p;(Q) U {p?}) ¢ O, 50 p1(Q) <iex p2. On the other hand,
p1(M) is solid, so we can use the argument in Remark 2.3.13 to show that p? is
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solid over Q. Tt follows that p@ <iex p1(Q), so p€ = p1(Q), and p(Q) is solid
and universal over Q.

For the remainder of parameter solidity, let T: €;(Q) — Q be the anticore
map. (7 = id is possible, but not the interesting case.) Let r = t~!(p1(Q)) =
7Yoo~ (p1(M)). Again, the proof in Remark 2.3.13 shows that r has solidity

witnesses in €;(Q), and thus r is solid and universal over €;(Q)~. This finishes
the proof that Q is parameter solid. —

Thus we have Q = € (Q) .

CLAIM 3. €(Q) = €1(Q) iff €1 (M) = & (M).

PROOF. &(M) = & (M) iff the sentence 8 = “Ja < p(h'(a,p) = p)” is in
Al,. But @ € Al iff 6 € Biff €;(Q) = ¢,(Q). 8

CLAIM 4. Q is projectum solid.

_ PROOF. o(p1(Q)) = p1(M), so p1(Q) is not measurable in Q. We are done if
¢1(Q) = €(Q), so assume not. Let

7: ¢ (Q)” =0
be the anticore map, and
ip: € (M)~ — Ulty(¢1(M)~,D) =M~
be the anticore map at the M level, where D € ¢ (M) is the order zero measure on
p1(M) witnessing that M~ is projectum solid. Let j = ’51 o ¢ o 7. The appropriate
diagram is

in

S—& M) —" s m

R=E(Q)—— 0

To see that j is well defined, note that
oot(hg(a,pi(R)) = hy(cot(a), pi(M))
= ip(hs(cot(), p1(S))

for all o < pi(R), soran(c o t) C ran(ip). We claim that j(p;(R)) = p1(S). This
is because

t(p1(R)) = least & in Hull (p; (Q) U{p1(Q)}) \ p1(Q).
o0 t(p1(R)) = least & in Hull (py (M) U {p1 (M)})\ py (M)
=ip(p1(S)).

To see the step from line 1 to line 2, recall that the language of B has names
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for p1(Q) and p;(Q). Letting 7(p;(R)) = th(a7p1 (Q)), line 1 becomes a H(IP’B)

assertion about o, p1(Q), and p;(Q). Since 7: (P,B) — M is ¥ elementary, this
assertion holds in M about o'(t), p; (M), and p;(M). That yields line 2.

Since j(p1(R)) = p1(S), we must have j(F) = D, for F the order zero measure
of R on p;(R). The reader can easily check that T = iff-, so F witnesses projectum
solidity for Q. .

Q is trivially stable, that is O-stable, so Q is 1-sound.

So far we have used only that 7 is £; elementary, but our next claim uses the
stronger elementarity hypotheses.

CLamM 5. 72 =n2

PROOF. We have shown that o(p;(Q)) = p1(M). The claim then follows from
Lemma 4.3.4. -

Our claims imply that Q' = (P,B). Taking N = Q, N is a pfs premouse of type
1,and o: N — M is elementary and exact.

This finishes the case k = 1. The case k = n+ 1 where n > 1 is quite similar.
Letting (Q,C) = Dec((P,B)), we get : (Q,C) — M" by setting

Wil o) (0 @) = by (), w1 (M)).
v is X5 elementary, so by induction we can complete it to a map ¢: N — M that is
elementary and exact at level n, and such that N* = (Q,C). We need to show that
N1 = (P,B), and for that, the key is that w,, | (N) = w(@C). But by definition,
Wnt1(N) = <n1<Q’C), pl(Q’C)7 piQ’C°)>, where Cy is C restricted to the sublanguage
without names for p,(N) and nY. Moreover, 7 is sufficiently elementary that the
proof given in the case k = 1 shows that w(2:€) = <n1(Q’C),p1(Q’C),p§Q’C°)>. -

Anticore maps are cofinal and ¥ elementary on the associated reducts, so we
can apply part (2) of Downward Extension to them.

LEMMA 4.3.6. Let R be a solid pfs premouse of type 1, P = &€(R), and M =
@(R). Let 6: P~ — R and m: M~ — R be the anticore maps, and © = n~' o o;
then

(1) P~ and M~ are pfs premice of type 1, and G, T, and T are cofinal, elementary,
and exact,
(2) M is a pfs premouse of type 1, and

(3) m(p(M~)) = p(R).
PROOF. Letk =k(R). Let

k
(Q,B) = cHull{ (p1(R) U{p1(R()}),
op = anticollapse map,

k
(N,C) = cHull{ (p1 (RY) U {p1 (R"), p1(RE))}),
7o = anticollapse map,
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T =1, ' 00p.

op and 7 are X; elementary, hence so is Tp. Oy is cofinal because the new set
X C p1(N*)is X, over N*, and since X ¢ N¥, the minimal witnesses to facts of the
form & € X for o < p; (N¥) must be cofinal in o(N*). But these minimal witnesses
are all in ran(oyp), so oy is cofinal. It follows that 7y and 7y are cofinal.

By the Downward Extension Lemma, (Q,B) can be decoded to a pfs premouse,
and we have defined €(R)~ to be its decoding, and & to be the completion of oy.
Similarly, (N,C) decodes to a pfs premouse, €(R) ™~ is this premouse, and 7 is the
completion of my. This proves (1).

R is parameter solid, so p; (R¥) is solid and universal over R and o, ' (p1 (R¥)) is
solid and universal over (Q,B), and o, ' (p1(R¥)) = p1(Q, B). This easily implies
that 7, ' (p1(R¥)) = p1(N,C), so we have (3).

Since R is solid, py 1 (R) is not sequence-measurable in R, and since (py1 (M)) =
Pi+1(R), Prs1(M) is not sequence-measurable in M. Similarly, 7(n)) = nf, so if
Prr1(M) < n}(‘” , then n,ﬁ” is not sequence-measurable in M. Together with (3), this
implies that M is k + 1-sound, that is, k(M )-sound, so we have (2). —

Upward extension and ultrapower maps

The paradigm for upward extension is the canonical embedding 7: M* —
(P,B) = Ulty(M*,E). Given that (P, B) decodes to a wellfounded bare premouse N,
we want to show that (N, k) is a pfs premouse, N* = (P, B), and 7 can be completed
to an elementary 6: M — N. As we saw above, ¢ could be discontinuous at py (M),
and hence not exact. Moreover, M could be of type 1 while (N, k) is of type 2.

The reader should keep this paradigm in mind, but we can state the lemma more
abstractly. In the abstract version, we allow 7 to be any appropriately elementary
embedding.?°

LEMMA 4.3.7. (Upward extension of embeddings) Let M be a pfs premouse,
k(M) =k < ®, and w: M* — (P,B) be X elementary. Suppose that all decodings
of (P,B) are wellfounded, and either

(1) & is Xy elementary, or

(2) 7 is cofinal and ¥, elementary.
Then there is a unique pfs premouse N such that k(N) = k and (P,B) = N¥, and a
unique elementary o: M — N such that m C ©.

PROOF. If k = 0, the lemma just asserts that P is a pfs premouse and 7 is
elementary. This follows from the fact that rQ formulae go up under 7. The rest of
the proof is by induction on k. The case that kK = 1 is representative of the general
one, except for some points concerning n,f’i | that we shall handle when we get to
them.

1261n other words, we replace E by a possibly long extender.
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Suppose that kK = 1, and let

(Q,C) =Dec((P,B)),
k(Q) =0.

By assumption, Q is wellfounded, and C = @ since the predicate of M' codes the
theory of (M~,0). Let 6: M~ — Q be the map

o (hy- (o, w1 (M))) = hp(m(e) ¥®).

It is easy to see that o is X, elementary. This implies that Q is a pfs premouse
of degree zero, and if it is active, then its last extender has the weak ms-I1SC.
Moreover, Q = Hull?(o(P) U {#2}), 50 p1(Q) < o(P). But if & < o(P) and r € Q,
say r = th(}/,wQ), then BN max(o,y) + 1 codes Tth(OC U{r}). Since (P,B) is
amenable, we get that o(P) < p;(Q), and hence

o(P) = p1(Q).
CLAIM 1. py(M) < o(M) iff p1(Q) < o(Q).

PROOF. If py (M) < hy,(0t,w1(M)), where a < p1 (M), o(P) < h{y(m(a),w?)
because 7 is £y elementary. If 38 < o(P)(o(P) < hy(B,#?)), and 7 is I, ele-

mentary, then we can pull this ZEP'B) fact back to M*. If « is £ and cofinal, we

can find o0 < p; (M) such that o(P) < th(ﬁ, w?) for some B < a, and then use the
fact that 71(Th}! (U {0y (M)})) = Thé (z(a) U {#?2}). =

If p; (M) = o(M), then P = Q and 0 = . We do need to see that o(w;(M)) =
Ww1(Q) in this case (where 6(o(M)) = o(Q) by convention). This can be shown
using the proof of Lemma 2.5.10 when 7 is cofinal and X; elementary, and the
proof of Lemma 2.5.12 when 7 is X, elementary. We omit further detail, and
assume p; (M) < o(M) and p;(Q) < o(Q) henceforth.

If 7 is X; elementary, then ¢ is X3 elementary, and this makes it easier to show
that o has the preservation properties we require.

CLAIM 2. Suppose that 7 is ¥, elementary; then

(1) p1(Q) = o(p1(M)),

(2) w1(Q) = a(W1(M)),

(3) Q is almost sound,

(4) © is elementary and exact as a map from M to Q", moreover M and Q" have
the same type.

PROOF. Let p;(M) = h},(ot,w1(M)), where o < p;(M). This fact can be
expressed as

' = 6lal,
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where 6 is a I, formula.'?” Thus

(P,B) = 6[r(a)],

SO th(ﬂ:(oc),wQ) =0(P) = p1(Q). Since o(p1(M)) = hb(n(a),wQ), we have (1).

For (2), let us show first that 6(p; (M)) = p1(Q). Let r = 6(p;(M)). Being a
solidity witness for p; (M) is II over M, so preserved by o. Thus it suffices to
show that Th;(p;(Q)Ur) ¢ Q. But for p = p; (M),

M }=VA C p3a < p(A=h'(o,w(M))Np).

The formula on the right is I1,, so it holds of p; (Q) and w€ in Q. Thus Th; (p;(Q)U
1) ¢ 0, 50 6(p1(M)) = p1 (Q).

Let us show that 6(p;(M)) = p1(Q). Suppose first that M has type 1A, that
is, M = Hull¥ (p; (M) U p; (M)). This is a IT fact, so Q = HuHIQ(pl (Q)Up1(Q)),
s0 P1(Q) =0 = oc(p1(M)). Suppose next that M does not have type 1A, so that
pP1(M) is the least ordinal in M that is not in Hull}{! (p; (M) U p; (M)). Then

p1(M) = unique 1 such that M = 6[n,p1 (M), py (M),
where 0 is the natural I, formula, and hence

o(p1(M)) = unique 1 such that Q |= 8[n,p1(Q), p1(Q)]
=p1(Q)-

Finally, (1 (M)) = o (cofY! (1 (M))) = cof2(p1(Q)) = A1 (Q) by the calcula-
tion in the proof of 2.5.12. This finishes the proof of (2).

For (3), we show first that Q is solid, that is, 1-solid. We showed above that Q is
parameter solid. Stability is trivial, since 1752 = 0(Q).'? Let us check projectum
solidity. Since p; (M) is not sequence-measurable in M, p;(Q) is not sequence-
measurable in Q. If M has type 1A or type 2, then then the same is true of Q,
and there is nothing more to check in projectum solidity. So assume M has type
1B. Since M is projectum solid, M~ = Ult(R, D), where R* = €| (M) is the strong
core of M~, and D is the order zero measure of R on p; (M). Let S = &;(Q)~, and
T: S — Q be the anticore map. We get the diagram

T

§=6(0)" ——Q

1279 has a II; clause stating that o(M') < h},(a,w1(M)), and a II, clause stating that
g (et (M)) < (A1),

1281f k > 1, we use the fact that 6(px(M)) = px(Q) and o (nM ) = n,{%l , together with the stability
of M~ to conclude that Q is stable.
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1

Here j = 77" oo oip. This makes sense because

7(p1(Q)) = least & in Hull?(p1(Q) U {p1(Q)}) — p1(Q)
= o(least & in Hully! (py (M) U{p1(M)}) — p1(M))
=ooip(p1(M)).
Since also 7(p1(S)) = coip(pi1(S)), ran(t) Cran(coip), so j is well defined and

the diagram commutes. Our calculation also shows that j(p;(M)) = p1(Q). Itis
now easy to see that

0 =Ul(s, j(D))

and 7 is the ultrapower embedding, as desired. This finishes the proof that Q is
1-solid.

0= HulllQ(pl (Q)U{Ww1(Q)}), as required by almost soundness. The remaining
requirement is that if p; (Q) ¢ HulllQ(pl (Q)Upi(Q)), then Q = Ulty(R,U), where
R is the transitive collapse of Hull? (p1(Q)Up1(Q)), U is the order zero measure of
R on pi(Q), and iy is the anticollapse map. But if p;(Q) ¢ HulllQ(pl(Q) Upi(0))
then p; (M) ¢ Hull} (p; (M) U p;(M)). Letting D be the order zero measure of M
on p; (M) that we get from almost soundness for M~, we can take U = j(D) for
the appropriate j, just as we did in the proof that Q is projectum solid.

This finishes the proof of (3). Our calculations have also established (4). =

In view of Claim 2, we may assume that 7 is cofinal and X elementary. We do
so for the remainder of the proof.

The calculations below are perhaps better motivated if we regard Q as an ultra-
power of M~ via the long extender of 7, where the ultrapower is formed using
functions that are 211"’ " in parameters. In short,

Q="Ul (M ,Ey)
={n(f)a)[aclo(P)~*NfeTF},
where F consists of all functions f that are £}/ in parameters and have domain
[E]=® for some & < o(P). (Since we are now assuming 7 is cofinal, each compo-
nent measure (Ey), concentrates on bounded subsets of p; (M).) 7(f) is interpreted
by moving the X definition of f, as usual. Our ¢ is the canonical embedding from
M~ to Ulty (M~ ,Eg).
Let
8 =max(p1 (M), p1(M)).
6 = p1(M) unless M has type 1A.

CLAIM 3. Let A C 6(0) be such that A € Q; then there is a B such that

B € HullY (1 (Q) U{o (p1(M))})
such that BN o (0) = A.
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PROOF. Let A = 7(f)(a). We may assume that ran(f) C P(8)¥, so f is itself
essentially a subset of & that is Z’l"’ in parameters. By Lemma 4.2.9, there is a
function g that is £}/ in parameters from p; (M) U {p;(M)} and such that f(u) =
g(u)N é for all u € dom(f). Let B= 7(g)(a); then it is easy to see that B works.

4|

CLamM 4. o(p1(M)) = p1(Q).

PROOF. Let p=p;(M) and r = o(p). M has solidity witnesses for r, and being
such a witness is a IT) fact, so it is preserved by o. Thus it is enough to show that
Tth(pl (Q)uU{r}) ¢ 0. But p;(Q) < 6(J), so by Claim 3 every subset of p;(Q)
in Q is coded into Th? (p; (Q) U {r}). It follows that Th?(p, (Q)U{r}) ¢ Q. A

We can now complete the case that M has type 1A.

CLAIM 5. If M has type 1A, then Q is strongly sound, QO has type 1A, and
6: M — Q7 is elementary.

PROOF. Let us show that Q is solid. p;(Q) is solid by the proof of Claim 4,
and it is easy to see that Q = €{(Q)~, so Q is parameter solid. Q is trivially
stable.'?® For projectum solidity, we must see that p, (Q) is not measurable in Q. If
o(p1(M)) = p1(Q) this follows at once from projectum solidity for M, so assume
that p1(Q) = supc*p1 (M) < & (p1(M)).

Letting sup 6-p1 (M) < 7(g)(a) < 6(p1(M)), we see that g“[£]1l is unbounded
in py (M) for some &. Thus nM < py(M). Let n = nM, and let f € F be a nice
witness that cof}! (p; (M)) = 1 such that f is continuous at limit ordinals. f [ & € M
for all & < 1, and the function

isin F. Let

h=m(g)(supmn),
noting here that 7 is discontinuous at 7 because it is discontinuous at p;(M).
Then h € Q, and it is easy to see that ran(h) is cofinal in p;(Q). Thus p;(Q) is
Yy-singular in @, and hence not measurable in Q.
This finishes the proof that Q is solid. Since €;(Q)~ = Q, Q is strongly sound.
The rest of Claim 5 is clear. .

Let us assume now that M has type 1B or type 2. Thus 6 = p;(M).

CLAIM 6. o(w;(M)) =wi(Q).

PROOF. Let & < o(p;(M)). We have & = m(f)(a) for some f € F such that
ran(f) C p1(M). By Lemma 4.2.9, f is £ in parameters from p; (M) U p; (M),
so w(f)(a) is EIQ in parameters from p;(Q)U pi(Q). Thus o(p1(M)) < p1(Q).

129 Again, if k > 1 there is a little argument. We have py(M) < my_1 (M) iff pr(Q) < me_1(Q)
because o(n} ) = n]gl and sup o“p (M) = pr(Q). So since M is stable, Q is stable.
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On the other hand, p; (M) ¢ Hull (p; (M) U p1(M)), and this is a IT} fact about
p1(M), so it is preserved by . Thus o (p1(M)) = p1(Q).

To see that ¢ preserves ], assume first that f); (M) < p1(M). Then (M) <
p1(M) because M~ is almost sound. By 2.5.3 there is a nice witness f that
cof!! (1 (M)) = 71 (M), and by 2.5.9, 6 (f) is a nice witness that cole(ﬁl Q)=
6 (N1 (M)), as desired.

Suppose next that f; (M) = p;(M). Since M~ is almost sound, p; (M) = p; (M),
so p1(M) is X; regular over M, and hence o is continuous at p; (M). This implies
that 6(p1(M)) = p1(Q) and p;(Q) is X; regular over Q. (Cf. Lemma 2.5.10.)

We have already shown that ¢ preserves p;. Thus o (w;(M)) = w1(Q). o

CLAIM 7. Q is almost sound.

PROOF. We show first that Q is solid. We have already shown that p;(Q) is
solid. Let R = & (M)~, and M~ = Ult(R, D) where D is the order zero measure
of R on py(M). Let S =&(Q)” and let 7: S — Q~ be the anticollapse. Let
j=1"'oooip. We have the diagram from Claim 2:

§=¢(Q)—— 0

R=C\(M) —2—> M

S =Ult(R,Ey), and j is the ultrapower map. 7' (p1(Q)) = j(p1(R)),so T~ (p1(Q))
is solid and universal over S. Thus Q is parameter solid. Stability is trivial.!3

One can check that Q = Ult(S, j(D)) and T = ij(p). Thus if p;(Q) = p1(Q) then
Q is projectum solid. If p; (Q) < p1(Q) then either 6(p1(M)) = p1(Q) or p1(Q) is
¥ singular in Q, by the proof of Claim 5. In both cases, p; (Q) is not measurable
in Q. Moreover, €;(Q) = €(Q) if p1(Q) < p1(Q). Thus Q is projectum solid in
this case too.

This finishes the proof that Q is solid. Clause (b) in the definition of almost
soundness requires that Q = HulllQ(pl (Q)U{p1(Q),p1(Q}), which is of course
true. Clause (c) holds because Q = Ult(S, j(D)) and T = i;p). We proved clause
(d) when we showed o(f}; (M)) = 11 (Q). o

Thus Q% is a pfs premouse and (P,B) = Q', so 6: M — Q% is elementary.

This finishes the proof of the Upward Extension Lemma in the case k = 1. When
k > 1, the proof yields a X, elementary map o1 : M*~! — (Q,C), which then can
be upwardly extended to 6: M | 0 — N by induction. N | (k— 1) is a pfs premouse
and o is elementary as a map from M~ to N | (k— 1) by induction. The proof
above shows that N | k is a pfs premouse and o is elementary from M to N | k.
The only new points have to do with the preservation of 1n;_;, and we have already
described how to deal with them. -

1301f k > 1 we again use that p (M) < ny_1 (M) iff pr(Q) < M1 (Q) and M~ is stable.
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Concerning the exactness of the upward extension, we have

LEMMA 4.3.8. Let 6: M — N be the completion of ©: M* — N*, where k =
k(M) = k(N); then
(a) if T is X elementary, then o is exact, and
(b) if w is cofinal and X1 elementary, then the following are equivalent:
(i) © is not exact,
(i) nM < pr(M), and @ is discontinuous at M.

The proof is implicit in the proof of Lemma 4.3.7, so we omit it.
Upward Extension concerns ultrapowers by possibly long extenders. We shall
mostly apply it to ultrapowers by short extenders.

DEFINITION 4.3.9. Suppose that M is a pfs premouse, k = k(M), and E is an
extender over M such that crit(E) < px(M); then

Ult(M,E) = Ulty(M,E)

is the full decoding of Ulty(M*, E). Letting 7t: M* — Ulty(M*, E) be the canonical
embedding, ¥ is the completion of 7. We call i the canonical embedding
associated to Ult(M, E).

The canonical embedding 7 is cofinal and £; elementary as a map from M* to
Ulty(M*, E), so it has a completion i¥. Moreover

COROLLARY 4.3.10. Let k =k(M), and i: M — Ult(M,E) be the canonical
embedding; then i is elementary, and i is exact iff crit(E) # n}/.

PROOF. M is elementary by Upward Extension. Since E is short, i is discontin-
uous at M iff crit(E) = . Thus we can apply Lemma 4.3.8. .

We can also regard Ul (M, E) as the ultrapower of M formed using rEi” func-
tions. We discussed the equivalence between the two ways of looking at Ult, (M, E)
immediately after Definition 2.4.4.

Lemma 4.3.10 tells us that the fine structure related to p;(M) is preserved by
k-ultrapowers with critical point < py(M). We must also consider what happens
to the fine structure related to py1 (M) when we iterate between pyy and p;. We
only care about the level £+ 1 fine structure when M is of type 1 and stable. In
this case, iterations between py; and pg will produce elementary, exact maps into
further stable pfs premice of type 1. It is important here that the extenders being
used are close to the models to which they are applied, a fact that we shall prove in
Lemma 4.5.3.

LEMMA 4.3.11. Let M be a stable type 1 pfs premouse, E be close to M, and
p(M) <crit(E) < p~(M). Let N = Ult(M,E) and i = i¥; then
(a) N is a stable type I pfs premouse, and i is elementary and exact.
(b) P(N) = p(M)
(c) Ifk=k(M) and A C p(M), then A is boldface rZ}’. | iff A is boldface rZy. |.
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(d) If M is parameter solid, then N is parameter solid, i(p(M)) = p(N), and N
is not strongly sound. If in addition crit(E) > p(M), then N is not sound.

(e) If M is parameter solid and N is almost sound, then M is the strong core of
N, and E is the order 0 measure of M on p(N).

(f) If M is projectum solid, then so is N.

PROOF. Let k = k(M). By closeness, crit(E) is sequence-measurable in M.'3!
Since M is stable and p(M) < crit(E), crit(E) # n). By Lemma 4.3.10, N is a
pfs premouse and i is elementary and exact. Since M is stable and i(n}c"’ )= n,?’ ,N
is stable.

The proof of Lemma 2.4.12 shows that p(M) = p(N). Suppose A C p(M) and

Ais levk in the parameter [a, f] = [a,f]%k. Let 6(u,v,w) be Xy and such that
acA e N = Dl[a,v,[a, f]].
Then by Los,
acAeIge MIX € E,(MN =Vu e X0[a,g(u), f(u)]).

Since E is close to M, E is Z’l"’ in some parameter g, so the right hand side converts
to an rZ%rl definition of A from f and g.

For (d): Since ¥ is exact, i(wi(M)) = wi(N), so if M is parameter solid,
then i(p(M)) = p(N) and N is parameter solid by the proof of Lemma 4.3.10.
N is not strongly sound because crit(E) ¢ Hully, (o(N) U{p(N)}). Finally, if
crit(E) > p(M), then crit(E) ¢ Hully, | (p(N)U{p(N), p(N)}), so N is not sound.
This proves (d).

For (e), let v = p(N). N is not strongly sound, so since it is almost sound,
p(N) < v, and N = Ult(R,D) where R = €(N)~ and D is the order 0 measure of
Ron v, and ip is the anticollapse map with range Hully, , (p(N) U{p(N),w(N)}).
In particular ran(ip) C ran(ig), so we have the diagram

(Q —=——N
X,
M

Here w = i},” oig. Since ip is the identity on Vv, 7 and ig are the identity on V.
We claim that v = crit(E). For if v < crit(E), then v € ran(ig), and, since
N =Hull},, (p(N)U{p(N),v,wi(N)}), we get crit(E) € ran(ig), contradiction.
Vv is not sequence-measurable in N, so since E is close to M, E must be the order
0 measure of M on v. To finish the proof of (e) it is enough to show that M is
strongly sound, for then M = R and E = D.

R=C

1

131Here we use our slight strengthening of closeness as defined in [30].
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If not, let u = p(M). Since 7 [ v =1id, v < u. Let ¢, B, and ¥ be such that ¢ is
a X formula, B < p(N), v < px(M), and

ie (1) = unique & s.t. N¥|lic(y) = (B, p(N),v.E].

Since v = [{v},id]%k, we have some ¢ < v such that

u = unique & s.t. M¥[|y = 9[B, p(N), &, &].

So € Hully! | (p(M) U{p(M),wi(M)}), contradiction.

Finally, for part (f): if p(M) is not measurable by the M-sequence, then crit(E) >
p(M) by closeness, so p(N) is not measurable by the N-sequence. Moreover
¢(M) = &(N) and &(M) = &(N), so the rest of projectum solidity propagates to N
as well. !

We get at once

COROLLARY 4.3.12. Let M be a solid pfs premouse, E be close to M, and
p(M) <crit(E) < p~ (M), then Ult(M,E) is a solid pfs premouse, and €(M) =
C(UIt(M,E)).

Summary

Let M be a pfs premouse, and E an extender over M with crit(E) < p—(M). We
have shown

(1) If M is solid and of type 1, then anticore map from €(M)~ to M is elementary,
cofinal, and exact.
(i) The canonical embedding i% is elementary and cofinal. It is exact iff
crit(E) # .
(iii) If p(M) < crit(E), M is solid, and E is close to M, then i}/ preserves the fine
structure associated to p(M). In particular, i is exact, and M and Ult(M, E)
have the same core and strong core.

4.4. Plus trees

It turns out that the good behavior of background-induced iteration strategies
involves more than their action on stacks of normal, or even quasi-normal, iteration
trees. We must consider their action on stacks of iteration trees whose constituents
are what we shall call plus trees. We shall eventually show that our background-
induced strategies are determined by how they act on single normal trees, but the
proof involves a strategy comparison, and so this reduction is not available to us
now. Plus trees come up in the comparison proof itself.

We need plus trees in order to deal with the “background coherence problem”
for induced iteration strategies. Let us look more closely at that problem.

Suppose that M = MS . is reached in a background construction C in the sense
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of Chapter 3, and that ¥ = Q(C,M,X*) is the strategy for M determined by C and
some strategy X* for the background universe. Suppose that M is active, with last
extender E, and that E* is the background extender for £ in C. If we begin an
iteration tree 7 on M by using E, then the lifted tree 7* = lift(7,M,C), begins
with E*, and then the lifting process continues by using the natural factor map

n: Ut(M,E) — ig=(M)

to lift the next extender. Our problems stem from the fact that 7 is not the identity
on lh(E), because

A < ﬂ()LE).

Thus if F is indexed in M before E but after Az, then (F) # F, and coherence at
the premouse level is not mirrored by coherence at the background level.

As we saw in Chapter 3, this doesn’t cause any problems in defining ¥. However,
it does cause a serious problem if we want to reduce the good behavior of X on
stacks of normal trees to the good behavior of £* on such stacks. To see this in
a simple case, let 7 = (E), and let I be a normal tree on M||lh(E) such that the
stack (7 ,U) is by X. We would like to show that that I/ is by X. This is a simple
instance of several different internal consistency properties of iteration strategies
that we need in order to compare strategies.

Now X7 (U) is defined by looking at how nl/ is lifted via ig+(C) in Ult(V, E*),
and following X7-. there. So we need to see that the lift 2/* of I via C to a tree on
V is by I*, and what we know is that the lift (nl/)* of nl{ using ig-(C) to a tree
on Ult(V,E*) is by the tail X%.. But for F such that

A(E) < Ih(F) < Ih(E),

there is no connection between the C-background of F and the ig+(C)-background
of n(F), soU* and (wl{)* may have no connection.

The fact that the factor map n: Ult(M,E) — ig+(M) is not the identity at Ag
also leads to problems in other arguments that use the connection between ¥ and
¥*. 132 One might think that ms-indexing would avoid these problems if we are
working below superstrongs, but it does not. If v(E) is a limit of generators of
E and a generator of E*, then V(E) < m(V(E)), so 7 is not the identity on the
extenders that are ms-indexed before E.

There is one case where things work out. If we are working in ms-indexing, and
E has a largest generator, then 7 is the identity on all extenders that are ms-indexed
before E. This may seem like a very special case, but it turns out that we can
always compare premice by iterating only by extenders having a largest generator,

1320ne cannot strengthen the background extender demand to Ag = Ag+ in general, for then not all
whole initial segments of E will be on the M-sequence.
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and we don’t have to move to ms-indexing to do it.!3> We shall call the iteration
trees involved here A-separated plus trees.

DEFINITION 4.4.1. Let M be a pfs premouse, and E be an extender on the
M-sequence; then

(1) E™ is the extender with generators Az U{Ag} that represents iElt(M‘E) oiM,

where F is the order zero total measure on Ag in Ult(M, E),
@) A(E*) = .
3) 1h(E*) =1h(E), and
(4) o(E*") = (In(E)*")MOED,

o(E™) is where the order zero measure on Ag of Ult(M,E) would be ms-
indexed. It is not hard to see that Ult(M,E™) agrees with the O-ultrapower
Ulto(M|| crit(E) ™M E*) past o(E"). Tt is easy to code E™ as an amenable subset
of 1h(E) that is £y over M|1h(E), and of course, E is £y over (M||1h(E),E™). So
E and E™ have the same information.

DEFINITION 4.4.2. G is of plus type iff G = E™, for some extender E that is on
the sequence of a pfs premouse M. In this case, we let G~ = E. The extended M-
sequence consists of all extenders E such that either E or E™ is on the M-sequence.
If E is on the extended M-sequence, then

(E) = Ih(E) if E is of plus type,
" | A(E) otherwise.

We wish to consider iteration trees that are allowed to use extenders of the form
E™, where E is on the coherent sequence of the current model. To unify notation,
if E is an extender on the sequence of some premouse, let us set

(i) A(E) = A(E) = A(E™),

(ii) E- =E,and
(i) o(E) = (Ih(E)+)UME) — o(EH),

DEFINITION 4.4.3. Let M be a pfs premouse; then a plus tree on M is a system
T =(T,(Eq | a+1<1h(T))) such that there are My and iy g and D satisfying:
(1) My =M, and T is a tree order;
(2) if a+1 <1h(T), then E, is on the extended M-sequence, and
() if § < o, then A(E¢) < A(Eq), and
(b) if & < & and Eg is of plus type, then Th(Eg ) < MEq):
(3) if o+ 1 < 1h(7), then letting B be least such that either B = o, or crit(Ey) <
A(Ep),
(a) T-pred(a+1) =B,

133This applies to both Jensen premice and pfs premice. Our main interest now and henceforth is pfs
premice.
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(b) Mgy =Ult(My,|,Eq), for M}, | the shortest initial segment N of Mg
such that p(N) < crit(Eq), if one exists, and My, , | = Mg otherwise,
(©) a+1€Diff M, | # Mg
(d) g,q+1 =1y 1 My, | — Mg is the canonical embedding, and
(4) if A <1h(T) is a limit ordinal, then DN [0,A)7 is finite, and M), is the direct
limit of the M, for & <7 A under the igm; moreover A ¢ D.

It may seem that clause (3) of 4.4.3 allows generators to move along branches
of 7. The worry would be the case that B = & +- 1, where E¢ = F for some F,

so that A (Eg¢) = Ar. But in this case, the only important generators of E¢ are in

~

Ar U{Ar}. Clause (3) requires that generators below Ar = A(Eg) are not moved.
Af itself has no total measures in Mg, and hence in M. There are no partial
extenders on the sequence of M, with critical point Ar because the proper initial
segments of My are projectum solid. (See 4.1.14.) Thus E, is not moving any
important generators of E¢. It is quite possible that crit(Ey) < A(E¢ ), however.

The analog of ll;r (the sup of the Jensen generators of MZ;) in our current
context is

DEFINITION 4.4.4. Let T be a plus tree on a pfs premouse; then for any f8 <
1h(T),

e] = sup{e(F) | In(n+1<r BAF =E])}
— sup{e(F) | In(n+1< BAF =E])}.

The two characterizations of eﬁT are equivalent because we have demanded that

plus trees be e-nondecreasing.!3* If the branch of 7 from « to 8 does not drop,
then ME is generated from eﬁT U ran(ig ), as in Lemma 2.6.7.

We shall show in Lemma 4.5.3 that in any plus tree, all extenders used are close
to the model to which they are applied.!>> For now, let us simply assume this.

The branch embeddings in a plus tree are elementary, but the pattern of sound-
ness types can be complicated. Along non-dropping branches type can change and
the branch embeddings may not be exact. If the type becomes type 2, then our
first drop can be to an M, that is only almost sound. At and after that drop, the
premice along this branch are all type 1, and further drops are to sound premice.

Fortunately, we can avoid this complexity in practice by restricting ourselves to
base models that are strongly stable, in the following sense.

DEFINITION 4.4.5. Let M be a pfs premouse and k = k(M); then M is strongly
stable iff there is no M-total extender E on the M-sequence such that crit(E) = n,’c"’ .

If k(M) = 0, then M is strongly stable, since N}/ = o(M). When the base model

134Hence plus trees are by definition quasi-normal.
135In the sense of Definition 2.4.11.
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of a plus tree is strongly stable, then its branch embeddings are exact, and its
models exhibit the familiar soundness pattern.

LEMMA 4.4.6. Let M be a strongly stable pfs premouse of type 1, and let T be
a plus tree on M; then
(i) all MY, have type 1,
(ii) all branch embeddings are elementary and exact,
(iii) whenever a+1 € D7, then M;‘Hl is sound, and
(iv) ifa+1€D7, a+1<r B, and D" N (ot +1,B]r =0, then
(a) Mg is solid, My, | = €&(Mg)~, and i g OiEL is the anticore map, and
(b) If k=k(Mg) and A C p(Mp), then A is boldface r¥; over M}, iff A
is boldface r¥y\ over Mg.

PROOF. (Sketch.) Let k = k(M) and n =n. If [0,7]7 N D7 =0, then (by
induction on y), ip.y(n) = n,iuy and iy is exact and continuous at pi(M), and M,
is strongly stable and of type 1. If y = T-pred(c+ 1) and ¢+ 1 € D7, then M}, |
is a proper initial segment of a type 1 premouse, hence sound. Moreover, since
p(My_ ) <crit(Eq) and Eq is close to My, , |, Lemma 2.4.12 applies, and we get
that My has type 1, and (iv) holds when B = a + 1. We continue this way by
induction. .

Remark 4.4.7. All initial segments of a premouse must be stable, but in general
they will not all be strongly stable. M can be strongly stable while M~ is not. If
nM | < px and N} | is measurable in M, then M~ is not strongly stable, although
M~ is stable (and in fact, solid).

Plus trees are maximal by definition, but not necessarily length increasing. We
say the plus case occurs at o iff Ey is of plus type.

DEFINITION 4.4.8. Let 7 be a plus tree on M; then
(a) T is normal (or length-increasing) iff whenever oo < 8 < 1h(7) — 1, then
Ih(E]) <Ih(E]),
(b) T is A-tight iff for all @ + 1 < 1h(7"), EJ is not of plus type, and
(c) T is A-separated iff for all o+ 1 < 1h(T), EJ is of plus type.

A A-tight iteration tree is just an ordinary quasi-normal iteration tree. One can
re-organize any plus tree 7 as a A-tight tree I/ in a fairly straightforward way. This
is not important for us, but for the sake of completeness, here is the rough idea. 7
and U agree until we reach « such that E] = F* for some F. At that point I/ uses
F, and then the order zero measure D of Ult(M, F), in two steps. The last models
are now the same again, that is, MZ;H = MZ&’ 1o~ The difficulty arises if E = EZ;Jr1
is such that Ar < crit(E) < Ap. In that case E is applied to M7 in 7, and to
MZ&’ 41 inU, by the rules of normality for the two types of tree. The relationship
of last models is now that M7, = Ult(MY_5,ig(D)). In general, the simulation

of 7 by U continues to make use of such correspondences.
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This reduction of plus trees 7 to A-tight trees I/ is of no use to us, however,
because we want to study background-induced iteration strategies, and the con-
versions lift(7,¢) and lift(i/, ¢) dictated by a given conversion system could be
completely unrelated. Thus 7 might be according to an induced strategy Q(c,X*)
while U/ is not. It seems that one can only rule this out after having proved a
comparison theorem for iteration strategies.

In fact, our initial results on the good behavior of background induced iteration
strategies will apply at the other extreme, to their restrictions to A-separated trees.
Notice that A-separated trees are normal, by (2)(b) of 4.4.3. Every extender E used
in a A-separated tree has a largest generator, and we shall see that this helps with the
background coherence problem. The results of Section 8.1 show that A-separated
trees are enough for comparison, and Theorem 5.5.2 shows that background
induced iteration strategies are determined by their action on A-separated trees. In
fact, the main results of this book would not be affected if we simply restricted all
iteration strategies to stacks of A-separated trees. We shall not do that, however.

Remark 4.4.9. The example above shows that there can be distinct finite normal
plus trees with the same last model. This cannot happen if both trees are A-tight,
or both trees are A-separated.

The agreement of models in a plus tree is a bit awkward to state. It is easy to
see that any plus tree 7 breaks up into disjoint maximal finite intervals in which
the exit extenders have strictly decreasing length. That is, Ih(7") can be partitioned
into intervals [a, & + n], where 0 < n < @, such that

(i) forall B < o, Ih(Eg) < 1h(Eg),

(i) foralli <n, Eq;isnotof plus type, and A (Eq4;) < A(Eqiir1) <Ih(Eqiit1)
Ih(Eq+i), and
(iii) Th(Egsn) < A(Eqins1), or d4n+1=1n(T).
Of course n = 0 is possible. Part (iii) implies 1h(Eq,) < Z(EB) forall B > a+n.
Part (ii) is justified by clause (2)(c) in Definition 4.4.3. We call [@, & +n| a maximal
delay interval, and we say that & 4 n ends a delay interval.

It may seem pointless to allow decreasing lengths, because given a maximal
delay interval [, & + n], we could have just skipped using Eq, ...,Eq4,—1, and
taken Eg ., out of M7, to continue the iteration. Doing this everywhere would
produce a normal iteration tree S with the same last model as T, differing only in
that the nontrivial delay intervals in 7 are eliminated. More precisely, let

i: M —{&| & begins a delay interval in T}
be the increasing enumeration. Suppose we have defined S [ £ + 1, and
S _ T
Mg = Mig).

Let i(£) + n end the delay interval in 7 that starts at i(£), so that i(§ +1) =
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i(§)+n+1. We set

S _ T
E¢ =Eig)sn
Let T-pred(i(§) +n+1) = v, and B = i(n) begin the delay interval to which y
belongs, and P < M; be what Ej¢),, is applied to in 7. One can easily check

that PSIM/?.BG So we can let ) = S-pred(& + 1) and ./\/lg+1 = Ult(P,E?) and

continue.

DEFINITION 4.4.10. Let 7 be a plus tree, and let S be the plus tree defined
above, whose models are precisely those M7 such that « begins a delay interval
in 7, and whose exit extenders are just those EJ,,, such that o +n ends a delay
interval in 7. We call S the normal companion of T, and write S = 7™,

The following lemma says the branches of 7 that do not drop infinitely often are
in one-one correspondence with the branches of 7™™ that do not drop infinitely
often. Branches corresponding this way have the same direct limit models and
branch embeddings.

LEMMA 4.4.11. Let T be a plus tree on a premouse M; then

(a) if T-pred(y+ 1) does not begin a delay interval in T ; then y+1 € D7, and
(b) if T has limit length and b is a cofinal branch of T such that DT N\ b is finite,
then all sufficiently large 1 € b begin a delay interval.

We essentially gave the proof of (a) while defining 7™™, and (b) follows at once
from (a).

So why bother with 7", why not just use 7™™? The answer is that we shall be
considering trees by some iteration strategy X. It may happen that 7 is by £, but
its normal companion is not. In the strategy-comparison proof, we have to live
with the possibility that this happens when X is a background-induced strategy. We
shall eventually show that background-induced strategies are not pathological in
this way, but the proof involves a strategy comparison. Until we get to that point,
we need to deal with plus trees that are not length-increasing.

Lemma 4.4.11 simplifies in the coarse case:

LEMMA 4.4.12. Let T be a nice iteration tree on a transitive model M of ZFC;
then for any Y+ 1 < 1Ih(T), T-pred(y+ 1) begins a delay interval in T. Thus if b
is a branch of T of limit length, then every 1 € b begins a delay interval.

PROOF. Let a = T-pred(y+ 1). If o does not begin a delay interval, then we
have 8 < o such that lh(Eg—) =1h(EJ)."¥7 But T is non-overlapping, so then
T-pred(y+ 1) < B, contradiction. -

136[f B < , then i(EﬁT) <crit(EF) < AMET) < Ih(E] ), and P M |Th(E] ).

137 engths are nondecreasing in the coarse case.
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So in the coarse case, at any limit ordinal A, the cofinal branches of 7 and their
direct limits are in one-one correspondence with the cofinal branches of 7™™,
In the coarse case our focus is iteration strategies that pick unique cofinal well-
founded branches, and for such strategies, 7 and 7™ are completely equivalent.
Nevertheless, it is a occasionally convenient for bookkeeping reasons to permit
non-length-increasing iteration trees in the coarse case.

It is not hard to show that if 7" is a plus tree of limit length A on a pfs premouse M,
and b is a cofinal branch of 7 that drops at most finitely often, then b corresponds
to a branch of 7™™,

PROPOSITION 4.4.13. Let U be a plus tree with models My = MY and exten-
ders Eq = EY. Let a < B < 1h(U), then

(1) Mo||A(Eq) = Mpg 1A (Ea);

(2) if a ends a delay interval, then
(b) E, is indexed at Ih(Ey) on the My sequence, but Ih(E) is a cardinal of

MB N

(3) if o(Eq) < A(Eq1), then Mg agrees with Ult(M, Eq) below o(Eg), and

(4) if Ih(Eq) < A(Eg41) < 0(Eq), then In(Eg) < crit(Egy1), and 1h(Eq) is a
cutpoint of Mo 11, andU =U | (a+ 1) W, where W is a tree above 1h(Ey,)
on some level of Mo that projects to Ih(Ey).

We omit the elementary proof. Note that the increased agreement described in
(2)(a)(b) holds whenever EZ’ is of plus type, by clause (2)(c) in the definition of
plus trees.

For the most part, what we need from the proposition is

COROLLARY 4.4.14. Let U be a normal plus tree, My, = Mﬁ’, and Eq = E(Z;’;
then for a < B < 1h(U),
(1) M|[Ih(Eq) = Mg|Ih(Eq),
(2) Ih(Eq) is a cardinal of Mg, so M |lh(Eq) # Mg|1h(Eq), and
(3) ifoe+1<r B, then Ih(Ey) < p’(Mﬁ).

Part (3) is easy to prove by induction. It comes down to the fact that if Ult(M, E)
exists, then p~ (Ult(M,E)) = supig“p~(M).

4.5. Copy maps, lifted trees, and levels of elementarity

The Shift Lemma and copying construction work as they did with ordinary
premice.'3® Let us adopt the definitions from Section 2.5 related to copy maps,

138Gections 9.1 and 9.2 of [81] have a very careful treatment of copying, both for ordinary iteration
trees, and for phalanx based iteration trees. There are a number of subtleties that come up, especially in
the phalanx case.
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starting with 2.5.17, with the understanding that now we are talking about pfs
premice.

In particular, suppose M,N,P, and Q are pfs premice, w: P — Q is nearly
elementary, ¢: M — N is Xy elementary, and E is an extender on the M-sequence
such that crit(E) < p~(P). Let F = ¢(E), and suppose the agreement between P
and M, Q and N, and 7 and ¢ is such that

(1, 0): (P.E) = (Q,F),

as defined in 2.5.17. The agreement guarantees that crit(F) < p~(Q). Letting
k =k(P) =k(Q), Lemma 2.5.19 gives us a X elementary, cardinal preserving

0p: Ulto(pk,E) —)Ult(QAkaF)'

Assuming that S = Ult(Q, F) is wellfounded, we have that S¥ = Ulty(Q%, F), R =
Ult(P,E) is wellfounded, and R* = Ulty(P* E). Thus there is a unique nearly
elementary

o: Ult(P,E) — Ult(Q,F)

that completes 6p.'3 We call 6 the copy map associated to 7, ¢ and E.
Stronger elementarity hypotheses on 7 lead to stronger elementarity conclusions
regarding o. In particular
(1) If 7 is cofinal, then oy is cofinal, and hence o is cofinal and elementary.
(2) If m is elementary and (7, ) : (P,E) = (Q,F), then oy is X| elementary, so
o is elementary.
(3) If & is almost exact, then o is almost exact.
(4) If 7 is exact and crit(E) # 1/, then © is exact.

We can copy plus trees as we did ordinary ones. Given pfs premice M and N,
7: M — N nearly elementary, and 7 a plus tree on M, we define an iteration tree
7’7 on N with the same tree order as 7, together with nearly elementary copy
maps

To: Mo — N,
where My = M and Ny = M%7 . Let Eq = EJ, and Fy = E*7 . The system 7
will have all the properties of a plus tree, except that it may not be maximal. We
shall have by induction that the copy maps commute with the branch embeddings
of 7 and 77T, and agree with one another, in that
(1) if B < a, then 7y TE(Eﬁ) = 7B fS(Eﬁ) and Na|8(F[3) =Ng ‘E(Fﬁ), and
(2) if B <r «, then 7y Oiz;,a = i%’ﬂonﬁ.

Set my = . The successor step is as follows: let E = Eq, f = T-pred(a + 1),

and

F =ny4(E),

139We are given the pfs premice R and S here, so we don’t need anything more than X elementarity
for op to complete it.
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*,T
P=Mg,
Q = ng(P).

Here if E = G", where G is on the My sequence, then 7y (E) = o (G) ™, with
the usual convention if G is the last extender predicate of Mg. Similarly, if
o(P) = o(Mpg) then Q = Ng | k(P). The agreement between 7, and 7tg implies
that f is least such that crit(F) < i(Fﬁ), and i(Fg) < A(F) for all & < o, with
lh(Fz) < A(F) if Fg has plus type. We also get

<7Cﬁ7n’(1> : (RE) - (QaF)7
so the Shift Lemma applies. We let Fy, = F, which by the rules for semi-normal
trees results in B = 77 -pred(a + 1) and

Nas1 = UIt(Q, F).
We let
Tq+1 = copy map associated to (7 [ P, 7o, E).

One can easily check that our inductive hypotheses are preserved. At limit steps A
we use commutativity to obtain 7y : M; — N, . If we ever reach an illfounded N,
the copying stops.

DEFINITION 4.5.1. Let M and N be pfs premice, and 7: M — N be nearly
elementary; then 77 is the copied tree defined above, and the 7, : ./\/lg — MZT
are the copy maps associated to T and 7.

The system 77 can fail to be maximal in the following way. Adopting the
notation above for the step from « to a + 1, we might have P = M, so that
0= NE, and yet crit(F) < p(Q), so that F should be applied to Npg, not N[;, in a
maximal tree. This cannot happen if 75 is almost exact, for then p~(Mg) < crit(E)
implies p~(Ng) < crit(F). It cannot happen if P <M, since then 7g is exact as a
map from P* to Q7.

We shall show in Proposition 4.5.17 that if the initial 7: M — N is elementary,
then all the copy maps 7y : My — Ny are elementary, and hence almost exact.
Thus in this case, 77 is maximal, and hence a plus tree. '4? The key is to show by
induction that, in the notation of the successor step above,

<7rﬁ77t(1>: (P7E) i> (QaF)

In other words, for every a, Ty moves some Zf definition of E, to a Z]Q definition
of Fz,(a)- An easy calculation shows that this implies that 7o+ is elementary.'4!

140That elementarity is propagated by copying seems to have appeared first as Lemma 1.3 of [42].
See also Lemma 9.2.5 of [81], where a more detailed proof is given for Jensen indexed mice.
141Gee [81], Lemma 3.4.5.
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DEFINITION 4.5.2. An extender E is close to M iff
(1) dom(E) = dom(F), for some F on the sequence of M, and
(2) for all finite a C €(F),
(a) E,is X} in parameters, and
(b) forall & < k™, E,NM]o € M.
We say that E is very close to M iff E is close to M, and for all finite a C €(E),
E,eM.

We have replaced A (E) in Definition 2.4.11 by £(E) to allow for the possibility
that E has plus type; otherwise there is no change.

Clearly if E is on the M-sequence, then it is close to M. If E = F™ is the last
extender of M, then it may fail to be very close to M. The following refinement of
the Closeness Lemma'#? generalizes these simple facts. It says that if E is applied
to M in T, then E is close to M, and either E is very close to M or the situation
has a special form similar to the case that E = FM.

LEMMA 4.5.3. (Closeness Lemma) Let T be a plus tree, with models Mg and
extenders E¢, and let Mé‘ = ME’T. Let T-pred(o.+ 1) = B where B < &, and set
E = E; then either

(1) E isvery close to My, or

(2) B <r a, and letting N + 1 be least in (B, a7,
(i) My IMg y, k(My ) =0, My, is active,

(i) DT N(n+1,alr =0,
(iii) E~ = iny1,a 0 ip(F), v'vh.ere F is the last extender of My,
p(My.y) < dom(F) < crit(iy ), and
(iv) sz:;H € Mg, |, then E is very close to My,__,.
In case (2), E is close to M;‘Hl, and hence to

and

In case (1), E is very close to M:;H.
Mo -

PROOF. :Fhe proof is by induction on o.

Let A = A(Eg). We have that dom(E) < 4 and A is an inaccessible cardinal in
My for all § > B, moreover Mg|A <M, ;.

CLAIM 1. IfE is not very close to My, then E is close to M

wt1> and (2) of the
lemma holds.

PROOF. Let us fix a C €(E) such that E, ¢ M. It follows that M, is active,
with last extender E~ = FM«_ Moreover E, ¢ Mg|A, so E, ¢ Mg for all & > 8
because dom(E) < A and 4 is inaccessible in Mg when & > 8.

Now let n+ 1 € [0, |7 be least such that B < 1 + 1. We show first that there
are no drops in model in (1 + 1, a]7. For suppose otherwise, and let Y+ 1 <r o

be largest such that, setting & = T-pred(y+ 1), we have My, | € Mg. Since Eq is

1421 emma 6.1.5 of [30].
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M*
boldface ZIIW"‘, E, is boldface X, . by Lemma 2.4.12 and the fact that dom(E) <

A

A(En) < crit(iy1,q 01y, ). But then E, € M. Since § >+ 1> B, we have a
contradiction.
It follows that My, is active, and E~ = ip11,4(G), where G = FMu+1 More-

over, G =i, (F), where F = FMn+1 and p(My.,) < dom(F). But then E~ is in

7+1)» s0 since crit(E) < i(En), we get

ran(iy41,q 01
crit(E) < crit(Ey).

Thus = T-pred(a + 1) < T-pred(n + 1). But T-pred(n + 1) < B, by the defini-
tion of )+ 1. So p = T-pred(n + 1). Finally, dom(E) < crit(Ey ), so Eq ¢ My 4,

so p1(M; ) < crit(Ey), so k(M;, ) =0.
Since crit(E) < crit(Ey), we have M;;+1 <M, ;. Thus n + 1 satisfies require-

ments (2)(i)-(iii) of our lemma. Moreover, if ¢ C €(F) is finite, then E, is boldface
Li over My . Since dom(E) = dom(F) and F is on the M | sequence, E is

N+l
close to Mg, . Moreover, if M}, | € M., then E is very close to My ;. This
gives us (2)(iv).
CLAIM 2. IfE is very close to My, then E is very close to M, ;.
PROOF. If a C &(E) is finite, then E, € Mg, s0 E, € Mg|A, s0 E, € M, . Thus

we need only see that dom(E) = dom(F) for some F on the M}, ,; sequence. But
letting k = crit(E), we have E,, € My|1h(E), and therefore E does not have order
zero. Let F be the Jensen completion of Ey. The weak initial segment condition
implies that F is on the sequence of M, hence on the sequence of My|A, hence
on the sequence of M;, . Since dom(F) = dom(E), we are done. =

Clearly the two claims yield the lemma. -

Remark 4.5.4. One might guess that in general, if E is on the Mg, | sequence

and dom(E) < i(Eﬁ), then dom(E) = dom(F) for some F on the Mg sequence.
This is not true, however. One can construct a simple counterexample in which £
has order zero, § = 1, and T-pred(f + 1) = 0.

Remark 4.5.5. 1t seems possible that T-pred(a + 1) = &, and E4 is very close
to Mg but not to My, . But My|lh(Ey) <M, | in this case, so Eq is close to

Mg, for areason that copy and lift maps will preserve. See Remark 2.5.21.

We need to analyze alternative (2) of the Closeness Lemma a bit more. Let T
be aplus tree and B <7 a. Let B <7 v <r a and T-pred(y) = B. We say that iga
has a well-supported extender iff

() DT N(y,alr =0, 50 thati] , = i] 4 oiy”, and

(i) ef < sup(ran(ig’a)).

Recall here that £, = sup({e(G) | Gisusedin [0,a)r}). If the extender of iga
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is well supported, then its component measures concentrate on bounded subsets of
M;’T. For ¢ C ¢ finite, let

U = least & such that ¢ C iga(é)

Then the well supported extender of iE o 18

(e.X) € I] o iff ¢ € [€a]® AX C [uc]lI Ac €15 4(X).

DEFINITION 4.5.6. Let T be a plus tree, and I = I/{a; then [ is very close to M
iff for all finite a C €], I, € M.

LEMMA 4.5.7. Let T be a plus tree, B <7 &, and suppose that ’75—05 has a well
supported branch extender I. Suppose that all extenders used in (B, a7 are very

close to the models to which they are applied; then I is very close to M;;’T, where
y is the least ordinal in (B, ar.

PROOF. Let us drop the superscript 7 when we can. Let ¥ <7 o and T-pred(y) =
B. We shall show by induction on 1 <r « that Ig  is very close to My. The limit
case is easy, so assume that

J=Iﬁ,n,
is very close to M7, and let £ +1 <7 o, T-pred(§ +1) =7, and let ¢ C 8g+1 =
€(E¢) be finite. Let
I=Igey.

Since E is very close to My, we can assume that c = aUb, where a C &, and f is
a function in M;j such that

M*
(Eé)b = [aaf]J !
=iynoiy(f)(a).
By induction, J, € My. We can then compute /. within My as an iterated product.

For A C [u]" and u € [u]* where k <n < @, let A, = {v | uUv € A}; then for

AC [ue],
A€ LiffaUb € iy s oiyy oij(A)

(
y(f)(a)

Y

iff iy 0 £5(A)a € iy 0i
. ,M* M*
iffi,"(A)q € [a, f],”
iff for J, a.e. 1, A, € f(¢).

Thus 7. in M;. B

LEMMA 4.5.8. Let T be a plus tree and 3 = T-pred(a + 1) < o. Suppose that
Eq is not very close to My. Let 1+ 1 <r o be such that B = T-pred(n + 1), then



4.5. COPY MAPS, LIFTED TREES, AND LEVELS OF ELEMENTARITY 143

(a) if B <t v+ 1 <r @, then Ey is very close to both My and M’ |, and

T

(b) the branch extender of ’73’, o IS well supported, and very close to M:,Il

PROOF. We begin with (a).

CLAIM 1. Ey is very close to My,.

PROOF. Suppose not, and let k = crit(Ey) and p = crit(Ey), so that k < u <
o(My 1) and py(M; ;) < u by the Closeness Lemma. Let F = FMn+1] 5o that
K = crit(F).

Suppose first that 1 = . Since py (My ;) < p, Ih(Ep) <o(My ). ButEg #F
because they have different critical points. Thus Eg € MT*' 41> 80 Eg is very close
toMp,.

Suppose next that 7 > 8, and suppose toward contradiction that Ej, is not very
close to My. Then clause (2) of the Closeness Lemma applies with 1) replacing o,

so crit(F) = crit(Ey). But k < u, contradiction. =

CLAIM 2. Let B <7 & =T-pred(y+1) and y+1 <7 «; then Ey is very close
to My andM;iH.

PROOF. The proof is the same as that of Claim 1. Now Mg = M;j +1 by (2)(ii) of
4.5.3. If £ = v, then Ey cannot be FMy because k < crit(Ey). Thus Ey is very close
to My, and hence to Mg = M;H. So we may assume £ < y. By the Closeness
Lemma, if Ej is not very close to My, then it has the same critical point as FMe
But crit(Ey) > & = crit(F™e).

Thus Ey is very close to M, and since § < 7, it is also very close to M =
M., -

This proves (a).

Let G be the last extender of Mf] .1; then all critical points along (3, &7 are be-
low the current image of Ag, and ig 4 is continuous at Ag. Thus g) <sup ig.o" G,
sol= IﬁTﬂ is well supported. Each I, concentrates on [uc]‘d, where U, < Ag. I'is
very close to M;;H by the claims and 4.5.7. -

Let us record the what we have shown about ¢ such that 7-pred(a+ 1) < «
and Ey, is not very close to My, in a definition.

DEFINITION 4.5.9. Let 7 be a plus tree, with models Mg and extenders Eé,
and let M%‘ = MET We say « is special in T iff letting E = Eo and 8 =
T-pred(a+1),

(i) B <r o, and letting N be least in (B, a]r,

(i) M; is active, k(M) = 0, and letting F = M, p(My) < dom(F),
(i) D7 N(n,alr =0, and fori =i} , 0y, dom(F) < crit(i) and E~ = i(F),

(iv) if n <7 y+1 <7 a, then Ey is very close to My and to M;H, and
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V) My, Mg .

If a is special in 7, then My, is active with last extender E,. Moreover, letting
7N be as in the definition, the branch extender I,;r is well supported and very close

to MT*7+1 , by the proof of 4.5.8(b).

We have shown
THEOREM 4.5.10. Let T be a plus tree and T-pred(a + 1) < «; then either

E] isvery close to both M}, and MI;’L, or o is special in T

We don’t know whether there can be special nodes o such that E, is very close
to M.

M*
If o is special in T, then (Eq ) is Z; "1 in the parameter (Iy )., where n +1 <r
o and T-pred(n + 1) = T-pred(a + 1). Let us record the X definition.

DEFINITION 4.5.11. Let M be an active pfs premouse and E = F¥_ Let k =
crit(E) and A = A(E). Let M |=“I is a k' complete ultrafilter on [v]", where
K < v < A; then we define ultrafilters U; and U;" over P([k]<®)NM by: for
X C [k]<® such that X € M,

X eUiffforlae. u,X €E,
and
X e U ifffor I a.e. u, X GE;u{JL}'

We say that / is a good code of Uy and U, over M.

LEMMA 4.5.12. (a) Let M be a pfs premouse and I be a good code of U over
M; then U is ZZIVI in the parameter 1.
(b) Let o be a special node of T, B = T-pred(o+ 1), and ¢ C €] be finite; then

(Ig:a)c is a good code of (Eg). over MZ’L.

PROOF. For (a), we calculate that X € Uj iff
MEIEIZ(Z=FNM||ENTY € VueY(u,X) € Z).

For (b), let I = IﬁTa, and suppose that X is in (Eq).. Let X € My, ,||§, where
& < dom(E) = dom(E), for E the last extender of M, , ;. Let G be the fragment
EN[e(E)<® x M;,_,||§. We have that G € M}, | and (c,X) € ig (G). But

c= [c,id];w““, so pulling back under ig o, (u,X) € G for I a.e. u. Thus X € U,
orXecU, Ij, depending on the type of E. The reverse inclusion follows from the
fact that U and (E ). are both ultrafilters. 4

The X; definitions given Lemma 4.5.12 will give us the uniformity of closeness
in various copying and lifting constructions. When the extenders are very close to
the models to which they are applied, then the uniformity is given by
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DEFINITION 4.5.13. Let P and Q be pfs premice, and E and F be (possibly
long) extenders. We say that (7, @): (P,E) = (Q,F) if and only if
(1) (7, @): (P.E)=(Q,F),
(2) E is very close to P, and

(3) for all finite ¢ C €(E), T(Ec) = Fy(c)-

In practice, F will be very close to Q, but the definition only requires that all

Fy(e) forc C €(E) belong to Q. The long extenders to which we shall apply the
definition will be well supported branch extenders.

LEMMA 4.5.14. Suppose that (n,@): (P,E) — (Q,F); then the following are
equivalent

(a) (m,9): (P.E) = (Q,F),
(b) E is very close to P, and (,): (P,E) = (Q,F).

PROOF. Clearly (a) implies (b). Assume (b) holds, and let ¢ C €(E) be finite.
Let U = E,, and let 8(vg,v1) be a X| formula and r € P be such that X € E, iff
P = 0[X,r] and X € Fy iff Q |= 6[X,7(r)]. Then P |= YX(8(X,r) = X € U).
This is a IT; fact about U and r, and 7 is elementary, so Q = VX(0(X,n(r)) —
X € m(U)). It follows that £(U) = Fy(.), since the two are ultrafilters. =

LEMMA 4.5.15. Let M,N, P, and Q be premice. Let : M — N and w: P — Q
be elementary, and let E be an extender such that E~ is on the sequence of M.
Suppose that E is very close to M and P, and that the Shift Lemma applies to

(m,9,E); then (n,0): (P.E) = (Q,9(E)).

PROOF. Let U = E},, where b C ¢(E) is finite. We have n(U) = ¢(U) by the
agreement between 7 and @. The fact about the parameters U and b that U = E,,
is expressible by a IT; formula 0 (v, v;) interpreted over the structure M|Ih(E).
Since ¢ is elementary, it preserves 6, and thus 7(U) = ¢(U) = @(E) ), as
desired. n
Notice that in 4.5.15 we needed the map ¢ on extenders to be elementary. The
Shift Lemma itself only requires that ¢ be Xy elementary.

We can extend the uniformity here by replacing ¢ by an appropriate embedding
of one branch extender into another. Unfortunately, it takes longer to state the
resulting lemma than it does to understand it. We shall apply it to copying below,
and to other kinds of lifting later on.

LEMMA 4.5.16. Let T and U be plus trees with models Mz and N¢ respectively.
Let o <7 B, and r: [a,B]r — h(U) be such that
(i) & <r niff r(§) <v r(n), and
(ii) if &,n € dom(r) and & = T-pred(n), then r(&) = U-pred(r(n)).
Suppose that all extenders used in [, B]r are very close to the models to which they
are applied, and that the branch extenders of f; B and ilrj( a).r(B) 4T€ well supported.
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Let M* M, be the domain ofi;ﬁ and N* <N, (o) be the domain Ofilr/éoc),r(ﬂ)’ and
suppose we have maps g for & € (o, B]r such that
(i) g : M* — N* is elementary,
(ii) for & > @, g : Mg — Ny¢) is elementary,
(iii) if & < & then 7s Oigé = izr/zé),r(é) o T, and
(iv) if&,n € dom(r) and & = T-pred(n), then (mg, 7ty ) : (Mé,EnT_l) = (Nye), EY
Then

. T \ X * U
<7ra,7rl3> . (M*7Ia7ﬁ) — (N ’Ir((x),r(ﬁ))'
PROOEF. (Sketch.) Fixing o, we show this by induction on . The limit step
is trivial. At the successor step, we have T-pred(n) = £, and know that 1;5 is

appropriately embedded into IrL(’a)Ar

: u _gT _qu :
embedded into Er(n)_l. Letl/ =1y, and J = Ir(a),r(ﬁ)‘ Inspecting the proof of

4.5.7, we see that 7, moves the iterated product measure corresponding to /. to
the iterated product measure corresponding to J 1 (c)s A8 desired. B

©)- By (iv), we also have E,T _, appropriately

Let us look at copying now.

LEMMA 4.5.17. (Copy Lemma) Let M and N be pfs premice, t1: M — N be
nearly elementary, and T on M be a plus tree, and let TT be the copied tree, with
associated copy maps Ty. Let Eq = EZ;; then for o, < 3,

(1) my is nearly elementary,
(2) mo | €(Eq) = U] | €(Ea), and
(3) if o <7 B, then Tg oi[{a = igz o Tig.

Moreover, if T is elementary, then all the Tty are elementary, and T is a plus tree.

PROOEF. Let M;. and Eé be the models and extenders of 7, and Ng and Fé the
models and extenders of 77 . Let M%‘ = ME’T, Ng = ME’”T, isy = iz;y, and
. _ .ﬂ:T ’
J&y =y

Parts (1)-(3) are a routine induction. Letting 8 = T-pred(a + 1), (2) implies
that

<7rﬁﬂ7t06>: ( ZH—DE(X) - (N(9;+17F(X)'
We then get 7y 1 and (1)-(3) at & + 1 from 2.5.19.143
Suppose now that 7 is elementary. We shall show by induction that ¢ is
elementary. This is easy if & is a limit ordinal, so suppose £ = ¢+ 1. Let E = E,
and F = Fy, and let B = T-pred(a+ 1) and A = ;l(E[;) The case f = o is
straightforward, and covered by Remark 2.5.21, so let us assume f3 < «.

143 Concerning (2), the agreement is actually on A(Eq) if E4 does not have plus type, and on
Ih(Eq) + 1 if it does. Moreover, 7y agrees with g1 on 1h(E) -+ 1 in any case, although it may agree
less with later 7y if Eq is not of plus type.

r(n)—1

).
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Suppose first that E is very close to M, and hence to M,

o+l
4.5.15, (mg, 7 : (MZ‘HI,E) (Ngi1,F), s0 mg 1 is elementary.
Suppose next that ¢ is special in 7. We must then be in the situation described

in 4.5.3(2). Here is a diagram

Then by Lemma

Mot

M(X N(X

\

—> *
a+1 Nor+1

Here i = fE g and j= igz. By Lemma 4.5.8, all extenders used in i are very close

to the models from which they are taken, and to the models to which they are
applied. Letting / and J be the well supported branch extenders associated to i and
J, we have
<”ﬁ’ﬂa>: (Mgc+1»1) o (N:;Hrl"])
by Lemma 4.5.16. Let us show now that
<nﬁaﬂ0¢>: (M:JF!-Q—DE) = ( :;H-lvF)v

from which it follows that 7, is elementary. Let ¢ C €(E) be finite. Let us take
the case E does not have plus type; then E. = U, and this gives us a X; definition

of E. over My, | from the parameter /., namely X € E iff

M, =3E3Z(Z=FNM||EATY € IVu €Y (u,X) € Z).
Similarly, X € Fp () iff
w1 E3EIZ(Z=FNM||ENTY € Ty (VueY(u,X)€Z).

But 75 (I:) = Jz,(c)> S0 the X definition of E. is moved to a £; definition of F ),
as required. -

Remark 4.5.18. The proof showed that if 7 is elementary, then whenever § =

T-pred(ct+1), then (75, mq) : (M}, |, E) = (N1, F).

Unfortunately, we do need to copy plus trees under maps that are not elementary.
One way to deal with this is to extend the definition of plus tree so as to allow
gratuitous drops, and prove everything in that more general context. Another way
is to eliminate gratuituous drops in 77 by lifting it to a maximal tree (77 )"
we construct it. In this book we shall use the second method. The lifting here is a
special case of a more general lifting procedure that we describe now.
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Let 7 be a plus tree on the premouse M, and let k = k(M). Let
w:M— Q<IN
be nearly elementary; then we can lift 7 to a plus tree I/ on N as follows. U will
have the same tree order as 7T, so long as it is defined. Let M, and Ny, be the at-th
models of 7 and U, and Ey and Fy, the o-th extenders. We shall have a nearly
elementary
ot Mo — Qq INg.
Here my = @ and Qp = Q. We have the usual agreement and commutativity
conditions:
(1) lfﬁ < a, then Ty [S(Eﬁ) =Tp rS(Eﬁ) and Na|8(Fﬁ) = Nﬁ ‘S(Fﬁ), and
(2) if B <r a, then 7y oil?a = ilfs{a omg.
Drops in T~ of more than one degree will cause corresponding drops in /. Drops
of one degree may not. &/ may drop where 7 does not.
The successor step is the following. We are given Ey on M; set
Fo =7mo(Eqy),
or Fy = F9 if E, = FMa . As above, our convention is that if E, = E1 where E is
on the My, sequence, then Ty (Eq) = T (E1) = 7o (E)T. Let = T-pred(o+1) =
least & such that k < A(E¢ ), where & = crit(Eg). By (1) above, 8 = U-pred(a+1)
according to the rules of plus trees for ¢/. Let
Mg 1 =Ult(Mg 1, Eq),
and
N1 =Ult(Ng, 1, Fa),

where M, and Ny, , | are determined by the maximality of 7 and /. Let

§=ng(Mgy1),
where as usual, if M, | = Mg | nthen S = Qg | n. Clearly 7g [ M, is nearly

elementary as a map into S, so crit(Fy) is a cardinal of S and crit(Fy) < p~(S). It
follows that
S<INg -
Leti*: Ny | — Ngy1 be the canonical embedding, and

QO!+1 = l*(S)v

with the usual convention if § = Ng,_ | | n for some n. We obtain 7y by a
variant of the Shift Lemma: let R = M, | and k = k(R) = k(S). We obtain
o: Ulty(RY,Eq) — 0%, by setting

%
NOt+l

o (la, 1R ) = [7a(a), 75 (f)] 2
— i (5(f)) (7a(a)),
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where the equivalence class on the right in line 1 is formed using functions appro-
priate to Ult(N;, , |, Fy). By the proof of 2.5.19, ¢ is Xy elementary and cardinal
preserving map from M’O‘[ L to Qlfx +1- We let T4 be its completion.

One can easily check that the inductive hypotheses are maintained. At limit A

we let Q; be the common value of iz&’, 1 (Qq) forall o <7 A sufficiently large. Note

that Qg1 < ilfs{,aﬂ (Qﬁ), and we are assuming that N, is wellfounded, so there is
such a common value. 7, is defined using commutativity.

DEFINITION 4.5.19. Suppose that 7: M — Q <N is nearly elementary, and let
T be a plus tree on M; then

(@) (wT)™" is the plus tree U on N defined above. We call (n7)* the (x, Q) lift
of T to N, or if Q = N|(v,k), the (7, v, k)-lift of T to N. We call the map
To: Mg — Qg defined above the a-h lift map associated to (77)*.

(b) When M = Q and 7 is the identity, we let 7+ = (27)", and call 7 the [ift
of T to N.

Definition 4.5.19 extends to lifts of stacks of plus trees in the obvious way. One
can extend the definition so as to allow non-maximal trees 7, and thereby obtain a
natural reduction of arbitrary semi-normal trees to maximal ones.

Remark 4.5.20. The construction of (77)" is a bit like the construction of a
conversion system. In the conversion case we begin with 7: M — Q € N, where
0 € lev(C) for some construction C of N, instead of w: M — Q <N. The structure
of C mediates the step from 7y (Ey) to Fy. In both cases the lifting maps 7y, are in
general only nearly elementary, no matter how elementary the original 7 is. The
reason is that the downstairs ultrapower is not just copied, its copy is embedded
into an ultrapower formed by using more functions.

One can think of (77 )" as having been produced by the ordinary copying
construction, which yields 77 on Q, followed by applying the ( id, v, k)-lift to n 7,
and obtaining (77)™. So our notation in (a) and (b) of 4.5.19 is consistent with
the earlier copying construction notation. We shall often write 77 " instead of
(nT)". There is a possible confusion between 71/ fortd =T and (n7)™ here,
but context will resolve it.

Let us return now to copying plus trees, that is, the case that we have 7: Q IN
where in fact Q = N.

LEMMA 4.5.21. Let m: M — N be elementary and T be a plus tree on M; then
T ==nTT.

PROOF. This is implicit in the “moreover” part of Proposition 4.5.17. -

If 7 is only nearly elementary, then 77 # 7 T is possible, but the two are never
out of step by more than one degree.

LEMMA 4.5.22. Let t: M — N be nearly elementary, and T be a plus tree on
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M. Suppose that all models of TT " are wellfounded, and let Tty : My, — Qo <Ny,
be the associated o-th lift map. Then for any «, either

(a) Qo = Ng, or
(b) Qa = Ny, Ty is nearly elementary and exact, and M, is stable.

The proof is a routine induction.
Elementarity in various contexts

Here is a summary of elementarity in various situations we shall encounter. Let
M be a pfs premouse.

(i) If M is solid and of type 1, then anticore map from €(M)~ to M is elementary,
cofinal, and exact.

(i) The resurrection maps associated to a PFS construction are elementary,
cofinal, and exact. (See §4.7.)

(iii) Fine ultrapower maps, and more generally, the maps iZ, B along branches of
a quasi-normal iteration tree on M, are elementary. If M has type 1 and is
strongly stable, then these maps are exact, and all the M/ have type 1.

(iv) If : M — N is nearly elementary, and 7 is a quasi-normal tree on M,
then 77 is semi-normal, and the copy maps 7ty : M7 — MZT are nearly
elementary. If 7 is elementary, then 7 is quasi-normal, and all the 7y are
elementary.

(v) The Dodd-Jensen and Weak Dodd-Jensen lemmas hold in the category of
nearly elementary maps.

As with maps on ordinary premice, factor embeddings from one ultrapower
to another that is formed using a larger class of functions can lead to maps that
are nearly elementary but not elementary. See examples 2.4.9 and 2.4.10. These
include the embedding normalization maps 67144, the lifting maps associated to
T we defined above, and the lifting maps of a conversion system.

4.6. Iteration strategies and comparison

Iteration strategies acting on plus trees, or stacks of them, are what one would
expect. If M is a pfs premouse, then G (M, 0) is the variant of G4"(M, 0) in
which player II must pick cofinal wellfounded branches at limit steps as before,
and given that 7 with 1h(7) = a + 1 is the play so far, I must pick E such that
E, (which may or may not be equal to E) is on the M sequence, and such that
i(Eﬁ) < A(Ey) forall B < a. Since T is to be maximal, this determines

T-pred(a+ 1) = least f s.t. crit(Ey) < i(E[;),

144See Chapter 6.
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and for & = T-pred(a + 1), the initial segment M, | of Mg such that
My = UMy, Ea).-

A plus tree on M is just a position in some G (M, ) in which II has not yet lost.

The example from Remark 4.4.9 shows that there can be distinct normal plus
trees by the same iteration strategy that have the same last model. The reason is
that at some step, one tree might use E while the other uses E™. What does hold is

LEMMA 4.6.1. Let T and U be normal plus trees by the same iteration strategy,
and having the same last model. Suppose that whenever .+ 1 < inf(1h(7),1h(U)),
then the plus case occurs at & in T iff the plus case occurs at & inU; then T =U.

We omit the simple proof.

For A alimit ordinal or A = 1, G* (M, A, ) is the variant of G (M, A, 0) whose
output is a stack of plus trees on M of length A. (So G*(M,1,0) = G*(M,0).)
We allow a gratuitous drop at the beginning of each round. II wins iff all models
reached are wellfounded, and if A > 1, there are finitely many drops along the
sequence of base models, and their direct limit is wellfounded.

An M-stack is a position in some G* (M, A, 0) in which II has not yet lost.

Precisely,

DEFINITION 4.6.2. Let M be a premouse; then s is an M-stack iff s = (Vg ko, Tar) |

o < B), and there are premice My for oo < f3 such that

(1) Tg is a plus tree on My |(Vg, ko),

(2) Mo=M,

(3) if o < B and « is a limit ordinal, then My, is the direct limit of the Mg for

B < a, and

(4) if y+1=a < B, then My is the last model of 7y
If each T is normal, then we call s a normal M-stack. If (vg, ko) = 1(Mg) for all
a, we say s is maximal.'®

So a maximal stack is one with no gratuitous drops anywhere. It is normal iff its
component trees are all normal.

DEFINITION 4.6.3. Let M be a pfs premouse; then a complete 0-iteration strat-
egy for M is a winning strategy for player Il in G (M, 6). A complete (A,0)-
iteration strategy for M is a winning strategy for Il in G*(M,1,0).

DEFINITION 4.6.4. Let M be a pfs premouse; then M is countably iterable iff
whenever N is countable and there is an elementary w: N — M, then there is a
complete (@;, @ + 1)-iteration strategy for N.

The terminology and notation of Section 2.7 regarding tail strategies, pullback
strategies, and positionality extends to strategies acting on stacks of plus trees in
an obvious way.

143We allow ko = —1, with the convention that P|(v, —1) = P||v.
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DEFINITION 4.6.5. Let Q be a winning strategy for Il in Gt (M, 4, 0) and s be
an M-stack according to Q with lh(s) < A.

(@) If N = M..(s)|(v,k) for some v,k, then Q; y is the tail strategy
Qun(1) =Q(s"(N)1).

We set Q5 = Qg y1..(5)-
(b) If m: Q — M is nearly elementary, then QF is the pullback strategy for
G*(Q,A,0) given by

Q% (s) = Q((ms)*).

In part (b), (7s)* is the stack of plus trees that we get by copying and lifting
so that each component tree in (7s)" is maximal. Thus if 7 is the first tree in s,
then (7)™ is the first tree in (7s)™. (7s)™ does copy the gratuitous drops at the
beginning of rounds in s. If 7 is elementary, then (7s)* = 7s.146

Iterable pfs premice can be compared. In the most important case, the premice
are strongly stable and of type 1.

THEOREM 4.6.6. Let P and Q be strongly stable pfs premice of type 1 and of
size < 0, and suppose ¥ and ¥ are complete 8" + 1-iteration strategies for P and
Q respectively; then there are normal, A-tight plus trees T by X and U by ¥ of
size 0, with last models R and S, such that either

(a) RS, and P-to-R does not drop, or
(b) S <R, and Q-to-S does not drop.

PROOF. The proof for ordinary premice works. (See 2.8.1.) We compare by
iterating away least disagreements, so the comparison trees use only extenders on
the sequence, with strictly increasing lengths. That is, they are A-tight and normal.
The standard reflection argument gives trees 7 = Ty by X and U = Uy by ¥ with
last models R and S such that RIS or S <R.

If R< S, then R is sound, so by Lemma 4.3.11, the branch P-to-R did not drop,
and we have conclusion (a). Similarly, if S <R we get conclusion (b). Thus we
may assume R = S. It is now enough to show that one of the two branches P-to-R
and Q-to-S did not drop. Assume otherwise, and let X = M;’Il andY = M;;’fl be
the last drops on the two branches. Since P and Q are strongly stable and we have
dropped, both X and Y are sound type 1 pfs premice. (Cf. 4.4.6.) Leti: X — R
and j: Y — § be the branch embeddings. By Lemma 4.3.11,

p(X)=p(R)=p(S)=p(Y),

1461f O were defined on stacks of non-maximal trees, we could have defined Q% (s) = Q(7s). We
could also have set Q7 (s) = Q((7s)* "), where (7s)™ " is the maximal stack of plus trees that comes
from eliminating gratuitous drops at the beginnings of rounds. In the abstract, these are different
pullback strategies, but for the strategies Q that we eventually construct, they are the same, because
QT = Q for each version of Q7.
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and

i(p(X)) = p(R) = p(8) = j(p(Y)).
Also, p(X) < crit(i) and p(Y) < crit(j) because X and Y are projectum solid, and
C(X)=C(R)=C(Y).
It follows that X = €(R)~ =Y, and i and j are the anticore map from €(R)~ to R.
So i = j, so the first extenders used i and j are compatible, and hence the same by
the Jensen initial segment condition. This is a contradiction. .
Phalanx comparisons work too, as we shall see later Sections 4.9 and 4.10.
Those proofs require iteration strategies with the Weak Dodd-Jensen property. We

need Weak Dodd-Jensen in the category of nearly elementary maps for some of
them. In fact, we must go slightly beyond that in one case.

DEFINITION 4.6.7. Let M be a pfs premouse and k = k(M) > 0; then
B'={(p.b) | isZi Ab € M|lpe AM = 0lb, pil},
and
Mg = (M]|py,BY).
We call M} the reduct of €(M).

M codes the strong core € (M). Any X, elementary map from 7: ME — N§
has a unique completion 7*: & (M) — € (N).

DEFINITION 4.6.8. Let M be a countable pfs premouse, and (¢; | i < ®) enu-
merate the universe of M. A map n: M — N is é-minimal just in case 7 is
nearly elementary, and whenever 6: M — N|(n,k) is nearly elementary, then
(n,k) =I(N), and if 6 # 7, then for i least such that o(e;) # m(e;), we have
7(e;) < o(e;) (in the order of construction).

DEFINITION 4.6.9. An iteration strategy Q for M has the Weak Dodd-Jensen
property relative to an enumeration € of its universe in order type @ iff whenever
N = M..(s) for some stack s by Q, then

(1) if there is a nearly elementary embedding from M to an initial segment of
N, then the branch M-to-N of s does not drop, and the iteration map #* is
é-minimal, and

(2) if M has type 1A, k = k(M), and there is a o elementary map from M} to
N(’)‘, then the branch M-to-N of s does not drop in model.

LEMMA 4.6.10. (Weak Dodd-Jensen) Let M be a pfs premouse, € be an enu-
meration of the universe of M in order type ®, and Q a complete (@, 0) iteration
strategy for M; then there is a countable M-stack s by Q having last model
N = M..(s), and a nearly elementary mw: M — N, such that (Qs n)™ has the Weak
Dodd-Jensen property relative to é.
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The proof of 4.6.10 is essentially that of [34]. The main facts it uses are

(i) If 7: M — N is nearly elementary, and 7 is a plus tree on M, then (7)™ is
a plus tree on N.

(ii) The collection of nearly elementary maps from M to N is closed in the
product topology on M N.

There are some small additional elements needed to insure (2) in 4.6.9. 147

Comparing mice that are not strongly stable

Comparison by least disagreement works for iterable premice that are are not
strongly stable. We shall not need such comparisons, but for the sake of com-
pleteness, we record the basic facts. The possible termination patterns are more
complicated, because the side that comes out weaker may have a drop of one
degree.

DEFINITION 4.6.11. Suppose that 7 is a plus tree on P. We say that 7 has a
small drop at & + 1 iff [0,E]7 N D7 =0, and for k = k(P),

M, =Uly_y(M],D)

for some order zero D on the X sequence such that p(X) < crit(D) < px—;(X). In

. ~T . . . .
this case we say that ;. g4 isan essentially r¥y, | iteration map.

THEOREM 4.6.12. Let P and Q be stable pfs premice of type 1 and of size
< 0, and suppose ¥. and ¥ are complete OV + 1-iteration strategies for P and Q
respectively, then there are normal, A-tight plus trees T by ¥ and U by W of size
0, with last models R = ./\/lg_ and S = ./\/l%’ such that either

(a) RS, and [0,E]rND7T =0, or

(b) R~ =S, R has type 2, [0,E]r N DT = 0, and either U has a small drop at 1,
or [0,M]y drops in model, or

(¢) R=S, T and U have small drops at & and 1 respectively, and Mg and ./\/lz,’f
have type 2, or

(d) S~ =R, S has type 2, [0,n]y N DY = 0, and either T has a small drop at &,
or [0,&]7 drops in model, or

(e) SR, and [0,n]y ND¥ = 0.

147Clause (2) of 4.6.9 is a small step in the direction of minimality with respect to *-preserving
maps. This is proved in [81, Lemma 9.2.5, Theorem 9.2.11] for the iteration strategies for ordinary
Jensen premice of Chapter 3, and the proof adapts to pfs premice. To see how X*-elementarity is
a more refined notion than elementarity or near elementarity, suppose k(M) = 1, N = Ult; (M, E),
and P = Ulty(N, F), where p;(N) < crit(F). Leti = ip oig. i is elementary as a map from M~ to P.
According to our definitions, as a map from M to P it is not nearly elementary. On the other hand, i can
be used to copy 1-ultrapowers of M by extenders with critical point < p;(M). In the terminology of
[81], i is a £* embedding from M to N. This makes copying possible, and leads to Dodd-Jensen in the
broader category.
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In (a)-(c), iOTé is an essentially X, | embedding of P into an initial segment of

an iterate of Q, showing that P is no stronger than Q. In (c)-(e), ig{,n is an essentially
rXy41 embedding of Q into an initial segment of an iterate of P, so Q is no stronger
than P.

In the case that they involve a small drop, fOT"g and i%{,n are very simple instances
of X* elementary maps that are not nearly elementary. In the wider context of
¥* elementary maps, copying does work and the Dodd-Jensen Lemmas hold, as
shown in Zeman’s book.!#® But we shall not need this generality. We don’t need to
compare premice that are not strongly stable, or to consider more than elementary
and nearly elementary maps. The Weak Dodd-Jensen Lemma stated in 4.6.10 is
enough for our purposes.

4.7. PFS constructions and their resurrection maps

We produce pfs premice in a background construction just as we did in Chapter
3, except that we take the cores that are appropriate to the pfs hierarchy. It is
convenient to require that the set of eligible background extenders be part of a
coherent pair.

DEFINITION 4.7.1. A PFS-construction above K is a tuple
C= <W7‘F7 <(Mv,kaFv)‘<V7k> <lex lh(C)>>

such that

(a) (w,F) is a coherent pair, and

(b) ((Myx,Fy)|{v,k) <iex In(C)) satisfies the properties in Definition 3.1.3, rel-
ative to (w, F), except that for (v, k) <jex 1h(C)),
(1) My is a pfs premouse of type 1, and
(i) if (v,k+ 1) <jex In(C), then My = C(MVJJ.

The background certificate requirements on F, in 4.7.1 are the same as those in
Definitions 3.1.2 and 3.1.3. Roughly, the background extenders are taken from F,
have strictly increasing strengths and critical point > k, and are Mitchell minimal,
then w-minimal, among such certificates.

We write w€, F (C,MS > and FV(C for the objects associated to the construction C.
If (w, F) can be understood from context, we may identify C with the sequence
((My k, Fy)|(v,k) <jex Ih(C)) of premice and background extenders.

Since (w, F) is coherent, we get

LEMMA 4.7.2. Let C be a PFS construction above K, MEO = (M<V,F), and
F* = F‘(,C; then

1485ee the last footnote.
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(a) Ih(F*) is the least strongly inaccessible N such that Ap < N and VT <
v(In(FE) < 1),

(b) {Ih(FE) | T < v} is bounded in Th(F*), and

(c) iy (M=V) | Ap is not measurable.

The proof is the same as that of Lemma 3.1.9.

We say C is maximal iff whenever (v,0) < 1h(C) and there is an F such that
(M<V,F) is a pfs premouse and F has a certificate F* € FC, in the sense of 3.1.2,
then FMvo =£ (. We shall deal pretty much exclusively with maximal constructions.

It is convenient to give (M<",0)C an index in C.

DEFINITION 4.7.3. Let C be a PFS construction and (v,0) < 1h(C); then
M§ | = (M=,0)
v,—1 [

So for (v,0) <jex IN(C), MY | = MG ||v.
A PFS construction can break down in various ways, all of which are ruled out by
the countable iterability of its levels and associated bicephali and pseudo-premice.

DEFINITION 4.7.4. Let C be a PFS construction, and (v,k) < 1h(C). We say
that C is good at (v, k) iff
(a) ifk=—1,and C| v~ ((M<Y,F),F*) is a PFS construction, then F* certifies
F*, in that
Q) FrO(Ar+ 152 xM)=F*N([Ar +1]<? x M), and
(ii) 1h(F) is a cardinal of i+« (M),
(b) if k=—1, and C[v"((M<V,F),F*) and C[v™((M<",G),G*) are PFS
constructions, then F' = G, and
(c) if k > 0, then M, 4 is solid.
We say that C is plus consistent at v iff (a) holds, and that C is extender unique at v
iff (b) holds. We say that C is good iff it is good at all (v, k) such that (v, k) < 1h(C).
We say that C breaks down at (v, k) iff C is good at all (1, j) <iex (V, k), but is not
good at (v, k).

Plus consistency is important when we use the background extenders in FC to
lift plus trees on some level of C. The proof of (a) modulo iterability belongs
to the same family of phalanx comparison arguments that yield solidity. More
specifically, it resembles the proof of closure under initial segment in [30, §10],
and it uses the A-minimality property of certificates recorded in 4.7.2(b).

Extender uniqueness is needed in order to show that maximal constructions
reach mice satisfying various large cardinal hypotheses. That (b) holds, granted
iterability, is known as the Bicephalus Lemma. Item (c) says that cores behave
well, so we can continue the construction, producing a next level €(My 4 1) that is
a pfs premouse of type 1. It holds by definition unless (v,k+ 1) = 1h(C).

The main theorem about PFS constructions is that, granted iterability, they are
good at all (v, k). We shall prove this later in this chapter.'4°

1499Gee Theorem 4.11.4.
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The set of levels of a PFS construction C is lev(C) = {M, | (v,k) <iex h(C)},
and <c is the order on lev(C) induced by C. The order is well defined for the
same reasons as before:

LEMMA 4.7.5. Let C be a PFS construction, with levels My y = Mg_k.

(a) Let (u,l) <iex (v,k) <1h(C), and suppose that whenever ({L,1) <iex (1, J) <iex
(v,k), then p~ (M ;) < p~(My_j); then My ; <M .

(b) Let 'y < o(My ) be a cardinal of My j such that y < p~(My ), and suppose
P <M,y is such that p~ (P) = y; then
(i) there is a unique (U,l) <iex (V,k) such that P = M,, ;, moreover
(ii) if P =My, then y < p~(My ;) whenever (U,1) <iex (N, ) <iex (V,k).

COROLLARY 4.7.6. Let C be a background construction; then for any premouse
N, there is at most one (V,k) such that N = Mi(,:_k.

We have also a parallel of Lemma 3.1.11 on the coherence of constructions.
Recall that C [y = (M, Fr) | T < YAk < o), and (M<7,0) is the last model of
Cly.

LEMMA 4.7.7. Let (w,F,C) be a maximal PFS construction above k, and
suppose that MSO = (M<Y,F) where F # 0, and let F* = FS and D = ip+(C);
then

(1) DIv=Cly,

(2) Myo =+ MEO; moreover if C is extender unique at v, then M?io = (M<V,0),

(3) (M<V,0) < ip-(M<"), and,

(4) if & < v, and C1& has last model N such that o(N) < crit(F*), then C| & €
Vcrit(F*)~

PROOF. The proof of Lemma 3.1.11 goes through verbatim. -

The point of the new premice and their constructions is that there is no case split
in the definition of the resurrection maps. We resurrect N <1 Q from a successor
level Q of C by resurrecting 7(N) from X, where 7: O~ — X is the anticore map.
We resurrect from limit levels as before. As before, the resurrection maps satisfy

(*) If R<c Qand p~ (R) < p(S) for all S such that R <¢ S <¢ O, then
) RLO,
and for all N <R and Y such that Resg[N] <c Y <c R,
(i) Resq y[N] = Resg y[N], and
(iil) oqy[N] = or y[N].
This enables us to resurrect from limit levels in an unambiguous way.
The formal definition goes by induction on Q, maintaining (*) as we go.
(1) ResqlQ] = Q and 6y[Q] = id.
Q) fQ=My 41, X =My, and m: Q- — X is the anticore map, then
(a) Resq x[N] = m(N), and 0y x[N] =7,
(b) Resg[N] = Resx[Resq x[N]] and 6[N] = ox[Resq x[N]] 0 6 x[N], and
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(c) for Y such that Resq[N] <c Y <c X, Resq y[N] = Resx y[Resq x[N]],
and 0g v [N] = Ox y[Resq x[N]] 0 0o x[N].
Since 7 is the identity on p~(Q) + 1, (*) remains true.

(3) Suppose Q is a limit point in lev(C), that is, k(Q) =0, and N < Q. Let p be
the minimum value of p~ (R) for N IR <1Q, and let R be such that N IR <1Q
and p~ (R) = p. By (*¥), we can set Resg[N] = Resg[N] and 64 [N] = or[N],
and the results will be independent of our choice of R. Similarly, for ¥
such that Resq[N] <c Y <¢ Q, we let Resq y[N] and 04 v[N] be the common
values of Resg v[N] and oy v [N] for all such R.

In addition to (*), we have the elementary properties of Proposition 3.2.2.

PROPOSITION 4.7.8. Let C be a PFS construction, and N <Q € lev(C).

(i) Resq[N] is the <c-least X such that Resq x[N] is defined.
(ii) k(N) = k(Resqx[N]), and 0o x[N] is elementary and exact.
(iii) If P<AN, then Resq[P] <c Resg[N].
(iv) If P<AN and Resq x[N] is defined, then Resq x[P] <<Resq x[NV].
(v) Suppose that Reso[N] <c X <c Y <c Q; then
(a) Resqx|N] =Resy x[Resq y[N]], and
(b) 0o x[N] = oy x[Resq y[N]]oogy[N]
(vi) Suppose k(N) >0 andResq x[N] is defined; then Resq x[N~] = (Resq x[N]) .
(vii) IfResq[N] =My jt1, then Resq[N~| = My y. Moreover, if m: (My j+1)” —
M, i is the anticore map, then 7t o 0o[N| = 0[N ~].

Resurrection maps are exact because they are compositions of anticore maps,
and anticore maps are elementary and exact by 4.3.6.
Our resurrection maps are now consistent with one another.

LEMMA 4.7.9. Let C be a PFS construction, X <c Q, and P AN <1 Q; then the
(Q,X) resurrections of P and N are consistent, in that
(a) Resqx[P] = 0qx[N|(P), and
(b) ox[P] = Oox[N][P.

The proposition and lemma are easy to prove by induction on lev(C). We also
get a useful lemma on the agreement of resurrection maps.

LEMMA 4.7.10. Let C be a PFS construction, X <K <Q, and x < o(X). Sup-
pose that whenever X <IS <K, then k < p(S); then 6o[X] | kX = oo [K] | k.

PROOF. Here we take k™% = o(X) if there are no cardinals of X strictly above
K. Letting N = Resq[K] and Y = 04 [K](X), we have
GQ[X] = On [Y] o GQ [K] rX
by the consistency of resurrections. Let t = 04[K](x). Resurrection maps are
elementary, so whenever Y <R <IN, p~(R) > u. But this means that all the

anticore maps at levels of C between Resy[Y] and N have critical point > u*Y.
Thus oy[Y] is the identity on u™Y, so 0o [X] [ k7% = 6o [K] | k. —|
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The factoring of resurrection maps induced by dropdown sequences is simpler
now.

DEFINITION 4.7.11. Let Q be a pfs premouse and N <1 Q. The N-dropdown
sequence of Q is given by
(1) Ap=N,
(2) A4 is the least B<SQ such that A; <<B and p~(B) < p~ (A;).
We write A; = A;(Q,N), and let n(Q, N) be the largest i such that A; is defined. Let
also k;(Q,N) = p~ (Ai(Q,N)).

Exact maps preserve dropdown sequences.

LEMMA 4.7.12. Let M and X be pfs premice, and ©: M — X be nearly elemen-
tary and exact, and N <{M; then
(1) n(Q,N) =n(X,n(N)), and
(2) foralli<n(Q,N),
(a) n(A;(M,N))=A;(X,n(N)), and
(b) m(k(Q,N)) = K;(X,T(N)).

PROOF. Since 7 isexact, (p~ (A;(Q,N))) =p~ (n(A:(Q,N)) forall i <n(Q,N).
One can then prove (2) by induction, starting with i = n(Q,n) and working down
toi=0. -

Lemma 4.7.12 is simpler than the version we get for inexact 7. This makes the
factoring of 04 [N] induced by the (Q,N) dropdown sequence easier to describe.

LEMMA 4.7.13. Let C be a PFS construction, Q € lev(C), and N <1 Q. Let
n=n(Q,N), and A; = A;(Q,N); then
(a) Ay <c Q, and for all P<A,, Resqa,[P] =P and oga,[P] = id. Thus
ResglA,] = A,
Moreover, if n > 0, then letting X = Resg[A,, ] and T = 0 x[A;],
(b) X is the immediate <c- predecessor of A,, and : A, — X is the anticore
map. Moreover, n(X,n(N)) =n—1, and foralli <n—1,
(i) Resq[A;] =Resx[A;(X,7(N))], and
(ii) OolAi] = ox[Ai(X,m(N)]om.
(c) 0g|N] = @ o...om, [N, where m; is the anticore map from Resg[A;] to
Resqg[A; ]
(d) Lety=ki(Q,N)"2; then 64[Ai] | Y= 0o[A; ]I Y= 04[N] V. In particular,
Oo[N] is the identity on K,(Q,N)*.

PROOF. (a) follows easily from property (*). (b) follows easily from Lemma
4.7.12. Part (c) comes from applying (b) repeatedly until we reach Resq[A;(Q,N)] ™,
and then applying (a).

For (d), note that 6q[Ai] [ Y = 0o[A, ] ['y. This is because o4 [Ax](p~ (Ax)) =
P~ (Resq|Ak]), and the anticore map 7y is therefore the identity on 6 [A](y). But
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0o[A ] =mo...om, and crit(m; o...o M) > 0g[A, ](7), so we get the second
equality. 4

Lemma 4.7.13 is clearly simpler than its counterpart in [30, §11] for construc-
tions of ordinary premice.

4.8. Conversion systems and induced strategies

We begin with a shift lemma for conversions.

DEFINITION 4.8.1. (M,y,0,C,R) is a PFS conversion stage iff

(1) R is a transitive model of ZFC, and (R, C) is amenable,
(2) (R,C) [=“C is a maximal PFS construction”, and
(3) M is a pfs premouse, Q € lev(C), and y: M — Q is nearly elementary.

If (M,y,Q,C,R) is a PFS conversion stage, then (R,c,w®, FC) is a coarse
premouse, and C is the unique maximal PFS construction this coarse premouse
determines. M may be of type 2, but Q has type 1 since Q € lev(C). We have
included the requirement that C be maximal because it is needed in Lemma 4.7.7
on the coherence properties of PFS constructions, and that lemma is useful in what
we shall do later. Many of the basic lemmas about conversion stages and systems
do not require it.

The constructions, conversion stages, and conversion systems that we use in the
remainder of this book will be of the PFS variety, so we shall drop the qualifier
“PFS” most of the time.

LEMMA 4.8.2. [Shift Lemma for Conversion Systems] Let (M, y,Q,C,R) be a
conversion stage. Let E be an extender over M such that crit(E) < p~ (M), and let

_JAE) if E is not of plus type,
JAE )41 ifE is of plus type.
Let E* be an extender over R, and ¢: dom(E)Uv — dom(E*) Ulh(E*) be such
that
(i) (a.X) € E if (9*(a),9(X)) € E*, and
(ii) @ [dom(E) = y [dom(E).
Leti= i’};” and i* = i’g* be the ultrapower embeddings, and assume that Ult(R,E*)

is wellfounded. There is then a nearly elementary map o: Ult(M,E) — i*(Q)
given by'°

M R
o(la,flg) = [@(a), w(f)]E--
for all functions f used in Ult(M, E).">' Moreover
150The definition of & can be understood either by means of reducts, or by letting w(f%) = fgw(q)

for 7 € sky and g € M.
151The relevant functions are the boldface erM functions, where k = k(M).
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(@) olv=0]v,

(b) coi=i*ovy, and

(¢) (UW(M,E),o,i*(Q),i*(C),Ult(R,E*)) is a conversion stage.
(d) Forallx € Q, x € ran(y) iff i* (x) € ran(0)).

PROOF. This is a routine adaptation of the proof of Lemma 3.3.2. Let k =
k(M), R=Ult(M,E), and S = i*(Q). The additional thing we must show is that
(Wi (R)) = W (S). But this follows from the preservation properties of ,i*, and

<9

_|

Remark 4.8.3. The proof of 4.8.2 is simpler than the proof of 3.3.2 because the
notion of near elementarity has been simplified. 3.3.2 required the hypothesis that
E is close to M, whereas 4.8.2 does not. The hypothesis came up in the proof that
the copy map o satisfies part (b) of Definition 2.5.14, concerning the relationship
between 1;_; and p;. The new definition of near elementarity replaces 7 by T
in this context. k-ultrapower maps preserve fj; but may not preserve 1, so this
replacement simplifies things.

Now suppose that ¢ = (M, y,Q,C,R) is a conversion stage,'>? and 7 is a plus
tree on M. We define a conversion system lift(7,c) that lifts 7 to a nice, quasi-
normal tree 7* on R. The definition is quite close to that in Section 3.4, so we
shall skip some of the more detailed calculations done there. The dropping case in
the inductive construction simplifies a bit because our new resurrection maps are
simpler. If Eg; is of plus type, then the agreement between the lifting map at stage
o and later maps is better now. (This is the motivation for plus trees.) On the other
hand, if EJ is of plus type, then the lifting map at & + 1 will map A (E/ ) strictly
below 1h(E] "), with the result that 7* may be only quasi-normal.'>> Beyond these
features, there is nothing new.

We shall use the same notation that we used in Section 3.4. So lift(7,¢c) =

lift(7,y,M,Q,C,R), and
lift(7,¢) = (T, (ca | & <In(T))),

where ¢ = ¢g, and ¢ = (Mg, Wo, O, Ca, Re) s @ conversion stage. As before,
we also write

hft(Tv V/,M,Q,C,R) = <T*’ <QO¢ | a< lh(T)>7 <‘I/a | < lh(T)>>7

since cg, is determined by the data displayed. The recycled notation should cause no

152That is, a PES conversion stage.
153See Remark 4.8.4.
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trouble, because from now on we shall not be dealing with premice, constructions,
and conversion systems in the sense of Chapter 3.
Our first two induction hypotheses are the same as before.

(1)¢ (@ T*la+1is anice, quasi-normal iteration tree on R with the same tree
order as T,
(b) forall v < a, ¢y is a conversion stage, moreover, M, = MVT, R, = M:,r*,
andC, = if{f,((C).

The lifting maps commute appropriately with the embeddings of 7 and 7.
Drops in model in 7 are mirrored by drops in the construction at the background
level. Letting i¢ , = ig—,v and i’év = lg—i
(2)a Let& <7 v < a; then

@ Qv <c, i, (Q),

(b) (&, V]r drops in model or degree iff Oy <c, iz_v(Qé)’ and

(¢) if (&,Vv]r does not drop in model or degree, then O, = it ,(Q¢) and
Yy Oié,v = l'g’v o W§

Having defined lift(7 [ v+ 1,¢), where v+ 1 < Ih(T), we are given E, by T,

and we set
Hy =y (Ey),
Xy = Qv| lh(Hv)a
GV = GQV [XVKHV)a
YV = ReSQV [Xv],
Gi =B%(Gy).

Here oy, [Xv] is the resurrection map of C,. E,; is on the sequence of My, but is
of course different from Ey if the plus case occurs at v. Hy is on the sequence of
Qv, and is the last extender of X,,. Its complete resurrection Gy is the last extender
of Y,,. We let

E] =G,
Notice that
A(Gy) <1h(Gy) <1h(G}) < A(GY).

The v, will agree with one another in a way that lets us keep the conversion
going. The agreement involves generator maps resy € Ry, defined when v+ 1 <
1h(7), that connect the generators of Hy to those of Gy and Gj. These are defined
just as in Section 3.4:

resy = O, [XV]CV,
so that

resy: Xy — Y.
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Let &, = €(Ey), that is

e — Ih(E,) if Ey is of plus type,
") A(E,) otherwise,

and let
&y = unique & such that ¥, = Méc,‘(’).

Since 7 is a plus tree, if v < y then &, < &y, and if the plus case occurs at some 1)
such that v <1 < 7, then &, < g&.

3)a If v <y < «, then
(@) resyoyy [&y = Yy [ &y,
Ry _ R
®) Viniaz) = Vs
Cy . .
(©) Cy & =Cylé&y, and Megvy,o is passive,
(d) Yv||0(Yv) - leO(Yv), and
(e) o(Yy) is a cardinal of Qy, and o(Yy) < p~(Qy).
Notice that the agreement recorded in (a) is better when the plus case occurs at
v, so that &, = 1h(Ey ). In this case the maps actually agree on lh(Ey) + 1. If the
plus case does not occur at v, then resy oy, and y, disagree at &, = A (Ey).

(4)q If v < y < a and the plus case occurs at Vv, then resy oy (&) = Yy (&y).

(5)q If v < ¥ < a and the plus case does not occur at v, then

(@ A(Gy) < yy(ey), and
(b) A(Gy) is acardinal of Qy, and A(G}) < p~(Qy).

Notation: (1) is the conjunction of (1) through (5).

()« involves objects that are associated to lift(7 [ @ + 1,c¢). Objects that are
associated to E (such as Hy and G) do not play a role in it.

The step from o to & + 1 in the conversion process goes as follows. E, deter-
mines Hy = Yo (Eq), resq, etc., as above. Let

(E7H7X,Y7G7G*) = (Ea,Ha,Xa,Ya,Ga,G:;),
and
B =T-pred(oc+1).

We shall apply the Shift Lemma for Conversions with ¢ = resy oYy, as the embed-
ding of E, | €, into G*. Notice that if E is of plus type, then resy oy, embeds E
into GT, and since Cy, is good at (Ih(G),0), G* backgrounds G™.

Here are some elementary consequences of ().
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CLAIM 1. Assume (1)q, and let v <y < a; then 1h(Gy) < A(Hy), and
(a) if Ey is not of plus type, then A(Gy) < A(Hy), and resy [A(G}) + 1 = id,
(b) if Ey is of plus type, then resy [1h(Gy) + 1 = id,
(c) Yyllo(Yy) =Yylo(Yy),
(d) & < 5)/'

PROOF. Suppose first that Ey, is not of plus type. Then

A(GY) < wy(A(Ev)) < wy(A(Ey)) = A(Hy).
The first inequality comes from (5)¢. But 1h(Gy) < A(GY), so Ih(Gy) < A(Hy).
Also, A(Gy) < p~(Qy) by (5)a, so resy = 0q,[Xy] is the identity on A(Gy) + 1 by
Lemma 4.7.13(d). Thus we have (a) of the claim.
Suppose next that Ey is of plus type. Then Ih(Ey) < A(Ey) by the rules of plus
trees. So

Ih(Gy) = Yy (1h(Ev)) < Wy(A(Ey)) = A (Hy).
The first equality comes from (4)4. Also, Ih(Gy) < p~(Qy) by (3)a, so by Lemma
4.7.13(d), resy = 0q, [Xy] is the identity on 1h(Gy) + 1. This proves (b) of the claim,
and we have shown 1h(Gy) < A(Hy) in both cases.

For (c): we have Yy||o(Yy) = Qylo(Yy) by (3)a. But o(Yy) =1h(Gy), so we
have just shown that o(Yy) < o(Xy), and resy is the identity on o(Yy). Hence
Yy|lo(Yy) = Yylo(Yy).

For (d): Cy [ &, = Cy [ &y has last model Yy||o(Yy). Since Ih(Gy) < A(Hy) <
1h(Gy), &y # &y. If &y < &y, then since the last model Yy||o(Yy) of Cy | &, is not an
initial segment of Yy ||o(Yy), there is k < o(Yy) such that x is a cardinal in Y, but
not in ¥y. (Take k = p™¥7, where p is the smallest projectum associated to a stage
of Cy between &, and &,.) This contradicts (c). -

Let us show that we obtain a quasi-normal extension of 7* [ & + 1 by setting
B =T*pred(a+1). Let

K = crit(E),
K* = crit(G) = resq oWy (K).

CLAIM 2. (1) Suppose y < o then
(a) 1h(G}) <1h(G"), and Ih(G}) <1h(G") if Ey is not of plus type.
(b) Kk <A(Ey) iff k* <1h(Gy).

(2) T* o+ 2 is quasi-normal.
PROOF. If E, is not of plus type, then
Ih(Gy) < A(G)) <A(H) < A(G) <1h(G),
by Claim 1(a). If E is of plus type, then Ih(E,) < A(Ey), so
lh(G'y) = llfa(lh(E'y)) < reS(x Oll/(x(x(Ea)) - )u(Ga).
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Let n =1h(G}). By 4.7.7, in Ry, 1 is the least strongly inaccessible such that

A(Gy) < 1n and VT < éy(lh(FTCY) < n). Our agreement hypotheses (3)4(b),(c)
imply that in Ry, 1 is the least strongly inaccessible such that A(Gy) < 1 and
VT < éy(lh(FT(C“) <M). But A(Gy) < A(Gg) and &y < &g, and in Ry, 1h(G*) is
the least strongly inaccessible u such that ¢ < p and V7 < ‘ﬁog(lh(Ft(C “)y< ). It
follows that n < 1h(G*), so again we have (1)(a).

Remark 4.8.4. The argument of the last paragraph does not seem to give lh(G;*,) <
lh(Gy,) when Ej, is of plus type. This is why we must allow 7 to be merely quasi-
normal.

For (1)(b), suppose first k < A(Ey); then resyoyy (k) < A(Gy), so Wu(Kk) <
A(Gy) by (3)a- Butresq [1h(Gy) = id by Claim 1. So k* < A(Gy) <1h(Gj), as
desired.

Suppose next A (Ey) < k and Ey is not of plus type. Then Wy (A(Ey)) < Wu(x),
S0

A(Gy) < Wa(k) <resqoyu(k) = K,
as desired.

Suppose finally A (E,) < k and Ey is of plus type. By the rules of plus trees,
lh(Ey) < k. So

Ih(Gy) = resyoyy(Ih(Ey)) = W (lh(Ey))
<resq oWy (k) =K".

By part (4) of Lemma 4.7.7, C; [ &y € V,ff‘. But x* is measurable in Ry, and
lh(G;) is the least inaccessible 7 in Ry, equivalently Rg, such that Cy [ &, € V.
It follows that 1h(G}) < k™, as desired. =

CLAIM 3. (a) resq oYy [€(Eg) =resgoyp [€(Ep).
(b) Ifa+1¢ D7, then
(i) wgdom(E)+ 1= yy [dom(E)+1, and
(ii) resg and resq are the identity on Wg(dom(E)+1).

PROOF. For (a): this is clear if f = a, so assume < a. Then (3), implies
that yy agrees with resg oy on €(Eg). By (e) of (3)q, 1h(Gg) < p~(Qq), s0
by Lemma 4.7.13(d) we get that resy is the identity on Th(Gg), and hence on
v (e(Ep)). This yields (a).

For (b): Note that dom(E) < i(Eﬁ), so yg(dom(E)) < i(Hﬁ). Since we are
not dropping in 7, E is total on Mg and dom(E) < p~(Mp), so since g is
nearly elementary, yg(dom(E)) < pi(Qp) and yg(dom(E)) is a cardinal initial
segment of Qg. Thus for n = n(Qp,Xp), Yg(dom(E)) < k,(Qp,Xp). So by
Lemma 4.7.13(d), 0g,[Xg] [ wp(dom(E)) =id. If B = a, we have (b)(ii). If
B < @, then resy is the identity on 1h(Gg), as we saw in the last paragraph. But
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yg(dom(E) +1) < ﬁ,(G[g). Thus we have (b)(ii) in either case. From this and (a)
we get (b)(). —
We define Yy 11 and Qg1 by cases.

The non-dropping case. o+ 1 ¢ D7 .

We are in case (b) of Claim 3. So yy, agrees with yg on dom(E), yg(dom(E)) =
dom(H), and res is the identity on dom(H), so that dom(H) = dom(G). This
means we can apply 4.8.2, the Shift Lemma for Conversions, with its inputs being
(Mg, wg,0p,Cp,Rp) and ¢ = resq oYy That is, we set

Qat1 = iz,aﬂ (Qﬁ)

and for a € [g4)<® and appropriate f,'>*

M, R
Yo+1 ([aaf]Eﬁ )) = [resq oy (a), Vg (f)]GE .
Since G* backgrounds G, this makes sense even if E is of plus type. By Lemma
482, (My+1,Wat1,0a+1,Cat1,Ra+1) is a conversion stage.
We have the diagram
Va1

Mgy - Ult( Qﬁ, — T Qa+i

|, A

My — " 0

Here o is the copy map, 7 is the factor map into the larger ultrapower using all
functions in Rg, and Yy =ToO.
Let us check that our induction hypotheses continue to hold.

CLAIM 4. In the non-dropping case, (1)g+1 holds.

PROOF. We have already verified (1) of (1)g41. The commutativity condition
(2) is easy based on the diagram above.

Let us now check the agreement hypotheses (3) 1. Wo1 agrees with resy oWy
on g by the Shift Lemma. If v < o, then (3), implies that res, oy, agrees
with Y, on &,, and hence with resy oy, on &,. Thus res, oy, agrees with Yy
on &gy, as desired. So we have (a). Clause (b) is a simple consequence of the
quasi-normality of 7 [ a + 2.

For (¢), it is enough to show Cy [ € = Cyaq [ €y, and sz “61 is passive, since

the rest of (c) then follows from (3)q(c). But letting D = iG* (Cq), Cqlla=D&g

B4 et My 1 = Ul (M, ,E), where k = k(Mpg). As usual, the appropriate f are those that are rZ‘.;:/hs
in some g. g (f) is defined over Qg from wg(gq) via the same rX; formula.
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and Mgo is passive, by Lemma 4.7.7. Thus we are done if B = o, so assume
B < o. This implies k* = crit(G*) < 1h(Gp), so k* < &g, s0 Cp [ k" = Cq [ K7,
$0 Cyt1 ligr (K*) =D ig-(k%). But & < ig+(K*), so we are done.

For (d), it is enough again to consider the case v = ¢, since the case v < « then
follows from (3)¢. So we must show that Yy ||0(Yy) = Qa+1|0(Ye). By 4.7.7, this
is true if we replace Qg1 With ig«(Yo). But Qg|k* =Yg [ k" = Qq [ K" =Yy [ K*
by Claim 3. Since o(Yy) < ig+(x*), we get (d). The same proof shows that o(Yy)
is a cardinal in Qg+ 1.

For (e), note that k* < p~(Qp), so A(G*) < p~(Qa+1). Hence o(Yy) <
P~ (Qa+1), and we just observed that it is a cardinal in Qq;. This gives us
(3)a+1(e) when v = ¢, and the case v < « then follows because o(Yy) < 0(Xy),
o(Yy) is a cardinal of Q, and resy [0(Yy) + 1 = id.

(4)a+1 and (5)g+1(a) follow at once from the Shift Lemma for conversions.
(5)a+1(b) holds for v = o by the argument of the last paragraph. The case v < &
then follows because A(G}) < 0(Xy), A(Gy) is a cardinal of Q, and resq is the
identity on A(G?3). -

The dropping case. a+1 € D7
LetJ = MZ’L, so that J << Mg and
Mgy =Ult(J,E),
and let
K =vyg(J).
Here if / = Mg | n, then we understand K to be Qg | n. The conversion stage that

we shall move up to cg+1 via ig’i is
d={J, Oqg [K]o WﬁaResQﬁ [K],(Cﬁ,R[;>.

In order to do that we must see that resq oYy agrees with 6, [K] o yg on dom(E).
But resq oY agrees with resg oyg on dom(E), so it is enough to show

CLAIM 5. resg agrees with 0o [K] on dom(H).

PROOF. Since 7 is maximal, J is the first initial segment of Mg past lh(Eg)
with projectum p(J) < crit(E). Since Y is nearly elementary and J </ Mg,
vg(p~ (/) = p~ (K).

Moreover, VR[Mg|lh(Eg) IR <J = dom(E) < p~(R)], so Lemma 4.7.10 then

implies that oo, [K] agrees with 6o [Xp] on dom(H )™XB . This is what we want.
_|
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By the Shift Lemma for conversion stages, letting

Yarr ([a. f1£) = [resa oY), Go, [K] 0 W5 (H)]ch

and
Qa1 = igr (Resg, [K]),

we get the next conversion stage cq- 1. The induction hypotheses (f)q-1 are easy
to verify.!5

This completes the successor step in our inductive definition of 1ift(7,c). Now
suppose 7 is a limit ordinal < Ih(7). We define 7* [ v+ 1 by setting [0, 7|7+ =
[0,7]r. If this results in M}T* being illfounded, then we stop the conversion. So
suppose that MT is wellfounded. Induction hypothesis (2) then tells us that
D7 N[0,y)r is finite. Let o <7 7 be large enough that D7 Ny C a. By (2) we
have i (Qa) = Q¢ forall § € [a, 7). We set

Qy = ia,y(Qa),
and define v, : My — Q, by letting

Wy (if () = iz (We (x))
for all & € [et,y)r. By (2), yy is well-defined. It is now easy to check that (1),
holds.

DEFINITION 4.8.5. Let ¢ = (M, y,Q,C,R) be a PFS conversion stage, and let
T be a plus tree on M then

(1) 1Lift(7T,c) = (T, {ca | & <1nh(T))). is the conversion system defined above.
We write 7* = 1ift(T, c)o for its tree component, and C¢ = i()T 2 (©).

(2) resg (T ,c) =resg = 0g, [Q¢ | Th(ye (Eg))]cé. We call res; the &-th genera-
tor map associated to lift(7 ,c).

(3) stg(T,c,a) = (Py, Wa,Qa,Cy, Ry) is the conversion stage ¢ occurring at
« in the construction of lift(7, ¢).

We may sometimes display the components of the conversion stages by writing
lift(7,M, y,0,C,R) = (T",(Q¢ | § <Ih(T)), (g | § <In(T))).

DEFINITION 4.8.6. In the special case of 4.8.5 that M = Q and y = id, we set

lift(7,M,C,R) = lift(T,M,id ,M,C,R).
We also let
1ift(7,M,C) =1ift(T,M,C,V)

Wen p(K) < crit(H). But s is possible that J = Mg and dom(H) < p(K) =p~(Qp)-
In that case, setting Qq+1 = i*(Qp) instead of Qg1 = i*(K) would give a superficially different

conversion system. We believe that because PFS resurrection maps are consistent with one another, this
other system would be equivalent to the one we are defining.
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in the case that R = V (the universe of all sets).

Induced strategies

We define induced strategies just as in Chapter 3. Suppose that c = (M, v, Q,C,R)
is a conversion stage, and that X* is a (G,F C) iteration strategy for the background
universe R; then £* induces a complete O-iteration strategy X for M as follows: for
T aplus tree on M,

T isby L < lift(T,c)p is by L*.
We write
r=Q(c,X")
for this induced strategy. When M € lev(C), we set
Q(C,M,R,X*) =Q({M, id,M,C,R),X").

We write Q(C,M,X*) when R can be understood from context. We may occasion-
ally use the notation lift(7",c,X*) for the largest initial segment of lift(7,c) that
is by X*. So T is by Q(C,M,X*) iff lift(7,c) = lift(T,¢,X*). We have shown
above that the lifted tree 7* is quasi-normal, so £* need only be defined on nice
quasi-normal iteration trees.

If X* is defined on stacks of quasi-normal trees, of any length, then we can
extend the lifting process and the induced strategy X for M so that it is defined on
stacks of plus trees of the same length. For example, let

= <M7 w? Q’C’R>

be a conversion stage, and * an (7, 0,F C) iteration strategy for R, where n > 1.
Let Q = Q(co,X*), and T be a plus tree on M by Q having last model M, and let
N <IM] . We get a tail strategy for plus trees on N as follows. Letting

Stg(T7c7 a) = <M067 lIth QOC7(COC7R(X>7

we set

d=(N, 0Qq [Wa(N)]o Vo, Resg, Wa(N)],Ca,Ra),
and define the tail strategy Q7 5 on plus trees of length < 6 by
Uisby Qrn <= lift(Ud,d)o is by 27 g,

where T* =1ift(T,c)g. Clearly we can continue this process so as to define a tail
strategy Q7 n /. p, for any P that is an initial segment of the last model of ¢/, and
SO on.

DEFINITION 4.8.7. Letc = (M, y,Q,C,R) be a conversion stage, and let ¥* be
a (A, 0, FC)-iteration strategy for R; then Q(c,X*) is the complete (A, 8)-iteration
strategy induced by X* as above.
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Again, when M € lev(C) and R can be understood from context, we write
Q(C,M,x*) =Q((M, id,M,C,R),X")

We shall show in Corollary 5.1.4 that all strategies induced by C and L* are
pullbacks of induced strategies for levels of C. For now, notice

LEMMA 4.8.8. Let ¢ = (M, id,M,C,R) be a conversion stage, let ¥* be a
(A, 0, FC)-iteration strategy for R, and let N <\M; then

Q(C,M,x*)y = Q(C,Resy[N],x*) oV

PROOF. This is immediate from the definitions. Q(C,M,¥X*)y is the tail of
Q(C,M,x*) after the empty tree followed by a drop to N. The only model in the
empty tree is M, the lifting map is ¥ = id, and the new background universe and
construction ID are the same as the old ones. So by definition

Q(C, M, ")y = Q(D,Resy[N], (£¥)) NV — Q(C, Resy [N], £*) MV,
4|

Mild positionality makes perfect sense in the context of plus trees on pfs premice:

DEFINITION 4.8.9. Let Q be a (A, 6)-iteration strategy for a pfs premouse M;
then Q is mildly positional iff
(a) Q= Qy, and
(b) whenever s is a stack by Q and P IN <IM.(s), then (Qn)p = Qs p.

Because our resurrection maps are consistent, we get

LEMMA 4.8.10. Let c = (M, m,Q,C,R) be a conversion stage and let ¥* be a
(A, 0, FC)-iteration strategy for R; then Q(c,X*) is mildly positional.

PROOF. Let A = Q((Q,id,Q,C,R),L*). By 5.1.4, Q(c,X*) = A™. Mild po-
sitionality is preserved by pullbacks, so it is enough to show that A is mildly
positional. We prove (b) in the case s = 0; the general case is the same.

Let PN <SQ, Ni = Resg[N], P =Resg[P], and let6: N — N and 7: P —
P; be the two resurrection maps. Let ¥ and & be the strategies for Ny and P
induced by C and X*. Let 8 = oy, [t(P)] resurrect T(P) from N;. By resurrection
consistency, 6 maps into Resy, [7(P)] = P, and

oc=0or.
Thus
(An)p = (Pe(p)"
— ((I)G)T
= Ap.
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In our case of interest, the background universe strategy X* chooses unique
wellfounded branches. It follows from Lemma 4.4.12 that X* does not distinguish
between a nice tree 7 and its normal companion 7™, 136 If FC is coarsely
coherent, then by Lemma 2.9.12, 7™™ is then the unique normal FC.tree with last
model MT™™.

In general, we won’t assume that FC is coarsely coherent. Also, 1ift(7, ¢)o may
fail to be normal, and in general, quasi-normal iterations are not determined by
their last model, because one can insert delays. We do have a uniqueness lemma,
however.

DEFINITION 4.8.11. We say that (Fy | @ < 0) is mildly coherent iff for all
o<6

(1) Fg is a nice extender,

(2) o < B < 8= 1h(Fy) <lh(Fp), and

3) ir,(F)lo=Fla

It follows at once from Lemma 4.7.7(1) that if C is a maximal PFS construction,
then the sequence (F | (v,0) < 1h(C)) of background extenders it actually uses
is mildly coherent. We do have

LEMMA 4.8.12. Let F be mildly coherent in M, and let ¥ be an F-iteration
strategy for M; then for any N, there is at most one quasi-normal F -iteration tree
played according to ¥ whose last model is N.

PROOF. Let 7 and U be distinct such trees. Suppose that 7 [B+1=U [P +1,

but G # H, where G = Eg— and H = El%’ Both G and H are taken from i(ﬁ), where

i =iy =ifs. Say G occurs before H in i(F), or equivalently, In(G) < Ih(H).
Then G € MZEH’ so G € N because U is length non-decreasing. But G ¢ N
because G ¢ MI73—+1’ and 7T is length non-decreasing. -
It follows that if ¢ is a conversion stage whose construction is C, and 7T is by
Q(c,Z*), then Lift(7, ¢)g is the unique quasi-normal FC-tree having the last model
it has, and played by X*.

4.9. Backgrounds for plus extenders

PFS constructions can break down by reaching some My, ; such that either M, ;
is not solid, or its last extender is not unique, or its last extender F is not properly
certified, in that F* does not certify F+. Granted iterability assumptions, we can
prove none of that happens. In this section, we rule out the last possibility, and in
the next two sections, we rule out the others.

156We could have defined our conversion systems so that 1ift(7",¢)o is always normal, but the price
would be that 7 and lift(7", ¢)o might have different lengths, which would be a nuisance.



172 4. MORE MICE AND ITERATION TREES

It might seem that we could define away the last problem, by simply restricting
our attention to constructions in which F* always certifies F . The trouble with
that approach is that such background constructions may not produce enough mice.
Our existence proofs for pfs mice, and later for strategy mice, would all have a
gap.'>7 Proposition 3.1.9 implies that the requirements on certificates in Section
3.1 do not restrict the certified extenders in any way that matters for the existence
theorems in this book. Theorem 4.9.1 says that the requirement that E* background
E™ is also not restrictive, because in fact it follows from the other requirements.

THEOREM 4.9.1. Let C be a maximal PFS-construction, and assume that V
is countably FC-iterable. Let v be an extender-active stage of C, let MS{O =
(M<V,F), and let F* = FL be the certificate for F; then F* N ([Ap + 1]<¢ x
M<V)=F¥, and Ih(F) is a cardinal of i}..(M).

PROOF. The proof resembles the proof of closure under initial segment in
Section 10 of [30]. Let F* = F; be the certificate for F' in the construction C,
where F is the last extender of M = MEO. Let x = crit(F) and

and let
_ JEgIh(F) if Ih(F) = ¢ (k™M)
— E¢ [‘lh(F)+1 iflh(F) < ¢(K+,M),

N = Ul(M, G)||(A )G,

One of our goals is to show that In(G) = 1h(F) = o(N). Since Ar < Ap+, AF is
a generator of Ey, a limit cardinal of N, and the largest cardinal of N. 1h(F) is
the next potential generator of Ey, and it is a generator iff 1h(F) is not a cardinal
of iY..(M) iff In(F) < o(N). The factor embedding from Ult(M, G) to ip+ (M) has
critical point > o(N), so N <y ip=(M). For all we know at the moment, 1h(F) may
be an active stage in NV, but by Lemma 4.7.7(2), it cannot index F in N.

For ) < k™M, the fragment G;, = GN ([Ar U{Ar,Ih(F)}]<® x M|n) belongs
to N, by the usual Kunen argument.'>® The Gy, are constructed cofinally in o(N),
so we can code G by a predicate G that is amenable to N. (See [30, p.13].)

For any extender H over some M and 1) < lh(H), let us write

Y(H, M) = ()M,
We care about the case that H [ 1) is whole, so that Y(H,n) = ig | (dom(H)).
The following facts are captured by first order sentences in the theory of (N, G):
(*) There is a largest cardinal v, moreover

157 A new gap, beyond the lack of a general iterability theorem.
58 et f: k — M|n and f € M. Then ig(f) € N, and for a € [Ar U {Ar,Ih(F)}]<® and o < K,
(a,f(a)) eGiffacic(f)(a).
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(1) vis alimit cardinal, v = A(G [ V), and Vv is a generator of G,
(2) v is not measurable by the Ult(N, G)-sequence,
(3) letting y = y(G, V), it is not the case that Y < o(N) and E{,V is the trivial
completion of G [ v.
Clause (2) holds because F* is A-minimal. Clause (3) holds by Lemma 4.7.7(2).
Let us call a structure satisfying the sentences that capture (*) a pseudo-premouse.
If (P, B) is a pseudo-premouse, then

v(P,B) = largest cardinal of P,
G(P,B) = extender over P coded by B,

and

Y(P,B) = Y(G(P,B),v(P,B)).
Let also
F(P,B) = Jensen completion of G(P,B) | V(P,B).

Thus y(P,B) = Ih(F(P,B)).

If (M,A) is another pseudo-premouse, then we say that (P,B) is an initial
segment of (M,A) iff P = M||o(P) and G(P,B) = G(M,A) [o(P).

Our goal is to show that G = F* [1h(F). Let us say that a pseudo-premouse
(P,B) is bad iff G(P,B) # F(P,B)" | y(P,B). Thus our goal is to show that (N, G)
is not bad. If y(P,B) < o(P) then (P,B) is bad, and if (P, B) = o(P) then (P,B) is
bad iff G(P,B) # F*.

(N, G) also has an iteration strategy ¥ that we get from C. Along non-dropping
branches of an iteration tree 7 on (N, G) the ultrapowers taken are all £ ultrapow-
ers, so the canonical embeddings are cofinal and ¥ elementary.

CLAIM 0. If (M,A) is a pseudo-premouse, E is an extender over P, and (P,B) =
Ulto((M,A), E) is wellfounded, then
(a) (P,B) is a pseudo-premouse,
(b) y(P,B) = supig“y(M,A),
(c) Y(M,A) = o(M) iff Y(P,B) = o(P),
(d) if (M,A) is bad, then (P,B) is bad.

PROOF. Leti= i, v=v(M,A),and y=y(M,A). iis cofinal and £, elemen-
tary, so i(v) is the largest cardinal of P. Let H = G(M,A) and K = G(P,B). ig
maps dom(H [ v) cofinally into dom(K [i(V)), so ir maps iy y*dom(H) cofinally
into ig ;(y)*dom(K). This gives us (b). Since ir maps o(M) cofinally into o(P),
we also get (c).

(*)(1) and (*)(2) are H(IM’ facts about v , and hence they hold of i(v) = v(P,B).
If y(M,A) = o(M), then y(P,B) = o(P), so (*)(3) for (P, B) is vacuous. Suppose
Y= 7Y(M,A) < o(M). Since E;‘,” [v#K]/v, and this is a E(()M’A) fact about E;,V

and some (a,X) € Egy, we have that EI.I(JY) li(v) # Hi(v), so (*)(3) holds if

A)
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i(y) = y(P,B). But otherwise y(P,B) = supiy < i(y), so cof} (supi*“y) = crit(E)
is a limit cardinal in P, and hence not the index of an extender on the P-sequence.
Thus (*)(3) holds in any case, and (P, B) is a pseudo-premouse.
Finally, suppose (M,A) is bad. If it is bad because y < o(M), then (P, B) is also
bad by (c), so suppose Y= o(M) and G(M,A) # F(M,A)". Let
(a,X) € G(M,A)AF(M,A)",

where a C v(M,A) + 1 is finite and X € dom(G). This is a Z(IM’A) property of

(a,X), so
(i(a),i(X)) € G(P.B)AF (PB)".

Thus (P, B) is bad, as desired. 4

Let us now assume toward contradiction that (N, G) is bad. By the claim, all
non-dropping iterates of (N, G) are also bad pseudo-premice. We may assume
that (N, G) is countable, as otherwise we can just replace (N, G) with a countable
elementary submodel of itself, and X by its pullback under the anticollapse map.
Let € be an enumeration of N in order type ®. By the proof of Lemma 4.6.10,

we may assume that ¥ has the Weak Dodd-Jensen property relative to ¢, in the
following sense:

f If (M, H) is a non-dropping Z-iterate of (N, G) with iteration map i: (N,G) —
(M,H), and (P,B) is an initial segment of (M,H), and : (N,G) — (P, B) is cofinal
and X elementary, then

(a) (P,B) = (M,H), and

(b) for any n, if i(ex) = m(ex) for all k < n, then i(e,) <p m(ey).

Here <p is the order of construction in P.

Now let

Py=0Qo = (N,G),
and

P =Ult(Ry,G | v).

We are going to compare the phalanx (Py,P;, V) with Qg. The resulting tree on
the phalanx we call T, with models Pg = Mg— and the tree on Qy we call U, with
models Q¢ = Mlg The trees 7 and U will be A-tight. At the same time, we lift 7
to a A-tight tree 7* with models Pg , and embeddings 7 : P: — Pé‘. Here mp = id ,
and

Pl =Ult(Py,G),

with 7; being the natural factor map. 7 is cofinal and X elementary, and 7; [V is
the identity, so we can indeed lift 7 by (7, 71 ), the construction being the same
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as the one that produced 77 in §4.5. Since v = igy(k), (V) = ig(k) > v. The
trees 7* and U are according to .

T is not literally an iteration tree on Py, since G | v is not on the Py sequence, but
we shall use iteration tree notation for it. In particular, 0 <7 1, and iOT7 | = iGlv- 159
Notice that v is a limit cardinal in Py, and k(Py) = 0, so that if T-pred(§ + 1) =0,
then Pz | = Ulto(Po,Eg). In other words, we never drop when an extender in 7T is
applied to Py. This means that certain anomalous cases that occur in more delicate
phalanx comparisons do not occur here.'6°

The non-dropping iterates of Py in the trees 7,7 *, and U are all pseudo-premice.
If Py-to-F does not drop, then e is cofinal and X elementary. If Py-to-Fg does
drop, then P; and P; are type 1 pfs premice'®! and 7 is elementary.'62

Py also satisfies the “weak initial segment condition”, in that whenever H is a
whole proper initial segment of G | v, then the completion of H is indexed on the
Py sequence. One of our problems is that the weak initial segment condition can
fail in iterates of Py below the image of v if the iteration map is discontinuous at v.

CLAIM 1. Suppose that [0,E]7 ND”T =0, and let (Q,C) be a pseudo-premouse
that is a proper initial segment of Pg; then there is a proper initial segment (R,D)
ong such that g | Q is cofinal and ¥y elementary as a map from (Q,C) to (R, D).

PROOF. Letn = v(Q,C) and § = 7z (n). Let Pr = (P,A), H = G(P,A) be its
last extender, P; = (P*,B), and H* = G(P*,B). We are given that Q < P and
G(Q,C) =H o(Q). We set

R = P;|[sup 7 “0(Q),
oc=m0,

and

D= |J o(Cna).
a<o(Q)

Clearly o is cofinal and £; elementary as a map from (Q,C) to (R, D), so we just
need to see that G(R,D) = H* [o(R).

G(Q,C) and G(R,D) are determined by looking at the extender fragments
coded by C and D. Let 7y be the largest generator of H [o(Q), that is, ¥y =1 if
Y(Q,C) = 0(Q) and y = ¥(Q,C) otherwise. For B < dom(H), let

Hg =HN([v(PA)~? x P|B),

159(30] calls T a pseudo-iteration tree.

160See Remark 4.10.4.

161Type 1 because this is preserved after a drop in plus trees.

162That the maps are elementary relies on arguments from [42] and [81]. See Lemma 4.5.21. One
could just make do with Lemma 4.5.22 and near elementarity for the 7; at this point.
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and for § < dom(H™*) let
Hp =H"N([v(P",B)]~® x P*|B).
Then for all < dom(H)

e (Hﬁ) = H;(g(/s)’

Moreover, ran(7 ) is cofinal in dom(H*) because [0, ]r does not drop, and iOTé
and i& g are continuous at dom(G). It follows that
U oHgly+1)=Hzlo(y+1).
B<dom(H)
But this just means that G(R,D) = H* [ o(R), as desired. .

The comparison of (Py, P, V) with Qg proceeds by iterating away least disagree-
ments. Let

T — {i&—ﬁ (v) if EBT is coded by the image of G along [0, B]r,
LV (EﬁT) otherwise.

Similarly for eg’ . The normality rules are that T-pred(& + 1) is the least 8 such that

crit(Eg) < sg—, and similarly for /. Notice that in the case that Eg is coded by the

image of G along [0, B]7, crit(Eg) #* i()T B (v) by property (*)(2) of pseudo-premice.

Thus our normality rules do prevent the generators of EﬁT from being moved along

branches where it has been used.

CLAIM 2. The comparison terminates.

PROOF. This is not completely routine, because the weak initial segment con-
dition may fail for iterates of (N, G). Important generators are not moved along
branches, so the usual proof gives us some countable @ and 1 + 1,& + 1 such that

a=T-pred(n+1)=U-pred(§ +1),
and for H = E,,T and K = Eg’, dom(H) = dom(K) and H and K are compatible.
This is impossible unless one of H and K is coded by the image of G along the
branch to its model.

Case 1. [0,n]7 does not drop, and H is coded by the top predicate of P;,.

Letu = ioT, 7 (V) be the largest cardinal of 7). We have that ut is a cutpoint of H, a
generator of H, and for y= y(P,,H) and J = EEMP"’HW), JIW#HU.
Subcase 1A. [0,&]y does not drop, and K is coded by the top predicate of Q.

H # K, because otherwise the comparison was finished before we used them.
Suppose K is a proper initial segment of H, so that Q¢ is a proper initial segment of
Py in the pseudo-premouse sense. ig’ £ is cofinal and ¥ elementary, so by Claim O,
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Ty © ig & is a cofinal, X elementary embedding from P to a proper initial segment
of Pg, contrary to the Weak Dodd-Jensen property of ¥. If H is a proper initial
segment of K, then i&r 1 is a cofinal, ¥ elementary map from from Py = Qp into
a proper initial segment of Q¢, which again contradicts the Weak Dodd-Jensen
property of X.

Subcase 1B. Subcase 1A does not hold.

We then have that Qg |1h(K) is a pfs premouse. If u < Ag, then H [ is a
whole proper initial segment of K, so by the initial segment condition its trivial
completion / is indexed on the Q¢-sequence at y = y(Py ,H). Butthen I = E)? ‘=
EQ“’I = E;)’”‘ = 5" = J, contrary to J | ,u #£H]

Suppose next that Ax < u. Leti= 10 . For any T < v such that G | T is whole,
the Jensen completion of G | 7T is on the N sequence. It follows that for any
T < supi*v such that H [ 7 is whole, the Jensen completion of H [ 7 is on the Py
sequence.'® Since K is not on the Py sequence, we must have

supi“v < Ag < p =i(v).
Thus Vv is singular in N, and since v is regular in N||1h(F) = Ult(N, G [ v)||h(F),
Ih(F) = y(N,G) < o(N).

Let S be the first level of N above 1h(F) that projects to v. For any X C k such
that X € N, we have some 3 < v such that

igv(X) = hs(B, p(S)),

where Ky is the canonical Skolem functlon and p(S) is the standard parameter. This
fact is preserved by i, s0 igy (i(X )) (5)(i(B),p(i(S)))- But this means

i (i(X)) = (( ) p(i(S))) N A

Noting that () < Ak and ran(i) is coﬁnal in dom(H) = dom(K), we see that

Ih(K) € Hull() | (supiv U p(i(S))),
so 1h(K) has cardinality A in P,. But K was used in I/ before we reached Py,
so 1h(K) is a cardinal in the lined up part of P, and hence in P;. This is a
contradiction.

Thus we must have Ax = u. Also
Ih(K) = "0 = o — s — o(py),
so Y(H, 1) = o(Py). Thus Py is bad because
H+#F(H,u)".

163This is very easy if v is a limit of T such that G [ T is whole. If § < v is largest such that G | § is
whole, then one can show that v = sup{ig(f)(a) | f: k¢ — kg Aa € [6 + 1]<®}. This then implies
that there are no 7 such that i(§) < T < supi“v and H | 7 is whole.
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But let / =i, and j =i = be the branch tails. u is not measurable
by the Ult(P,,H)-sequence by (*), so u is not measurable by the sequence
in Ult(Py,H) = Py41, since the two ultrapowers agree to ig(crit(H)). Thus
u < crit(l/) and p is not measurable in Py, . But Py |0 = Qg,|®1, so i is not
measurable by the sequence in Qg, .

On the other hand, u = Ax is measurable by the Q¢ |-sequence. It follows
that E?H is the order zero measure on Ak, and & +1 <y &€ +2 <y @y, so that
K -then-Eé”Jrl is the initial segment of the extender of ig;wl with generators u + 1.

This implies that
H = K-then-EY, |,

so H=F(H,u)", a contradiction.
This finishes our termination proof in case 1.

Case 2. [0,&]y does not drop, and K is coded by the top predicate of M%{ .
This case is completely parallel to Case 1.
This proves Claim 2. =

Now let 6 + 1 =1h(T7) and 7+ 1 = h(l).
CLAIM 3. Py = Qy, neither [0, 0]r nor [0, 7]y drops, and ig?e =i

PROOF. By standard Weak Dodd-Jensen arguments, using of course g : Py —
P; at various points. o

CLamM 4. 1<y 6.

PROOF. Suppose not. Let +1 <7 6 with T-pred(n+1)=0,andE +1 <y 7
with U-pred(§ +1) =0. Let H = EnT and K = Eé’ We reach the same contradic-
tions we reached in the proof that the comparison process terminates. -

By Claims 3 and 4, i%{_r is not the identity, so 7 > 0. Let £ +1 <y 7 and
U-pred(§ +1) =0, and let K = Eg’; then

Klv=G|Vv=F]|Ar.
(It is easy to see Vv < Ag.) Now P|lh(F) = Ult(M,F)|1h(F) = M||1h(F), and
Qo||1h(F) = M||1n(F) by the properties of F* recorded in Lemma 4.7.7. We were
iterating away disagreements, so 1h(K) > lh(F). But K # F, since otherwise F is
on the sequence of Qy = (N, G), contrary to (*)(3). Thus 1h(K) > Ih(F), and K is
not an ordinary extender on the Q¢ sequence, as otherwise the Jensen completion
of K| v, which is F, would be on the Qg sequence, and hence on the Qg sequence.

It follows that K is coded by igf £ (G). We claim that & = 0. Suppose not. Since
crit(K) = & = crit(G), crit(if ;) > k. Suppose first that crit(iff ;) < v. If there is
a B such that crit(ig{ 5) < B < vand G|f is whole, then since G had the weak
initial segment condition below v, G[ B € Qg, so K Figfé (B) e Qg, 50K [V e Qe,
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contradiction. Thus § < crit(igf 5), where 3 is largest such that G [  is whole. As
above, this implies that K [y is not whole for all ¥ € (3, sup io,g“")’ so K ['v is not
whole, contradiction. Thus v < crit(igf 5)' But v is the largest cardinal of Qg and
[0,&]u ND¥ =0, so crit(iff ;) > v is impossible.

It follows that & =0, and K = G. Note that crit(i{ ;) > v and crit(ife) >V, 50

vl = pylvtPe = g lvt e = 0| |vTP =N,

Thus 1h(F) = ¥(G, v) = o(N), and the badness of (N, G) consists in the fact that
G#F™.

v is not measurable in Ult(Qo,G), so V is not measurable in Py. But Vv is
measurable in P;, so E ]7— must be the order zero measure on v. By the rules of 7T,
it is applied to P;, and since it has order zero, the fact that 1 <7 6 implies 2 <7 6.
Thatis, G | v-then-ElT is an initial segment of the extender of i&— g- But Gis an

initial segment of the extender of il(;ff = iOT7 g» SO
G = G| v-then-E[ ,

so G is of plus type, contradiction. 4

4.10. Solidity in PFS constructions

We begin with some consequences of amenable closure for stability and projec-
tum solidity in PFS constructions. The proofs here are identical to the proofs of
the corresponding facts in Theorems 3.7.1 and 3.8.2.

LEMMA 4.10.1. Let C be a maximal PFS-construction and M = MC,, where

v,k
0 <k < w. Suppose that 'V is countably FC.iterable; then

(1) pr+1(M) is not the critical point of an M-total extender on the M sequence,
and

(2) if prr1(M) < n}:”, then n,i” is not the critical point of an M-total extender on
the M sequence.

PROOF. The amenable closure argument for part (1) of Theorem 3.7.1 goes
over verbatim, and yields (1) above. The proof of Theorem 3.8.2 yields (2), but
let’s go through it again.

Let p = p,, n =n¢, and assume toward contradiction that p < 1 and 7 is
measurable in M. By part (1), p < 7, and since M is a pfs premouse, 1 < px(M).

We claim that 17 is measurable in V. For let E be a total-on-M extender from the
M sequence; then

ou|[M|1h(E)] [dom(E) = id,
because dom(E) is a cardinal of M and p~ (M) > dom(E). (See Lemma 4.7.5.)
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Thus the background extender B (E) has critical point 7, and 7 is measurable in
V.

But then cof” (p;(M)) = 1. On the other hand, cof” (p;(M)) < p, because the
new Z’l"’k subset of p generates a partial Ejluk map from p cofinally into o(M*).
This is a contradiction. =

As we saw in Section 3.7, the remaining clause in projectum solidity, concerning
the relationship between &(M) and €(M), is a corollary to the proof of parameter
solidity. The proof of parameter solidity is essentially the same as that in [30], but
there are new problems that arise from the fact that ultrapowers of type 1 premice
can have type 2. Our solution to these problems is constrained by the need to
generalize it to a proof of parameter solidity for strategy mice.

If M is strongly stable, then the issue of type 2 ultrapowers does not arise, and
our proof is essentially the same as that in [30, §8]. We begin with this case.

LEMMA 4.10.2. Let M be a strongly stable, countably iterable pfs premouse of
type 1, and k = k(M); then
(a) M is parameter solid, and
(b) if prs1(M) is not measurable by the M-sequence, then M is projectum solid.

PROOF. The proof is based on comparing phalanxes of the form (M, H, o) with
M. M is strongly stable, so soundness in plus trees on M behaves according to the
familiar pattern of 4.4.6 and comparison works as in 4.6.6. All models are type 1,
and all branch embeddings are exact.

We wish to prove that M satisfies certain sentences, so we may assume that M is
countable. By Lemma 4.6.10 we can fix an enumeration € of M and an (®;, ®; + 1)
iteration strategy ¥ for M with the Weak Dodd-Jensen property relative to €. Let
k=k(M), and

p = p1(M") = pr1 (M),

r=pi1(M*) = pry1 (M).
We choose € so that r = {eg, ...¢; }, where ey > e] > ... > ¢;. Let g be the longest
solid initial segment of r in this decreasing enumeration, and let

r=sUgq,
where either s = 0 or max(s) < min(g). Let
op = least B such that Thﬂ”k (BUgq) ¢ M.
= least 8 such that Thy, | (BUq) & M.

We may assume that oy € M*, as otherwise r = 0 and & = i1 1 (M) = pr(M), in
which case the theorem is trivially true. If 7 is solid, then &y = p+1(M). Let

H = cHull | (0 Uq)
= Dec(cHull (0 Ug)),
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and let

n:H—-M

be the anticollapse map. Note that k(H) = k(M) = k, and & is elementary by the
Downward Extension Lemma.!%* Part of elementarity is that 7z(wi(H)) = wi (M),
which is true because M* has a name for wy(M). Since #(n) =nM and M is
strongly stable, H is strongly stable.

CLAIM 0. (a) Ifg=r, then p = .
(b) If g+, then w # id, and p < o < crit(m) < max(s).
(¢c) H = o is a cardinal.

PROOF. (a) is clear. For (b), let

Mk
W = cHull, ° (max(s) Ugq)
be the solidity witness for ¢ U {max(s)}. We are assurmng W ¢ M. This implies

k
that Thlluo (max(s)Ugq) ¢ M. [Proof: Suppose T = Th (max( )Ugq) is in M. Note
max(s) is a cardinal of W, and max(s) = crit(y), where v: W — M§ is the anti-
collapse. So T € M|y (max(s)), and M|w(max(s)) = KP. So W € M|y (max(s)).]
Thus o < max(s). But then if max(s) < crit(x), then max(s) = h! (ﬁ q) for
some 8 < a, which easily 1mpl1es that r is not minimal in the parameter order

among parameters defining a new X, 5 subset of p. So o < crit(7) < max(s).

We have p < o because 0therw1se p(M) = q. So we have (b).

(c) is clear if oy = p. So we may assume g # r, hence & # id. (c) is clear if
o = crit(m), so we may assume 0 < crit(7). Suppose f: B — o is a surjection,
with B < ap and f € H. Let B < ¥ < o be such that 7(f) is ZIIW definable from
parameters in YU g. Then from Th?! ‘ (yUq) one can easily compute Th}’ ‘ (apUgq),
so Th"" (yUgq) ¢ M, contrary to the minimality of . -

In view of Claim 0, we may assume that 7 # id, and

crit(m) < pr(H).
For if 7t | H* = id, then HF is an initial segment of M*. It cannot be a proper initial
segment because Thlluk (pUgq) ¢ M. But if H* = M* and 7 = id, then r is solid
and universal over M*. Moreover oy = p, so M is its own strong core, so the
collapse of r is solid and universal over €(M)~.

We show now that if g 7 r, then Thkﬁil (apUgq) € M. This implies g = r, so r is
solid over M* and H = €(M)~. We then show that H agrees with M up to p*¥
The argument is based on comparing the phalanx (M, H, o) with M.

The comparison proceeds by iterating away least disagreements. On the M side

1641 et o: (P,B) — M* be the anticollapse map. o is I; elementary, and it is cofinal because
k
T (a0 Ug) ¢ M*.
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it produces a normal, A-tight iteration tree I/ that is according to X. On the phalanx
side we get a normal, A-tight “pseudo-iteration tree” 7. The first two models of
T are Mg— =M and M 17— = H, and from there we proceed as if these were the first
two models in an ordinary tree in which A(E] ) = a. Since H||ctg = M|| o, all
extenders used in 7 or U have length greater than or equal to ¢.

Let myp = id and m; = w. We can copy the pseudo-tree T on (M,H, ) to a
normal, A-tight tree

T = (mo,m)T

on M. The construction is similar to the lifting of an iteration tree on a phalanx
in §4.9, and to the construction of 77 " in §4.5. We are given the first two copy
maps at the outset, they are nearly elementary (in fact, elementary), and they agree
up to the relevant exchange ordinal ¢, so the copying can continue from there.
¥ induces a pullback strategy £(™™) for (M, H, o), and we use this strategy to
choose branches of our comparison tree 7 at limit steps. The construction thereby
produces

_ T s _ T
Pé = Mé and lé,)/ = lé-,]/’
x T* ok o .7-*
Pe=Mg andig =i,
_ AU .U
Q¢ = Mg and jg , = i¢
and copy/lifting maps
7'552 P[; _>N§ S]Pg
Except in some anomalous cases discussed below, P;;, Pg, and Qg are pfs premice,
the branch embeddings of 7, 77, and U/ are elementary, Ne = P}, and T is
elementary. Py =M, Py = H, and Pj = P{ =M. T* is a “padded” iteration tree, in
that the first node is indexed twice, for bookkeeping purposes.
The fact that the initial models in our phalanx (M,H, o) do not come from
a single iteration tree can lead to fine structural anomalies when an extender in
T is applied to a proper initial segment of M. The next two remarks deal with
these anomalous cases. The reader who is only looking for the main idea of the

proof should probably skip them, and just assume the cases they deal with do not
arise.!6

Remark 4.10.3. Suppose that crit(E;’) < o and E)T is not total on M. In this
case, letting E = E),T and p = crit(E), we must have op = u™# < u™M and
dom(E) = M||ow. Let N be the first S <M such that p(S) < p. u is a cardinal
of M||ap, and hence a cardinal of M because my(u) = . Thus p(N) =pu. T
is following the rules of normal plus trees, so we shall set 0 = T-pred(y+ 1).

165These cases did not arise in §4.9 because the exchange ordinal o was a cardinal of M in that
situation.
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We would like to set Py = Ult(N, E), but Ult(N,E) might have type 2, and we
want to avoid type 2 premice in J because they complicate the way comparisons
terminate. So letting k = k(N), we set

_ JUlt(N,E) if Ult, (N, E) has type 1
T T Ul (8 (N),E) i UL((N, E) has type 2.

The second case occurs iff N has type 1B and crit(E) = 1}".

In both cases, letting E* = m,(E), crit(E*) = t and dom(E*) = M||u™M by
the agreement between 7y and 7p. Thus £* is total on M and we shall apply E* to
M in T*. As in the definition of (#7)", we then have a natural map

. M
or

Tys1: Pret = ig-(Ee(N)) = Nyi1,
depending on which of the two cases define Py ;. In the first case, 7, is nearly
elementary, not necessarily elementary, and it maps MZ,;I to the proper initial
segment Ny, of P; 1~ In the second case Ny, is the strong core of a proper initial
segment of Py, ;, and 7y is nearly elementary in that it completes a Xy elementary
map on the reducts (Py+1)% and (Ny.1)& coding Py4; and Ny;1.!1% This is good

enough to continue lifting 7 to 7*. So in this respect, the construction of 7* is
like that of £7 T, rather than that of 77 .

Remark 4.10.4. Continuing with the last remark, there is a case when Ult(N, E)
is not a premouse of any sort. The method for dealing with it is due to Schindler
and Zeman. (See [48].) This case occurs when o = 1h(F), for some extender F
from the M-sequence, and crit(E) = Ar. The collapsing structure in M for o is

then just N = M|y, and Mz,;l = Ulty(M|1h(F),E). The trouble is that MLI is
167

not a premouse at all, because F' is a missing whole initial segment of ig? 741 (F)
But this is ok. The next disagreement will force us to apply i&, .1(F)to M, and

that will produce a pfs premouse; moreover, A (E},T ) = A(i]. y+1(F)), so there will

be no & such that T-pred(£) = y+ 1. (y+1 is a “dead node” in 7".) One can cope
with the fact that igy 1 (F) has a missing whole initial segment in the termination
arguments; the argument is the same as that of Schindler-Zeman.

We shall call Y+ 1 a T-anomaly in the case that Py, is not a pfs premouse for
the reason just described.'®® In order to simplify the exposition a bit, let us assume

in the proof to follow that there are no 7 -anomalies.

166See Definition 4.6.7. The names for 1y and py, are removed from the language of the reducts.

167 As we have seen, plus trees do not involve taking such ultrapowers. However, phalanx iterations
might.

168This is called a strong anomaly in [81]. Lemma 9.2.8 of [81] shows that e is elementary from
MZ to ng as long as there is no anomaly of either sort along the branch of 7 to &.
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In sum, Ng = Pg and 7 is elementary unless we are in the situation covered by
Remarks 4.10.3 and 4.10.4. We are assuming the situation of 4.10.4 does not arise.
In the situation of 4.10.3, 0 <7 &, N,; € Pf, and e is nearly elementary, perhaps

in the sense appropriate to maps on strong cores. ¢

The proof of the Comparison Theorem for pfs premice works here, so we have
last models Py for 7 and Qg for U such that Py < Qg or Qs < Py.
We show first that Py is above H in 7.

CLamM 1. 1 <7 6.

PROOF. Suppose that Py is above M, i.e. 0 <7 6. We shall derive a contradiction
using the Weak Dodd-Jensen property of X.

Case (a).Py < Qs and [0,0]7 N D7 = 0.

PROOF. If Py <1Qs or [0,8]y NDY # 0, then i g is an elementary map from M
to an initial segment of a X-iterate of M of the sort that is forbidden by the Weak
Dodd-Jensen property (4.6.9) of X. Suppose then that Qs = Py and [0, 8]y N DY =
0. Thus we have elementary iteration maps

i=ipg: M— Py,

J=lJos:M—Qs.
We claim that i = j. Otherwise, let n be least such that i(e,) # j(e,). If i(e,) <
Jj(en) (in the order of construction), then i is an elementary map that is <j¢x the

iteration map j, contrary to the Weak Dodd-Jensen property of X. If j(e,) < i(e,),
then

T oi(en) < mgo j(ey).
But 7g 0i = ijj 4, SO Mg 0 j is <jex the iteration map ij 4, contrary to the Weak
Dodd-Jensen property of X. This is a contradiction. Now let E and F be the first
extenders used along the branches [0, 8]r and [0, 6]y . Since i = j and generators

are not moved, FE is an initial segment of F' or vice-versa. This leads to the same
contradiction we got in the proof that the comparison process terminates.'”® -

Case (b). Qs <Py and [0, 8]y N DY = 0.

PROOF. Suppose first that 7g o jj 5 is nearly elementary. If Q5 <1 Pg or [0, 8]7 N
DT 0, then mg o Jo,s is a nearly elementary map from M to an initial segment of
P; of the sort that is forbidden by clause (1) of the Weak Dodd-Jensen property.
This leads to ip g = jo s and the same contradiction as in case (a).

19For this last part one must show that (7, T} is a £; embedding of (Q,ET ) into (R,E] "), where
Q and R are the initial segments of Pg and PE to which EJ and EJ " are applied. This is done as in
[81, Lemmas 9.2.7].

170This case used only Weak Dodd-Jensen in the category of nearly elementary maps.
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If 79 © j 5 is not nearly elementary, then Q5 = Py and 7y is not nearly elemen-
tary. Thus we must be in the anomalous case described in Remark 4.10.3. In this
case, the branch M-to-Py of T has dropped in model, but only at the first step along
it, Py has type 1A, and mg completes a £y elementary map from (Pg)f to (Ng)&.
Since Qs = Py, Q5 has type 1A, so M has type 1A. But then g o j 5 completes a
Yo elementary map of M’g to (Ng)lé and [0, 8]7+ has dropped in model, contrary to
Clause (2) of the Weak Dodd-Jensen property. a

This proves Claim 1. n
Now that we know 1 <7 0, the anomalous cases 4.10.3 and 4.10.4 are no longer
relevant. Ng = Pj and 7y is elementary.
CLAIM 2. DT N[1,0]r =0, and Py < Qg. moreover, iy g(pr(H)) = pi(Po).

PROOF. If [1,0]7 N D7 # 0, then [0,8]y N DY = 0, so 7 ° jo,s is a nearly
elementary map of M into P and [1, ]7+ has dropped, contrary to Weak Dodd-
Jensen. So [1,6]7 does not drop. If Q5 < Py, then [0,8]y N DY # 0, and 7g 0 jo 5
is a nearly elementary map of M into a proper initial segment of P}, contrary to
Weak Dodd-Jensen.

_|

We want to show Py = Qg and [0, 8]y does not drop. For that we need some
simple facts about definability over the models in 7 and /.

CLAIM 3. Suppose DY N[0,n]y = 0; then
(a) for any B < a0, Th'!, (jon (B)U on (@) € On,
(b) sup jon“p = p1(Qy), and

(c) if g1 then ThC!, (p(Qn) U jon (9)) € On:

PROOF. Part (a) holds because jo (Th’l"’k(ﬁ Ug)) can be used to compute

k
Th(lQ") (Jon(B) U jo,n(g)) by the usual proof for solidity witnesses. Part (b) can
be proved by induction along the branch from 0O to 7, using the fact that if E
is applied to Q'é along this branch, then crit(E) < p; (Q’é) so E is very close to

Qg-m If g # r, then p < 0. But p(Qy) < jon(p), so we get (c) by using (a)
with B = p. -
Set
p=p(H), and
t=7n"(q).
CLAIM 4. Either
(i) uw=ay, or
(ii) 1< ap=crit(m) = (ut)H.

171See Lemma 9.6.1 for a stronger result of this form.
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PROOF. Thy (0t Ut) ¢ H, and therefore u < 0.

Suppose 1 < ap. We can then find some finite p C ¢ such that R = Tth+1 (nu
pUt) ¢ H. Since max(p) < o, our minimality hypothesis on o implies that
R € M. Thus P(u)" # P(u)™, and since crit(7) > u, we get (ii). .

CLAIM 5. u=p(Py).

PROOF. This follows easily from the fact that all extenders used in [1, 6]7 are
close to the model to which they are applied, and crit(i; ¢) > Q. -

CLAIM 6. (i) Forallm <98, P(on)NQp C M.
(ii) Py = Qs, and DYN[0,5]y = 0.
(iii) i 5 (wk(M)) = wi(Qs) = i1,0 (Wi (H)).-

PROOF. For (i), clearly we may assume 17 > 0. Let E = EY; then 1h(E) is a
cardinal in Oy, and Qy||1h(E) = M||1h(E), so if og < Ih(E) we are done. The
alternative is that op = 1h(E). In that case, P(0) N Oy C Q1 by the argument just
given. But Q| = Ult(M, E), moreover m(crit(r)) is a cardinal of M above ¢, so
P(at) NUIt(M,E) C M.

Let us prove (ii). Let

A=Th | (aUt) =Th (e Ugq),

coded as a subset of ag. Since [1,0]7 does not drop and crit(ij g) > o, A is ng
in the parameter i1 (7). If A € Qg, then by (i), A € M, contradiction. It follows
that ]59 = Qg.

Suppose toward contradiction that [0,8]y N DY # 0, and let £ + 1 be largest in
[0,08]y NDY. Let B = U-pred(& + 1) and

J= Mgi{l’
and let n = k(J) = k(Qs). We have that Qg is not n+ 1-sound, by 4.4.6. Since
Qs = Py and Py is k-sound, k < n. But then
Pr+1(J) = Put1(Qs) < Prr1(Po) < 0.

We claim that 3 = 0. For otherwise, let G be the first extender used on the
branch from M to Qﬁ; then by Corollary 4.4.14, 1h(G) is a cardinal of Qﬁ and
1h(G) < p~(Qg). Since J <1 Qp, Ih(G) < p(J), so

o < 1h(G) < pp+1(J) < Q.
Thus 1h(G) = ap and G = E}! € M. But @ is a cardinal of H, so crit(7) = o and
o = vPH for some cardinal v of M. It follows that G is total on M, and since
% < (M),
p(Qp) = p (Ul(M,G)) = ig(p~ (M)) > ap.
This is a contradiction.
SoBf=0and J<M. Let G = Eé’, and suppose first that o < crit(G). If
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J =M | ifor some i < k then Qg is not k-sound, contradiction. Thus J € M. But A
is boldface r¥, 1 over Qg, so by 4.3.11 A is boldface r¥, | over J. Hence A € M,
contradiction.

Thus crit(G) < ap. Let k = crit(G). Since k¥ < px(M) and J <M, we have
J € M. Since 1h(E8’) > o, 0o(J) > o, and thus J collapses o to k in M. Since
0y is a cardinal of H and not of M, crit(m) = @ and there is a largest cardinal of
M strictly less than ¢, which must then be x; moreover oy = ktH . (We are not
claiming that Kk = u.)

We now show again that A is boldface rX,;; over J. Since crit(jgﬂ_’(;) >,
Lemma 4.3.11 implies that A is boldface rX, over Ult,(J,G), that is, boldface
% over Ulty(J",G). Let ¢ be a Xy formula and [a, f] € Ulty(J", G) be such that
forall B < o

B € Aiff Ulty(J",G) = Ive[v, B, [a, f]]-

We may assume that x is the least element of a. Then if X is a wellorder of x and
X € J, and |X| is its order type,

|X| € Aiff 3Z € G,(J" = TgVu € Zo[g(u), | X N (uo x uo)|, f(v)]).

But G is close to J, so G is definable over J from parameters. Thus A is definable
over J, so A € M, contradiction.

This proves (ii) of Claim 6. Part (iii) follows from the fact that both H and M
are strongly stable. n

Remark 4.10.5. The fact that M is strongly stable is used at precisely this point,
in proving that i1,¢ (Px(H)) = jo.5(Px(M)).

CLAIM 7. i1 o(t) = jo.5(q).

PROOF. Let f3 be the first (i.e. largest) element of ¢ such that jj 5(B) # i1.9 ©

7\ (B). It
Jjos(B) <irgom '(B),
then
Moo jos(B) <meoirgon ' (B) =i} ¢(B).

(Recall here that = 7, and i} z oy = 7y 0i1 9.) The maps on the two sides
above agree at all earlier elements of ¢, and € started out with r, so this contradicts
the weak Dodd-Jensen property of X relative to €. On the other hand, suppose

Jos(B) >i1e o L(B).

Let f=n"!(B), and u=1— (B +1). Since g is solid at B and j 5(wx(M)) =
wi(Qs)-

The, (jo.s(B) U jo.s (g — (B+1))) € Q5.
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But iy g(u) = jo,5(¢— (B+1)) and i1 9(B) < jo,5(B), s0
Thy? , (i1,6(B +1Uu)) € Po.

It follows that Thfil (apUiy (1)) € Py. The theory is essentially a subset of o, and

it is equal to Th{!, | (0 Ut) because iy o (wx(H)) = wi(Ps). So Thi, | (0 Ut) € M
contradiction. =

CLAIM 8. If 8 > 0, then o < crit(jj 5).

PROOF. Suppose U-pred(n+1)=0and n+1 <y §, and let E = E%{ Let
K = crit(E), and suppose K < 0.

If p <k, then p = p(Qg), so p = U, and so we have U < @, and thus (ii) of
Claim 4 holds, and u** > @q. But then

oy = ptH = utPe — Qs < M

and u < crit(E), so n + 1 € D“, contrary to Claim 6.
Thus k¥ < p. But then

o <supig“x*M <p(Q5) = u < o,
so ap = 1 =1h(E). If ¢ # r, then (c) of Claim 3, applied with n = §, implies

that Th,gfl(oq) Ujo.s(q)) € Os. Hence ThY | (ap Ut) € H, a contradiction. On the

other hand, if g = r, then oy = p is a cardinal of M, contrary to oy = lh(E).
Thus o < K, as desired. —
CLAIM 9. ris solid; that is, g =r.

PROOF. Suppose g # r, so that p(M) < p(H). Since crit(jy 5) > 0o > p(H),
we then have

p(M)=p(Qs) =p(Po) =p(H)>pM),
a contradiction. —

By Claim 9, p = o, so H = €(M)~. Let us prove that r is universal.

CLAIM 10. (i) H|p™™ =M|p*H,
(ii) IfAC pandAis Zjlwk in parameters, then A is Z'lqk in parameters.

PROOF. Since crit(j 5) > 0 and crit(ij 9) > o,

Mlp*tM = Q5lp*% = Polp™ " = H|p™ .

k k
Moreover, if A C p and A is ZMk, then A is ZIQ‘S, SO A is ZT", SO A is Z{’k.”z =

172These last statements follow by induction from the fact that along both branches, the extenders
used are close to the models to which they are applied.
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Claims 1 through 10 show that r is solid and universal over M*. To finish the
proof of Lemma 4.10.2, we must also show that 7 is solid and universal over H*.
But H is itself a strongly stable, countably iterable pfs premouse, so the argument
we just gave applies to it, and shows that ¢ is solid over H*. (Universality is then
trivial.) Thus M is parameter solid.

Finally,

CLAM 1 1. If p is not measurable by the M-sequence, then M is projectum
solid.

_ PROOF. The proof is the same as that of Theorem 3.7.1. If crit(7) > p then
C(M) = &€(M), as required. Suppose then that crit() = p. We have shown that
i1e(t) = jos(q) and jo 5 [ p = id. It follows that

T=jo50i16-
Since p is not measurable by M, crit(jy 5) > p, and thus p = crit(7) = crit(i1 ).
Let D be the first extender used in ij . Since p is not measurable by M and
crit(jo s) > p. p is not measurable by Q5 = Py, and hence p is not measurable
by Ult(H,D). Thus D is the order zero measure of H on p and Ult(H,D) = P,.

Finally, letting T: €(M) — M be the anticore map, Ult(H,D) is isomorphic to
€(M) via y, where

Y= Tﬁl o‘](;é Oi2’9.
To see that y is an isomorphism, note that y [ p + 1 is the identity, and y(p(Ult(H,D))) =
wlina(n) =7 "oy 5(ie () = 77" (a). B
This finishes the proof of Lemma 4.10.2. -

Suppose that M is stable, but not strongly stable. This implies that k = k(M) > 0.
The problem with the argument we just gave is that p;| has been defined in such
a way that it depends on p; and 1. For this reason, our proof of Claim 7 needed
part (iii) of Claim 6, that jo 5(wx(M)) = i1 9(wi(H)).

What the proof in Case 1 does give is solidity and universality for the variant
of py4 defined without reference to wy. That variant is essentially the usual
standard parameter. Namely, recall that if N is a pfs premouse of type 1 such that
k=k(N) >0, then

B* = {(@,b) | pisZ; Ab € N||p(N) AN = o[b, pi]}
and

N§ = (N|[px(N), BY).
N§ codes the strong core €(N). It is easy to see that py1(N) = p1 (N§). 17 Let
re+1(N) = pi (Ng)-

173In one direction, B is clearly X over N*. In the other, A¥ is T over N(’)‘ in any Y < pg(N) such
that He_ (7, u(E(N))) = pe(N).
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ri+1(N) is essentially the usual standard parameter of N.
DEFINITION 4.10.6. For x € M||px(M) and ¢ a X formula, let
dp((x,0)) =d*"! Ohi,,(k)—l (x, pr(M)),
and

k
D+1(M) = transitive collapse of do“Hulljlw0 (Prr1 (M) Urgp1 (M)).

€ (M) is the transitive collapse of ran(d}). Dy is essentially the usual k+ 1-st
core of M. Letting 7: ©y,1(M) — M be the natural map, it is possible that n,ﬂ”
and pi(M) are not in ran(7).

Our plan is the following. Given M that is stable but not strongly stable, we
shall replace M with N = Ult, (€, (M), D), where k = k(M) and D is the order zero
measure of M on n,ﬁ” . N has type 1A, n,lcv < Pr+1(N), and N is strongly stable. We
shall use these facts and the proof of Lemma 4.10.2 to show that r; (N) behaves
well, and generates pi(N) as a point. We then pull this back to M and ry1 (M)
using ip. Finally, we shall use what we have proved about r; (M) to show that
Di+1(M) behaves well. The fact that r; | (M) generates pi(M) as a point comes
in at this point.

The proof of Lemma 4.10.2 yields the following.

LEMMA 4.10.7. Let M be a strongly stable, countably iterable pfs premouse
of type 1A. Let k = k(M), and suppose that N} < pr1(M) and pys1(M) is not
measurable by the M-sequence. Let T2 D1 (M) — M be the anticore map; then

(a) p1(Mp) is solid and universal over M,

(b) ifcrit(m) = pry1 (M) = p, then letting D = (Ex)p, D is the order zero measure
of Dy+1(M) on p,

(c) p(M) = m(p(D)), and

(d) M =ng, where ® = Dy;1(M).

PROOF. The proof of parameter solidity in 4.10.2 goes over to ry,| nearly
verbatim. Let

p = p1(M§) = p1(M*),
r:pl(M/O‘).

We choose € so that r = {eg, ...¢; }, where ey > e] > ... > ¢;. Let g be the longest
solid initial segment of r in this decreasing enumeration, where solidity is inter-
preted relative to the ¥ theory of Mé, and let

r=sUgq,

where either s = 0 or max(s) < min(q). Let

k
o = least B such that Thllwo (BUgq) ¢ M.
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ot may not be the least 8 such that Thy, | (B Ugq) ¢ M, since k+ 1 theories have
access to wy. We may assume that o < px(M), as otherwise the theorem is trivially
true. Let

H= Dec(cHuH}lwg(oco Ug)),
— transitive collapse of df “Hullllug (wUgq),
and let
n:H—M

be the anticollapse map. Note here that €& (M) = M. m[HE: Hf — M} is co-
final and £, elementary. We shall eventually show that z(n/) = nff = nM
and 7w(px(H)) = pr(M), but at the moment we don’t know either. (Both state-
ments require that an appropriate parameter be in ran(7).) For all we know now,
oy <N < py(H) and N} is measurable by H. For all we know now, py(H) is
measurable by H, so H is not a pfs premouse of degree k.

We now compare the phalanx (M,H, o) with M, just as in the proof of
4.10.2. In this process, we take k-ultrapowers of H by extenders E such that
crit(E) < pr(H) in the usual way, by decoding Ulty(HE,E), or equivalently, de-
coding Ult; (Hk’l ,E). (H™ is a pfs premouse of degree k— 1.) Let us adopt all the
notation of 4.10.2: 7, 7", and U are the trees that arise, F, Pg, and Q¢ are their

models, and so on. = py,((H) andt = 7~ (q) .

Claims 0 and 1 go through with no change. (Claim 1 concerns the possibility
that 7 terminates above M, so the fact that we have a different sort of H now is
irrelevant.) So do Claims 3-5.

The counterpart of Claims 2 and 6 is

CLAIM 12, (i) Forallm <6, P(ap) NQOn C M.
(ii) Py = Qs,
(iii) DT N[1,0]7 =0 and DY N[0,8]y = 0.

PROOF. Part (i) is proved just as in Claim 6 above. If [1, 8]y drops in model or
Q5 <Py | 0, then g 0 j 5: M — Py is a map of the sort that is ruled out by the

k
Weak Dodd-Jensen property of X. If Py <1 Qs J. 0, then Thll-lo (0 Ut) € Q¢ for some

&, so Th?é (apUt) € M, contradiction. Thus }59 = Qg, and neither branch drops
in model. Using the fact that M~ and H~ are strongly sound (that is, M = & (M)
and K = €;(H)), one can show that neither side drops in degree. Thus we have (i)
and (iii). =

We are now where we were after Claim 6, except that we are missing the
information in Claim 6 that i; o (0x(H)) = pi(Ps) = jo.s(px(M)). However, this is
no longer relevant to the proof of Claim 7, because the solidity witnesses for g are
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theories in a language without names for p; or 1. So the proof of Claim 7 goes
through.

The proofs of Claims 8-11 now go through without change. We have crit(j 5) >
ap or jo s = id, r is solid and universal, and if py (M) is not measurable in M,

then M is projectum solid in the sense of (b). ® = H. Moreover, T = ]O’é oiyg.
Thus we have proved (a) and (b) of Lemma 4.10.7. '

CLAIM 13. 7(px(H)) = px(M) and nfl =M.
PROOF. We have that N < pyi1(M) < crit(jo ). so
e =ni!
and
Px(Qs) = jo,5(Px(M)) = sup jo 5“Pi(M).

But then 07 < o, for otherwise o <} < pr(H) and 0 < supiy “nff =1, =
nkQ‘S. Since n,f’ < 0y, i1 g must be continuous at p(H), and

i1,0(px(H)) = pr(Po) = jo,s (Px(M))

and
. P,
ne = i) =mn" ="
The fact that &7 = Jo. (13 oi] g now yields our claim. =
Claim 13 yields (c) and (d) of Lemma 4.10.7. —

Now we use Lemma 4.10.7 by pulling back its conclusions under an ultrapower
map.

LEMMA 4.10.8. Let M be a stable, countably iterable pfs premouse of type
1, k = k(M), and suppose that py.1(M) is not measurable by the M-sequence.
Suppose that M is not strongly stable. Let w: ® — € (M) be the anticore map,
where © = Dy (M); then

(a) p1(ME) is solid and universal over ME,

(b) if crit(mw) = prr1(M) = p, then (Ez), is the order zero measure of © on p,
(c) n(pi(D)) = px(M), and

(d) n® =},

PROOF. Letn = n,’c"’ , and let D be the order zero measure of M on 7. Since
M is stable, 1 < pr.1(M). We may assume that p;, (M) < pr(M), and hence
D e M. Let

N = Ul (€(M), D),

.G M
l:le( )7
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p = pi1(M) = pi (M),
and
rzpl(M](;).

In terms of reducts, N§ = Ulto(M%,D) and i[ Mg is the canonical embedding.
pr(N) = supi“pi(M) < i(pe(M)), and N = 1 is not measurable in N. Thus N is
a strongly stable pfs premouse of type 1A, and N is countably iterable because M
is, so N satisfies the hypotheses of Lemma 4.10.7.

CLAIM 1. Let o0 < pi(M) and q € MY; then Thllwlé(au {gheMm iﬁfTh],Vg (supi“aU
{ilg)}) eN.

PROOF. The usual proof for solidity witnesses shows that if Thllw"; (aU{q}) eM
then Thllvg (supi“acU{i(g)}) € N. Conversely, suppose Th]lvg (supi“aU{i(g)}) EN,
and let Th]lvg(sup “aU{i(q)}) = [a,f]jgg. For ¢ a ¥y formula and § < a,

M 9[B,q)iff Ni |= @li(B).i(q)]

it (9,(B)i(0)) € [a. /1"
iff for D, a.e. u, (@,B,q) € f(u).
Since Dy € M, T (a U {q}) € M. 4

CLAIM 2. pp41(N) = supi“p.

PROOF. Th™ (pU{r}) ¢ M. so T (supi*p U {i(r)}) & N, s0 p(N) < supi“p.
For the other inequality, let B < p and g = i(f)(a) € N, where a € [¢(D)]<®.
Since Thllwg(ﬁ U{f}) € M*, we have Thllvg(i(ﬁ) U{i(f)}) € N*. Choosing 8 >
crit(D), we get that a C () so using Thjlvg(i(ﬁ) U{i(f)}) we can compute
Thllvé (i(B)U{q}) in N, as desired. o

CLAIM 3. ris solid.

PROOF. Let ¢ be the longest solid initial segment of r, and suppose that g # r.
Let ¥ = max(q — r), and let

o = least & such that Thllug (EUqg) ¢ M.
Sinceg #r,a <y.

k
By Claims 1 and 2, Th® (p(N) Ui(r)) & N, so p1 (NK) <* i(r), where <* is the
parameter order. But i(g) is solid over N, so i(g) is a proper initial segment of
D1 (Ng) Let

B = least & in p; (N§) —i(q).
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k
If B < supi“o, then ThjlVO (B+1Ui(g)) € N by Claim 1 and our choice of «,
k
contradiction. Thus supi“ac < . But then Thzlv‘J (BUi(g)) ¢ N by Claim 1, so
p1(NE) is not solid, contradiction. -
It follows from Claims 1-3 that py (N§) = i(r).

CLAIM 4. ris universal.

PROOF. Let X C p and X € M. By the universality of i(r), we have y < supi“p
such that

KX)ﬁmmfp::h%(%Kﬂ)ﬂmmfp.

k
Let y = [{K},g]AD/IO. Since y < supi“p, we may assume that g € M||p. But then
for £ < p, & € X iff there is a Z € D and a 0 < pg(M) such that for all u € Z,

. . Mk
hzlvzgue(g(“)’ r) is defined and & € hjlwgue(g(u), r). This shows that X € Hull, °(p U

r), as desired. Part (b) of universality (Definition 4.1.7) can be proved similarly.
CLAIM 5. Ifcrit(m) = p, then (Ex), is the order zero measure of D 1(M) on
p.
PROOF. Suppose that crit(m) = p. Since r is universal, p is regular in M. But

then since p < pi(M), cof¥! (p) = p, so that i is continuous at p, and i(p) =
Pi+1(N). Thus pr1(N) is not measurable by the N-sequence. Also, the fact that
k

p¢ Hullllwo (pu{r})is II; over M, so

. N§ .

i(p) ¢ Hull,* (p U{i(r)})-
Letting Q = Dy 1(N) and 7: Q — N be the anticore map, and F = (E¢);(p),
we have by 4.10.7(b) that F is the order zero measure of Q on i(p). Letting
P=9;,1(M)and j =7 !oion. we have the diagram

Q=9 (N) ———N

P =Dy (M) —— &(M)

It is easy to see that j is well defined, and letting G = j~!(F), ig factors into 7 the
way that ig factors into 7. This completes the proof of Claim 5. -
Finally, we prove parts (c) and (d).

CLAIM 6. (pi(D)) = px(M) and 0P = 7.

PROOF. By 4.10.7(d) there is some z < i(p) such that Hull’lvlH (nUd{i(r), pr(N),z})

is cofinal in px(N). Let z = [{n}7g]g”p"(M>; then since ran(i) is cofinal in py(N),
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we get that Hull’l""kfl (nU{r,pr(M),g}) is cofinal in pi(M). But ran(x) is cofinal
in p(M), so Hulligk*l (nu{r'(r), pr(D),g}) is cofinal in px (D). Thus n° < 7.
It is easy to see that N < n,? .

Thus n° =n = n}. If f is a nice witness that cof (px(D)) = 1, then 7(f)
is a nice witness that cof)! (7(py(D))) = n, because N < crit() and 7 is -
elementary as a map from D! to M*¥~!. It follows that 7 is continuous at p; (D),
and thus 7(px (D)) = pr(M). =

This completes the proof of Lemma 4.10.8. n

Let us put the pieces together.

THEOREM 4.10.9. Let M be a countably iterable pfs premouse of type 1, and
k =k(M). Suppose that M is stable and py,1(M) is not measurable M by the
M-sequence; then M is parameter solid.

PROOF. By Lemma 4.10.2 we may assume that M is not strongly stable. Thus
M has the properties enumerated in Lemma 4.10.8. Let

r=rie1 (M) = p1(M)

= (eo,...7e1>,
and
P = pir1(M) = pi (M*)
= <d07"'7dm>a

where the enumerations are in decreasing order. r is solid over M’g. We shall use
this to show that p is solid over M¥.

We may assume that px(M) < p_1(M). For letting 7w: & (M) — M be the
anticore map, we have p;_; (M) € ran(x), so if pi(M) = pr_1(M), then 7 is the
identity. This means that M’O‘ and M* are essentially equivalent, so p = r. Solidity
for r over Mg then implies solidity for p over M¥.

So we assume p; (M) < pr_1(M). Let

p = pPr+1(M),
Pr = Px(M),
N:@k(M),

and if M has type 1B,

D = order zero measure of N on py.

If M has type 1B, leti = i%. If M has type 1A, let N = M and i be the identity. Our
plan is to translate between r and p, and the key here is that by Lemma 4.10.8(c),
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k
there is an M&-name for D in Hu1111WO (p Ur). The name is €, where

least ¥ s.t. P = hy i, (7, pr(M)) if M has type 1A
least ys.t. i(D) = h[lu,(,1 (v, px(M))  if M has type 1B.

k
CLAIM 1. & € Hull (@), and & € Hull}® (p Ur).
PROOF. Let

) pr if M has type 1A
" |D  if M has type 1B.

Let 7: Dj11 (M) — € (M) be the anticore map. By 4.10.8(c), z € ran(7), so there is
ay < pg inran(7) such that hzlvk*l (7, pr(N)) = z, or equivalently, h[lu,(,l (v,p(M)) =

k
i(z). But then the least such yis in ran(7).!”* So & € ran(7) N M||px = HulljlwO (pu
r).
We claim that i(py) € Hulljl""kf1 ({pk,pr(M)}). For by elementarity, there is an

& > pyin HullY " ({py, pe(M)}) such that & = b, (¥, px(M)) for some ¥ < py.

By elementarity again, the least such & is in Hullll""]H ({px, px(M)}). But the least
such & is i(py).
It follows that i(z) € Hullﬁ”kil ({px, pr(M)}). But

€ = least y such that i(z) = h}wk,. (7, pr(M)).

-1

Since i(z) € Hull™ ™" ({py, px(M)}), we get that & € Hull™ ™" ({pg, pi(M)}).175
But € < py, so € € Hull (0). .

We shall show that p C r, and that the solidity witnesses for r yield solidity
witnesses for p. This involves showing by induction that their initial segments
are ¥;-interdefinable over M¥, modulo parameters in p 1 (M) U {€}. The proof is
essentially the same as Zeman’s proof in [82] that in Jensen premice, the standard
parameter is intertranslatable with the Dodd parameter.!76

Let hg = h]lwg For the remainder of this proof, let us say that x is generated by

k
yiffx € Hulljlwo (p U{y}), or equivalently, x = hg(y,a) for some finite a C p. By
Claim 1, € is generated by r.

CLAIM 2. If € is generated by x, then for any vy < py(M), Thllwk(yu {x}) is

k
rudimentary in Thllw0 (yU{x}). In particular, if the latter belongs to M, then so
does the former.

1741 et y be least in ran(t) such that h}vk,l (v, pk(N)) =z If 36 < y(hllvk,1 (8,pr(N)) = z), then by
elementarity 36 < y(8 € ran(7) /\hllv,(,1 (8,pk(N)) = z), contradiction.

175See the last footnote.

176Qur r is analogous the Dodd parameter in Zeman’s proof, p is analogous to the standard parameter,
and € is analogous to the index of the longest proper initial segment of the top extender.
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PROOF. We claim first that there is a recursive function ¢ — ¢* defined on X,
formulae @ such that whenever 8 < py,

M = 0lB.pu, p (M) fE M = 7 (B, €, pr(M)].
If M has type 1A this is obvious, so suppose M has type 1B. We let
o*(u,v,w) =3E(E=h'"(vw)AIyIX € E
Vo e XM |y [ olu, a,w))).
This works because by Los’ theorem, for 8 < py,
M= 9[B. pr pe(M)] iff FyAX € DY € XN Iy [= @[B, ot, pe(N)])
iff 3y3X € i(D)Va € X(M* ||y = 9B, o, pr(M)).
For vy < py, let
By=B‘nMl|ly
and
Ay =AMy
Using the map ¢ — @*, it is easy to construct a Xy formula 6 such that whenever
e<y
0(By,€,2)iff Z=A,.
Now suppose x generates €, and let hg(a,x) = € where a C p is finite. Let
p < v < p, and suppose that Thllwé(yu {x}) € M. Then for ¢ a £; formula and
S<y
M* = @[8,x] iff M§ |=3T3ETA3e
(h'(a,x) = € AT =Bz AO(T,€,A) A (M||E,A) = 9[8,x]).

k
The right hand side is of the form (y, §,x) € Thjlu" (YU {x}), where v is obtained
recursively from ¢. This yields the claim. .

Let <* be the parameter order, that is, the lexicographic order of descending
sequences of ordinals. Since the predicate B* of M}, is lightface o over M*, p <*r.

CLAIM 3. Foralli<m,
(a) di€r,
(b) {(p—(di+1),€) generates r— (d;+ 1), and
(¢c) TH" (d;Up— (di+1)) € M.
PROOF. If € is generated by @, then by Claim 2, p = r, and the solidity witnesses

for p are rudimentary in the solidity witnesses for r, so we have Claim 3. So let us
fix n > 0 least such that (e, ...,e,) generates &.
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We prove the claim by induction on i. Let i = 0. Since p <* r, dy < eg. We
show first by induction on j that if j < n and e; > dy, then

ej = least & s.t. for some finite s C &, {r[j,&,s} generates €.

For this, since r generates &, it is enough to see that there is no § < e; as on
the right. Suppose there were, and let @ = max(§,dp) + 1. Since o < e; and r

is solid, Thllwé(a Urlj) € M, so by Claim 2, Th’lwk(a Urlj) € M. But p C «,
contradiction. .

The formula above gives a ZAI/IO definition of e; from (e, ...,e;_1) and €.!”’
Thus if j <nand e; > dp, then e; is generated by €. This proves (b) of the claim
in the case i = 0.

Suppose now that e, > dy. Then just as in the case that € =0, p = rNe, and the
solidity witness for p [/ can be computed from the solidity witness for r [n+ 14 1.
Thus we may assume e,, < dj.

We claim that dy € r. If not, then r — dj is generated by &, so Thﬂ”k (pUrndy)

can be used to compute Thﬂ”k (pUr), so Thﬂ‘”k (pUrndy) ¢ M. But rndy <* p,
contradiction. Thus dy € r.

For solidity, note first that there is a finite s C dy such that {r — (dp + 1), s}
generates €, since otherwise dy is the least & such that for some finite t C &, {r—
(do+1),&,1} generates €. This implies that € generates dy, which is impossible
since dy € p. So € is generated by do Ur — (dp + 1), and by Claim 2, the r-solidity
witness Thllw‘k) (doUr—(dp+ 1)) can be used to compute the p-solidity witness
Thﬂ‘”k (dp). This completes the base case i = 0.

If e, = dy, then rNe, = pNdp, and the solidity witnesses for r can be used to
compute solidity witnesses for p, so we are done. Thus we may assume e, < dj,
and goontoi=1.

The induction step is very similar. Suppose we have (a)-(c) at i, and that d; |
exists. Suppose also that e, < d;, since otherwise we have rMe, = pNe, and the
solidity witnesses can be translated, as above. By the argument above, we get that
whenever j <nand d; > e; > dj1, then

ej = least & s.t. for some finite s C &, {r[j,&,s} generates €.
For otherwise, there is a § < e; as on the right, and setting & = max(&,d;1) + 1,

T (@ U] ) € M by solidity for r. so Th (aUr| j) € M by Claim 2. Since
p C {eo,...,ej—1} U, this is a contradiction. The displayed formula implies that
ej is generated by {dy, ...,d;, €}, so we have (b).

Ife, > di+1, then pNe, = rNe, and the solidity witnesses for r yield witnesses
for p. Here we use that {dy,...,d;} C r, so {eg,...,e,} generates {dp, ...,d;,€}. So
we may assume e, < dj11.

1774 east” may seem to introduce a IT; element, but see the proof of Claim 1.
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Now we get that d;; | € r and Thﬂ‘”k (diy1U{dy,...,d;}) € M just as in the case
thati = 0. If ¢, = d;j+1 then rNe, = pNd;y; and solidity witnesses translate, so
we are done. If ¢, < d;j;1 we goon to i+ 2.

By Claim 3, p;.1(M) is solid. Moreover, Hulllluk (Pr1 (M) U pr1 (M) =
k -
Hull}’® (g 41 (M) Ur), 50 &1 (M) = D1 (M). By 4.10.8, M is solid.
This finishes the proof of Theorem 4.10.9. -
Our proof of solidity also yields a useful condensation theorem. The following
is a simplified version of Theorem 9.3.2 of [81].

THEOREM 4.10.10. (Condensation) Let M be a strongly stable, sound, count-
ably iterable pfs premouse, and let H be a sound pfs premouse, and w: H — M be
nearly elementary, with p(H) < crit(7). Suppose that H € M; then either

(a) H<M, or
(b) H<QUIt(M,E), where E is on the M sequence and 1h(E) = crit(w) = p(H).

PROOF. (Sketch.) We may assume M is countable and enumerated by €, and
that X is an iteration strategy for M with the Weak Dodd-Jensen property relative
to €. Let a = crit(w). We compare the phalanx (M,H, o) with M as in 4.10.2,
using (id, 7) to lift trees on (M, H, ) to trees on M, and using X to iterate M.!78
This yields 7 on (M,H, ), T* = (id,7)7 on M, and U on M.

CLAIM 1. The last model P of T must be above H in T.

PROOF. Exactly as in the proof of 4.10.2. n
Let Q be the last model of U/.

CLAIM 2. P<Q and H-to-P does not drop.

PROOF. Let P* be the last model of 7%, and #*: P — P* be the copy map. If
Q <P, then M-to-Q does not drop in U/, and letting j be the branch embedding,
¥ o j maps M to a proper initial segment of P*, contrary to Weak Dodd-Jensen.
So P<4Q. Similarly, H-to-P does not drop, as otherwise 7* o j maps M to an initial
segment of a dropping iterate of M. n

CLAIM 3. H=P.

PROOF. Suppose not, and let i: H — P be the branch embedding. We have
assumed that A is sound, so crit(i) > p(H),

H=¢(P)",
and

i = anticore map.

1781 would also work to compare (M, H,p (H)) with M.
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Thus P is not sound, so P = Q. Since M is sound and Q is not, the branch M-to-

Q in U dropped. Let Q = Q5, N <y & be largest in DY, and K = szl where

E+1<ydandU-pred({+1)=mn. Let j= izgﬂﬁ oiz’fl be the branch embedding.
Then '

K=¢(Q),
and

j = anticore map.

Thus H = K and i = j. This implies that the first extenders used in i and j are the
same, contrary to the fact that we were iterating away disagreements. a

If Q =M, then H <M and we are done. Otherwise, let G be the first extender
used in M-to-Q. We have that o < Ih(G) < o(H), and 1h(G) is a cardinal of
Q. Suppose toward contradiction that p(H) < Ih(G). Then H collapses 1h(G)
via a erH(H)+1 function, and hence H ¢ Q, so Q = H. But G is used in U/, and
Q is the last model of U, so p(Q) is not in the interval (crit(G),1h(G)). Thus
p(H) < crit(G). But this is impossible because H is sound.

Thus

o <Ih(G)<p(H) <.

We just need to see that H <t Ult(M, G). But if not, there is a second extender
K that is used in U, and 1h(G) < 1h(K) < o(H). Since 1h(K) is a cardinal of Q
and H collapses 1h(K), we get H = Q. As in the last paragraph, this leads to a
contradiction. —

For a simple application of Condensation, suppose that N is a countable iterable
pfs premouse, N = ZFC, and « is a regular cardinal of N. Let M <N and p(M) = k.
Working inside N we can find club many o < & such that Hull (@) N x = a.
Theorem 4.10.10 implies that for such «, letting H = cHull¥ (), either H <I M or
H < Uly(M,EM).

The two possibilites (a) and (b) in the conclusion of Theorem 4.10.10 are
mutually exclusive. Alternative (b) is sometimes realized. For example, in the last
paragraph, if k = u™ and g is subcompact in N, then there are stationarily many
a < k such that o = 1h(E) for some E € EM.'” For such «, alternative (b) of
4.10.10 must apply.

A variant of the condensation argument yields weak ms-solidity.

LEMMA 4.10.11. Let N be a countably iterable pfs premouse such that k(N) =
0; then N is weakly ms-solid.

179This is due to Jensen, who showed that in extender models, it is equivalent to subcompactness.
See [44].
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PROOF. We may assume that N is active. Let M = €;(N)~ be the first core
of N, but with degree zero, and let E = F M. we must show that E has the weak
ms-ISC. Let k = crit(E) and let F' be the Jensen completion of Eyy, and let

Hy = Ultg(M|x™M F).

We have the diagram

M|kt+M M||o(M)

N

Hy

Here 7(ir(g)(x)) = ir(g)(x). Itis not hard to see that for all @ < k™, m(ir [ o) =
ir | @, that is, & maps the fragments of F to the corresponding fragments of E. &
is cofinal, so letting

H = (Hy,F),
we have that
n:H—-M

is a cofinal and ¥; elementary. Clearly ktH = M. et us write kT for the
common value.

CLAM 1. IfH ¢ M, then H = M.

PROOF. Suppose H ¢ M. We must have p; (M) < k", as otherwise E{,, € M,
50 E{y} € M|Ag, so H € M. Similarly p; (M) C k™, forif y € p; (M) — k™, then
the solidity witness for y can be used to compute E(,, inside M, so again H € M.
It follows that p; (M) U p1 (M) C ran(r), so since 7 is elementary, M = ran(7), as
desired. n

Soif H ¢ M, then E = F, and we are done. Thus we may assume H € M and

7 # id. Clearly o(H) has cardinality k" in M, so

o = crit(m) = kM,
Note also that i,y ¢ H, so that p(H) < k. There is a lightface T map from k"
onto o(H), so p(H) C k™.

We now compare (M,H, o) with M just as in the condensation proof. Here
k(M) = k(H) = 0, so M and H are strongly stable. Since a@ = x+t+MI%_ the
anomalies described in 4.10.3 and 4.10.4 cannot arise. The proof of condensation
did use that H was sound at a couple points, and we don’t have that to work with
now.

Let us adopt the notation from the proof of 4.10.10. We assume M is countable
and enumerated by €, and that X is an iteration strategy for M with the Weak
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Dodd-Jensen property relative to €. We compare the phalanx (M, H, o) with M,
obtaining trees 7 on (M,H, o), T* = (id,7)T on M, and U/ on M.

CLAIM 2. The last model P of T is above H in T.

PROOF. As before. —
Let Q be the last model of U4.

CLAIM 3. P <Q and H-to-P does not drop.

PROOF. By the Weak Dodd Jensen property, as in the proof 4.10.10, Claim
2. —

CLAIM 4. H=P.

PROOF. Suppose not, and leti: H — P be the branch embedding. p(H) < k+ <
crit(i), so P is not 1-sound, so P = Q. Since F{y) ¢ H, Fiyy ¢ P. But F,oy € M
because H € M, so the branch M-to-Q in U/ dropped. Let Q = Qs, 1 <y 6 be
largest in DY, and K = szl where € +1 <y & and U-pred(§ +1) = 1. We
have

“H _pP Q0 K
Fliey = Fly = g = oy
Let j = ig’ﬂﬁ oiz‘fl be the branch embedding. Since x € ran(j), crit(j) > k™.
Moreover, p1(H) C k", so p1(H) = p1(Q) = p1(K). It follows that
H = cHull” (x™),

i = anticollapse map,
and

K = cHull?(x"),

j = anticollapse map.

Thus H = K and i = j. This implies that the first extenders used in i and j are the
same, contrary to the fact that we were iterating away disagreements. o

CLAIM 5. M =0Q.

PROOF. Otherwise, let G be the first extender used in M-to-Q. We have that
o <1h(G) < o(H), and 1h(G) is a cardinal of Q. Since H collapses 1h(G), H ¢ Q,
so H = Q. If crit(G) < k™, then G is total on M, and letting N = Ulty(M,G),
crit(FN) > k. Since crit(F¢) = k, there must have been a drop on the branch
N-to-Q, and this implies 1h(G) < p(Q). But p(Q) < k™, contradiction. Thus
kT < crit(G), so o < crit(G), and M-to-Q dropped.

But again, let § <y & be largest in DY, and K = Mzgl where £ +1 <y & and
U-pred(& +1) =n. Let j: K — Q be the iteration map. We have a < crit(), so
crit(j) ¢ Hull?(K*’), contrary to Q = H. This is a contradiction. 4
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Claims (2)-(5) imply that if H € M, then H <<M. This completes the proof of
Lemma 4.10.11. -

Putting Lemma 4.10.1, Lemma 4.10.11, and Theorem 4.10.9 together, we get

THEOREM 4.10.12. Let C be a maximal PFS-construction, and assume that V
is countably FC-iterable; then for all (v,k) < 1h(C) such that k > 0, MS, is solid.

4.11. The Bicephalus Lemma

The final thing we want of our constructions is that at any given stage, there is
at most one extender that can be added. This follows, modulo iterability, from the
Bicephalus Lemma.

DEFINITION 4.11.1. An bicephalus is a structure B = (B, F, G) such that both
(B,F) and (B,G) are extender-active pfs premice of degree 0. We say that B is
nontrivial iff F # G.

We think of B3 as a structure in the language with predicate symbols E, F, and G
for the extender sequence of B, and the two last extenders F' and G. The degree
of B is zero, i.e. k(B) = 0. For v < o(B) = 6(B), we set B|(v,l) = B|(v,]).
The extender sequence of B is EZ together with FB and GB; it’s not actually a
sequence.

We need only consider normal, A-tight iteration trees on 3. These are iteration
trees 7 such that MJ = B, the extenders used in 7 are length-increasing and
nonoverlapping along branches, and E] comes from the sequence of M7, . If M7
is a bicephalus, this means that the extenders from EM« together with FMo and
GMe are eligible. A @-iteration strategy is an iteration strategy defined on all
normal trees of length < 6. B is countably iterable iff every countable elementary
submodel of B has an @; + 1-iteration strategy.

The main theorem about bicephali is that the iterable ones are trivial. As befits
such a basic result, the proof is simple and natural. '3

THEOREM 4.11.2. Let (B,F,G) be a countably iterable bicephalus; then F =
G.

PROOF. (Sketch.) Suppose F # G. This is a first order fact, so it passes to
Skolem hulls of (B,F,G). Thus we may assume B is countable. Let X be an
o) + l-iteration strategy for (B, F,G). We now compare (B, F, G) with itself, by
iterating least disagreements, producing normal trees 7 and U/ on (B, F,G) that are
by X.

There will always be a disagreement, because F # G. For example, Eg— =F
and E(Z)/’ = G is a legitimate first step. In general, if MZ; = (Bg, Fy,Gq) is a non-
dropping iterate of (B, F,G), then either some extender on EB« disagrees with its

1801t is due to Jensen and Mitchell.
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counterpart on the sequence of the current model of U, or By, is an initial segment
of that model, and one of F,; and G disagrees with its counterpart (because
Fo # Go).

Thus this comparison yields 7 and U of length @; + 1. The usual termination
argument now leads to a contradiction. o

COROLLARY 4.11.3. Suppose that C[| v~ {((M<V,F),F*)and C|v™((M<",G),G*)
are maximal PFS constructions, and that V is countably F U {F* ,G*} iterable;
then F = G.

Putting things together, we have

THEOREM 4.11.4. Suppose thatV is countably iterable, and let C be a maximal
PFS construction; then C is good at all (v, k) < 1h(C)..

PROOF. This follows from Theorem 4.9.1, Theorem 4.10.12, and Corollary
4.11.3. =

We have shown that maximal PFS constructions do not break down, granted
iterabilty for V. But do they reach anything interesting? We shall show in Section
10.4 that under certain hypotheses they do, but the following simple question
is open. Suppose V is strongly uniquely (6, 0) iterable for all 8. Let § be a
Woodin cardinal. Must there be a PFS construction C such that 7€ consists of nice
extenders over V and L[Mgo] E “8 is Woodin”? If we had adopted ms-indexing
and its corresponding background certificate requirement, the answer would be yes,
essentially by [30][§11]. But we have adopted Jensen indexing. Our background
certificate requirement is sufficiently liberal that we can prove the results of Section
10.4, but we do not see that it yields a positive answer to this question.



Chapter 5

SOME PROPERTIES OF INDUCED STRATEGIES

In this chapter we show that certain internal consistency properties pass from an
iteration strategy X* for a coarse premouse to the iteration strategies that ¥* induces
via PFS constructions. These results are preliminary. We shall return to the topic
in Chapter 7, where we shall prove much stronger results along the same lines.

Our results in the rest of this book have to do with pfs premice and constructions.
The strategy mice that we study later are built upon the projectum-free-spaces fine
structure. So from here on, we shall often drop the qualifier “pfs”. Pure extender
premice are pfs premice, not Jensen premice, unless otherwise specified.

5.1. Copying commutes with conversion

Let us show that copying commutes with conversion. The proof is completely
routine, but it has the structure of less routine inductions we shall do later, so we
give it here. We shall use the result later.

THEOREM 5.1.1. Let R and S be transitive models of ZFC, R |=“C is a PFS con-
struction”, and let 6 : R — S be elementary with 6(C) =D. Letc = (M, ¢,P,C,R)
andd = (N,y,0Q,D,S) be conversion stages, and suppose that ©: M — N is nearly
elementary, and Wy ot = G o @, then for any plus tree T on M, if all the models in
lift(nT,d)o are wellfounded, then so are those in 1ift(T ,c)o, and

o lift(T,c)o = lift(x T, d)o.

PROOF. We assume first that 7 is elementary, so that by Lemma 4.5.21, 7~ =
7T, and all the copy maps associated to 777 are elementary. The general case is
almost the same, but the notation and diagrams are less tidy. We discuss it at the
end of the proof.

Here is a diagram of our starting position:

205
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v

N_Y .0 S
I
M—— P R

LetU =nT, T*=1ift(T,c)o and U* =1ift(U,d)o. We must see that * = 6T *.
Let Mg = M,;T, Ne = M%’, and

e Mé — Né
be the elementary copy map.
Let
Stg(T7C,é) = <M§v(P€7P§aC§7R§>
and

stg(U,d, &) = (Ng, We, Qe De, Se)

be the conversion stages associated to the two conversion systems. We shall define
O¢ : R — S¢ by induction on &, maintaining by induction on &

(@ U TE+T1=0T*1E+1,and forall @ < &, oy is the associated copy map,

(b) o (Pg) = Qé’ and

(c) Ogo Qg =Yg om.
Let (1) be the conjunction of (a)-(c). Setting 6y = &, (T)o is just the hypothesis
of the theorem.

Now suppose that (f)¢ holds. Let E = Eg and F = Ezg’ For simplicity, let us
assume that E is not of plus type, that is, E is on the Mg sequence. (The other case
is almost the same.) The map that resurrects ¢¢ (E) inside C is

Pz = O, [P | 1h( s ()|
Similarly, the resurrection map for y (F)is
7 = 0o, [0z | Ih(y (F))]%..

By (1)e(a), 0¢(Ce) = De. By (b), 0g (P ) = O, and by (¢), 0¢ (¢¢ (E)) = we (F).
It follows that

oz (pe) = Te.
Recall that BC(G) is the background extender assigned by C to G. We have
E]" =B%opgoge(E]),
and

E?* = BD5 075 ] l[/é (Eé{)
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Let E* :Eg—* and F* :Eg*; then

o (E*) = 0 (B™¢ 0 pz 0 ¢; (E))
=BP%o Tz (0e (9 (E)))
= B 0Tz oY oM (E)
=F"
Line 2 comes from the fact that o¢ (p¢ ) = 7¢, and line 3 comes from (c). Since

og(E*) = F*, we get that F* is the next extender used in 77, and thus 77 [ £ +
2=U"[E+2. We let o, | be the copy map,
MT* M“*
0z (faflg:" ) =[og (@), o (NI

where 8 = T-pred(& + 1) is the predecessor of & + 1 in all our trees.

We must verify (b) and (c) of (1) g£+1- Suppose first that & +1isnot a drop in
T . Itis then not a drop in U either, so Pz | = iEEH(Pﬁ) and Q¢ | = i%’EH(Qﬁ).
But then

Oe41(Pey1) = Oc g oiz—;;ﬂ(Pﬁ)

=ig.£1°0p(Pp)
= il[f,éﬂ (Qﬁ)
= Q§+17
so we have (b). For (c), let us consider the diagram
Vet %
Ne i Qe 11 M
7[5,1 / F* /
Or 1 Oc+1
T‘Pﬁﬂ T
Me 1 . Pe iy Mgy F
E N, £ E* My
B Vs Op B
g
T*
Mﬁ P Pﬁ Mﬁ

We are asked to show that 0z 0 Q¢ | = W 0Tz, that is, that the rectangle
on the top face of the cube commutes. We are given that all other faces of
the cube commute, so we have that og | o Qg agrees with Yg oz, on
ran(if . |). Since My is generated by ran(if . ,) UA(E), it is enough to show
that 0¢ | o Q¢ agrees with W oz on A(E). Buton A(E), Og 10 Pgyy
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agrees with g o @¢ and g o Mg agrees with Y o g, by the Shift Lemma.
Hence our induction hypothesis (1)¢(c) gives us what we want.

The case that 7 drops at £ + 1 is similar. Suppose the drop is to J <1 M - Then
since 7g is elementary, K = 7g(J) is what U drops to at § + 1. Let L = @g(J)
and N = yg(K). Thus og(L) = N by (f)g(c). To get to Pz, and Q¢ we
must resurrect our drop. Let ¥ = Res(pcﬁﬁ [L]) and ¢ = oy, [L]®6. Similarly, let

D . .
Z= Reng [N]) and u = o, [N]P5. From the definition of a conversion system, we
see that

Peyy = iﬁ?féﬂ(”

and

Q§+l = iz//}{,§+1 (Z)
But 6g(L) =N, so og(Y) = Z by elementarity, so 6z | (Pz 1) = Q¢ . This gives
us (b) of () E+1- The reader can easily check (c) using a diagram like the one
above. Note here that o (t) = u.
Now let us consider the general case, when 7 is only nearly elementary. Let
U = T, with models Ng = Mg’ Now our copy maps have the form

T Mé —>J§ ﬂNg
By Lemma 4.5.22, e is nearly elementary, and either Jé = Né , Or Jé = Ng and

T is exact. Let us keep the notation for lift(7", ) and lift(/,d) that we had. The
general version of our induction hypothesis is captured by the diagram

]\,5 Wi Q5 o ?7 5 Lé S5
] cg] cg] ]ag
M K Pe R

123

Here we have suppressed Jg; it can be that g is only nearly elementary as a
map from Mg to N, . This happens iff k(Ng) = k(M¢g) + 1. In that case, letting
k= k(Mg), we set Kg = €;1(Pg) and we have o¢ (Kz) = Q¢ and the diagram
above, with Lg = o¢ (Pe). If k(Mg) = k(N ), then K¢ = P; and Q¢ = L¢, and we
have the diagram from before.
So the general version of ()¢ is
(@ U TE+T1=0T*1E+1,and for all @ < &, oy is the associated copy map.
(b) If k(Ng) = k(Mé), then
@) O (Pg) = Q&, and
(i) Ogo@e = Ye o .



5.1. COPYING COMMUTES WITH CONVERSION 209

(c) If k(Ng) = k(M¢g)+ 1, then
1 O¢ (@(P;’:)) = Q;’:, and
(ii) Og o Qg = To Y o Mg, where 7: Qg — O¢ (Pg) is the anticore map.
The need for clause (c) in (f¢) arises as follows. Suppose we are at a successor
step & + 1, where T-pred(§ +1) = . Let E = Eg and F = Eé”, and suppose we
are dropping in 7 at & + 1, so that
M§+l = Ult(],E),
where J <AMg. If J <M then F is applied to 7 (J) in U because mg(p(J)) =
p(7g(J)). In this case we can proceed as before. If J = Mg and k(Ng) = k(Mg) +
1, then 7g (p(J)) = p(7g(J)) because 7g is exact, so once again F' is applied to
g (J) inU, and we can proceed as before. We are left with the case

JZME

and k(Mp) = k(Ng). In this case g (p(J)) < crit(F) < p(Nl;) is possible, so that

If we now trace through the relevant diagram, we see that it leads to (1)g.(c).
Letting Pg = €(X), we shall have P | = ig«(X) and Q¢ 1 = ir+(Qp), 0 Q¢ 41
will be the core of ¢, (Pz). Here is the diagram.

Vet Tet1

Neyi Q¢ 11 Og1(Pey1)
Me 1y B Kt F— Pe i F
E Ng /L ng /L Gﬁ(X)

e

Remark 5.1.2. §5.4 extends the argument at the end of the proof.

Mg Py X

P8

We get at once a coarse condensation theorem for induced strategies.

COROLLARY 5.1.3. Let R and S be transitive models of ZFC, R |=“C is a PFS
construction”, and let 6 : R — S be elementary with 6(C) =D. Let P<<M € lev(C)
and (Q,N) = 6((P,M)). Let ¥ be a (A, 0)-iteration strategy for (S,w”, FP); then

Q(C,M,2°%)p = (Q(D,N,X)p)°.
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PROOF. Let ¢ = oy[P]® and w = oy[Q]P, so that 6(¢) = y. The initial
conversion stage in the definition of Q(C,M,X%)p is
c= <Pa (pvReSM[P}Ca(CaR%
and the initial stage in the definition of Q(D,N,X) is

d = (Q.y.Resy[0].D,5).
We apply Theorem 5.1.1 with & = ¢ | P. We get that for any plus tree 7 on P,
olift(c, T )o = lift(d,oT)o,
so lift(c, T)o is by X9 iff lift(d, 0T ) is by Z, that is, T is by Q(c,X°) iff 6T is
by Q(d,X). The argument easily extends to stacks of plus trees. —

Another elementary consequence is

COROLLARY 5.1.4. Let (M,n,N,C,R) be a conversion stage, and X be a
(A, )-iteration strategy for (R,w®, FC); then

Q((M,x,N,C,R),x) =Q(C,N,x)".

PROOF. Let ¢ = (M,n,N,C,R) and d = (N,id,N,C,R). We apply Theorem
5.1.1 with R = S and ¢ = id. We get that for any plus tree 7 on M, lift(c, T )y =
lift(d, T+ )o, so T is by Q((M,n,N,C,R),X) iff 77" is by Q(C,N,X). The
argument easily extends to stacks of plus trees. -
Thus if X is an iteration strategy for some model R of ZFC, and C is a maximal
PFS construction in the sense of R, then the strategies ¥ induces via C are the
strategies it induces for the levels of C, together with their pullbacks. Pretty much
all regularity properties of iteration strategies are preserved under pullbacks, so if
they hold for all strategies of the form Q(C,M,X), where M € lev(C), then they
hold for all strategies induced by ¥ and C.

5.2. Positionality and strategy coherence

Let us define positionality in our new context.

DEFINITION 5.2.1. Let M be a pfs premouse, and Q be a complete (1,60)
iteration strategy, then Q is positional iff whenever s and ¢ are M-stacks by Q of
length < A, and N <M. (s) and N IM..(¢), then Qs v = Qy v.

We are equipped now to prove some instances of positionality. For example,
there is the trivial instance we discussed in Section 3.6.

PROPOSITION 5.2.2. Let ¢ = (M, y,K,C,S) be a conversion stage, and let ©*
be a (A, 0) iteration strategy for (S,w®, FC). Let P<AN IM; then (Q(c,X*)n)p =
Q(C,Z*)P.
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PROOF. Suppose first that M = K and y = id. By 4.7.9, the resurrections of N
and P from M in C are consistent. So letting Q = Resy/[N] and ¢ = oy/[N], and
R =Resp[o(P)] and T = 6p[c(P)], we have that R = Resy/[P| and To & = oy [P)].
Setting Q = Q(C,M,X*), we get

QP — (QR)TOO'
((Qr)%)*
= (Q9)°
— Q.
Here Qy = Qg y = (Q¢)° by our definition of induced tail strategies, and similarly
for the others.
In the general case, Q(c,X*) =AY, where A= Q(C,K,X"). Since (Ayn))y(p) =
Ay (p)> We get by copying empty trees that (Q(c,L*)y)p = Q(c, L") p. -

Again, we know of no direct proof of this proposition for the premice and
constructions of Chapter 3. It seems like the sort of simple fact whose proof ought
to be routine. In the context of pfs premice and constructions, that is true.

Strategy coherence is a more useful consequence of positionality. For coarse
strategies, the definition is

DEFINITION 5.2.3. Let (R,w,F) be a coarse extender premouse, and X be a
(A4, 6) iteration strategy for (R,w,F); then ((R,w,F),X) is strategy coherent iff
whenever s (7)) and s~ (If) are stacks by £, and N is an initial segment of both
last models, then X~ 7y v = X~ 1) v-

It is clear that if ¥ witnesses the strong unique iterability of (R,w,F), then
((R,w,F),X) is strategy coherent.

If ((R,w®, FC), %) is strategy coherent, where C is a maximal PFS construction
of R, then the strategies for levels of C induced by X are induced locally, in the
following sense. Let M be the last model of C | v, and let & be an inaccessible
cardinal of R such that C [ v C VX, Let § = V&; then

Q((CvMa Z) = Q(C F67Ma Z(S,W(CQS,]:CQS))'

This simple fact will play a role in various arguments to come.
The natural fine structural form of strategy coherence is

DEFINITION 5.2.4. Let M be a pfs premouse and X be a complete iteration
strategy for M; then (M,X) is strategy coherent iff whenever s~ (T ) and s (U)
are stacks by X, and N is an initial segment of both last models, then Xy~ ) v =
Lo~ w)N-

Notice that in both the fine and coarse cases, 7 and U/ are quasi-normal, so they
have a common initial segment WV such that N <MYV, So strategy coherence is
equivalent to the assertion that if s~ (77) is by X, and N M7, and o(N) < 1h(E]),
then X~ (71 g1y 8 = Zs~(T) N+
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Ultimately we shall show that if X* is a strongly unique iteration strategy for V,
and X = Q(C,M, L"), then (M,X) is strategy coherent. The background coherence
problem prevents us from showing this now, but we can prove the following
approximation.

THEOREM 5.2.5. Let ¢ = (M, n,Q,C,R) be a conversion stage, let ¥* be a
strongly unique (A, 0) iteration strategy for (R,w®, F©), and let L. = Q(c,L*). Let
T be a plus tree on M by ¥ and let N be an initial segment of its last model. Let
v+ 1 <Ih(T), and suppose that either

(a) o(N) < A(E]), or
(b) EJ is of plus type, and o(N) < 1h(E]);

then X7 1y 1N = LT N-

PROOF. Forn <1h(7), let ¢y =stg(T,c,n) = (My, ¥y, 0n,Cy,Ry). Let y+
1 =1h(7"). We need to see that ¢, and cy induce the same iteration strategy for
N. For this we use the agreement properties (3),(4), and (5) in the definition of
conversion systems. Our hypothesis on o(N) guarantees that they suffice.
Adopting the notation of Section 4.8, let

H: "I/V(E)a
G= GQV[X](H)7
Y = Resq, [X],
G*=BY(G)

(The resurrections are in C,, of course.) Let & be the unique 1 such that ¥ = M;C, 0

We have that Vlﬁ("G*) = V{;{G*) and Cy [§ = C, [ &, moreover Y||o(Y) is the last

model of Cy, [ €. Let

Ry Cy _ (R nC .
(8,9) = (Vlh(G*)’F [5) = (Vlh(yG*yF ”5)’

then X%, VAHL(S.0) =TT [ y+1,(5,6) Decause (R,X*) is strategy coherent.

This is the agreement of background strategies we need; let us calculate the
agreement of lifting maps. Set N; = y,(N), N, = Resy (N;) = Resq, v[N1], and
N3 = Resy[Nz]. The resurrections are all in Cy [ £ because o(N) < Ih(E). Let
01 = Oy, ,v[Ni] and 63 = oy [N,] be the associated resurrection maps. We have the
diagram
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Ny > N3
N,

Here 03 = 0y, [N1] = 020 01. All resurrections here are in the sense of Cy. The
resurrection map o, is determined by Cy [ &, so 65 = 6y[N>]%7. But o(Y) is a
cardinal of Qy and o(Y) < p~(Qy), so by 4.7.10,

N "

0y = O, [N,]Cr.
Our hypothesis (2) on o(N) guarantees that
resy oWy [o(N) +1 =y, [o(N)+1,
so N> = yy(N). Thus we can calculate

7 v = QN, 0309y, N3, Cy [§,8, 57,11 (5.6))
=Q(N,0r0tesy oy, N3,Cy [ £,8, 25,11 (5.6))
=Q(N,020yy,N3,Cy [§,5, 55111 (5.6))
= LT [y+1N

as desired. -
From this we get strategy coherence within plus trees that are A-separated.

COROLLARY 5.2.6. Let X =Q(M,n,0Q,C,R,X*), where L* is a strongly unique
(X, 8) iteration strategy for (R,w®, FC). Let s~ (T) and s~ (U) are stacks by ¥,
and N is an initial segment of both last models. Suppose that T and U are
A-separated; then L~ 1) n = o~ 1) -

PROOF. We may assume s = @) without loss of generality. Let v be least such
that N <A M7; then T [v+1 =U [ v+ 1 by the uniqueness of normal iterations
by a fixed strategy. (Recall that A-separated trees are length-increasing.) By
the symmetry of the situation, it will suffice to show that X7y 1y = X7 n. If
v+ 1 =1h(T) this is true. If v+ 1 < Ih(T), then o(N) < lh(E] ), since otherwise
E] is on the N sequence, so N 91 M. Since E] has plus type, Theorem 5.2.5(b)
then tells us that X7y 1y = X7 N. =

This corollary and stronger results along its lines are the reason we are giving
special attention to A-separated trees.

5.3. Pullback consistency

Roughly speaking, an iteration strategy is pullback consistent if it pulls back to
itself under its own iteration maps. We shall show that any background-induced
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strategy is pullback consistent, provided that the strategy inducing it is pullback
consistent. This is a warm-up for Chapter 7, where we shall prove stronger results
along the same lines.

DEFINITION 5.3.1. Let Q be a complete (4, 0) iteration strategy for a premouse
M. We say that Q is pullback consistent iff whenever s~ (P,T) is an M-stack by
Q, o <7 B, KIM], and L=1i] 4(K), then

Qi pT1as1)k = (@ (pT1pr1).L) “F.

The definition applies even if there are drops along the branch of 7 from «
to B3, so long as K is in the domain of the partial iteration map { = ig B Indeed
K = dom(i) is possible, in which case L = M. 13!

Pullback consistency for the iteration strategies described in Chapter 3 cannot be
proved directly, so far as we can see. For example, let Q = Q(C,M,X*), where C
is a construction in the sense of Chapter 3, and suppose P <IN <t{M. We can think
Qp as the pullback of (Qy)p under the identity map, which is indeed the iteration
map associated to the empty tree on N. So Qp = (Qu)p is an instance of pullback
consistency. But as we saw in Section 3.6, the attempt to prove Qp = (Qu)p
directly is blocked by the possibility of resurrection inconsistencies.

We have stated pullback consistency for pullbacks within a single normal tree
T, but this implies we can pull back consistently from one normal tree in a stack
into any previous one, step by step. This is simply because Q°/ = (Q)/.

As one might guess, pullback consistency passes from Q to its pullbacks.

LEMMA 5.3.2. Let ®: M — N be nearly elementary, and let Q be a pullback
consistent iteration strategy for N; then QT is pullback consistent.

PROOF. Let s (P,T) be an M-stack by Q7, and a <7 . To simplify the
notation, let us assume s = () and P = M; the general case is no different. Let
LT
1=1 a, ﬁ’
and let K < Mg, and
i (K ) =L
We must see that Q7 g41x = (Q7p41.0)"
— — u . :

LetU = 7T, let Ne = /\/l,; , and let 7tz : Mz — N be the copy map. 7 is nearly
elementary. Let R = mq(K), j = ’4&{[5’ and S = j(R). Here if K = M | n, then
R = MY | n, as usual. Similarly, R = dom() is possible.

181The branch embeddings in an M-stack are elementary, so pullback consistency only concerns
pullbacks under elementary maps. The possible difference between 77 and #7 + when 7 is only
nearly elementary is not relevant.

182pyllback consistency in the non-dropping case can be proved directly for the induced strategies

for Jensen premice described in Chapter 3. In the example just given, the empty tree from N to P has a
drop along its (trivial) main branch.
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Tracing through the appropriate diagram, we get
QT a1k = (Quratir)™

= (Qy rﬁ+1,s)j0”“
)

= (Q1pr1,5)

= (Qg’[ﬁ+l.L)lv
as desired. Lines 1 and 4 come from the definition of Q”. Line 2 comes from the
pullback consistency of €2, and line 3 from the fact that jo 7y = 7g 0. -

Pullback consistency also makes sense for coarse iteration strategies. Like the
other regularity properties for coarse strategies we shall consider, it holds for
strategies that witness strong unique iterability.

THEOREM 5.3.3. Let (N, €,w,F) be a coarse extender premouse, and suppose
that ¥ witnesses that N is strongly uniquely (A,0,F)-iterable; then ¥ is pullback
consistent.

PROOF. Lets (P, T)bebyX. Letox <7 8,Q=MJ],R=M},and & = i;ﬁ;
we must show that X~ (7 ¢41y,0 = (Zs~ (71 g+1),8)"-

Butif U is by (Z¢~(71p41),r)”, then its models are wellfounded, because they
embed by copy maps into models of z#l{, and these are wellfounded. Since
X~ (T1a+1),0 chooses unique wellfounded branches, ¢ must be by X~ 7141y 0s
as desired.

The proof that pullback consistency passes to pullback strategies shows that it
passes to background-induced strategies.

THEOREM 5.3.4. Let c = (M,y,0,C,R) be a conversion stage, and suppose
that X* is a pullback consistent (A, ) iteration strategy for (R,€ w,FC); then
Q(c,X*) is pullback consistent.

PROOF. Let £ = Q(c,X*). For notational simplicity, we consider pullbacks
within a plus tree 7 by X. The argument we give applies equally well to 7 that are
by a tail strategy X, p. Suppose that 7 is a plus tree on M and o <7 . Let

and suppose that i(K) = L (with the usual understandings if K = dom(i).) We must

see that X7y x = (ZT[B+1,L)i'
Let lift(7,c)o = 7" and

stg(T,c,m) = (My, ¥y, 0n,.Cn,Ry).
Letting Y+ 1 <7 B be such that T-pred(y+ 1) = a, we may assume without loss
of generality that D7 N (y+ 1, B]7 = 0. (If there is more than one drop between
o and B, we then just pull back successively across one drop at a time.) Let
J = M7 then K <J = dom(i) < M.

y+1°
Let
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Ji = yu(J) and K; = yu(K),

Jo = Resq, [/1]%,

0 = 0g, [/1]** and K, = 6(K7), and
L= l,l/ﬁ (L)

Here is a diagram of the situation.

Ry —— Ry

w w

Kg%Ll

(¢
/ Al Al

K, J —— Qg

My, i

Here i* = i?;;a. We get the desired conclusion by pulling back the induced strategy
for L) to K, along ygoiand i* 0 6 0 Y. Let

A = Q(Cﬁ,Qﬁ,Rﬁ,Zj;** rﬁ"l‘l)Ll 5

F = Q(CQ,J27RQ,E:;** [(X+1)K2'
Since X* is pullback consistent, 7. ta1 18 the pullback of 2N B under i*, so
by Corollary 5.1.3, ' = A”". We can therefore calculate

Z"7’[0c+1.K =V

= (A7)o°VB
_ Ai*ooonya
= AVB
= (A%

i
)

= (ZTWH,L)



5.4. INTERNAL LIFT CONSISTENCY 217

as desired. =

5.4. Internal lift consistency

Given 7: P — R nearly elementary, we can copy a P-stack s to an R-stack s,
until we reach an illfounded model on the 7s side. In Section 4.5 we extended
the copying construction slightly, so as to allow stronger ultrapowers on the R
side than the copied ones. This leads to a more general way to pull back iteration
strategies.

DEFINITION 5.4.1. Suppose that 7: P — Q|(v, k) is nearly elementary and Q
is a strategy for Q defined on plus trees; then Q™) is the strategy on plus trees
given by pulling back:

QFY(T) = Q((xT)").
When P = Q|(v,k) and 7 = id, we write Q}} for Q%K)

We show now that background-induced strategies pull back to themselves when
lifted under the identity map. Again, resurrection consistency plays a role, and
we know of no direct proof of the corresponding fact for the induced strategies of
Chapter 3. The main lemma we need is that lifting a stack of plus trees from some
initial segment of Q to Q itself under the identity map commutes with conversion.
In order to prove this for stacks, we need to consider (7, v, k) lifts where 7 is not
the identity.

LEMMA 54.2. Letd = (Q,y,N,C,R) be a conversion stage, t: P — J <1 Q be
nearly elementary, and ¢ = (P, ox[y(J)] o wo m,Resy[w(J)],C,R). Suppose that
U is a plus tree on P, and let U™ be the (70, v,k)-lift of U to Q, where J = Q|(V,k);
then

lift (U, c)o = lift(nU T, d)o.
PROOF. Let V* =1lift(U,c)o and W* = lift(mld *,d)o. We mean of course that

V* and W* are the same up to and at the first point, if one exists, that they reach
an illfounded model. Let also

Stg(uac7a) = <PO(76117M117(CO£’R(X>7

Stg(nu+vd7a) = <QOC7II/(X7N(X7D(X7S(X>~
We shall show by induction that V* a4+ 1 = W* [+ 1, and hence Ry = Sy and
Ca :Da.

We have Py, = MY and Qy = MZZﬁ. Let
To: Po — Joa 1Q0q

be the lifting map from the definition of 7U*. Thus Jo =J and @y = 7. Let
Vo (Jo) = Ko INg.
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We shall show that the following diagram commutes:

Q¢ L Neg ReSN5 [Klj] =M

v v
a
o t\\%

J K,
ET’i

g

Pe

Here the resurrection in the upper right corner is taking place in the construction
Cg = Dg of Mgv* = M?. Our induction hypotheses are

(D) VIE+T1=WTE+],
(2) M =Resy, [K], and
3) 9& = CTN5 [Ké] o Wé Oﬂ,’é.
They hold at & = 0 because we defined M as Resy, [Ko| and 6 as oy, [Ko| o o 7.
Now suppose (1)-(3) hold atall 7 < &. Let

E=EY,

F =g (E) = EF,
G =y (F),
HZQ&(E).

Letting D = C¢ = D¢ and interpreting the resurrection as being in D, (3) implies
that oy, [Kd(G) = H. Thus

:E‘5 ,

so V*1E+2=W*E+2. The step from line 3 to line 4 uses resurrection
consistency.
Let us check that (2) and (3) continue to hold at £ + 1. Let = U-pred(& + 1)

and i* = iy, | =iy’ |, 50 that N, = i*(Np) and Mg, = i*(Mp). Let

s __ U .
l:’[i,§+1'Pg+1ﬁP§+l
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and

UT

J=igE y; QZH — Q¢4

be the canonical embeddings. Suppose for simplicity that & + 1 ¢ D“; we leave
the dropping case to the reader. Here is the relevant diagram:

LZ38]
Q¢ 11 Ne

Vet
Jes Ke i -

J i i

0: X Y

/ - W/ 1/
- K L My
A

65

Here X = yp(Q; ;). ¥ =Resn, [X], t = ong[X], L=1(Kp), and u = oy [L], the
resurrections being in Cg.

We have Kz | = i*(L), and N = i*(Y) by the definition of lift(Z4*, d). Setting
v =i"(u), this implies that v = oy, _ [K¢ ], the resurrection being in C¢ ;. Thus
Mg =Resy,  [Ke 1], as desired for (2).

Let us verify that 6z ; =voYe om . We have that Tz oi = jomg by
the way lifting from U to TU™ works, and i* oz o Vg = Ye o by the way the
conversion of U™+ works. The bottom face of the slab commutes by our induction
hypothesis. Thus all parts of the diagram that do not involve 8¢ ; commute.
We have also 6g | oi =i" 06 by the way U converts to W*. So the front face
commutes.

It follows that 8¢, agrees with vo yg jomz | on ran(i). But Pe 1 1s generated
from €(E) Uran(i), where €(E) = Ih(E) if E has plus type, and €(E) = A(E)
otherwise. So it is enough to show that 6 | agrees with vo yg_ jomg_ ; on e(E).
To see this, let

Y(g = RCSM5 [Mé | lh(H)],
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s = O, [ M |Th(H)].

s is res¢ for the lift({4, c) conversion, and s o Oy, [K] is res¢ for the lift(7 t.d)
conversion. We have

6.1 1€(E) = 500 | (E)

=S50 CFN5 [Kg] o ll/é: O T [S(E)

_ dift(ndd)

= res; oy omg [€(E)

= VY0 [€(E)

=voWs, oM [€(E).
Line 1 comes from the way lift({/,c) works. Line 2 comes from our induction
hypothesis. Line 4 comes from the fact that 7z | agrees with 7z on lh(E)'83
and the fact that W, agrees with resg oy on £(F) by the agreement of maps
in lift(n4*,d). Finally, line 5 holds because o(Yz) is a cardinal of Ng_, and
o(Ye) <p~(Neqy) 184 sov lo(Yg) is the identity by the properties of resurrection
maps.

This completes the step from & to £ + 1 in our induction. The limit step is

easy. -

COROLLARY 5.4.3. Under the hypotheses of Lemma 5.4.2, lfljl is a stack of
plus trees on P, and U™ is its (7, v,k)-lift to a stack on Q, then lift(U,c)o =
lift(7ld ™, d)o.

PROOF. This is really a corollary to the proof. Let U/ be the first plus tree in
U, and & 41 = lh(U). Our induction hypothesis tells us that ¢z = stg(U, c,§) is

related to dg = stg(nlU™,d, &) by T in the same way that ¢ was related to d by 7,
that is

de = (Q¢, Ye,Ne,Ce ,Re ),

and

cg = (Pe, Ong [We (Je)] o We o iz Resn, [We (Je)], Ce R ),
where Ré is the common last model M%’ " of the two lifts, and Cé 18 its construc-

tion. So if ¢4y is the next plus tree in 2/, then it lifts under oy, [We (Jg)] o we o
g, Resn, [We (J¢ )] the same way that m=U;" lifts under Wz . And so on. 4

DEFINITION 5.4.4. Let Q be a complete (4, 0) iteration strategy for a premouse
M. We say that Q is internally lift consistent iff whenever s is a stack of plus trees
by Q and P <Q I M.(s), then Q, p = (QS?Q);S.

1831t may agree less with 7, for a@ > & + 1.
184Gee (3)5 (d)(e) in the definition of conversion.
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We get at once

THEOREM 5.4.5. Letd = (M,y,N,C,R) be a conversion stage, X* be a (A,0)
iteration strategy for (R,w®, FC), and Q = Q(d,X*); then Q is internally lift
consistent.

PROOF. Let us take the case that s = 0. Let P<Q = M. In that case, we
must show that Qp = Q}. Let ¢ = (P, 70 y,K,C,R), where K = Resy[y/(P)] and
7 = oy[w(P)]. Then U is by Qp iff lift(l, c)o is by T* iff lift(Z{ T, d)o is by Z* iff
U is by Qiff U is by Q.

The general case, when s is abitrary and P <Q << M (s), is similar. -

It is not hard to see that internal lift consistency passes to pullback strategies.
Another simple diagram shows that the action of an internally lift consistent strategy
on stacks of plus trees is determined by its action on maximal stacks of plus trees.

5.5. A reduction to A-separated trees

It is easy to show that background induced iteration strategies are determined by
their action on A-separated trees. First, there is a natural minimal A-separation of
a given plus tree:

DEFINITION 5.5.1. Let 7 be a plus tree on M. We define a A-separated tree
U = T*, along with elementary maps
Tg: ML — MY
by: my = id, and

pu_ ) Ta (E])  if E] is of plus type,
* | ma(EI)T  otherwise,

and 7y is the natural copy map from Ult(P,E]) to Ult(ng(P),EY), where
B =T-pred(oc+ 1) = U-pred(a+ 1), and P < /\/lz; is what E is applied to.

‘We then have

THEOREM 5.5.2. Let ¢ = (M, y,0,C,R) be a conversion stage, and T be a
plus tree on M; then
(a) 1ift(T,c)o = lift(T*P,c)o, and
(b) if £ is a complete (A,0) iteration strategy for (R,w®,FC), then T is by
Q(c,2%) iff T*P is by Q(c,X*).
PROOF. Letstg(7,c,0) = (Mg, Wa,Pa,Cq,Ry) and stg(TP, ¢, &) = (No, P, Qo Dty Ser)
be the conversion stages in the two liftings. Let 7y : My — Ny be the separation
map described in Definition 5.5.1. A completely routine induction shows that for
all o, (Py,Cq,Re) = (Qas D, Sar)» and Wy = @ 0 g
This proves (a). Part (b) follows at once. =






Chapter 6

NORMALIZING STACKS OF ITERATION TREES

In this chapter, we shall show how one can re-order the use of extenders in a
finite stack s of normal plus trees, so as to produce a single normal plus tree W (s)
such that the last model of s embeds into the last model of W (s). We call this
process embedding normalization. Our goal here is to give some basic definitions
and prove some elementary theorems that help one deal with the complexities
of normalizing and quasi-normalizing. In Chapter 8 we shall apply the resulting
theory to the comparison of iteration strategies.'®

We shall assume for most of the chapter that the stack s to be normalized is finite
and maximal, and consists of normal trees. In Section 6.7 we consider arbitrary
finite M-stacks, but that more general case is not needed for strategy comparison.

The results of this chapter have the pleasant feature that one need only understand
the basic facts about iteration trees and premice in order to follow their proofs.
Indeed, it seems to us that this is a place where someone with minimal background
knowledge could get a feel for iteration tree combinatorics. With that in mind, we
have gone more slowly, including more examples and variant proofs than a more
advanced reader would require.

In that spirit, we begin in §6.1 by considering the simplest possible case, normal-
izing a stack of length two in which each component tree uses only one extender.
The results of this section are not used later, but they do help give a feel for what’s
going on. We also show in §6.1 that these simple stacks can be fully normalized,
in that, granted an iterability assumption, one can find a normal tree X (s) whose
last model is equal to the last model of s.

In §6.2 we consider the special case of stacks (7 ,4/) in which I uses only one
extender, and in §6.5 we define W ({7 ,U/)) = W(T,U) for the general maximal
stack of length two. We do use some of the definitions of §6.2 in §6.5.

In §6.3 we introduce extender trees, which are simple re-packagings of iteration
trees that are sometimes helpful. In §6.4 we introduce something much more

185S0me of our work on normalization was done earlier (but never written up) with Itay Neeman,
and then later with Grigor Sargsyan. Fuchs, Neeman and Schindler ([13]) and Mitchell (unpublished),
and probably others, have considered the question. Much of what seems to be new in this chapter was
done independently, and at roughly the same time, by Farmer Schlutzenberg. (See [54].)

223
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important, the notion of a tree embedding.'%® This notion is absolutely central to
our work here. A key part of what makes an iteration strategy ¥~ comparable with
other strategies is that if ¢/ is by X, and T is tree-embeddable into I/, then 7 is by
Y. We call this property of X strong hull condensation. Tree embeddings play an
important role in the definition of W (7 ,U), as we shall see.

§6.6 and §6.8 are devoted to elementary facts about W (7 ,U). The most sub-
stantial result here concerns the way branches of W (7 ,U) correspond in one-one
fashion with pairs consisting of a branch of 7 and a branch of ¢/. In §6.9 we
describe the normalization of stacks of arbitrary finite length, and we say a few
words about normalizing stacks of infinite length.

Finally, in §6.7 we describe the quasi-normalization V(s) of a stack s. If the
components of s are A-separated, then V(s) = W(s), so if one were willing to
restrict all iteration strategies to stacks of A-separated trees, then one could ignore
quasi-normalization. There seems to be no great loss in doing that. In general, if 5 is
maximal and normal, W (s) is the normal companion of V (s). Quasi-normalization
is needed in showing that background induced strategies embedding normalize
well'87 on stacks whose components may not be A-separated.

In general, there are two sorts of base models M for the iteration trees we deal
with in this book: coarse premice and fine-structural premice. Both sorts divide
further into pure extender and strategy premice. The definition of W (7 ,U/) will
make sense in both cases. In this chapter we shall focus on the case that M is a
pfs premouse. Until we get to Chapter 9, this is what we mean by the unqualified
premouse. In the most important case, M has type 1 and is strongly stable. We
do also need to define W(7,U) in the coarse structural case as well, and we shall
indicate how to do so as we proceed. But then we are just talking about ultrapowers
of models of ZFC by nice extenders, so various things simplify.

The construction of W (7 ,U) does not require that any iteration strategy for M
be fixed; however, it may break down by reaching illfounded models, even if the
models of 7"U are wellfounded. In the case we care about, M has an iteration
strategy X, (T ,U) is played according to X, and the initial segment of W (7 ,U)
up to our point of interest is also played by X. We shall eventually show that if ¥
has been properly induced, then W (7T ,U) is also by X, and hence the construction
of W(T,U) does not break down.

6.1. Normalizing trees of length 2

We begin by looking closely at stacks of the form ((E), (F)).
Let M be a pfs premouse, E on the extended sequence!8® of M, crit(E) <
P(m) (M), and N = Ult(M,E). Let F be on the extended sequence of N, and

186Tree embeddings were isolated independently by Schlutzenberg and the author. See [54].
187Meaning s is by Z iff W (s) is by .
188That is, £~ is on the sequence; see 4.4.2.
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crit(F) < A(E). It follows that k(M) = k(N) and crit(F) < Pi(v)(N), so that
Ult(N, F) makes sense, and both ultrapowers are n-ultrapowers, where n = k(M).
Let

K =crit(E), u=crit(F), and Q= Ult(N,F).

Let 7 be the iteration tree such thatE(T:E, EIT:F, M(T:M,MT:N, and

MJ = Q. Since u < i(E ), T is not normal. We show how to normalize it. There
are two cases.

Case 1. crit(F) < crit(E).

Since u < x and E is an extender over M (that is, over the reduct M", for n = k(M)),
F is also an extender over M. Let P = Ult(M,F), and i¥! : M — P be the canonical
embedding. We have the diagram

N —— @ —— ¥ (N) = Un(P,i(E))

E
.
F

M———P

Suppose first that M |= ZFC; then N is definable over M from E, and iz}’l moves
the fact that N = Ult(M, E) over to the fact that i/ (N) = Ult(P,i¥ (E)). 7 is the
natural embedding from & (N) to ¥ (N). That is,

t([a.8lF) = a.glY
for g : [u]l”l — N, with g € N. The tree U with models
MY =M, MY =N, MY =P, MY =Ulty(P,i¥ (E))
and extenders
EY =E,EY =F, EY =i (E),
is normal. We call U/ the embedding normalization of T .

Remark 6.1.1. This implicitly assumes hE < lhF. If ]hnF < ]IhE, then F is
already on the M-sequence, and the extenders of ¢/ would be Eg’ =F,EY =i(E).
The diagrams and calculations above don’t change, however.

The proof just given was based on N being definable over M as its E-ultrapower
and ¥ acting elementarily on this definition. But of course, ORY > OR/ is
possible, and anyway, we need to know i’)! has enough elementarity. If M |= ZFC,
all is fine. We now give a more careful proof that works in general.

We assume k(M) = k(N) = 0 so that we can avoid the details of ultrapowers
of reducts and their decodings. The general case is similar. So every x € Q has
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the form i (g)(b) for g € N and b € [Ih(F)]<®. We can write g = i¥! (h)(a), where
h €M anda € [Ih(E)]<®. So
x = iy (i (h)(a))(b)
= iy o i (h)(if' (a))(b),
with b, i¥(a) € [supiN“1h(E)]<®. Let
G = (extender of i o ) [ sup ¥ “(In(E)),
so that
0 =Ult(M,G).
The space of G is k, and its critical point is i. Notice that Ih(E) is regular in N,
and p~(N) > lh(E), so i is continuous at Ih(E). Let us write
R =Ulto(P,if! (E))
H = (extender of if;,,( )ozF) Isupiy (Ih(E)).
F
It is easy to see that
R=Ult(M,H).
P =Uly (M, F) iff R = Ult;(M,H). But now we can calculate that G is a subex-
tender of H. For let b € [In(F)]<® and g : [u]®| — [In(E)]' with g € N. Let
A C [crit(E))! with A € N. (Equivalently, A € M.) We have
(Ib.8l¥.A) € G iff [b,g]y € iF o i} (4)
iff for F, a.e. I, g(fi) € ¥ (A)
iff for F, a.e. i, (g(f),A) € E
iff (b, 8] it (A)) € if! (E)
iff b, g]} € lM oiy (A)
iff ([b, g} A) € H.
Let S = N||1h(E) = M||1h(E), and let o : i¥ (S) — i (S) be given by
G([bag]F) = [bvg]F
o is nearly elementary, and maps 1h(G) into 1h(H). We have just shown that
(a,A) € G iff (0(a),A) €H,
so G is a subextender of H under ¢. (P may have been constructed using functions
that are Zﬂ” , but that certainly includes g.) We can therefore define 7 from Q into R
by
t([a, f1§) = [o(a), fIH-
i
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Notice that T agrees with o on #¥(S), and 7 [1h(F) = o [ 1h(F) = identity. One
can easily show that in the case M |= ZFC, our current definition of T coincides
with the earlier one.

Here is another way to obtain 7, one that is closer to the way we shall handle
the general case below. Let y: Ult(M,E) — Ult(P,E*) be the Shift Lemma map,
where E* = i/ (E). That is,

w(la. f1E) = [i¥ (a), i¥ (N)]E--

By the Shift Lemma, y agrees with ¥ on Ih(E). It follows that F is an initial
segment of Ey,, the extender of y. Let 6 be the factor embedding from Ult(N, F)
to Ult(N,Ey ), given by

6([a,&l¥) = [a,8]%, = v(2)(a),

for all a € [Ih(F)]<®. We claim that 6 = 7.

To see this, note that 0 is the unique map 7 from Q to Ult(P,E*) such that
v = ol and 7 | Ih(F) is the identity. Clearly 7 [ In(F) = o | Ih(F) = identity,
so we must see that ¥ = Toi¥. Now both 6 and T make the diagram

T

T

0
E
A
\q\?\

mMm—" . p

commute, where R = Ult(P,i¥ (E)), so y agrees with 7o on ran(i¥). Thus it is

enough to see that y agrees with 7o ¥ on the generators of E, that is, on Ih(E).

But for a € [Ih(E)]~?,

toil(a) = ooil(a)

= iy (a)

=y(a),

by the definitions of y and 7. This completes our proof that T = 6.
Here is another diagram of the situation:
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Qth P||1h P

NNy

N+—s— M||Ih(E '

|

F is an initial segment of the extender of y, and 7 is the factor map. N is generated
by M||Ih(E) Uran(ig), and Q is generated by Q|| 1h(G) Uran(ig). 7 is the unique
map that agrees with o on 1h(G) and makes the diagram commute.

Remark 6.1.2. T is X as a map from Q" to Ult(P,i/ (E))", so using the fact that
the diagram commutes, we see that 7 is nearly elementary. If all the ultrapowers in
the diagram are n-ultrapowers, for n = k(M), then all their maps are cofinal, so by
commutativity 7 is cofinal, and hence also elementary. But in general, T behaves
like any factor map from one ultrapower to a larger one: it is nearly elementary,
but may not be elementary.

Case 2. crit(E) < crit(F).

Let i = crit(F) and k = crit(E). We have assumed y < A(E), as otherwise 7T is
already normal. Let

§ = M|[In(E) = N||Ih(E),
J = M|(E k), where (£ k) is lex least such that p(M|(E . k)) < u,
P ="Ult(J,F).

Let N = Ult(M,E) and Q = Ult(N, F).

The embedding normalization of T continues from My = M, M| = N (assuming
Ih(E) < 1h(F)), M5 = J, and M, = P by using i%(E) now. Note i%(E) should be
applied to M, not P, in a normal tree. So let

R =Ult(M, i} (E)).

Since crit(i%(E)) = k, the ultrapowers producing N and R have the same degree.
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We assume again for simplicity that it is zero. Let G be the extender of i]}’ ) i%” , and
notice that G is short, with 2(G) = i¥ (A(E)) = supi¥ “A(E). Let

o : Ult(S,F) — ir(S)
be given by

o([b.gl¥) = b.glr

for g : [u]?! — A(E) with g € N. (Note that for n = k(M) = k(N), we have
K < pu(M), so Ih(E) < p,(N), so every rEV such function g belongs to S. That is,
Ult(S,F) = il(S).) We claim that

CLAIM 6.1.3. G is a subextender of i%.(E) under o.

Remark 6.1.4. In this case, G and i{p (E) are short, and o is the identity on their
common domain.

PROOF. Let a C i) (Ih(E)) be finite, and let A C [x]1% be in M. Let a = [b, gV,
where g € N and g : [u]"®! — [v(E)]1%. Then
(a,A) € G iff ([b,g]¥,A) € G
iff [b, ]} € it oy (A)
iff for F, a.e. i, g(fi) € i¥ (A)
iff for F a.e. ii, (g(fi),A) € E
iff (b, g]F,A) € ir (E)
iff (6(a),A) € ir.(E).
4

Thus we have a factor map 7 : Q — R from Q = Ult(M, G) to Ult(M,i%(E))
given by

T([a’f]lg) = [O-(a)Vf]?JZ(E>’
Assuming lh(E) < Ih(F), the embedding normalization of 7 is then U, where
ES =E,EY =F, EY =il!(E).

IfIh(F) < 1h(E),itis Ef = F, E¥ = i}/(E).
Notice that E is an amenable class of N||Ih(E), so we can make sense of i¥ (E)
as the union of all % (E Nx) for x € N||1h(E). The proof of the claim showed

G=iNE).

So the situation in Case 2 is summarized by the diagram
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We have assumed here k = 0 to remove some clutter. As in Case 1, 7 is nearly
elementary.

Remark 6.1.5. If J = M|1h(E), then i% = i¥ | N|Ih(E), so i¥ (E) = i%.(E), and
Q = R. This is what happens if v(E) < crit(F) < A(E). The original 7 is ms-
normal but not Jensen normal. Its embedding normalization is Jensen normal, and
has the same last model as 7.

If J = M, then the diagram simplifies to

Ir T

N 0 R

|
122

M~———Pp

IF

If u < v(E) and v(E) is a cardinal of M and J = M, then i¥(E) is the trivial
completion of ¥ (E) [ supi¥“v(E). In this case, Q = R iff cof (v(E)) # u, and
if Q # R, then crit(t) = supiN“Vv(E).

Full normalization

Suppose we are in the situation above: E is on the extended M-sequence,
N =Ult(M,E), F is on the extended N-sequence, and Q = Ult(N,F). Let us
consider the problem of fully normalizing E-then-F. That is, we seek a normal
tree on M whose last model is literally equal to Q.

We saw in Case 2 that Q = Ult(M,i¥(E)), and it is not hard to check that
Q = Ult(P,i¥(E)) in Case 1, where P = Ult(M, F). So it would be enough to show
that i (E) is on the extended P-sequence. i (E) is a subextender of i¥ (E) under
the map o that we identified in the proof of embedding normalization. i¥ (E) is on
the extended P-sequence, so perhaps we can apply condensation to ¢ and conclude
that i¥(E) is on the extended P-sequence. We shall sketch here a proof that this
can be done.

Full normalization is not important in this book, but it is very useful in its
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sequels, for example [68] and [75]. The paper [59] proves a general theorem on
the existence of full normalizations for stacks of normal trees on premice. The
argument we are about to give contains one of the main ideas in that proof.

Let us assume that £ and F' are not of plus type, so that we don’t have to bother
with extended sequences. Let us assume crit(F) < crit(E) as well. The proof we
give easily generalizes to the other cases. In the course of the proof we shall assume
that certain ultrapowers produce type 1 pfs premice. That assumption, which is
less easily removed, has the effect of making the Condensation Theorem 4.10.10
adequate to our task. One can avoid it by going further into the fine structure of pfs
premice and proving a stronger condensation theorem. We shall not do that here.

Remark 6.1.6. Let us consider the case that v(E) is a cardinal in M. Then
(Ha)M = (Ha)N for all @ < V(E), so for o as above, o [ supil“v(E) = identity.
Thus ¥ (E) is the trivial completion of i (E) [ supi¥“v(E). If i¥ is continuous at
V(E) (i.e. cof (V(E)) # p), then i (E) = i/ (E) and Q = R. If i¥ is discontinuous
at v(E) (i.e. cof (v(E)) = ), then Q # R, and in fact crit(t) = supi¥/“v(E).

So in this case, the embedding normalization of 7 uses i¥ (E) to continue
from P, while the full normalization may use a proper initial segment of #/ (E) to
continue from P.

Clearly, a full normalization of 7 must start with E and then F. We are now at
the model P, and to get to Q, we must replace i (E) by i¥ (E). In order to do that,
we look at i (E) for all those J in the (M, M|1h(E)) dropdown sequence. We show
inductively that each such i{p (E) is on the P-sequence, starting with J = M, where
this is clearly true, and working down to J = M|1h(E), where i (E) = il (E). At
each step of the induction we apply Theorem 4.10.10.

Let us check that i¥ (E) is indeed the extender we want.

CLAIM 6.1.7. LetJ = M||1h(E); then Q = Ult(P,i}(E)).
PROOF. 1h(E) is a regular cardinal in N, and 1h(E) < p~(N), so
it =iy,
i¥ is continuous at Ih(E). Let
L = (extender of ifJ;(E) o) 1N (Ih(E)),
then it is easy to see that
Ult(P,i},(E)) = Ult(M,L).

Recall that G was the extender of length i¥ (v(E)) given by i¥ o i¥. As before, we
get 6 : 1h(G) — 1h(L) by

&([b,glY) = [} "),

defined for b € [V(E)]<® and g : [u]”l — v(E) with g € N. (We assume here
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k(M) = k(N) = 0; otherwise replace M and N by their k(M )-reducts.) But all such
garein M||Ih(E), so
0 = identity.
As before, we get that G is a subextender of L under &, but this just means that
G =L, proving Claim 6.1.7. o
Now let J and K be successive elements of the (M,M|Ih(E)) dropdown se-
quence, that is, J = A;(M,M|1h(E)) and K = A; | (M,M|1h(E)) for some i. Let
m=k(J)and n+1=k(K). Let
X = Ult,(J,F),
Y =Ult, (K, F),
Z = Ultyy (K, F).
Notice here that we are not guaranteed that X, Y, or Z are type 1 pfs premice,
or equivalently, that X~, Y, or Z~ are sound. For example, if n,Jn = U, where
u = crit(F), and J has type 1B, then X~ is not sound. This is a problem because
our condensation theorem applies to sound mice. Rather than go deeper into pfs

fine structure, we shall now simply assume that X, Y, and Z are type 1 pfs premice.
The full proof is given in [59].

CLAIM6.1.8. XY <Z.

PROOF. Leti: J — X, k: K~ —Y,and [: K — Z be the canonical embeddings.
We have a factor map

v: X —k(J)
given by

v(la.flf) = la. fIE -

Let Y= p,u(J). 7is a cardinal of K, and y < p,(K), so every rZX function f with
domain u and range bounded in Yy belongs to J. Thus

Pm(X) = supi“y < crit(y).

We may assume that y is not the identity, as otherwise X = k(J), so X <Y as
desired. But then y witnesses that the reduct X™ is a proper initial segment of
k(J)", so X™ € k(J)™, so X € k(J). This means that the Condensation Theorem
4.10.10 applies'®®, and we have that either X <k(J) or X < Ulty(k(J), D), where
1h(D) = crit(y) = pu(X), D is on the k(J) sequence. By the display above,
crit(y) = supi“y in this latter case.

Suppose toward contradiction that D witnesses the latter “one ultrapower away”
possibility. Since i is discontinuous at 7, then cof’,(y) = u, so cof]f,fj)(supi“y) =

1891 the notation there, H = X~ and M = k(J)~. We are assuming they are sound, not just almost
sound, so 4.10.10 applies.
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U, so cofi/) (dom(D)) = u. But dom(D) is a successor cardinal of k(J), and
dom(D) < py(k(J)), so this is impossible.

So we have shown that X <Y. The proof that Y <Z is similar. Let 6 = p, 1 (K),
andlet 0: Y — Z~ be given by

0([a, fIF ) = [a, fIF-

The ultrapower on the left uses 7ZX functions and that on the right uses rX.
functions. These are the same functions if the range is bounded in 8, so

K
n+1

Pn+1(Z) = supl“d = supk“d < crit(y).

Let p = p,+1(Z). For simplicity, let us assume that K = €, {(K) is its own
strong n+ 1-core. Letting r = p,11(K), we get that K" = hg,“(6 Ur), so that
hya“(p Uk(r)) =Y". This and the existence of solidity witnesses in Y” implies
that p = py+1 (Y) and k(r) = Pn+1 (Y)

Let us take the case n = 0 now, just to be more concrete. 6: Y — Z is thus X
elementary, and the identity on p;(Y) = p;(Z). If 0 is cofinal, then ¥ = Z. If 0 is
not cofinal, then Y € Z, so the Condensation Theorem 4.10.10 shows that Y <1Z, or
Y <Ulty(Z, D) where 1h(D) = p;(Z). The latter can be ruled out in the same way
we did above. Thus Y <1Z.

If K # €, 1(K), then it is possible that ¥ is not n+ 1-sound, because k(&) is not
in the appropriate hull. In this case we would need to replace ¥ by Ult, (€, 1(K))
in the argument above. This leads deeper into the condensation properties of pfs
premice. See [59] for a full account.

_|

Now let (Ag, ...,An) be the (M,1h(E)) dropdown sequence, let X; = Ult,,(A;, F),
where m = k(A;). The two claims clearly imply that, under the simplifying assump-
tion that each X; is a sound pfs premouse, Xo <X,,. But X, = Ult(M,F), and i¥ (E)
is the top extender of Xo. So i¥ (E) is on the sequence of Ult(M, F), as desired.

Remark 6.1.9. If M € lev(C), then C will associate background extenders G
and H to i¥(E) and i¥(E) via the conversion process. H is just the image at
the background level of the background originally assigned to E. On the other
hand, there is no useful connection between G and the original background for
E. This is the main reason that embedding normalization is more useful than full
normalization in this book. Embedding normalization commutes with conversion,
but full normalization does not.

6.2. Normalizing 7 (F)

Let M be a premouse, let 7 a normal plus tree on M having last model M7,
and let F be on the extended sequence of MQT . Let Q be the longest initial segment
of Mg such that Ult(Q, F) makes sense, that is, such that F is total on Q and
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crit(F) < pgp)(Q). We construct a normal plus tree ¥V on M such that Ult(Q, F)
embeds into the last model of WV via a nearly elementary map. We call WV the
embedding normalization of T(F'), and write

W=W(T,F).
The reader can find some diagrams which may help visualize the construction of
W at the end of this section.

Let My = M7, M; =M, and E, = E] be the models and extenders of
the given 7, and let Ny = MY, Ni = Ni"V, and F, = E)Y be the models and
extenders of the desired V. Let & be least such that F is on the extended M-
sequence. Then My, agrees with Q up to 1h(F) + 1, and Q agrees with Ult(Q, F)
up to 1h(F), but not 1h(F) + 1. (Recall our convention that Ih(F) =1h(F~).) We
set

Wila+1)=TI(a+1).
This does not imply Fy = Eq, just Ng = M. We set
Fa - F,
and the rest of W [ o+ 2 is dictated by normality. Let g = crit(F), and let § < o
be least such that either 4 < A(Eg), or B = a.. F must be applied to an initial
segment of Ng = Mg in W. That is
W-pred(a+1) =3,
and

Ng.+1 = Mg |(So.ko)
where (&, ko) is least such that p (Mg|(&o, ko)) < u or (Eo, ko) = I(Mp), and
N1 =Ult(Ngy 1, F).
This defines W [ (e +2).

Case 1. Q # My.
If B+1 <Ih(T), then Q is a proper initial segment of Mg |lh(Eg), by the following
claim.

CLAIM 6.2.1. Let T be a normal plus tree, B +1 < 1h(T), and MZ;| lh(EﬁT) <
R< MY for some v > B +1; then lh(El;r) <p~ (R).

PROOF. Let S = MJ. Itis easy to see that p~(S) > Ih(G) for all extenders G
used in the branch [0, 6)7. Since some G with 1h(G) > lh(E[;r) was used in [0, V)7,
we are done if R = S. If 6(R) = 6(S) but k(R) < k(S), then p~(S) < p~(R), so
again we are done. Finally, if 6(R) < 6(S), then R € S,s0 p~(R) < lh(EﬁT) <o(R)

implies that lh(Eg—) is not a cardinal in S. This is a contradiction. B
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If B < 6, then we apply the claim to R = Q™. We have Q <1My, so R < My.
We have p(Q)=p (R) < u < lh(EBT), so it follows from the claim that R <
Mg|Ih(Eg). Thus Q is a proper initial segment of Mg|lh(Eg).

Soif B+1<1h(T), then & = B, Ny, ; = Q, and and Ny 1 = Ult(Q, F). These
conclusions hold trivially if § +1 =1h(7), so in either case we set

W(T,F)=WI(a+2)
=THB+1)"(F).
We call this the dropping case in the definition of W (T, F). In this case, Ult(Q, F)
is actually equal to the last model of W(T,F).

Case 2. Q = My, and 6 = 3.
In this case o = 3, and again
W(T,F)=W[(a+2)
=TI(B+1)" (F).

Again, Ult(Q, F) is actually equal to the last model of W(T,F). The difference
between this and the previous case is just that we did not drop when we applied F

to 7.

Case 3. Q = My, and 6 > f.

In this case, Ult(My, F') makes sense, so Mpg | lh(Eﬁ) <IN, Infact,if B <n <6,
then Ult(My, F) makes sense, because lh(Eg) is a cardinal of My and 1h(Eg) <

P~ (Mpy).
Forn < 6, set

_m, it n < pB;
m= {(a+1)+(n—ﬁ), ifn > B.

Sou:[0,h(7)) = [0,B)U[oc+1,(a+ 1)+ (6 +1—B)) order-preservingly. We
shall define N, 5, and an elementary map

tn 'Mn —> Nu(n>.
For n < B, u(n) =n and My, = Ny, and t,; = identity. We let
tp = canonical embedding of N | into N 1.

(So the display above is a bit off; for n = 8, #; may not act on all of My,. For
n # B, ty will act on all of My.) Note that F' is close to N, | because it arose in a
later model of 7, so 73 is cofinal and elementary.

We define 7y and N for n > B + 1 by induction.

Forn =B+ 1, we let

Fyp) =1tg(Ep),
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and let T < B be least such that crit(F,g)) < A(F;), and (,k) be least such that
crit(F,g)) > Pr+1(Nz|y), and set
Nu+1) = UIt(Ne| (7,k), Ex)),

as required by normality. We get 75| from the Shift Lemma. There are two cases,
based on the location of u = crit(F).

Case A. u < crit(Eg).

. _ Mgl(Soko) . A _ ; i
Since tg = i ,crit(tg(Eg)) > A(F). But F = Fy. Thus F,g) is applied to
Ng+1, or an initial segment of it. That is

T=ulf)=0+1
in this case. In 7, we must have
T-pred(B+1) = B,

because B was the least & such that u < i(Eg) Similarily, the case hypothesis
implies that
Mg =Ul(Mg|(&,k1),Ep)
where <€1,k1> <lex <€0,k0>. We have that ] ZM/;|<€1,/<1> — tﬁ(Ml;|<§1,k1>) is
elementary, so the Shift Lemma applies, and we can set
tg+1 = copy map associated to (¢g,15,Ep).

We are copying an internal ultrapower under an elementary map, so 75, is ele-
mentary. (See 2.5.21.)

Case B. crit(Eg) < u.

Then crit(tg(Eg)) = crit(Eg), so T = T-pred(B + 1) = W-pred(u(B +1)). Itis
clear that Eg and 7 (E ﬁ) are applied to the same initial segment S of M; = N;. The
Shift Lemma applies to 75: Mg — N, (p) and id : § — S, and we let

tg4+1 = copy map associated to (id,tg,Ep).
Again, 1| is elementary'®°, and tg+1 agrees with 75 on Th(Eg) + 1.

Remark 6.2.2. InCase A, u(T-pred(f+1)) = W-pred(u(B +1)), while in Case
B, this fails, and in fact T-pred(f + 1) = W-pred(f + 1). It is because u may not
preserve point-of-application for extenders that 7 may not be a hull of W, under
u and the f’s, in the sense of Sargsyan’s thesis [37]. In fact, 7 will be such a
hull iff crit(Ey ) > u for all n >7 B. For example, this happens when 7 factors as
T (B +1)"S, where S is a tree on Mg with all critical points > p.

The successor case when 11 > f3 is similar. Suppose by induction that whenever

g, 0<n:

1901t is easy to see that (id, 75): (S, Eg) 5, g (Eg)), s0 2.5.20 apllies here.
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() Fys) =t5(Es).
(2) If 6 # B, then f; is an elementary embedding from M; to Nys). (tg is
elementary from Mg |(&o, ko) to Nyg).)
(3) if & < 9, then 15 agrees with 7z on 1h(Eg) + 1.
(4) (a) if T-pred(8) # B then u(T-pred(6)) = W-pred(u(d))
(b) if T-pred(6) = B, then
(i) crit(Eg_;) > = u(T-pred(6)) = W-pred(u(5))
(i) crit(Es_1) < up = W-pred(u(8)) =B
() (1) if 8§ £ B, then (6T & iff u(6)Wu(§))
(i) BTE = u(PB)W u(§) iff the first extender used in (B,&]r has
critical point > .
(5) (a) if 6 # B, then § € D7 iff u(8) € D, and
(b) if 8§ # B, 8T &, and DT N (&,8]r = @, then 1 oi({é = %)‘u@ ots.

We then define 711 : My41 — Ny 1) 80 as to maintain those conditions. Namely,
Fym) =ty (Ey),

and letting 7 be least such that crit(F,;)) < A(E:), and (y,k) be appropriate for
normal trees,

Nyq+1) = UI(Nz (7, k), Fy))-

We get ty | from the Shift Lemma, with two cases, as before.

Case A. u < crit(Ey).

Let 6 = T-pred(n + 1), i.e. o is least such that crit(E;) < A(Es). Clauses (1) and
(3) above tell us that u(c) is the least 6 in ran(u) such that crit(F,,)) < A (Fy).

But 7 > u(f3) by our case hypotheses, so T € ran(u), so T = u(c). We leave it to
the reader to show that if

My = Ult(Ms|(A,i),Ey),

then in facti =k, and 75 (1) = 7.
We claim that the Shift Lemma applies, in that

(totn): (Mo|(A,1),En) = (Nyo)[(t(R), 1), 19 (Ey)).-

The proof is the same as that in the successor step of the Copy Lemma 4.5.17.
Let P = Ms|(A,i), Q = Nyo)|(t(X),i), E = Ep, and F = ty(Ey). Our inductive
agreement hypotheses imply that (t5,t): (P,E) — (Q,F), so we just need to see
that this is a X embedding of the extenders. If ¢ = 7, that follows from Remark
2.5.21. If E is very close to both My |1h(E) and P, then Lemma 4.5.15 shows that
in fact (ts,tn): (P,E) = (Q,F). Finally, we have the case that 7 is special in 7.

This implies that u(n) is special in . Let I = IZF—J] and J = I;/(V(mu(n) be the two
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well supported branch extenders. By Lemma 4.5.8 they are very close to P and Q
respectively, and by Lemma 4.5.16,

(tostn): (P.1) = (Q.J).
But then for any finite ¢ C &(E), I is a good code of E. over P, and J, () is a
good code of F; () over Q, moreover, f(Ic) = J;, (). As in the proof of 4.5.17,

this implies that (t5,tn): (P,E) — (Q,F), which is our claim.
Since the Shift Lemma applies, we may set

tn+1 = copy map associated to (ts,1y,Ep),
and everything works out so that (1)-(5) still hold.

Case B. crit(Ey) < u.
Again, let 6 = T-pred(n +1). So 6 < B. Since tyy [1h(Eg) =t [1h(Eg), tn [ U =
identity, so crit(Ey) = crit(F,y)). Thus ¢ = 7. One can show that Ey and F, )
are applied to the same initial segment S of M; = N, via ultrapowers of the same
degree. The Shift Lemma applies to (idg,,,Ey), and in fact
<idvt17> : (SaET]) i> (SvtTl (En))a

by the proof given in Case A. We let

tn+1 = copy map associated to (t,ids, , Ep),

and ty 1 is elementary, and (1)-(5) still hold.
This finishes the definition of #1. For 4 a limit, N,(») and 3 : My — N,y are
defined by

N, ) = dirlim of N, for a T A sufficiently large,
0, (i7,.(x)) = i;?}a) ur) (e (x)), for aT A sufficiently large.
(1)-(5) imply this makes sense, and that (1)-(5) continue to hold. This completes

our description of the embedding normalization of 7 (F).

We must see that Ult(Q, F') embeds into the last model of W. If Q <1 My, then
we are in Case 1, and Ult(Q, F) is the last model of W, so let us assume that

0= M,.

LEMMA 6.2.3. Foranyy> B, F is an initial segment of the extender of ty.

PROOF. F is the extender of 7g. Since g I(uh)Msle = ty H(ut)Mel (because
(IJ—+)M5|€ < Ih(Eg)), we are done. 4

Thus there is a natural factor embedding T from Ult(Q, F) into R, where R =
N,g)- Letting n = k(Q), we have that g : Q" — R" is elementary. T completes T,
where

tw([a. f12) =16 (f)(a).
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Here f ranges over functions belonging to 0", 1!
LEMMA 6.2.4. 7 is nearly elementary.

PROOF. Let G be the extender of tg, so that F' is an initial segment of G, and 7T
is the natural map from Ult(Q, F) to Ult(Q, G). As in the proof of the Shift Lemma
for Conversion Systems, 7 is nearly elementary. 4

Remark 6.2.5. There is an analogous construction that starts with an ms-normal
tree 7 on M, and an extender F on the sequence of its last model N, and produces
an ms-normal tree WS (T, F) such that Ult(N, F) embeds into its last model.

DEFINITION 6.2.6. For U4 a normal iteration tree on M, let
U<T =U [(ot+1), where o is least such that ThEY > 7,
and U<Y = U if there is no such . Let

U — <M71/7‘ | E%’ exists Ay < A(E%l»

DEFINITION 6.2.7. Let M, T, F and W be as above, then we write
W(T,F) _ T<thf\<F>ml-F“7->crit(F)

for the embedding normalization of 7"(F) just defined. We write a” ¥, B7-F,

u”F, and tg—’p for the auxiliary objects o, 8, u, ¢ that we defined above.

Thus o (7, F) is the least ¥ such that F~ is on the MYT—sequence, and B(7T,F)
is the least ¥ such that crit(F) < Z(E}T) ory=E¢§.

Remark 6.2.8. There is nothing guaranteeing that the models of W (7 ,F) are
wellfounded. In our context of interest, 7 is played according to an iteration
strategy X. Part of “normalizing well” for X will then be that W (7, F) is according
to X.

Here are some illustrations related to W(7T,F) that the reader may or may
not find helpful. Let 7 be normal on M of length 6 + 1, F on the sequence of
MJ, u = crit(F), B least such that u < i(EﬁT), and « least such that F is on
the sequence of ./\/laT, as above. We assume in the diagram that § < 6, and that
Ult(M7,F) makes sense. Letu: 6 = [0,8)U[a+1,(ct+ 1) + (6 — B)] be the
order-isomorphism as above.

We illustrate first the embedding of 7 into W(T, F), as it appears in the agree-
ment diagrams. We draw them as if f < a, although = « is possible.

191 Alternatively, T([a,f]g) =1to(f)(a), where f is r£2.
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T lhE]
| IhE
'y (Eﬁ) F F P
ol u
0 B o 0
u,ty fory> B
w
si(Ep) | F
ol rH
0 B o+l (@+1)+(6—pB)
We have
TlHa+1)=WI(a+1),
F=Eg,
and
ip“T~H* = remainder of W.
The next diagram shows how u may fail to preserve tree order. By (4)(c) above,
o
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we can have § <7 & but u(8) £w u(&) iff § = B, and the first extender G used in
(0,&)r such that G is applied to an initial segment of MZ; satisfies crit(G) < u.

Let S<* be the set of such & >+ B, and S=# the remaining & >7 8. The picture is

S=H S<H uS=H u“S<H

a+1

Finally, we illustrate the relationship between the branch extenders of [0,&)r
and [0,¢(&))w. If &€ < B, they are equal. For & = 3, the picture is
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F
L L
K K
extender of [0,8)T extender of [0,u(B))w
because [0, )7 C [0,u4(B))w, and just the one additional extender F is used.
For £ > B, let G be the first extender used in [0,£)7 such that A(G) > l(Eg)
The picture depends on whether u < crit(G). If u < crit(G), it is
F(H) |
H -
F(G)
G _
F
o i -
extender of [0,&) 1 extender of [0,u(&))w
—®
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In this case, F is used on [0,u(&))w, and the remaining extender used are the
images of old ones under copy maps.
If crit(G) < p < A(G), the picture is

K{ K

extender of [0,&)r extender of [0,u(&))yy

In this case, the two branches use the same extenders until G is used on [0,&)7. At
that point and after, [0,u(&))w uses the images of extenders under the copy maps.

Notice that in either case, there is an L used in [0,¢(&))w such that crit(L) <
crit(F) < A(F) < A(L). This will be important later.

Full normalization.

The definition of W (7T, F') makes perfect sense in the coarse case, in which 7 is
a nice, quasi-normal tree on some M satisfying ZFC, and F is a nice extender in
the last model Q of 7. In this case, we set

a(T,F) = least 1) such that F € M7,
and
B(T,F) = least i such that crit(F) < lh(E,T) orn+1=1In(7).

As in the fine case, we set u(&) =& for & < B, and u(é) =+ 1+ (& — B) if
B < & < 0. The construction gives us fully elementary maps fg: Mg — ./\/lr(vé).
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In the coarse case, Ult(Q,F) is equal to the last model of W(T,F), and the
factor map 7 that we defined in the fine case is the identity.

PROPOSITION 6.2.9. Let M |= ZFC, and let T be a nice, quasi-normal tree on
M of length @ + 1. Let F be a nice extender in M}, and let W =W (T ,F); then
Sor all y such that B(T,F) <y<8,

w o _ T
My = Ult(M,, , F),
and the embedding normalization map ty is the same as the F-ultrapower map.

PROOF. We show this by induction on y. For v = 3, this is the definition of

./\/l%i) and 7g. Suppose it holds for all ¥ < 7, we must show it holds at  + 1. Let

E=E] and E* =ty (E) = E)}},). Let 0 = T-pred(n +1).
Case 1. u < crit(E).

M7
Then 6 > B, and u(c) = W-pred(u(n+1)). Let S = Ult(MnTJth), and letiy, "'
be the canonical embedding. We have the diagram

MT
T i v w
My § M)
T
T w
i =ts

Here 7 comes from the argument in Case 1 of two-step normalization. Namely,
MT T MW T
let G be the extender of iy, "' o iﬁ/l" , and H be the extender of i. @o i}\/[" . Note
M M o
v(G) =supi, ""'“Ih(E) and v(H) = supi, " “1h(E). Here we use that T is nice,

e
so Ih(E) is inaccessible in MZ)’, so 1h(E*) = sup iﬁ/l" “Ih(E) = supty“1n(E).!*?
CLAIM 6.2.10. G is a subextender of H under the map y, where
M7 MT
W([bag}F n+1) = [bvg]F ",
forb € [In(F)]<® and g : [u]"! = 1n(E), g € ./\/l;]rﬂ.
PROOF. We calculate as before: for b, g as above and A C [crit(E)]<® with
Ae M,

MT MT MT T
(Ib,gly "' A) € Giff [b,g]y "' € iy T o' (A)

192We don’t really need that 7~ is nice; the proposition is true under the weaker assumption that
MZ{ = cof(Ih(Ey)7) # u for all 7, with lh(E,T) being both the strength and the sup of generators of

T AT
Ey mM,,.
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. MT
iff for Fj, a.e.u, g(u) € iy ° (A)

(by Los for Ult(MnH,F))

iff for F, a.e.u, (g(u),A) €E

T T
iff ([b, g2 ,i2" (A)) € E¥

(by Los for Ult(M], F))

T MT
i [b, gl € i (i) (4))

. MZ(-U) M .
(since ir."” and i." agree on subsets of crit(E*))

. MT Mgy T
iff (b, gy " €ip."" (iF ° (A))
i . MT .
(since i " agrees with #;), hence ty, hence i, ° on subsets of crit(E))

T
iff ([b.g]; " .A) € H.
_|

But now MT and Mn+1 have the same functions g : [1t]<® — 1h(E), by our
“coarseness” assumptions. So y = identity, and G = H, and § = ./\/lwn 1) So our
diagram is

T
M+]

T i w
Mg ——— My

~_
+1
E E*

T w
M MY
to =iy ©

MT
It remains to show i, = tn+1. Since both maps make the diagram commute,
MmT
it is enough to show i, "' [1h(E) = ty+1 [1h(E). But ty41 [Th(E) _tn [1h(E) by
T
the Shift Lemma, and #,, [1h(E) = iM” ITh(E) by induction, and { lF TTh(E) =

M
"1 11h(E) because MT and Mn+1 have the same functions g : [u]<® — Ih(E).
Case 2. crit(E) < u.

Let 0 = T-pred(n+1). Then in this case, c = W-pred(n +1). Let S= Ult(./\/lnH,F)
We have the diagram
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T i T w
Mn+1 S Mu(n+1)

MT = MW

M. N
We show that § = Mg\(}nﬂ) and i = ty 11 by the calculations in Case 2 of
two-step normalization. -

Let us return briefly to the fine case. The full normalization X (7, F) of T(F)
can be obtained as follows. We assume that 7 is normal on M, N is the last model
of T, F is on the N sequence, and crit(F) < p,(N), for n = k(N). Let

W — T<]th\<F>f\iF“T>CI‘i[(F)

be the embedding normalization. Let 7<= T [(a+ 1), B = W-pred(a + 1),
and u : 1h'7T — 1hW be as above. The full normalization is X', where

X(a+2)=WI(a+2)
and
Mj?n) = Ult(./\/lnT,F) forn > B.
(Note that if n > 8, then some G such that crit(F) = p < A(G) was used on the

branch to MnT so for k = k(MZ)’), u< pk(./\/lnT).) The tree order of X’ is the same
as that of W. We have

T i X T w
My M M

\/7

In

where 7 is the natural factor map. What remains is to find the extenders E ;(( 7 that
make X into a normal iteration tree. For this, let £ = E,]T , and

t: M} |(Ih(E),0) — Ult(M] [(Ih(E),0), F)

be the canonical embedding. One can show using condensation that ¢(E) is on the
sequence of Mj((ﬂ)' Moreover, for c = W-pred(n + 1),

Miynr) = UMY (&, n), (E)),

where n = k(/\/lml) = k(MnTH) and & is appropriate. The details here are like
those in the two-step case. Since we don’t actually need full normalization in
comparing iteration strategies, we give no further detail here. There is a much

more careful discussion in [59]. Here is a diagram of the situation.
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N
N ———— UIt(N, F)

6.3. The extender tree V!

The fact that u”7 ¥ does not fully preserve tree order or tree predecessor is
awkward. Here is another way to visualize our embedding of 7 into W(T,F)
given by u and the z¢’s.

For V a quasi-normal plus tree, let

Ext(V) = {EY | a+1 <1h(V)}

be the set of extenders used. Note that Ext()) determines V modulo a strategy X
for the base model of V, by normality. For y < 1h(}),

7‘,} = increasing enumeration of {EY | o4 1 <y v},

e
increasing in order of use (index, length). Set
VX ={ey | y<IhV}.

Ve determines V. The structure (V' C) is the extender-tree of V.

~

If F and G are extenders, then F and G overlap iff [crit(F), A (F)) N[crit(G), A (G)) #

@. We say F and G are compatible iff Ja(F = G| o or G = F | o). Here are two
elementary facts:

PROPOSITION 6.3.1. Let V be a quasi-normal plus tree; then

(1) if s~(F) € V**' and s~(G) € V™', then F and G overlap, and
(2) if s,t € V" and s(i) is compatible with t(k), then i =k and s[(i+ 1) =
11+ 1).

Now let 7 be normal on M, and W = W (T ,F). Letu =u’ ¥, 1y = tg—’F, etc.
We define a partial map
prr Ext(T) — Ext(W)
by
pr.r(ED) =1:(E]) = E)fs).
So prr(E{)L iff & € domu, and either & # B, or & = B and MJ|Ih(E]) <
MEW

oa+1°
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We can view p as acting on branch extenders. For s € T, let

F o= {least i such that crit(F) < A(s(i)), if this exists;

undefined, otherwise.

Let & € domu and s = eg; then if dom(u) = B + 1, we have

W _{s, if & < B;

W T\ s (F), ifE =P
If dom(u) > B + 1, then i  exists precisely when s = eg for some & > B+ 1, and
s, if& < ﬁ;
w _ JsTF), if ¢ = B;
eue) = N~ TF AN | e .
sTis™(F)~X(p?" (s(i)) | i >i5), ifcrit(F) <crit(s(iy));
sTis™(pTF (s(i)) | i > i), if crit(s(iy)) < crit(F).

So if E is used before H in eg, then p7 r(E) is used before pr r(H) in e;/&).

DEFINITION 6.3.2. Let W =W (T ,F), and suppose s € T is such that Vu €
dom(s), prr(s(1))d; then

p7.r(s) = unique shortest 1 € W such that

Vu € dom(s), pr r(s(it)) € ran(z).

For p = p7 r, we have that ﬁ(eg) = e;/&), except when & = 3. At 3, we have

EZ(VB) = ﬁ(e]{)“(F). The map p: T — W(T,F)®™ does preserve C.

PROPOSITION 6.3.3. Let s,t € dom(p”F); then
(1) sCr = p(s) C p(¢), and
(2) s Lt = p(s) L p(r).

6.4. Tree embeddings

An iteration strategy X for M condenses well iff whenever U is by X, and 7 is a
sufficiently elementary embedding from 7 into I/ such that 7 [(M U{M}) is the
identity, then 7 is by X. By weakening the elementarity required of 7, we obtain
stronger condensation properties.

In the Hull Condensation property of [37], one is given a map ¢ : 1h(7) —
1h(i), and embeddings 7, : M}, — M%’(a) for oo < Ih(7). o preserves tree
order and tree predecessor. The 7y ’s have the agreement one would get from a
copying construction, and they commute with the branch embeddings of 7 and
U. Moreover, T4 (E] ) = Eg{( «)- A simple example is the way T = WV sits inside

U =r(W), in the case m: H — V is elementary and & [(MU{M}) = id .
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A hull embedding (o, 7) as above induces a map p : Ext(7) — Ext(U/) by
P(E]) = Ta(E]).

We then get p: T — U from p as in 6.3.2. p preserves C and incompatibility
in the extender trees. p is related to ¢ by

ﬁ(e§+1) = eg(aﬂ)'
But for A a limit, ﬁ(e{) may be a proper initial segment of ezg(l).

We now define the notion of a tree embedding from 7 into /. This will be a
tuple with most of the properties of o, T, y above. The pair (o, T) is resolved into
two pairs: the pair (v,5), which embeds the models of 7 into models of { in a
minimal way, and the pair (u,7), which connects the exit extenders of 7 to exit
extenders in /. The requirement that ¢ preserves tree predecessors is relaxed to
the requirement that if B = T-pred(y+ 1), then U-pred(u(y) +1) € [v(B),u(B)]v.
We shall also allow the #,’s to be partial, in a controlled way. Recall here the
partial branch embeddings il; p- Recall also that €(E) =1h(E) if E has plus type,

and €(E) = A(E) otherwise.

DEFINITION 6.4.1. Let T and U be plus trees on a premouse M, with Ih(7) > 1.
A tree embedding of T into U is a system

(u,v,(sg | B <1Th(T)),(tg | B+1<1n(T)))
such that

@ u:{ala+1<Ih(T)} ={a|oa+1<lhU)}, and o < f = u(a) <
u(B).

(b) v: 1h(T) — Ih(U), v preserves tree order and is continuous at limit ordinals,
v(0) =0, and v(a+1) = u(er) + 1.
(©) sp: MZ; — ./\/llf(ﬁ) is elementary, and so = id ; moreover for o <r 3,
T U
5B tap = W(a).v(p) @S

In particular, the two sides have the same domain.
(d) For oo+ 1 <1In(7), v(a) <y u(a), and
U

fa = 1y g u(a) O Sat-
Moreover, if E] is of plus type, then
Elf o) = ta(Eg),
and if EJ is not of plus type, then
EU g € {ta(ED) ta(E])TY.
(e) For a < B <1h(7),
sp1€(E]) =ta 1€(ES).
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(f) If B = T-pred(o + 1), then U-pred(u(a) + 1) € [v(B),u(B)]y, and setting
B* =U-pred(u(a)+1), P = M;L, and Q = Mz’(Z)H

Sort1 ([a,f]gg) = [ta(a)viz;{(ﬁ),ﬁ* osg (f)]glzl/(a)-

The map sq+1 in clause (f) is essentially the copy map associated to (¢, izj( BB+ °

sg,EJ ). (Itis not literally that if EY is of plus type but £J is not.) We shall show

that there is always enough agreement between #, and iZj( B).8* OB that the Shift
193

Lemma applies.
The appropriate diagram to go with (f) of Definition 6.4.1 (for the non-dropping

case) is

Sa+1

MT

o+1

I

T u
Mg Mip)

MT "’ MU

DEFINITION 6.4.2. For plus trees 7 and U,
(a) @: T — U iff ®is a tree embedding of 7 into U,
(b) if ®: T — U, then u® v®,s® and r> are the component maps of ®, and
(c) T is a pseudo-hull of U iff there is a tree embedding of 7 into U.

Remark 6.4.3. 1t is easy to see that @: 7 — U if and only if : T — U [ v,
where ¥ = sup({v®(a)+ 1| a < 1h(T)}).

DEFINITION 6.4.4. A tree embedding ®: 7 — U is cofinal iff Ih(U) = sup({v® (o) +
1]a<1h(T)}).

Remark 6.4.5. v(0) = 0, but it is possible that #(0) > 0. The map u may not
preserve tree order.

If &: 7 — U is a tree embedding, then 7 and U/ have the same base model,
and sg) is the identity map. One might ask whether there is a natural more general
concept, one that allows Mg #* MZ({ . Indeed there is, but it reduces to the notion

1930ne can show that, in the notation of clause (f), (ifjfm_ﬁ* osg,ta): (P, ET) S (Q,Efl’(’a)). This

is what we need in order to see that sy is elementary. The proof is similar to the proof of the
corresponding fact in the Copy Lemma. See Lemma 8.2.3.
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above. Namely, one can have an elementary 7: Mg— — Mﬁ’, together with a tree
embedding from the copied tree 77 into U. This seems to be the natural way to
relate trees on different base models.

Any tree embedding ®: 7 — U induces an embedding of extender trees.
Namely, let p : Ext(7) — Ext({/) be given by

p(EJ)=EY

u(or)®

We write p = p®. It is easy to see that E is used before F on the same branch
of T iff p(E) is used before p(F) on the same branch of I, so that p induces
p: T — U as in Definition 6.3.2. The map v on model indices corresponds to
the map p on extender trees via

é\ip) = Plef).

PROPOSITION 6.4.6. Let @: T — U be a tree embedding, let p = p‘b, and let
p: T — U™ be the induced map on extender trees; then Let s,t € dom(p7F);
then

(1) sCt = p(s) C p(t), and
(2) sLt = p(s) L p(e).

Remark 6.4.7. Given u(c) and ¢, we can characterize v( ) as the least £ <y
u( ) such that ran(t,) C ran(izg (o))"

U

Let us record the agreement properties of the maps in a tree embedding. In the
context of pfs premice, embeddings that agree on 1h(E) will generally be forced
to agree on lh(E) + 1. For example, in clause (e) of 6.4.1, sq agrees with ¢, on
Ih(E]) + 1, because the Shift Lemma produces this kind of agreement. One does
encounter embeddings that agree on Ag, but not on Ag + 1. With this in mind, we
see that

LEMMA 6.4.8. Let (u,v,(sg | B <1hT),{tg | B+1<1hT)) be a tree embed-
ding of T into U; then

(a) if a+1 <1h(T), then ty agrees with sq on €J,
(b) if B < o <1h(T), then sq agrees with tg on E(Eg) and

(c) if B < o <Ih(T), then sq agrees with sg on Sg—.

PROOF. For (a), notice that if F is used in eg, then p(F) is used in eZ;’(w,
and so £(p(F)) < erit(Rf ;) ) Thus supsq el < Crit(% 5 () Bt fa =

su

il\:{(a),u(a) 0 Sq, SO we have (a).
Part (b) is just a clause in the definition. Part (c) follows at once from (a) and
(b). d

One could not replace &) by sup{Ih(F) | F € ran(e],)} in the lemma above,
even if 7 and U are assumed to be normal. The reason is that there could be a

last extender F used in e]. (So F = Eg where @ = 3+ 1.) Then p(F) is the last
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extender used in elf ). It could be that crit(%{,) , o)) = Ap(r), and thus 74 and

Sq+1 both disagree with sq at Ap. This is the only way the stronger agreement
lemma can fail in the case of normal trees.

Remark 6.4.9. The proof of 8.2.3 in Chapter 8 gives a formula for the point of

application of Ey( a) under a tree embedding of 7 into I/, namely

U-pred(u(a)+ 1) =least n € [v(B),u(B)]v such that
critfy gy > i) n © 58 (1)
where B = T-pred(a + 1) and u = crit(E]).

Remark 6.4.10. Itis easy to see that 7 ,U, and u determine the rest of the tree
embedding. For p is given by p(E] ) = EI% «)» and p determines p and v. We then
determine the copy maps sq and 7, by induction on . t4 is determined from s
by ty = iff(aw(a) osq. If a is a limit, we easily get so from v(o) and the fact that

S © i;a = i{’f(ﬁ)’v(a) osg holds whenever § <7 . Clause (e) determines sq1 from

earlier s and ¢ values.

p determines u, hence p determines the whole of the tree embedding as well. In
other words, a tree embedding from 7 into I/ is an appropriately elementary way
of connecting the exit extenders of 7 to exit extenders of /.

Remark 6.4.11. Suppose that1h(7)=a+ 1 and ®: T — U is a tree embedding.
Let s = s®, u = u®, etc., so that s : ./\/lz; — Mt’(a) is our enlargement of the last

model of 7. Then for all 8 < «,
sa(Ih(E])) = Ih(E()),

by 6.4.8. Thus s, 7, and U | v(a)+ 1 determine u, and hence the whole of ®. As
far as & is concerned, M&Z o) is the last relevant model of /. So we can say that if
T has successor length, then a tree embedding from 7 to I/ is just a map from the
last model of 7 into some model of I/ that is elementary in a certain strong sense.

The reader might wonder why the u-map and t-maps of ®: 7 — U are undefined
at o, where @+ 1 = 1h(7). In general, forcing ® to include a value for u(o) is
wrong, because u is being used to connect exit extenders, and 7 has not yet chosen
an exit extender at a. If we demand @ include a value for u(o), then what we
would like to call extensions of ® may have to revise this value. That is awkward.
(See Lemma 8.2.3 for a characterization of when it is possible to extend ®: 7 — U
toW: T(F)—=U.)

In the case U = W(T,F), there is a natural way to define u and 7 at o =
1h(7) — 1, namely, u(ct) =1h(U) — 1, and 1¢ = izvj(aw(a) osq. It helps to make a
definition here.

DEFINITION 6.4.12. Let 7 and U be normal iteration trees of lengths o +1 > 1
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and B+ 1, and let ®: T — U be a tree embedding, with ® = (u,v, (s§ | &€ <
@), (te | € < a)). Suppose that v(ar) <y B; then we define
"I"((D,U) = <MU{<OZ7[3>},V, <S§ | é < Ot>,<l‘,§ | é < O‘>A<iq\:{(a) B OS06>>'

We say that W is an extended tree embedding iff ¥ = ¥ (P, for some ® and U,
and write ® = ¢(¥) and U = r(¥) for the unique such ® and U.

Notice that in 6.4.12 the interval (v(¢t), ] may drop in I, and consequently the
last #-map ¢, may be only defined on a proper initial segment of ./\/lz;. Of course,
the same was true for the 7¢ such that & <a.

Extended tree embeddings are not tree embeddings, they are tree embeddings
that have been extended in a small way. If ®: 7 — U is a cofinal tree embedding,
then its extension W(®,U) is completely trivial. In general, an extended tree
embedding from 7 into U/ is completely determined by 7, U/, and its last s-map.

Remark 6.4.13. T is a pseudo-hull of W (7, F), and in fact, there is an extended

tree embedding ¥ = (u,v,5,7,) from 7 into W (T, F). In our embedding normal-

ization notation, u = u”F, 15 = tﬁT’F, and p(E]) = El?(/é)T’F> for £+ 1 < 1h(7).

This determines p and v. u agrees with v except at B = B7F, where we have
v(B) =B and u(B) = o7 F +1.

Letting @ = ¢('¥) be the associated tree embedding, it is easy to see that @ is
cofinal iff 7 (F) is not normal.

DEFINITION 6.4.14. Let ® be a tree embedding from 7 into U/, and ‘¥ be a tree
embedding from I/ into V; then W o @ is the tree embedding from 7 into V' obtained
by composing the corresponding component maps of ® and W. Similarly, if ®
and WV are extended tree embeddings, then W o @ is the extended tree embedding
obtained by composing corresponding maps.

It is easy to check that composing corresponding maps does indeed produce a
tree embedding or extended tree embedding, as the case may be.

One can extend Definition 6.4.1 in a natural way by allowing s to be only nearly
elementary, and to map M, into a proper initial segment of szx( @) One can think
of the natural embedding of 7 into 7 as a tree embedding in this sense, with
u = v =1id. The more general notion of tree embedding leads to a strengthening of
strong hull condensation that subsumes internal lift consistency.

6.5. Normalizing 7~

In this section we define the embedding normalization W (7 ,U) of a maximal
M-stack (T,U) of length 2. It is not hard to extend our definitions so that they
apply to arbitrary M-stacks of length 2, but the additional notation introduced
by gratuitous dropping would be a burden. We don’t need to deal directly with
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arbitrary finite stacks because, in our context of interest, they can be reduced to
maximal stacks. (See §5.4.)

To begin with, note that W (7, F) makes sense in somewhat greater generality.
Let 7 be a normal tree on the premouse M.!%* Let S be another normal tree on
M, and F be on the sequence of the last model of S. Let « be least such that
F is on the sequence of M$, so that S [(oc+ 1) = S<IF). Let B be such that
B = S-pred(o + 1) would hold in any normal S’ extending S [(o + 1) such that
F= Eg/. Thatis, S| B + 1 = S<itl")_ Suppose that

TIB+1=8S[B+1.

Suppose also that if § + 1 < 1h(7"), then dom(F) = Mgm for some 1 < lh(EﬁT),
that is, assume that
Trﬁ 4 1= T<Cl’it(F)'
We define a normal tree W (T, S, F).

Remark 6.5.1. The last supposition holds if either & = 8 and 1h(F) < lh(Eg—),
ora > f3, and lh(EBg) < 1h(Eg—). This will be the case when we use W(T,S,F)
to define W(7,U).

Let Q<IN = M, where 8 +1 =1h(T), and let
u = crit(F).

Suppose that Ult(Q, F') makes sense, that is, dom(F) < py0)(Q). Suppose also
that Q is the longest initial segment of N to which F applies, that is, either Q = N,
or p(Q) < 1 < Pyp)(Q). We want to define W (7, S, F) so that Ult(Q, F ) embeds
into the last model of W(7,S, F) via a nearly elementary map.

There are three cases.

Case1l. Q#N.

In this case Q is a proper initial segment of /\/l;| lh(Eg—), by the argument given
in the dropping case of the definition of W (7, F).

W(T,S,F) =S8 (a+1)"(F)

is the unique normal continuation W of S [(o + 1) of length ¢ + 2 such that
E)YY = F. Note here that MZ; = Mg, and Q is what F would be applied to in a
normal continuation of S [ + 1. (Unlike the case 7 = S we discussed before,
it is possible that Q # N and a > f3.) In this dropping case, the last model of
W(T,S,F) is equal to Ult(Q, F), and doesn’t just embed it.

Case2. 0=N,and lh(7)=+1.

194Normal trees may use extenders of plus type.
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Again
W(T,S,F)=81[(a+1)"(F)

is the unique normal 8’ of length & + 2 extending S such that Egl =F.Q=N=
MT, and so Ult(Q, F) is equal to the last model of W (7, S, F).

Case3.Ih(7)>pB+1,and Q= N.
In this case, we construct W =W (T, S, F) just as before. We set
Wila+1)=ST(a+1),

and

My = UM [(7,k),F),
where k, v are appropriate for normality. (Note MZ; = /\/lg = M‘év.) Letu(§)=¢&
for & < B, and u(§) = (a+1)+(§ —p) for § > B. Lettg =id for & < fB, and
ig : MZ;\(}/, k) — Mml be the canonical embedding. Note that by our case
hypothesis, F applies to M, and hence to ME(E), so (Ih(E]),0) < (7,k).

B
Thus 1g moves Eg So we can use the Shift Lemma to lift the rest of 7, defining

an elementary
. T w
for £ > B, by induction on &. If 6 = T-pred(&), then u(c) = W-pred(u(£)),
unless ¢ = 3 and crit(EéTil) < . In this case, crit(EX‘(lé)_l) = crit(EéCl) < U, so
W-pred(¢(£)) = B, rather than u(f3). We write
W(T,S,F) — S<1h(F)m<F>r\l-F“7—>crit(F)
in this case.

DEFINITION 6.5.2. For T, S, F as above, a’ 5 = a(S, F) is the least ¥ such
that F~ is on the MS-sequence, and B7-5 = B(S,F) is the least y such that
crit(F) < i(E;,S) or y+1=1h(S). In Case 3, u” 5 and tg’S’F, for & <1hT, are
the maps u and 7 described above. In Cases 1 and 2, let dom(u” F) = B+ 1,
with u7SF(E) = Eif € < B, and u” SF(B) = a+ 1. (Where a = o >SF and
B=B7TSF) Let t;r,s,F =idif &€ < B,and 1] 5" MY = Mg—|§ — MY, be

B : o+1
the canonical embedding in those cases.

In cases 2 and 3, we have an extended tree embedding
Orsr=(uv(sg | § <INT), (tz |§+1 <In(T)))
from 7 into W(T,S,F). It is determined by setting

U= MT,S,F‘
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Some of its other maps are given by
fe = tg"s’F
and

p(ED) =] S (ED).

In case 1, these objects determine a partial extended tree embedding from 7 [ 8 + 1
into W(T,S,F). This is a system with all the properties of an extended tree
embedding, except that its last map 75 may only be defined on some Q < MI? We
call it &7 s r as well.

The illustrations associated to W (7 ,S, F) are pretty much the same as before,
allowing for the possibility that S # 7. In particular, if & > B7 5 then F either
appears directly as one of the extenders used in [0,u(&))w, or appears indirectly
via some extender F(G) used in [0,u(&))w, where crit(G) < 4 < A(G) and G is
used in [0,&)7.

Now let 7 be a normal tree on a premouse M, with last model Q, and let If be
a normal tree on Q. We do not assume that I/ has a last model. We shall define
W(T,U) =W, the embedding normalization of 7"U. For this, we define

Wy =W(T,Ul(y+1)),
the embedding normalization of 7"U|(y~+ 1), by induction on }. Let us write
Oy = sz = last model of U|(y+1).

We shall maintain that each VW, successor length z(y) + 1, with last model

Ry = last model of W,
_ Wy
=My
and that there is a nearly elementary embedding
Oy: 0y — Ry.
As we go we construct extended tree embeddings &y 4, for n <y 7, from an

appropriate initial segment of Wy, to Wy_195 Py, y is determined by its u-map uy
acting on an initial segment of Th()Vy), and its 7-maps we call

Y. W, W.
e M —>Mun?y(r),

defined when 7 € dom(¢y y). (There is the possibility that 117 acts only on some

proper initial segment of MZV". That happens iff (1, 7]y has a drop.) Roughly,
the system

(Wy ly<Th(U)),(Pny|n <v 7))

195The s and 1 maps of @, 4 are elementary, as required by the definition of tree embeddings. oy is a
factor map, and so may be only nearly elementary.
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is an iteration tree of iteration trees!%°, whose base node is Wy = T, and whose
overall structure is induced by U. The @, , are the branch embeddings of this tree.
We set

WO = T7
and let oy be the identity. Now suppose everything is given up to y. We let
FY = GV(EZ};{)7
and

oy = least & such that Fy is on the sequence of M};/VY.

So Fy is on the extended sequence of Mgv” for all & such that o, < & < z(y). We
assume the following agreement hypotheses:

(*)y
(i) Forn <& <7, oy [(Ih(EY) 4 1) = o [(In(EY) +1).
(ii) Forn <& <y, oy < o and 1h(Fy) <Ih(Fg).
(iii) For n <& <y, Ry agrees with R¢ up to Ih(Fy ), but Ih(F) is a cardinal of
Re, so they disagree at Ih(Fy). "
(iv) Forn <& <y, Wy [(aq +1) =W [(ag +1), and Eq,* = Fy.
(v) Forn <y,
(@) forall & < oy, Ih(E;"") < Ih(Fy), and
(b) if oty < z(1), then Ih(Fy) < Ih(Egy").

CLAIM 6.5.3. (ii) and (v) of (x)y41 hold.

PROOF. For (ii), if n <7, then Ih(ELf) <1h(EY), so Ih(F) < In(Fy) by (i) at 7.
Moreover, if ay < o, then by (iv), F, is on the sequence of MZ‘,’,V = ./\/12;” 197
But F;;" is also on the Mg\;y sequence, by (iv). Since Ih(Fy) <1h(Fy) and F," is
on the Ry sequence, we get that F;;” is on the Ry sequence. However, Fy is used in
Wy by (iv) at ¥, and thus F;" is not on the Ry sequence.

(v)(a) holds because otherwise F, would be on the sequence of some M?}y for
& < ay. For (v)(b), suppose oy, < z(7). Since F, is on the sequences of ./\/l:;\;y and
of Mz\;il, we must have 1h(Fy) < lh(Exry). =
Now suppose 11 = U-pred(y+1). We set
WY-H = W(WTI’W% FY)'

196 A meta-iteration tree.
197Equivalently, F, is on the extended sequence.
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Let us check that this makes sense. Let us write /' = Fy, and o = . Clearly
a=a"nWrl Let
= crit(E%f ),
and
1 = 0y([) = crit(F).
Let
B = BYWnWrF

= least & such that u < i(E;/VV) or & =z(7)

be the tree predecessor of &+ 1 in any normal continuation S of Wy [(or + 1) that
uses F. Since 7 is the least & such that i < i(Elg’), we have by (i) of (), that

1 = the least & such that u < i(Fg).

But Wy [(ay +1) =Wy [ (0 + 1), and EZX” = Fy or else 1 = 7. In either case,
B < ay, so

Wi l(B+1) =Wyl(B+1).
Moreover, since 8 < oy, if B < z(n) then

W. W,
In(E)") < h(E}"™),

with equality holding iff B < a;. These are the conditions we needed to check, so
W (Wy, Wy, F) makes sense.

Let @y 441 be the (possibly partial) extended tree embedding Py, w, F. Its
u-map is

Wa Wy, F
Uny+1 =u "1

and its t maps are
ny+1l _ Wy Wy F
ty =t .

For 6 <y 1,

Psy11 = P yr10Ps -
. _ S, y+1 _ n,y+1
This of course means that ug y | = un y+10us 5, and 17 = tu&n(r

the compositions are considered as defined wherever they make sense.
Note that @y, 4. is partial iff y+1 € DY. If y+ 1 € DY, then dom(uy y+1) =

B+1,and tg’YH acts on a proper initial segment of M;v".
Oy is determined as follows. Let

Qy41 =Ul(Q*,EY),

)otf’". Here

where 0" < Oy.
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Let R* = Ry if 0* = Oy, and R* = 0,,(Q") otherwise. o, [ Q¥ is elementary
from Q* to R*.

Suppose first that we drop in U, i.e. Q" # Qp. Then p(Q*) < fi, and oy is a
near k(Q*) + 1 embedding, so

p=oy(it) =on(p) <p(R),
while py(g<)(R*) = o (pi()(Q)) > U. So R* is what we would apply F to in a
normal continuation of Wy [(& + 1). Moreover,

Wyir = Wy PO~ F) Ul (R F)

because we are in case 1 of the definition of W Wy, W), F). So Ry = Ult(R*, F),
and we can take Gy, to be the Shift Lemma map.
Suppose next that Q* = Oy, so that we are in case 2 or case 3, and

For 7 < z(1), we have an elementary 7 XAR M]T/v" — MZ:":I (0)" Since we are
not dropping in U,

01 = Ul(Qf EY).
and

un y+1(z(M) = 2(y+1).
We have then the diagram

0 v W
Op+1 ————— Ult(Ry,F) — 5 Ryy1 = Mz(yyﬁ)
iM
ot l7]:y+l
W 2(n)
— n
On ——— R =My

Here 0 is given by the Shift Lemma, and y comes from the fact that F is an initial

segment of the extender of IZ’T;/)H, as we remarked before. (So y [IhF =id.) We

then set

Gy+] = II/O 9

So when y+ 1 ¢ DY, we have the diagram

u Oyl
M'J/+l —_— Rfy+1

U 1n.7+1
el W }EW

u
MY — Ry
n
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When 7+ 1 € DY, we have the diagram

u Oy+1

S U n.y+1
byt 1\ Tlﬁ

*U *U
My+1 T On (My+l)

where g = W Wrf'
CLAIM 6.5.4. (x)y41 holds.

PROOF. Left to the reader. =

We have completed the definition of Wy, .
If A < 1h(lf) is a limit ordinal, then
W)L = lim Wa,
a<yl
where we make sense of the direct limit using the tree embeddings @y, , for
N <y ¥ <u A. We give a little more detail on this below.

In our context of interest, (7,U) is played by a background induced iteration
strategy X for M, and we shall show that all W, are by £. So in our context of
interest, all models above are wellfounded.

Here are a couple illustrations that the reader may or may not find helpful.
Let o U 71 U 7, U 73 be successive elements of a branch of U. Write u; = uy, 5., .
Let B; = BWuWali where 7, = 7.1 — 1 and F; = GTI}(E%’).198 Thus Wy, =
W (W, , Wr,, F;), and B; = crit(u;). The u; might look like:

AL
s

B Bi
—
/ 4>
Bo Bo
—
—
uo ui u

198 is what we called F; in the general definition.
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The last step pictured involves a drop. Notice that B;r; > u;(B;). (Equality is

Wy,
possible.) This is because U is normal. In Wy, |, M &’;)' is immediately above

M;Yy"“ via an F;-ultrapower. Moreover, Wy, [(a+1) = Wy, [(a+ 1), where
o+ 1 =u;(B;). By our choice of a, i(E;/VT’) < A(F,) forall £ < a. But A(F) <

crit(Fi4+1), since U is normal, so Fj;| cannot be applied to any /\/l;/vy"+l for £ <
ui(Bi)-

Because B;+1 > u;(B;), and above u;(f;), ran(x;) is an initial segment of ORD —
u(p;), we see that along any branch b of I/, the direct limit of the u, , for y,n € b
is wellfounded.

In fact, the direct limit has order type A + 6, where A = SUpycp crit(uy p), and
0 =1h7T — B3, where f is least such that ug ;(f) > A.

In addition to the u-maps on indices of models, we have the r-maps on the
models. Let y; = crit(F;), and let 1h(W,,) = 6 + 1. Let ) be the level of Ry,, or

equivalently M;:yz, that we drop to when we apply F>. The picture is

RVI RYZ RYS
W72
M“l(g)
o PE AN
é _ N
- AN Preale

j25)

WVZ
ur(Br) o
i BE AN
tﬁl e S
Wyl ////
Mﬁl/’/
. A [
ol 431
"% th-,'J@
Tg B2

One can look at &y 4, for 1 <y 7, as a map on the extender trees. Let py,y be
the p-map of &y, 4, that is

Py Ext(OWVy) — Ext(Wy)
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and
L) =T E) =E ).
So pny(E;" ") iff & € domuy y. Let
p(s) = leastt € W™ such that p“ran(s) C ran(t).

By Proposition 6.4.6, py , preserves extender tree order and incompatibility;
thatis s C 1 = Py y(s) C pny(t), and s Lt = py y(s) L py.y(t). Moreover

PROPOSITION 6.5.5. Let 1 <y Y and uy y(ot)], and suppose whenever n <y
& <u v, then uy ¢ (a) > crit(ug ). Then for s = e,

w . ~ . R
eun?'y(m = Pny(s) (Fr | T4+ 1 <y yand for all i € dom py 4(s),

A(Pny(s)(Q)) < erit(Fr))

We omit the simple proof. The proposition says that the branch extender to
Wy
Mttn7y(a)
together with certain F;’s used in U/ from 7 to y. It generalizes our pictures on

page 243 and before.

Suppose now that A < 1h(l/) is a limit ordinal, and we have defined Wy, o,
and the @, , for 0,y <A. We let W(T,U [ A) be the liminf of the W) for y < A.
More precisely, let

consists of blow-ups by py , of extenders used in the branch to MZV",

Fy = 0y(Ey)
and
oy = least o such that F,~ is on the sequence of MZVV
= largest o such that Wy [(a+1) =Wy (o +1).
We put

W(T,UTA) = | Wy I(ay+1).
Y<A

Since y <N = oy < oy, W(T,U | A) has limit length. There are no new ¢’s or
@’s to be defined at this stage.

Now let b be a cofinal branch of U/ [ A (not necessarily a wellfounded one). We
define the embedding normalization

Wy, =W (T, U A"D)

by forming the direct limit of the Wy, for y € b, under the ®y, , for n <y yin b.
We begin with In(W},). Let us put

(n,&) € 1iff n € b, and for all sufficiently large y € b, uy ().
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Put

(n,&) <; (8,0) iff for all sufficiently large y € b, uy y(§) < us5,(0).
It is easy to see that <; is a prewellorder (even if b is illfounded, or drops infinitely
often). We set
1h(W,) = otp(1,<;).
For 1 € b, we let uy ()] iff (n,&) € I, and in that case, set
unp(§) =rank of (n,§) in (1,<;).

We define the tree order <y, by: given (n,&) and (5,0) € I

un »(&) <w, us ;(0) iff for all sufficiently large y € b, uy y(§) <w, us 4(0).

Although the uy, y do not completely preserve tree order, they almost do so. See
clause (4) in the list following Remark 6.2.2, and the illustration on p.241. Using
this, we can show <y, is a tree order. uyj, may fail to preserve tree order, but
again, this can only happen in a way similar to the possible failure described after
6.2.2. We record this in a proposition.

PROPOSITION 6.5.6. Let (1,&), (n,8) €1, and suppose & <w, & but uy (&) £w,
uyp(6). Then there is a unique y > 1 in b such that letting U-pred(6 +1) =y
with @ +1 € b, F = Fy, and B = BVr"e.f | we have

]. ﬁ = un/y(é) Swy Mn~'y(5), and

2. letting G be the first extender used in [0,uy y(08)) such that A(G) > ),(Egvy),

we have crit(G) < crit(F) < A(G).
Moreover, in this case, if & = Wy-pred(§), B = uy y(&) = Wy-pred(uy 4(8)), and
Wo.1-pred(itn,941(8)) = B = Wo1-pred(up o+1(8)).

We omit the easy proof. Using such arguments, we can show <y, is a tree order,
and

PROPOSITION 6.5.7. Let (n,§) and (8,0) € I. Then uy ,(§) = W,-pred(us 4(0))
iff for all sufficiently large Y € b, un (&) = Wy-pred(us ,(6)).

Here is a more concrete description of 1h(W;,) and uy, ;. Let

S =h(W(T,UTA))
=sup{oy |y <A}
= sup{crituy y | N <y YAy € b}.
(The last equality holds because if n = U-pred(y+ 1) and y+ 1 <y T where 7 € b,
then crit(uy y41) < oy < crit(uyy1,7).)
Case 1. b drops somewhere.
—®
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Let y+ 1 be least in bN DY, and N = U-pred(y+ 1), and B = BV Wrlr =
crit(un,y+1). Let B =ug (7). Then forall y+1 <y 6 <y p, with p € b,

crit(ug,p) = tn,o(B)
=1hWy)—1.
(Further dropping cuts down on the domains of the #-maps, not on that of the
u-maps.) Thus
Th(Wp) =6+1
=upp(B)+1=upp(t)+1.

Case 2. b does not drop.
Let
T =1, = least o < Ih(7) such that for all y <y &
with & € b, ug y(0) > crit(uy ¢ ).

Then

uo5(7) =6,

1h(W) =6+ (Ih(T) — 1),
and for & > 7 with & < 1h(7),

uop(§) =8+ (& —1).

This case can happen in two ways: it can be that ug 5 (7) = crit(uy ,) for some
N <y Y with ¥ € b, in which case that is true for all sufficiently large such n,7.
Or it can happen that ug  (7) > crit(uy y), for all n <y y with ¥ € b. In the latter
case, 7 is a limit ordinal, and the extenders in b are being inserted cofinally into
the branch extender of [0,7)r.

It can happen in Case 2 that 7 is a limit ordinal, but some ug 5 (7) and its images
are in the “eventual critical points” along b. In that case, some tail of the extenders
used in b are being inserted after the blow-ups of all those in [0, T)7.

Now we define the models and extenders of Wj,. Suppose o = uy ;,(y) < Th(W,).

€5

Suppose n < & < & € b. Then we have the map t ()
n,

. . w
acting on either M, i )
n,

or an initial segment thereof. We let

Wy o We 88
My " = dirlim of the /\/lum5 @ under the t“n,é () S

If b does not drop after 77, then we have

nb . A Wn We
ty" i My HM”n.b(Y)

as the direct limit map. Otherwise t;’ b may (or may not) act on a proper initial
segment of M;;V" .
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Finally, if o = uy ;(y) <1h(W}) and o + 1 < 1h(Wy), then
EYr =1 (E)™).

One can check that with this choice of extenders, JV,, is a normal iteration tree on
M. For example, suppose that 1 € b and that for all § > 1 in b, We-pred(uy ¢ (y+
1)) = uy £(0), and we aren’t dropping, so

We _ We We
upe(ri) = UM, o) B, )
Then
Wy _ Wi Wi
My = UM, o) By )-

because each of the three objects in this equation is a direct limit of its &-
approximations, for & € b, and the maps commute appropriately. We omit further
detail.

Now we also have the natural map

Op: MZ;;[ — Ry,
where R}, is the last model of W, given by

0 (55(x)) = 1 (05(x))-

In the abstract, it may happen that not all models of W), are wellfounded. In our
context of interest, (7,4 b) is played according to an iteration strategy X for M,
and we show that X is sufficiently good that W} is also played by X.

Now suppose A < 1h(f) and b = [0,A )y, and all models of W, are wellfounded.
Then we set

Wy, =W,
Un A = Un.b,s
nA _ b
Ly =ty
Oy = Op,

and continue with the inductive construction of W (7 ,U). If some model of W, is
illfounded, we stop the construction, and say that W (7 ,U/) is undefined.

Finally, if ¢/ has a last model, we set W (7,U{) = W,, where lh(U/) = y+ 1. If
U has limit length A, then W(7,U) = W(T,U | 1) has already been defined.

To summarize our notation associated to W (7 ,U): for y < Ih(U),

Fy=oy(EY)

where oy : MY — R, = M:(Vyy) is the last model of W, and
Wy+1 == W(Wr' 5 W'y,Fy)
where 11 = U-pred(y+1).
If 7 and U are A-separated, then so is W(7,U). Similarly, if both 7 and U



266 6. NORMALIZING STACKS OF ITERATION TREES

are A-tight, then so is W(7,U). In these cases, granted that all VW, are played
by the same iteration strategy, R, and WV, determine each other, while F, and
Wy [(oty+ 1) determine each other, modulo the A-separation or A-tightness of W,
The case that all trees are A-separated is the most important one in this book.

The R,’s are not the models of a single iteration tree; they constitute an enlarge-
ment of I/, with accompanying maps Oy: Mz}f — Ry. We proved the basic facts
about agreement of models and maps in this enlargement in (x), above; we list
some of them again here for reference.

PROPOSITION 6.5.8. Let y <N < 1h(U). Then

(a) Ry agrees with Ry below 1h(Fy),

(b) oy | (IN(EY)+1) = oy | (IN(EY)+1), and

(c) F, is on the sequence of Ry, but not that of Ry. In fact, \h(Fy) is a cardinal
of Ry.

The following diagram summarizes the situation. We draw the diagram as if the
maps in question exist, although sometimes they may not, because of dropping. Let
z(n)+1=1h(Wy), and let "1 : M — Ry, be the canonical embedding (assuming
M-to-Ry, does not drop).

Ry = MY

M

The various embeddings all commute:

N OWy Y Wy
@) i tz(n)oz .
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(ii) zQ*Yoi;Vg _ zm ©uny(c) Ot (general version of (i)

e by _ n‘y
(iii) oyo Iy = tZ(n) o 0yp.

Remark 6.5.9. One can regard the sequence of iteration trees (W) | y < lh(U/))
that occurs in the definition of W (7 ,U/) as an iteration tree of iteration trees. One
might call such a system a meta-iteration tree, or meta-tree. The nodes in the
meta-tree are iteration trees, with 7 being the base node. The Fy are used to extend
the meta-tree at successor steps, via the W-operation. We have tree embeddings
from one node to the later ones along branches of our meta-tree.

The meta-tree associated to W (7 ,U/) is not the general case, however, because
there is in general no need to require that the F, be obtained by lifting extenders
used in some tree I/ on the last model of 7. This was first realized by Schlutzenberg,
who defined the general notion of “meta-iterate of 7. (Schlutzenberg’s term is
“inflation of 77.) Schlutzenberg also showed that if 7 is played by a strategy X
with the weak Dodd-Jensen property, then X induces a meta-iteration strategy for
T. See [54]. Schlutzenberg’s work was streamlined and re-written by Jensen, who
introduced the general notion of meta-tree. See [19]. Further general results on
meta-iteration trees and strategies can be found in [59], along with a more detailed
discussion of the evolution of the idea.

Coarse embedding normalization

We must also define W (7 ,U) in the coarse case. Suppose that M is a transitive
model of ZFC, that 7 is a nice, normal tree on M with last model P, and that I/ is
a nice, normal tree on P with last model Q. We define W (7 ,U) as above:

Wy=W(T,UTy+1),

oy: Mz}j’ — /\/l:(vyy),
Fy = oy(EY),
and
Wy1 =WWy, Wy, Fy)
= Wy [y + 1) (F) i, Wy, .
Here

o _ | least @ such that Ih(Fy) <Ih(E)") if one exists
4 lh(Wy) — 1 otherwise.

n = least & such that crit(Fy) < lh(Fg).

In this coarse case we shall have
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and
Oy = identity,

so Fy = E;’ , for all y. This we prove by induction, the successor step being

essentially the same as the proof of Proposition 6.2.9. So in the coarse case,

embedding normalization coincides with full normalization.

Wy
One can also characterize o, as the least 1) such that for § = lh(Fy), VgM o=

V§R ’. oy may not be the least 1) such that Fy € M,‘;v", but it is the least 1] such that
/\/lnwy k= “Fy is nice”.

We might also be normalizing a stack of coarse F-trees, for some collection F
of nice extenders in the base model M. In that case, @, should be the least 17 such
that Fy, € im(}"). It is easy to see that if F is part of a coherent pair (w, F) in M,
then this is equivalent to the definition of @, given above. In practice, when we
normalize F-trees, F will be part of such a coherent pair.

We are not assuming the extenders used in 7 and U/ come from a coherent
sequence, but it is not too hard to show that W(7,U) is normal, provided its
models are wellfounded.

We have seen that conversion systems can produce non-normal trees on the
background universe when applied to a A-separated tree on some premouse. In
proving that background induced strategies normalize well, we shall therefore
look at “quasi-normalizations” of stacks of quasi-normal trees on the background
universe. We do this in Section 6.7.

6.6. The branches of W (7 ,U/)

Let M be a pfs premouse, 7 a normal plus tree on M, and U/ a normal plus tree
on the last model of 7. Let us adopt our standard notation, so that we have

(@ Wy= W(T . UTy+1),

- AU Wy
(b) oy: My = M.
(c) Fy=oy(EY),

and when n = U-pred(y+1),
(d) &y = a(Wn, Wy, Fy) and By = B(Wny, Wy, Fy), and
(e) Pyy: Wy — Wy is the associated extended tree embedding, with u-map
Un y» V-MAP Vyy y, £-maps t7"", and s-maps sy’
Suppose 1h(lf) is a limit ordinal 6, and let
A =1h(W(T,U))=supay.
<6

Here we assume W (7 ,U) exists, i.e. embedding normalization has so far produced
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only wellfounded models. Let b be a cofinal branch of 2. We do not assume MY
is wellfounded. Note that WV, still makes sense, as defined above.

PROPOSITION 6.6.1. A = ug (), where T is least such that whenever 1,y € b
and N <y 7V, then crit(uy y) < ug (7).

PROOF. Letn+1 € b, and 6 = U-pred(n + 1). Then ug y1(crit(u ni1)) =
oy + 1, so oy + 1 < crit(uy 1 ¢) for all & € b. It follows that ug,(7) > 4. But
if 0 < 7, we can find y+1 € b with n = U-pred(y+ 1) such that ug,(0) <
crit(un y+1). Then ug ,(0) = upy(0) < oty < A. Finally, A € ranu, (because any
& < 1h(Wy) not in ranug y is fixed by uyp), s0 A = ug (7). -

PROPOSITION 6.6.2. Let a=[0,A)w, and A = ug ,(7); then

& €aiff In € b(& <crit(unp) AN <w, uoy(7)).
We omit the easy proof.

Remark 6.6.3. We don’t get a “continuously” from b. If 7 is fixed in advance,
then continuously in those b such that T = 13, we can produce the corresponding
ass.

DEFINITION 6.6.4. In the situation above, we write
a=br(b,T,U)

and
T=m(b,T,U)

for the branch of W (7 ,) and model of T determined by b.

Remark 6.6.5. Let E;, be the extender of i}lf. It is an extender over the model
/\/lg, where & + 1 =1h(7). One can show that 7 is the least ¢ such that either E},

is an extender over M7 [1h(E]) (that is, dom(E}) C M7 |Ih(E])),or a = E.
The branch extender of a is given by

PROPOSITION 6.6.6. Leta=br(b,T,U) and T =m(b, T ,U) be as above; then

e T = po ,(eT) ™ (Fo | 6+ 1€ bAYi e dom(po,(el))e(Bos(el)(i)) < crit(Fy)).

Here we are writing e(vlv (T4 for e}iv”, because e(vlv (T4 really only depends on a

and W (T ,U). We omit the proof of 6.6.6. For what it’s worth, here is a picture
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o5 (U)

° lh(ETT) PO (K)

T

i pop(H)

1M A1 30101

G [ pO,b<G) [k Fé

MT MY T

Note 6 (U) = 8(W(T,U)). The F’s in the picture were all used in b. Some got
3 3 W(T*u)
put directly into e,
the generators of extenders used to get to M7 . (In general, &/ < A(E]).) The
extenders in eZV(T’u) with generators beyond sup t(r)
F’s.

Branches of W(T,U) of the form br(b, 7,U) come from cofinal branches of I/
and models of T. There may also be cofinal branches of W (7 ,U/) coming from
cofinal branches of U/ and maximal (perhaps not cofinal) branches of T. So we

extend our definitions.

, others indirectly via some po,(G). €] is the sup of

begT are all directly inserted

DEFINITION 6.6.7. Let 7 be a normal on M and I/ a normal tree on the last
model of 7. For o <y B, let Ugp = u®ab and Vo = yPaB | where Do p: Wa —
Wy is the tree embedding of the meta-tree asssociated to W (7,U). Let & < 1h(T),
Y+ 1 <1h(U), and 1 = U-pred(y+ 1); then

nd(&,y+ 1) is defined iff vo 5 (&) < crit(uy y41),

and if it is defined, then

uo (&), ifuon (&)L and upy (&) = crit(un, yi1);
von(§), otherwise.

nd(€,7+1)={
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We should write nd7 (&, v+ 1), but will usually drop the subscripts. We think
of nd(&, v+ 1) as the node in W obtained by shuffling into eg an initial segment of
the extenders Fr, for T+ 1 <y Y+ 1. The first case in its definition corresponds to
the case when Fy is being added as itself at the end, past all the images of extenders
in eZ—.

Here are some observations about the # and v maps above that we shall use:

@) von(&) <erit(unu) = von (&) =vou(8).

(i) crit(un ) <w, un p(crit(un u)).
(111) V0777 (g) SWH I/l(),n (é)
(iv) If crit(ug ;) < vo,e(§) whenever 0 <y u <y 1, then vo (&) =uoy(&).

Here are some simple facts about the node function:

PROPOSITION 6.6.8. Let W =W (T ,U) and n = U-pred(y+1); then

(1) nd(&, 7+ 1) Liff von (&) < crit(un,y+1),
(2) ifo=nd(&,y+1), then W[ +1=Wylo+1,
(3) ify+1<y 8+1and 6 =U-pred(6 + 1), then either
(a) nd(§,y+1) <y nd(&,6+1), or
(b) nd(&,y+1) = crit(un y+1) = uoy(8), and nd(§,8 +1) = vop(§) =
vo.0(5),
(4) if &€ <r 6 and nd(0,y+1) |, then nd(&,y+ 1) |; moreover, for all B >y
Y+1
(i) nd(&,y+1) =von(§) =vop(§) =nd(E,B), and
(ii) nd(&,B) <w nd(6, B).

PROOF. (1) is part of the definition, and (2) holds because W), agrees with W
up to oy + 1, and crit(uy 4) < o).

For (3), let 6 = U-pred(6 + 1) and 6 =nd(&,y+ 1). Suppose first that 6 =
vo,n (£ ); then by observation (i) above, 6 = v ¢(& ), and & <y, ug 51 (crit(ug 511)).
But nd(&, 8+ 1) is either vo g (&) or up ¢(&), and by (iii), 6 <w nd(&,5+1) in
either case, so (3)(a) holds.

Next, suppose 6 = ug (&) = crit(uy y41). By (i), 6 <w, un,6(0) =up,e(§).
So if nd(§,8 +1) = up (&) then (3)(a) holds, and we are done. If not, then
nd(&,0+1) =vpe(&). But vy (&) < crit(uy,g), s0 von(E) =voe(§) by (i), so
then (3)(b) holds. This proves (3).

For (4), nd(&,y+1) | since vo (&) <voy(0). Let 6 =nd(E,y+1) and 7 =
nd(6,y+ 1). We claim first that it is not the case that ¢ = ug (&) = crit(uy y11).
For then

crit(uy g) < uop(0)
whenever L <y 8 <y 1, so using (iv),

von(0) =uon(0) = 1.
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But ug (&) < 1o, (0) (as ordinals), which gives us crit(uy y+1) < von(0), so that
nd(0,y+ 1) is not defined after all.

Thus 6 = vo (&) < crit(uy y4+1). This implies & <w, von(0) <w, o5 (8), so
0 <w, T, s0 0 <w 7. This verifies (4)(i)(ii) at B =7vy+1. We leave the case
Y+ 1 <y B to the reader. B

Now let b be a cofinal branch of U/, and let ¢ be a branch of 7. We allow ¢ to
be cofinal, or maximal and not cofinal, or to have a largest element. We may be
able to use the node function to generate from b and c a cofinal branch br(c,b) of

W(T.U).

DEFINITION 6.6.9. Let ¢ be a branch of 7 and b be a cofinal branch of ¢/. We
say that br(c,b) is defined (or br(c,b) |) iff either
(1) chas alargest element &, and for all sufficiently large y+1 € b,nd(&,y+1) |,
and nd(&,y+ 1) = crit(uy y+1), where 1 = U-pred(y+1), or
(2) ¢ has no largest element, and for all £ € ¢, there is a y+ 1 € b such that
nd(,y+1) .

In case (1), we set
br(c,b) = {7 |t <w nd(&,y+1) for all sufficiently large y+ 1 € b},
where £ is the largest element of c. In case (2), we set
br(c,b) ={t|3& € cIy+1€b(nd(§,y+1) | and
T <w, von(&),where n = U-pred(y+1)}.

In case (2), v, (&) is just the common value of nd(&,y+ 1) for all sufficiently
large Y+ 1 € b. This follows from part (4) of Proposition 6.6.8.

DEFINITION 6.6.10. Suppose that br(c,b) |; then we say that ¢ is b-cofinal iff
¢ has a largest element, or ¢ has no largest element, and for all Y+ 1 € b there is a
& € ¢ such that nd(&, y+ 1) is not defined.

DEFINITION 6.6.11. We say that Y+ 1 is (&, 0)-minimal iff nd(§,7y+1) = o,
and whenever 8 +1 <y y+1,nd(§,6+ 1) # 0.

LEMMA 6.6.12. Suppose that br(c,b) | and c is b-cofinal; then br(c,b) is a
cofinal branch of W. Moreover, there are cofinally many ¢ € br(c,b) such that for
some & € cand y+1€b, y+1is (&,0)-minimal.

PROOF. Suppose first that ¢ has largest element £&. For y+1<y 6+1€b
sufficiently large, letting n = U-pred(y+ 1), we have that ug (&) = crit(uy y41).
Letting W, = W(T,U™b), this easily implies that br(c,b) = [0,4)w,, so that it is
a cofinal branch of W. Moreover, all sufficiently large ¢ € br(c,b) are of the form
nd(&,y+1), where y+1 € b and y+ 1 is (§,0)-minimal.

Suppose next that ¢ has no largest element. Proposition 6.6.8 part (4) implies that
br(c,b) is a branch of W. To see that it is cofinal, let 4 < 1h(WV), and pick y+1 € b
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such that i1 < oy. Since c is b-cofinal, we have & € ¢ such that nd(&,y+1) is
not defined. Let & + 1 be least such that y+1 <y 6 +1 € band nd(&,6 +1) is
defined. Let 6 =nd(&,5 + 1), so that 6 + 1 is (§, 0)-minimal. We shall show that
o €br(c,b),and u < o.
Let 11 and 6 be the U-predecessors of Y+ 1 and 6 + 1. By the minimality of
8 + 1, we have that
crit(uy g) < vov (&) forall v <y 6,

and thus

uov(§) =vov(§) forall v <y 6,
by observation (iv). Thus 6 = vo ¢(&) = uo,¢(&), s0 & € br(c,b). Also,

M < Oy + 1 = up ypr(crit(un yi1))
<un,y+1(uo,n(8)) = uoy+1(S)
=voy+1(§) <voe(§) = 0.
4

We shall show that if a is a cofinal branch of W(T,U), then a = br(c,b) for
some cofinal branch » of U/ and some c; moreover, there is a unique such b, and a
unique such b-cofinal c. First, let us recall some simple facts about the agreement
between the W, ’s. Let Ry be the last model of W,.

LEMMA 6.6.13. Let y < 6 < 1h(U); then
(a) Ry|[Ih(Fy) = Rs||1h(Fy),
(b) Fy is on the sequence of Ry, and not on the sequence of Rg,
(c) forall & > oy, and all v, Mgvy| 1h(Fy) is not an initial segment ofMJ,/V‘S, and
(d) if s~ (H) € Wy N WS, then Ih(H) < 1h(Fy).
PROOF. We have already proved (a)-(c), and part (d) is an immediate conse-
quence of (c). 4

The following is the key lemma.

LEMMA 6.6.14. Let T, U be as above. Let y and § be <y-incomparable, and
let 1 be largest such that m <y yand n <y 8. Let 0 = uy y(@) and € = uy 5(E),
where & > crit(uy y) and & > crit(uy 5); then e;\}y is incompatible with e."?.

W, = W w, IRRYY
PROOF. Leta=eq,a=ey ", e=e; ° andé=e; ". Assume toward contra-

diction that either a C e, or e C a.
Let

Y+1=least& € (n,7]y,
S+ 1=leasté € (n,6|v,
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so that E% and Eg’o are the extenders used in I/ along the two branches of I/ at the
point where they diverge, and Fy, and Fj, stretch Wy into W1 and W, ;. Let

_ least i such that crit(Fy,) < A(a(i)), if this exists;
k(a) = _ :
dom(a), otherwise,
and
- least i such that crit(Fy,) < A(e(i)), if this exists;
k(e) = B ;
dom(e), otherwise.
CLAIM 6.6.15. k(a@) = k(), and for k = k(@), alk=¢lk=alk=e k.

PROOF. Letk = k( a). If k < k(&), then e(k) = &(k), so A(e(k)) < crit(Fy, ). But
3 a +1 ~ :
Ala(k)) > A(Fy). [e VOYOH( )(k) H is defined because & > crit(uy y,+1). H is
either Fy, or the stretch by Fy, of some G such that crlt( ) < crit(Fy,). In either

case, A(H) > A(Fy). a(k) = pyy15(H), s0 A(a(k)) = A(H).] Since a(k) = e(k),
we have i(F),O) < crit(Fg, ), so Fy, and Fg, do not overlap, contradiction. k(&) <
k(a) leads to a parallel contradiction. So we have k(a) = k(&) = k.
Fori < k,a(i)=a(i) ande(i) =é(i). Soalk=elk=alk=e k. —|
Fix k = k(a). We may assume by symmetry that }p < &.

CLAIM 6.6.16. k € dom(a), and moreover, crit(a(k)) < crit(Fy, ).
PROOF. If either statement fails, then

wW.
o 0t (_)(k) — Fy.

tnp+1(%

Since the extenders used in (% + 1, y]y have critical point at least 7L( ) we get
Pr+1y(Fp) = Fy.
(In fact, uy 41,y [(¥ + 1) = identity, and ty°+ 7 = identity.) So
a(k) = Fy,.
But k = k(€), and from this we get

A(Fs,) < A(e(k))

as in Claim 6.6.15. Since Z(Fyo) < i(Fao), we have a contradiction. =

Let G = a(k) and H = a(k). By Claim 6.6.16, along the branch from 7 to y, G
is being stretched above its critical point into H, by the copy maps corresponding
tothe F; for 7+ 1 <y yand n < 7. Let 71 < v be least such that the stretching is
finished at ;. That is, setting

w
G=E £ K
71 = least T < y such that crit(us y) > up (&)
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= least 7 < 7 such that tg’T(G) —H.

If n <y T+ 1 <y 1, so that F; was used in producing WW,, from W;, then F7 is an
initial segment of all the extenders of copy maps t# T+ Where u =U -pred(t+1),
and p > crit(uy r4+1).

From this we get

CLAIM 6.6.17. Forn <y T+ 1 <y 7, Ih(Fr) < 1h(H).

PROOF. F; :E(‘X/ff“, soforn<yt+1<7,

Ih(F) < Ih(E,"" <Th(E"

+1(5)) un.y (‘5)) = lh(H).

CLAIM 6.6.18. H # Fj,.

PROOF. Suppose H = Fj5. By 6.6.17, Ih(F) < 1h(Fs,) whenever T+ 1 <y 7.
Since U is normal, this implies y; < &. But ¥, and & are incomparable in U, so

7 < .
But thena [ k™ (H) € Wy N WgN, and h(Fy, ) < 1h(H) = 1h(F, ). This contra-

dicts part (d) of Lemma 6.6.13. =

By Claim 6.6.18, k € dom(¢), and letting L = é(k), crit(L) < crit(F5,). So L s
being stretched above its critical point into H along the branch from 1 to §. Let
81 < 8 be least such that the stretching is over with at & ; that is, setting

w
L=E"
01 = least T <y & such thatcrit(u; 5) > un (1)
=least T <y & such that ﬂ:ﬂ’T(L) =H.

We have that 1 # ;. Suppose that y; < &;; it no longer matters whether ¥ < &,
so this is not a loss of generality. Since I/ is normal, we have a T+ 1 <y 6; such
that 73 < 7. By the proof of Claim 6.6.17,

Ih(F,,) < Ih(F;) < Ih(H).

Buta [ k™ (H) is in the extender trees of both V), and W, , so by Lemma 6.6.13(d),
61 < 7. This contradiction completes the proof of Lemma 6.6.14.
_|

COROLLARY 6.6.19. Let o =nd(&,+1) and t=nd(p, 1 + 1), where p+1
is (§,0)-minimal and v, is (p,T)-minimal. Suppose that U-pred(y + 1) is <y-
incomparable with U-pred(y; + 1), then ¢ and T are <w(7u)-incomparable.

PROOF. Let 1 be largest such that 1 <y w+1and n <y 1 +1. Letn =
U-pred(no+1) =U-pred(n; + 1), where o+ 1 <y o+ land m; +1 <y y1 + 1.
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By the minimality of ¥ and 71,

crit(un ny+1) < o n(8)
and

crit(un,n,+1) < ton(P).

To see this, suppose uo (&) < crit(un,ny+1), and let @ = U-pred(y + 1). Recall
that the # maps along a branch of ¢/ have increasing critical points. Thus

(o S uO,@(é) < Crit(ue,YO+1)7

SO

0 =v0,0(&) =vo.n(&) <uop(&) < crit(unner1)-

Thus 6 = nd(&, 1o + 1), contrary to the minimality of ¥ + 1.
So if crit(un,ny+1) > uo,n (&), then 6 = ugy(§), so 6 =nd(§,mo+1). The
proof that crit(upy n,+1) < uo,n(p) is the same. But then

crit(un 1) < uop(8)
and

crit(un y+1) < oy (p)-

By Lemma 6.6.14,
ezvyoﬂ 1 el/vyﬁl.

w.
But ¢ < By, by the definition of nd(&, % + 1), so 0 < 0y, 80 eg [Cp eY,V(T’u).

Wy+1 _ W(TU)

Similarly, e; , SO we are done. -

COROLLARY 6.6.20. Suppose that a = br(cg,bg) = br(c1,b1), where c¢; is b;-
cofinal for i =0, 1; then by = by and co = c;.

PROOF. Let a = br(cy,by) = br(cy,b1). Suppose toward contradiction that
by # by. Let g € bg and n; € by be <y-incomparable. By Lemma 6.6.12 we can
find & € ¢; and ¥+ 1 € by, for i = 0, 1, such that letting 6; = nd(&;, %+ 1):

(a) o, € bl‘(C,‘,b,'),

(b) i<y v:+1, and

(©) ¥ is (&, 0;)-minimal.
But then 7y + 1 is U-incomparable with y; + 1, so o is VW-incomparable with o]
by Corollary 6.6.19. Since oy and o7 are in a, we have a contradiction.

So let b = by = by, and suppose that ¢y # c¢;. Since they are b-cofinal, we have

& € cpand v € c; such that & and v are T -incomparable. For all sufficiently large
n €b,voy(§) €aandvyy (V) € a, so there is an 1 such that v, (&) and vo 5 (V)
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are defined and comparable in Wj,. Since vq 5, preserves incompatibility, we have
a contradiction.
4|

Finally, we show that our branch-merging function is surjective.

LEMMA 6.6.21. For any cofinal branch a of W(T ,U), there is a cofinal branch
b of U and a branch c of T such that br(c,b) = a.

PROOF. We begin by decoding nodes of U/ from nodes of W (7 ,U). For & <
Th(W(T,U)), set

d(&) =least y such that § < a;.

CLAIM 1.
W(T.U)

3
= least 'y such that M?}y = MEV(T’U).

d(&) = least 'y such that e?}y =e

PROOF. If & < ay, then Wy [E+1 =W (T, U) [+ 1, so egvy = e?’(T’M) and

M?;y = M‘g(T’m. On the other hand, Fy is used in W(7,U) but not in W,
so if & > ay, then F is on the sequence of Mgvy but not that of MEV(T’U). So

./\/l?}y + MEV(T’W, and hence e?y £ e‘g/(T"u). =

CLAM 2. & <y (1) & = d(&) <v d(&).

PROOF. Let yp =d(&) and y1 = d(&;). We claim that &) € ranugy,. For let
be least such that ug y, (7) > &o. If ug y,(7) # o, then there must be 0 <y 1 <y
o+ 1 <y Y such that

crit(un o+1) < &o < up,o41(crit(un,o41))

and n = U-pred(o +1). (All discontinuities in ug y, arise this way.) But then
&< as+1,s0 & < ag, and 0 < Y, contradiction.

Similarly, &; € ranug,y, .

We claim that ¥ and y; are comparable in /. Suppose not, and let 1) be largest
such that N <y W and n <y 7. Let

o = un 5 (o)

and

&1 = Un,y (51)-

The hypotheses of 6.6.14 are satisfied, noting that & > crit(uy,y, ) because other-

0]

LW w . w
wise e, © =e &)”, whilst yp was least such that e % " appears as a branch extender.

Similarly, & > crit(uy,y, ). The other hypotheses of 6.6.14 hold, so we conclude
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62’70 is incompatible with egn. This implies & and &; are incomparable in

W(T,U).

Finally, & <y (1) &1 = & < &, and trivially § < & = d(&) < d(&1).
Since d(&p) and d(&;) are <y-comparable, d(&y) <y d(&)), as desired. o

CLAIM 3. d :1h(W(T,U)) — Ih(U) is an order-homomorphism, and ran(d) is
cofinal in Th(U).

PROOF. As we remarked, &) < & = d(&)) < d(&;) is trivial. Pick any y <
lh(U), and & < 1Th(W(T,U)) with & > ay. (The a,’s are strictly increasing.) Then
d(&)>v. .

It follows that for any branch a of W (7 ,U), we can set

d(a) ={y|3¢ €a(y<y d(&))},
and d(a) is a branch of U. If a is cofinal in W (T ,U), then d(a) is cofinal in I4.
Next we decode nodes of 7. For any & < lh(W (7 ,U)), set
e(§) = unique a < 1h7 such that ug 4¢) () = &.
We showed in the proof of Claim 2 that § € ran(ug 4(¢))-

CLAIM 4. é:o SW(T,Z/{) é:] — e(éo) <r e(él).

PROOF. Let ;= d(&) and & = e(&;). As we noted above, the u maps do not
introduce new tree-order relationships in ranu.

SUBCLAIM A. Ifun (1) <w, uny(Vv), then u <w, v.

PROOF. Easy induction on 7. —

So if E() fT 51, then u()_’y()(é()) ﬁw},o U0, y, (El) That is, (§0 ﬁwyo U0, y, (E]) If
crit(uy,y ) > o, then we get & £w,, &1, and since & < oy, &o Lw () &1, as
desired. So assume & > crit(uy, y, )-

If & = crit(uy, y, ), then & <w, tyy(0)iff & <w,, o forall 6. Since & ﬁWYO
U,y (61), this yields & £w, &1, 50 &o Lw (7w &1, as desired.

Finally, suppose &y > crit(uy, y ). So letting T+ 1 <y 7 be least such that
Y <u T+1, and

ﬁ = ﬁ(W707WT7FT)7
we have

B <& <oy, < a..
No extender of the form E;/:Y‘y (o) Can have critical point in the interval [crit(Fyr), A (Fy)).

0:71
This implies that if 7+ 1 <y y and B < § < a, then for all 6 € domuy,,y,
& #w, uy,y(0). In particular, & Zw, &1, 50 & Lw(7.u) &1, as desired. 5
—a
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For a branch a of W(T,U), we set
e(a) ={B |3 ca(B <re(8))}.

So e(a) is a branch of 7. Even if a is cofinal in W(T ,U), e(a) may not be cofinal
in 7. e(a) may have a largest element, or be a maximal branch of 7 not chosen by

T

CLAIM 5. Let a be cofinal in W(T ,U). Then a =bryy(e(a),d(a)), and e(a) is
d(a)-cofinal.

PROOF. Let b =d(a) and ¢ = e(a). Suppose first that ¢ has largest element &.
So for ¢ € a sufficiently large, e(c) = &, that is, 6 = ug y+1(&) for y+1 € b least
such that o < o This implies that ug 5 (§) = crit(uy,y+1) for y+ 1 € b sufficiently
large and n = U-pred(y+ 1). So for ¢ € a sufficiently large, ¢ € br(c,b), as
witnessed by & and some (unique) Y+ 1 € b. Thus a = br(c,b), and ¢ is b-cofinal.

Now suppose ¢ has no largest element. To see that br(c, b) = a, it suffices to show
that cofinally many points in br(c,b) are in a. So let 4 < sup(c) and v < sup(b).
We must find £ € c—u and Y+ 1 € b — v such that for n = U-pred(y+ 1),
vo,n (&) < crit(uy y+1) and vo (&) € a. But let 6 € a be such that e(c) > u
and oy < 0. Let £ =¢(0) and n =d(0), and let Y+ 1 € b be least such that
n <y v+ 1. We have that

Vo (&) <wy ton (&) =0 < oy < crit(un y41).

Since Wy [ oy +1=W [ ay + 1, we have vo (&) <w 0,0 v (&) € a.
Lastly, we must see that ¢ is b-cofinal. Let Y+ 1 € b; we seek & € ¢ such that

vo,n (&) > crit(un,y41), where 1 = U-pred(y+1). But pick any 6 € a such that § =

d(o) >y+1,andlet & € c with & > e(o). We get that vy 5(&) > 0 > crit(uy y41),

which implies vo (&) > ¢ > crit(uy,y+1), as desired. - (Claim 5)
O (Lemma 6.6.21)

DEFINITION 6.6.22. Given 7 normal on M, and I/ normal on the last model
of T, we write bry, (7 ,U) for the function bryy, (defined on pairs of nodes and
pairs of branches) defined above. We write br)}’ for the function d and br’Y for the
function e defined above.

Notation 6.6.22.1. To reconcile with our previous notation: if b is cofinal in U,
there is exactly one branch ¢ of 7 such that
(i) cischosen by T, in that ¢ = [0, 7]r or ¢ = [0, 7)7 for some T < 1h(7"), and
(ii) bryy(c,b) is cofinal in W (T ,U).
This uses that 7 has a last model. We defined br(b, T,U) to be bryy(c,b), for the
unique such ¢. We defined m(b, 7,U) to be the unique 7 as in (7). We shall not use
this earlier notation much.
For 7 in (i) a limit ordinal, the earlier notation does not distinguish between
¢ =1[0,7)r and ¢ = [0, 7], whereas the current one does. ¢ = [0, 7)7 is the case
where, roughly speaking, the measures in £}, concentrate on proper initial segments
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of MT|8(T Isupc) = MT|AT. In the case ¢ = [0,7]r, some tail end of the
extenders used in b are being added “as themselves” to the inflation of e] by the
earlier extenders used in b.

Remark 6.6.23. We assumed 7 has a last model, but one could generalize some
of this by dropping that, and assuming that ¢/ is on M(T).

Remark 6.6.24. There are two special cases worth mentioning.
(a) T"U is already normal. Then W (7" U) =T U, and bry (c,b) = c"b.
(b) U is a tree on M|k, where Kk = inf{crit(EnT) | n+1 <1h7}. Then if U has
limit length, then W (7 ,U) = U-on-M, i.e. U regarded as a tree on M. For
b a cofinal branch of U, W, = W (T,U"b) = U b~ ()T, and bry (c,b) =
b~ u“c, where u(n) =1h(U) +n.

In our application, however, 7 and U will definitely not be separated this way.

The coarse case

The results and proofs of this section go over to the coarse case in a straight-
forward way. Suppose that M is a transitive model of ZFC, and (7 ,U) is a stack
of nice, normal trees on M, and that 1h(Z{) is a limit ordinal. Let W = W (T,U).
We defined the node merging function nd(&,y+ 1), the branch merging function
bryy (c,b), and the branch decoding functions br?Y and br}}” from the meta-tree
structure of the VW, ’s. The definitions made no reference to the intrinsic structure
of M.

Lemma 6.6.13 on the agreement of the W,’s did make use of the fact that M
was a premouse. In the coarse case, the analog of “Q|1h(F)” is “(Vlg(p),F)”. The
analog of “Q|1h(F) <R” is “Vlg(F) = Vlﬁ(F) and F € R, or equivalently, “R = F
is nice”. The counterpart to Lemma 6.6.13 is

LEMMA 6.6.25. Let y < § <1h(U) and n = 1h(Fy); then

(a) Vp¥ = Vi,
(b) M?}y = “Fyis nice” iff & > oy,
(c) forall & > oy, Fy ¢ ./\/lgv‘s, and
(d) ifs"(H) € ng’“ NWEX, then Th(H) < 1h(Fy).
Part (d) of 6.6.25 played a role in our proof that the branch merging function

bryy is injective and surjective. In particular, the key lemma, Lemma 6.6.14, made
use of it.
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6.7. Quasi-normalizing stacks of plus trees

We shall show in the next chapter that background-induced strategies normalize
well for stacks of the form (7 ,U/), where T is A-separated. More precisely, if
Y* is a strongly unique iteration strategy for V, and (7,U/) is a normal stack by
Q(C,M,x*) such that T is A-separated, then W (7 ,U) is by Q(C, M, X*). What the
proof gives when 7 is not A-separated is the same conclusion, but with W (7 ,U)
replaced by a “quasi-normalization” of (7,U/) that we call V(T ,U). If T is A-
separated, then W (7,U) = V(T,U), but in general they can be different, even
when both 7 and U are ordinary normal trees. In general, if (7,{) is a normal
stack, then W (7T ,U) is the normal companion of V(7 ,U).

Quasi-normalization is a small variant on embedding normalization, so we shall
not describe it in the detail we gave for W(T,U/). We shall instead just say enough
that the reader can see how similar the two normalization methods are, and where
the difference lies.

To see the difference between normalizing and quasi-normalizing, suppose T
is normal, F~ is on the sequence of its last model, and @ = (7T, F) is least
such that F~ is on the M, sequence. We shall have V (7, F) = W(T,F) unless
a+1<1h(T), EJ is not of plus type,'* and

AMED) < A(F) <h(F) < n(E]).
(Note 1h(F) < h(E]) by the definition of e.) In this case, V(T,F) does not

replace EOT with F the way W(T,F) did; instead, Vo +2 =T [a+2, and
E&’H = F. The rest of V' is ip*“T><F) as before, so

v Y

Ma+2+é - Moc+1+5
for all & € [B(T,F),Ih(T)). There is one nontrivial delay interval in V, namely
[a, ¢+ 1], and W is the normal companion of V.

More generally, if 7 is merely quasi-normal, then V (7, F) keeps all Eg— such
that & > «, Eg is not of plus type, and X(Eg) < A(F). This is a (perhaps empty)
initial segment of the delay interval in 7 that starts at &. Then V(7 ,F) inserts F,
and proceeds with copying 7~ crit(F)

DEFINITION 6.7.1. Let 7 be a plus tree on M, and suppose F~ is on the se-
quence of its last model; then ot (7, F) is the least & such that
(@ a(T,F)<&,and
(b) Ih(F) < i(Eg), or Eg— is of plus type, or & + 1 =1h(T).

LEMMA 6.7.2. Let T be a quasi-normal plus tree on M and F be on the ex-
tended sequence of its last model; then o(T,F) begins a delay interval in T,

19Equivalently, A(E] ) = L(E]).
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and {& | a(T,F) <& < on(T,F)} is a (perhaps empty) initial segment of that
interval.

PROOF. Let E¢ :Eg and Mg = /\/l&T Let a = o(T,F) and o = (T, F).

Since F~ is on the Mgy-sequence and the My,(7)_; sequence, M|lh(F) =
Miyy7)—1|1h(F), so for all 6 > a, In(E]) > Ih(F) by coherence. Butif § < a
and V6 > §(Ih(F) < 1h(E])), then Ms|Ih(F) = Mg|Ih(F), so F is on the M -
sequence, contradiction. Thus

a = least § such that Y6 > §(In(F) < Ih(Eg )).

Soif § < «, 1h(Es) < 1h(Ey), and since the lengths of exit extenders decrease
within a delay interval, & and § are in different delay intervals. Thus o begins a

(perhaps trivial) delay interval in 7.
If & < & < o, then A (E¢) < Ih(F), so Ih(E¢) < Ih(Eq). Also E¢ is not of plus
type. These two facts imply that & is in the delay interval of 7 that begins with o.
4|

The maximal delay interval in 7 that starts at a(7,F) may or may not have
oo(T,F) in it, and may or may not continue beyond o (7, F). While the lengths
of the exit extenders in this interval are strictly descreasing, and all > 1h(F), their

A’s may strictly increase, and one of those may exceed 1h(F).
In V(T,F), we replace Eg;o with F. More precisely, let 7 be a plus tree and F

be an extender such that F~ is on the sequence of last model of 7".2% Let
We define the quasi-normalization V =V (T ,F) by
Viaw+1=To+1,

and

ME()‘FZ = Ult(RF)7
where for B = B(T,F), P is the longest Q < ME such that o(Q) < lh(Eg_) and
Pi(o)(Q) > crit(F), and defining M&
in the W-case. Heuristically,

V(T,F) =T I ((X() + 1)/\<F>AiF“T>Crit<F).

More generally, suppose S and 7 are maximal plus trees on M, and F is an
extender such that F'~ is on the sequence of the last model of S. Let o =
(S, F), B=B(S,F). Suppose T [ B+1=8[B+1,andif B <1h(T), then
dom(F) = M |n for some n < 1h(E] ). We define

V(T,S,F) =38 | (ctg+ 1) (F) ipT>eiF)
Again, this is the same formula that defined W (7, S, F), with o (S, F) replacing

g for & > B by copying, just as we did

200We are allowing the possibility that F = F~.
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oS, F). There is a natural tree embedding ® of 7 into V(T ,S,F). If T is normal
and ®*: T — W(T,S,F) is the natural tree embedding, then ® is essentially the
same as ©*, modulo the fact that u(§) = n+u*(§) when & > 8 and 0 (S,F) =
o(S,F)+n.

Note that V(7 ,S, F) is maximal. The delay intervals in V(7 ,S, F) are described
by

LEMMA 6.7.3. Let ®: T — V(T,S,F) be the natural tree embedding; say
® = (u,v,5,f). Equivalent are

(1) Iis a maximal delay interval in V(T ,S,F),

(2) Either
(a) I is a maximal delay interval in S| (T ,F), or
(b) I=[0(S,F),a(S,F)], or
(c) I =[u(&),u(y)], where [E,7] is a maximal delay interval in T and

B(S,F)<¢&.

We omit the simple proof.

DEFINITION 6.7.4. Let S be a plus tree; then

(1) S is length-increasing above a iff whenever o0 < 8 < y < 1h(S) — 1, then
Ih(EF) < Ih(Ey).

(2) S is A-separated above o iff whenever a < < Ih(S) — 1, then EBS is of
plus type.

Being A-separated above a implies being length-increasing above o.

LEMMA 6.7.5. Let ®: T — V(T,S,F) be the natural tree embedding; say
® = (u,v,5,7). Suppose that S is length-increasing above o.(S,F) and T is length-
increasing above (S, F); then

(1) V(T,S,F) is length-increasing above oy(S,F),

(2) oo(S,F)<oa(S,F)+1,

(3) if ES is of plus type, then ay(S,F) = a(S,F), and

(3) the nontrivial delay intervals of V(T ,S,F) are those of S | a(S, F), together
perhaps with [o(S,F), (S, F)]; moreover

(5) if T is A-separated above 3(S,F), then V(T,S,F) is A-separated above
(S, F).

Again, we omit the easy proof. The lemma implies that if 7 and S are normal,
then W(7T,S,F) is the normal companion of V(7 ,S,F), with [o((S, F), (S, F) +
1] being the only possiblity for a nontrivial delay interval.

Now suppose that (7, U) is a maximal M-stack. We define V(7 ,U/) by induction
on lh(Z/), just as in the W-case. Setting Ve =V (T,U [ £ + 1), we have

VYJrl = V(VVaV}’vFY)v
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where v = U-pred(y+ 1) and

FY = GY(EZ};l)v

for oy: M%,’ — M;}(’;/) the natural map. We have a tree embedding ®y y11: Vy —

Vy+1. For A a limit,
V, = lim Vg,
A 6<Uﬂ, é
under the ®; , for & <y ¥ <y A. One can think of the Ve as the nodes in a
meta-iteration tree.

DEFINITION 6.7.6. Let (7,U) be a maximal M-stack; then V(7 ,U) is the
quasi-normalization of (T ,U). For longer stacks s, the quasi-normalization V (s)
is defined “bottom up”: V(s (U)) =V (V(s), ), for & the r-map on last models,
with direct limits under the associated tree embeddings for s of limit length.

We have no use for V(7 ,U) when U is not normal, and the basic agreement facts
about the meta-tree structure producing it are a bit easier to state if ¢/ is normal. In
that case, the nontrivial delay intervals in V(7 ,U) are all either blowups of delay
intervals in T, or of the form [a, &+ 1], where E}, | = Fy = 0y(EY!) is one of the
inserted extenders. The following is the counterpart of Proposition 6.5.8.

PROPOSITION 6.7.7. Let (T ,U) be a maximal stack, and suppose that U is
normal. Let Vy =V (T ,U[Yy+1), Ry = MZ’;) be its last model, Gy: M)L,’ — Ry
the natural map, and Fy = Gy(Egj{). If y<n <1h(U), then

(a) letting o0 = ap(Vy, Fy), Fy = EQ" and lh(Fy) < lh(E;)’7 ) forall & > a,
(b) ifn+1 <1h(U), then Ih(Fy) <1h(Fy),
(c) Ry agrees with Ry below 1h(Fy),
(d) oy | (lh(E}%’) +1)=o0y1 (lh(Ez}j’) +1), and
(e) Fyis on the sequence of Ry, but not that of Ryy. In fact, 1h(Fy) is a cardinal of
Rn.
We are mainly interested in normal M-stacks.
LEMMA 6.7.8. Let (T ,U) be a normal M-stack; then
(1) W(T,U) is the normal companion of V(T ,U),
(2) if T is A-separated, then W (T ,U) =V (T ,U), and
(3) ifboth T and U are A-separated, then V(T ,U) is A-separated.

PROOF. The meta-tree leading to V(7 ,U) has nodes Ve =V (T, U [ & +1),
where V1 =V (W, Vy, Fy) for v =U-pred(y+1), and Fy = GY(E}L,’). Here oy is
the natural map from M3/ to M;;(’;,) Similarly, let We = W(T,U [ & + 1) be the
&-th tree in the meta-tree leading to W(7,U), and 7 : Mzg — M:X;) the natural

—®
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map. Let also
and
0
oy, = oo(Vy, Fy).

As in the case of embedding normalization, the 1h(Fy) are strictly increasing with
7, and

y<n=a<a <oy,

basically because I/ is normal. F, = E:;é’+1 ,and Vyyy [063 +2="Vy [063 +2 for all
nzv.
CLAIM 6.7.9. (i) Vy is length-increasing above sup{ag | & <7}
(ii) If T is A-separated, then Vy is A-separated above sup{ag | € <7}

PROOF. By induction on y. Suppose it is true at all n < 7, and let v =
U-pred(y+ 1), so that V)1 = V(Vy,Vy, Fy). Letting B = B(V),Fy), we have

ch < B forall & < f. (Because Fg = E:g and i(Fé) < crit(Fy) for & < v.) Thus
¢

V) is length-increasing above 8, and A-separated above f if T is A-separated.

Similarly, Vy is length-increasing above a, and A-separated above a if 7T is
A-separated.

We now get (i) at Y+ 1 from Lemma 6.7.5(1). That is, V. is length-increasing
above ag,) . If T is A-separated, then Vy, is A-separated above Oc)(} by Lemma
6.7.5(5), as required for (ii).

We leave the limit case of the induction to the reader. .

Let us now prove item (2) of Lemma 6.7.8. Suppose 7 is A-separated. Since
ch < ay for all & < v, we have that V) is A-separated above ;. By Lemma
6.7.5(3), &) = ay. Since this holds at all y, V(7 ,U) = W(T,U).

For part (3) of Lemma 6.7.8, suppose both 7 and I are A-separated. We show by
induction that each Vy is A-separated. Consider the successor step: since oty = 0%9 ,
>crit(Fy)

v .

Vy.i,.] = V’y F(X'y‘i_ 1A<Fy>AiFy“V

By induction, all extenders used here have plus type, except perhaps Fy. But
Fy= GY(EZ;’ ), and EJZ;{ has plus type, so Fy has plus type too.
To prove (1), let We = W(T,U | § + 1) be the &-th tree in the meta-tree leading

to W(T,U), and Tg: M%’ — ./\/l;vg) the natural map. One can prove by induction

that Wg is the normal companion of Vg, that Tg = O, and that the tree embeddings
of the W-system are restrictions of the corresponding tree embeddings in the V-
system. We omit the completely routine details. a
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The most important case for strategy comparison is covered in part (3) of the
lemma.

Coarse quasi-normalization

Let M be a transitive model of ZFC, T a nice tree on M, and U a nice tree on
the last model of 7. In the coarse case, we generally deal with nice trees that
have unique cofinal wellfounded branches, in which case we could just replace
all trees by their normal companions. But this is inconvenient. In one important
context, we have (7 ,U) =1ift(T U)o, and must show that lift(V (‘7 ,{))o is a quasi-
normalization of (7 ,U). Replacing the nice trees on the background universe with
their normal companions will cause a notational mess.

At the same time, we don’t want to define a unique quasi-nomalization of (7,U)
in the coarse case, because the lift of V ((7,2/)) is not a function of Lift((7,U))o.
The freedom here amounts to the freedom to choose any « in the delay interval
beginning with ¢t (Vy, Fy) to serve as .

So in this coarse case, by a quasi-normalization of (7 ,U/) we mean any system
(“meta-tree”)

(Wyly <)), (Fy 0 | v+ 1 <Th(U)),( Py [ 1 <v &)

such that Vy = 7T, each Vy is a nice, quasi-normal tree on M with last model MY,
Fy = Egj’, and when 11 = U-pred(y+ 1),
— e en y>crit(F
Vyst = Vy Lo+ 1) (Fy) i, vy ),
where @y is in the delay interval of V) that begins with a(Vy,Fy). As in the
fine case, ot(V, Fy) indexes the first model in Vy to which Fy belongs. The maps
Dy 51 Vn — Vs are the coarse tree embeddings associated to the system.

These conventions make use of the fact that in the coarse case, embedding
normalization and full normalization coincide, so MJL,‘ is the last model of Vy and
EYf = Fy. Also, in the coarse case we shall never need to let oy, — 1 end the delay
interval starting at a(Vy, Fy).

Once again, in the coarse case, these quasi-normalization meta-trees are just a
way of keeping the books efficiently in certain lifting constructions.

6.8. Copying commutes with normalization

We prove that both kinds of normalization commute with copying. The proof
is completely straightforward, but takes a while to put on paper, because of the
many embeddings involved. We shall use this fact to show that normalizing well,
in either sense, passes from a strategy to its pullbacks. The proof also serves as
an introduction to our proof that quasi-normalization commutes with lifting to a
background universe. That in turn is used in the proof that if a strategy for the
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background universe quasi-normalizes well, then so do the strategies on premice
that it induces. (See 7.4.1.)

THEOREM 6.8.1. Let (T,U) be an M-stack, and let y: M — N be nearly ele-
mentary. Let {T*,U*) = w(T ,U) be the stack on N obtained by copying.
(A) Suppose that (T ,U) is maximal, U is normal, and V (T*,U*) exists; then
(1) V(T ,U) exists, and WV (T ,U) =V (T*,U"), and
(2) let U and U* have last models Q and Q* respectively, and V(T ,U) and
V(T*,U*) have last model R and R* respectively, and let
(i) p: Q — QF be the map from copying (T ,U) to {T*,U*),
(ii) o: Q — R be the normalization map associated to V(T ,U),
(iii) 6: R — R* be the map from copying V(T ,U) to V(T*,U*), and
(iv) o*: Q" — R* be the normalization map associated to V (T*,U*);
then oo =c*op.
(B) Suppose that (T ,U) is normal, and W (T *,U*) exists; then the conclusions
of part (A) hold, with “W” replacing “V” everywhere.

R*
o
NZ—__,P* 0 g
= ”
v PLR
=]
o
M P 0
T u

PROOF. We prove (A). The proof of (B) is nearly the same.
The quasi-normalization V (7 ,U/) has associated to it quasi-normal trees

on M, for y < 1h(U). (We called the nodes of the quasi-normalization meta-tree
V), before, but W is easier to read in various places, so let’s switch.) We also have
extended tree embeddings

Dy Wy — Wy,
defined for n <y 7. For n <y 7, we set
Py =u®17,
so that ¢y 2 Th(Wy) — 1h(Wy), and for T € dom ¢y, 4,

@
Y = (P

)
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so that 7 : MY — M;::’yy(f). Let Ry be the last model of Wy, o, : MY — Ry
as before, and F, = O'y(E%,J). So
WY—H = V(WnaFy)

when ) = U-pred(y+1).

Similarly, V (7*,U*) has associated trees

Wy =V(T U [y+1)
on N for y < 1h(U*) = Ihi4, together tree embeddings
Q5 Wy =Wy,

defined when 1 <y y. We call the u maps of these tree embeddings ¢y , :
Ih(Wy) — Th(Wy), and for 7 € flom(b;,y, the 7 map is 7’%{’?. We let R} be
the last model of W;j, G;,‘ : M%,’ — R’{,, and F;‘ = G;f (Ef,’ ). We have that

v1 =V (Wy,Fy) when 1) = U*-pred(y+ 1) (equivalently, = U-pred(y+1)).

We shall prove that for all v,
The proof is by induction on ¥, with a subinduction on initial segments of WV,.
Given that we know this holds for W, [, we have copy maps

Y. AWy Wy
II/T . T — MT

defined for all 7 < 7. y/g =y forall y.
For y < 1h(U), let

\//Zf: .MZ;,{ — M)L,’*
be the copy map. So y§! is the copy map given by the fact that 7* = w7, and the
remaining ! come from the fact that U* = (y§')U.
We write z(v) for In(W),) — 1 and z*(v) for lh(WW;) — 1. (Once we have shown
that yW, =Wy, we get z(v) = z*(v), of course.) We may use oo for z(v) or z*(v)
when context permits. So Ry, = /\/l;/(vvv) = MWV, If (v, 7]y does not drop, then

LEMMA 6.8.2. Let y < 1h(U). Then
(2) ony=0ny. N, v<vandn <y v.
(3) Whenever v <y yand (v,Y|u does not drop in model or degree, then for all
7 <Th(W), % () ml =gl oy
(4) l//zy(y) 00y =0y0 v
Letting Qy be the system of all copy maps from Wy to Wy, item (3) is keeping
track of the sense in which Qyo®, , = CID*“WO Q. Here is a diagram of (3):
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Y
Wy w¢v.y(1> MW;
¢*

M, o) (@)
m”T WT

v Wi
MY ———— MY

There is a diagram related to (4) and the case T = z(Vv) of (3) near the end of the
proof.

PROOF. We prove 6.8.2 by induction. Suppose that it is true at all v < 7. We
show it at y+ 1. Let v = U-pred(y+ 1), and

F =Fy=oy(EY),
and
o= a()(Wv,W%F)
That is, ¢ is the least £ such that F~ is on the Mgvy-sequence, and either 1h(F) <
jt(Egvy) or E%/VY is of plus type, or & +1 =1h(Wy). So
W’Y—I—l :V(W\MWY’F)
= Wy [0+ 1) (F) i Wy =),
Let also
* * *(pU*
F*=F; =, (EY).
Since U* is a copy of U, v = U*-pred(y+ 1), so
;Jrl :V(W;k?W;vF*)
CLAIM 6.83. (1) quy(y)(F) =F*,
(2) a=oa(Wy, Wy, F*), and
(3) B(vaw}'aF) = ﬁ(W;‘;,W;,F*)
PROOEF. For (1), we have
vl (F) =y, o oy(EY)
=0y0 W(EJL,’)
= o (EY)
=F*.
For (2), we show first that § = 3, where = a(Wy,F) and B* = a(W},F*).
Forall 7> f 1h(E;/V7) > 1h(F), so for all T > B, y{ agrees with ‘I’Zy(y) onlh(F)+1

by our lemma on the agreement of copy maps. So for 7 > f3,

In(F*) =y, (h(F)) = y(Ih(F))
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W
< yi(Ih(E;))

— Ih(ELT).

This implies F* is on the M;Vy-sequence, so B < B*. On the other hand, if £ < 3,

and F* is on the M?;—sequence, then for all T > &, F* is on the Ml/v;—sequence.
But let £ < 7 < @ be such that T ends a delay interval. (Such a 7 exists because
o begins a delay interval.) Then lh(El/vy) < Ih(F) but lh(E:V’*') > Ih(F*). This
contradicts the fact that y? agrees with l,llgzy) on lh(E;/V N +1.

But then & = 8 + n, for some n, and is the least & > B such that either 1h(F) <
i(Egvy) or Eé/vy is of plus type or § + 1 = 1h(W,). Wy and Wy have the same
length, and agree on whether extenders have plus type. Moreover, l,tlfy agrees with
WZ)ZY) on i(E;/V}') +1, for all 7. Thus B = a(Wy,F*), as desired.

Remark 6.8.4. In the proof of (B), we set o = a(Wy, F), and it is just the first
part of the proof of (2) that applies. Otherwise, the two arguments are the same.

%

For (3), we must show that crit(F) < i(E;/VY) if and only if crit(F*) < ﬁ,(EZVY)

But this follows from the fact that wzy(y) agrees with y¥ on A (E;/v N+1 —

The claim easily implies that ¢y y.1 = d)",“y 1> Which then gives us (2) of 6.8.2
at y+1. '

w Wy .
We now define the copy maps y! ™' My 7' — M, """ that witness Wi, =

YWy 1. As we do so, we show that (3) of 6.8.2 holds, that is, the y" and Yl
maps commute with the quasi-normalization maps of models of W), into models
of Wy.1 and models of Wy into models of Wy ,.

We have Wy [(a+1) =Wy [(a+1) and Wy [(a+1) =Wy [(a+1),s0
we can set

y+1

v = V’Z» forall T < .

W*
Now F = E;V”l and F* = E, "', moreover wg(F) = V’z}zy) (F) = F* because

Ih(F) < lh(E;/v") for all 7 € [0, z(Y)). Letting P = MEVVKT],/() be such that

Wyt _
a+l

M Ult(P,F),

we have

W*
M 17" =Ul(P*, F*),
where P* = MEV3|<IVI‘3’(n),k>. (Here we make the usual convention if 1 =

O(MEVV).) This is because Wy [(B+ 1) = Wy [(B + 1), and similarly at the
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(*) level, by the properties of quasi-normalization. So ‘/’E = ljlg , and thus agrees

with 1//2/(7> up to A (E;Vy), hence past crit(F). So we can let

vl ([, £15) = Wd ™ (@), vl (I

by the Shift Lemma, and we have YWy [(a+2) =Wy, [(a+2). Note that
T

! ¥+l Ras|
ot 1=y (B).so g pomg”" =y

this gives us the new instance of (3) of 6.8.2.
The general successor case above o+ 1 is similar. Suppose we have YW, [(n+

1)= W;H [(n+1) as witnessed by IIIZH for T < n. Suppose 1 > o. Let

o l//E by the Shift Lemma, and

n=¢vy1(8) = ¢:,y+l(é)7

Wyii
G=E, 4

and

*
W)“rl

G'=E
Then

it (@) =yl o (mTTHEM)

=" (WY ()
_ 7}%’77‘“ (E%/Vv)

W*
=E, "' =G".

The Shift lemma now gives us y/gfl as above, and we have yW,, [(n+2) =
pa1 (M +2).
We leave the limit case of the subinduction to the reader. This finishes the
subinduction proving (1), (2), and (3) of 6.8.2 at step Y+ 1. For (4), let us set

T = 7+ 1. To simplify things, let us assume that (v, y+ 1]y is not a drop. Consider
the diagram
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/A
R: R;
Ot
o7
MY i MY wue
nxﬂ'
744
EY Ry R},
Oy
oy
u u*
M5 = M5
vy

We are asked to show that ¢} o wg’ = Yz o 0y, in other words, that the square on
the top face of the cube commutes. The square on the bottom commutes by our
induction hypothesis. The square in front commutes because /* is a copy of U.
That the square in back commutes is clause (3) of our lemma at Y+ 1, which we
just proved. The squares on the left and right faces commute by the properties of
embedding normalization.

It is clear from these facts that the top square commutes on ran(ilv{f). Since

MY is generated by ran(#% ;) U (i(E)L,’ )4 1), it is enough to see that the top square

v,T
commutes on i(Eg;’) +1.

Leta e [A (EY)+1]<°. So oy(a) € [A(F)+1]<®, and 6;(a) = oy(a) by Propo-
sition 6.7.7 on the agreement properties of quasi-normalization maps.zOIThus
vz (oz(a)) = y(oy(a))
= yl(oy(a)),

using that the copy maps W and yZ both agree with ¢, on i(F )+ 1. On the
other hand, y¥(a) € [A(EY")]<?, so

o7 (v (a)) = oy (v (a))
= 0, (vy/ (),

. . . . ’)/ _
by .the agfeement in normalization maps on the W* side. But Y. 0 0y = 0y 0 W
by induction, so

vioor(a) = locy(a)
=0y0 V/f(a)
— o2y (a),

201 Here we use the hypothesis that { is normal. With more work, one could probably avoid it.
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as desired.
This finishes the step from 7y to Y+ 1 in the inductive proof of 6.8.2. We leave
the limit step to the reader. .
It is easy to see that Theorem 6.8.1 follows from Lemma 6.8.2. -

6.9. Normalizing longer stacks

There seem to be in the abstract many different ways to normalize a stack
(Ur,...,Uy), one for each way of associating the ;. If we are in the case that
embedding normalization coincides with full normalization, and there is a fixed
strategy X for M according to which all these normalizations are played, such that
for any N there is at most one normal X-iteration from M, then clearly all these
normalizations are the same. They are just the unique normal tree by X from M
to the last model of /. We shall be in that situation below when we deal with
coarse iterations of a background universe. But in general, it seems that the various
normalizations of I might all be different from one another.

We shall define ¥ normalizes well by demanding that whenever U is a finite
stack by X, then all normalizations of U are by X. In addition, we demand that ¥
pull back to itself under normalization maps.

DEFINITION 6.9.1. Leti = (Uy,...,U,) be a finite stack of normal trees on M,
where n > 1. Let My = M, and M; be the last model of Uf; for 1 <i <n. A I-step
normalization of U is a triple (k,V,7) such that V is a stack of length n — 1 on
M = My, and

(1) 1<k<n,

2) Vp=Uy, forallm < k, and V;, = W(uk,uk+1),

(3) Letting Ng = M and N; be the last model of V; for i < n, we have that
(a) m: M; — Ni; is the identity for i < k,
(b) m: My — Ny is the o-map given by embedding normalization, and
(c) fork<i<n,V;=m_1U1,and m;: M;;1 — N; is the copy map.

Clearly, U and k determine the rest of the normalization.

DEFINITION 6.9.2. Let I = (Uy,...,Uy) be a finite, maximal M-stack, with
n>1. Let 1 <t < n; then a t-step normalization of Uis a sequence s with
domain 7 + 1 such that s(0) = (0,4,0), and whenever 0 < i <1, s(i+1) is a 1-step
normalization of V, where V is the second coordinate of s(i).

A complete normalization of (U,,...,U,) is an n — 1 step normalization of
Uy, ...,Uy,). We shall sometimes identify a ¢-step normalization s of U with the
stack of trees in the second coordinate of s(¢). If t = n — 1, then this is a single
normal tree on M.
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Remark 6.9.3. Benjamin Siskind has shown in [58, Theorem 3.2.16] that the
normalization operation is associative, in that if ¢/ is a finite stack of normal trees
on a premouse M, then all complete normalizations of s produce the same normal

tree on M. This is not at all obvious, even in the case that Ih(1{) = 3, where there
are only two possible ways to normalize U/.

Form > 1, and i > 0, let us write V,A;,(i) for the m-th'tree in the second coordinatp
of s(i) (or in its third coordinate, if i > 0), and N,S,,(’) for the last model of V,Sn(l).
Let Né(l) = M, for all i. For any e < i < n, and any m such that N2 exists, there

is a unique / such that N comes from le<e>, in the sense that s(e) [(I+1) is
normalized to s(i) [(m+ 1) by s[(e,i]. Let us write

= os”"e(m)

in this case. Composing normalization maps and copy maps given by s [ (e, i] yields
a canonical

e N s N

where [ = 0%¢(m). So if s is a normalization of (U, ...,U,) with dom(s) =i+ 1,
then the stack V() has last model N.\”, where m = n — i, and n — 0%'%(m), and
5,i,0

Ty 1s the natural map from the last model of U to the last model of V. Let us
write
= n.s.,i.,O

n,m

in this case. So 7* is the natural map from the last model of 5(0) to the last model
of the stack in s(dom(s) — 1) that is given by s. All ;¢
obtained from s in a simple way.

Probably the most natural order in which to normalize a stack is bottom-up.

' have the form 7“, for u

DEFINITION 6.9.4. LetU = (U, ...,Uy,) be a finite, maximal stack of normal
trees on M; then the bottom-up normalization of U is the complete normalization s
of U such that for each i > 1 in dom(s), s(i) has first coordinate 1. We write W ({)
for the normal tree on M in the second coordinate of s(dom(s) — 1), and also call
W (i) the bottom-up normalization of 4.

The definitions above extend to stacks I/ on M of infinite length. Again, it seems
to makes sense to normalize in any order, but the most natural way is bottom-up.
Suppose for example that i = (U, | n < ®). Let Wy = Uy, and for n > 1 let

Wy =W({U;|i<n)).
Forn > 0, let

chZ Wn — Wn+1
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be the tree embedding given by the fact that W11 = W(W,, aldy41) for the
appropriate . (P, is partial iff U/, drops along its main branch.) Then we set

W (U) = limW,,

where the limit is taken using the ®,. It is clear how to define this limit as an
algebraic structure, but not at all clear that it is an iteration tree. Its length may be
illfounded, and the models occurring in it may be illfounded. As in the case of
finite stacks, what we need is that I/ has been played according to a sufficiently
good iteration strategy. The optimal result in this direction is due to Schlutzenberg;
see [54]. We discuss this matter further in the next chapter.

One can continue further into the transfinite. W(Zj{ ) makes sense as an algebraic
structure for stacks { of normal trees of any length, and under appropriate iterability
hypotheses it is an iteration tree. In fact, one could go beyond linear stacks of
normal trees, and consider normalizing arbitrary trees on M. There is as of now no
good theory at this level of generality.

In this book we shall not need more than normalization for finite stacks of
normal trees.






Chapter 7

STRATEGIES THAT CONDENSE AND NORMALIZE
WELL

In this chapter we define what it is for an iteration strategy to normalize well and
to have strong hull condensation. We prove some elementary facts related to these
two properties, and we show that in the coarse case, they follow from strong unique
iterability. Moreover, unlike strong unique iterability, they pass from an iteration
strategy for a coarse premouse to the iteration strategies for fine premice that it
induces via a background construction. Countable mice with Woodin cardinals
do not have strongly unique iteration strategies; on the other hand, we shall see
in 7.6.1 that every iterable pure extender premouse has an iteration strategy that
normalizes well and has strong hull condensation.?%?

Assuming AD ™, one can obtain strongly uniquely iterable coarse premice having
Woodin cardinals via the I'-Woodin construction. We discuss this in §7.2. In §7.3,
we show that UBH together with the existence of a Woodin cardinal above a
supercompact cardinal implies the existence of strongly uniquely iterable coarse
premice with Woodin cardinals. These are our main existence theorems for coarse
premice with strongly unique iteration strategies.

In §7.4, we show that if C is a background construction done inside a coarse
premouse N* with an iteration strategy X* that normalizes well, then for any model
M of C, the induced strategy Q(C, M, X*) for M normalizes well. In §7.5 we show
that strong hull condensation is similarly preserved. In particular, if £* is a strongly
unique strategy for N*, then the background-induced strategies Q(C,M,X*) all
normalize well and have strong hull condensation. This (together with its counter-
part later for strategy mice) is our main existence theorem for fine structural mice
with strategies that normalize well and have strong hull condensation.

In §7.6 we collect the key regularity properties of iteration strategies for pfs

2021 et M |= “§ is Woodin™, and suppose M is coded by the real x. Let i: M — N be a genericity
iteration such that x € N([g| for g being Col(®,i(5))-generic over N. If the iteration tree producing i
picks unique wellfounded branches at limit steps, then i | 7™ € NJg]. But i is continuous at §*, so
then i(8) " is not a cardinal in N[g], a contradiction. This argument has many refinements; see [46]
and [77, §6.2], for example.

297
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premice in the notion of a pure extender pair. Pure extender pairs are one of the
types of mouse pair to which our comparison theorem applies.

7.1. The definitions

The definitions in this section apply to both fine-structural premice and coarse
premice.

DEFINITION 7.1.1. Let X be a complete iteration (A, 8)-strategy for a pfs pre-
mouse M, where A > 1. We say that X quasi-normalizes well iff whenever s is an
M-stack by X, and (7 ,U) is a maximal 2-stack by X such that ¢/ is normal, then

(a) V(T,U)is by X, and
(b) letting V = V(T,U) and t: MY — MY be the last c-map of the quasi-
normalization 293, we have that Loy = (Z-3)"

In clause (b), the map = may be only nearly elementary, but that is sufficient
to pull back an iteration strategy. In the coarse case, the last 6-map of a quasi-
normalization is the identity, so the counterpart to 7.1.1 is

DEFINITION 7.1.2. Let M be a transitive model of ZFC, and Zbe a (1,6, F)
iteration strategy for M, where A > 1. We say that ¥ quasi-normalizes well iff
whenever s is an M-stack by X, and (7,f) is a maximal 2-stack by X, such that ¢/
is normal, and V is a quasi-normalization of (7,U/), then

(a) Visby X, and
®) Lo~ 71y =L~

DEFINITION 7.1.3. Let X be a complete iteration (A, 8)-strategy for M, where
A > 1; then X normalizes well iff

(a) X quasi-normalizes well, and
(b) whenever s is an M-stack by X, and 7T is a plus tree by X, and U/ is the
normal companion of 7, then { is by Z.

Clearly, if ¥ normalizes or quasi-normalizes well, then so do all its tail strategies.
Recall that if (7,U) is maximal and ¢/ is normal, then W (7, is the normal
companion of V(7 ,U). Thus if £ normalizes well, then conclusions (a) and (b) of
7.1.1 hold with embedding normalization replacing quasi-normalization.?**

We shall see that coarse strategies that are strongly unique normalize well.
This is the important case for our main results. In the coarse case, beyond its
bookkeeping value, we have no reason to distinguish between normalizing well
and quasi-normalizing well. 2%

2031 the notation of 6.5.8, T = oy, where Ih(Uf) = y+ 1.

204For 7.1.1(b), note that V(7 ,U) and W (T ,U) have the same last model R, and both systems
generate the same map from MY to R.

205See the remarks at the end of §6.7.
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In the rest of this section, we shall focus on normalization in the fine-structural
case. The adaptations needed in the coarse structural case are simple, and usually
obvious. In the coarse case, the fundamental regularity property of iteration strate-
gies we assume is strong uniqueness. Normalizing well and the other regularity
properties we shall consider follow easily from this.

In 7.1.1(1), we restrict ourselves to maximal stacks (7,U) because we have
only defined V(7T ,U) in this case. We restricted ourselves to normal U/ because
we have only proved some of the basic properties of the V(7 ,U/) meta-tree in that
case. One can probably extend Definition 7.1.1 to arbitrary stacks (7 ,U/), and
prove Theorems 7.2.9 and 7.4.1 in this greater generality. Since we don’t need this
generality, and it complicates the notation, we have not done that.

We defined normalizing well using stacks (7,U) of length 2, but this implies
the corresponding behavior with respect to bottom-up normalizations of arbitrary
finite, normal stacks.

LEMMA 7.1.4. Suppose that ¥ quasi-normalizes well, let s be an M-stack by X,
and let t be a finite normal stack by X;; then
(a) V(t)is by X, and
(b) letting w: Muo(t) — ./\/loo( be the last o-map of the quasi-normalization,
we have that Ly~; = (er( >)”.

If X normalizes well, then the same holds true with “W” replacing “V ” everywhere.

PROOF. The easy proof is by induction on the length of 7. It is essentially the
same as the proof of Proposition 7.1.5 to follow, so we omit further detail. n

In the case of embedding normalization, we looked in Section 6.9 at normalizing

finite normal stacks in an arbitrary order, not just bottom-up.?°® We now show that
if £ normalizes well, then it behaves well with respect to all these normalizations.

PROPOSITION 7.1.5. Let X be an complete (A, 0)-iteration strategyfor M that
normalizes well, and let r be a stack of length < A by X. Suppose U is a finite
maximal stack by ¥,, and s is a t-step normalization of U, and V = V*O s the
stack in s(t), then

(1) VisbyX, and
(2) if ® = 7° is the natural map from the last model Q of U to the last model R
of V, then Lgio=C )"

PROOF. The proof is by induction on lh(s). We give it for X, but the same proof
works for the tails X, of X.

For Ih(s) = 2 this is true by hypothesis. Let 7 (U} ,U>)"S be a stack of length
n+1 by X. We want to see that the 1-step normalization obtained by replacing

206Doing this for quasi-normalization would involve defining V (7,U/) when U is not normal, and
we have decided to avoid that.
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Uy, Uy) by W (U, Us), and S by 78 for 7 the normalization map, behaves well.
It is clear that this implies 7-step normalizations behave well, for all ¢.

Let V be a complete normalization of 7", with 6 the normalization map from
N=MT toN* = MY. 0 lifts Uy to 6Uy; let p: MY — MOU be the copy map.
Note that (V, U, plh) is a stack by ¥, because Xy, y+ pulls back under 6 to L5
by our induction hypothesis. Let Q* be its last model. Let

W =W (60U, plh),

and let R* be the last model of WW*, and 6*: Q* — R* the normalization map. The
hypothesis of our proposition tells us that (V, WW*) is by X, and that

*

Zw oty pur). 00 = (Ew ) re)
Let Q be the last model of 7~ (U;,Us), let
W = W(U] ,Z/lz),

and let R be the last model of W. Let 6: Q — R be the normalization map. The
situation can be encapsulated in the following diagram.

[
% o v R
W 1\
o
M N P 0
’7’ Z/{l Z/{Z

Here P = MY, and P* = M8 and p: P — P* is the copy map. The maps

v: Q— Q"and ¢: R — R* are copy maps. We get ¢ from Theorem 6.8.1; in this

case, copying (U ,U,) via O commutes with normalizing (U ,U,). We have
¢poc=0c"oy

from 6.8.1.
Since 6WW = W*, and X pulls back to itself under 6 by induction, we have that
T(W)isby X, and Lz, = (Z(v v+ -)?. Tt follows that

Ermpmr)” = Eww )
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= (Zwwe)r)
= (Epwye)® )Y
= (Zw,0u pt),0°)"

=Ly T (UL )0

Line 1 holds because X~ normalizes well for 7", line 2 comes from 6.8.1, line 4
holds because Xy, y+ 2-normalizes well, and line 5 holds because ¥ normalizes
well for 7.

This takes care of the case S = 0. The general case follows easily. Since
(271“<W>7R)" = X 1) .0 A0d S is by L~y uy),0» We have that 68 is by
25~y z» and moreover the 77 (W)~6S-tail of ¥ pulls back under the relevant
copy map to the 7~ (U; ,Us ) ~S-tail of X. -

A very similar argument shows that the property of normalizing well passes to
pullback strategies.

THEOREM 7.1.6. Let ¥ be an iteration strategy for N, and let 7: M — N be
nearly elementary; then
(a) if X quasi-normalizes well, then ¥* quasi-normalizes well, and
(b) if X normalizes well, then X" normalizes well.

PROOF. We start with (a). Let (V,U,,U,) be a stack by £, with last model Q.
Let W =V (U;,U,) have last model R, and 6: Q — R be the quasi-normalization
map. We want to see that (V, V) is by X%, and that the (V,W)-tail of X7 pulls
back under o to the (V,U,Us)-tail of £7.

We have the diagram

\%
N d 0
v
T 0 R
W 1\
(e}
M K P (0]
V Z/{] Z/fz

Here 6: K — K* and p: P — P* are copy maps generated by 7, and W* is the
normalization of (60U, pltp). c* is the associated normalization map. W and ¢
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are copy maps, which we have because copying commutes with normalization.
¢gooc=0c*oyby6.8.1.
The copy map ¢ tells us that (V, W) is by X7. The rest is given by
EDw ) = v, &)

= Eavwnr) Y
= (Eav e r)? )Y
= (
)y

M

n'V Gul pU2> o* )W

T
T (U h),0

This is what we want.

For (b), suppose that 7 is a plus tree on M by ¥, and let yy: MT — MZET
be the copy map. Since v, agrees with Wy on lh(E]), Ih(E]) > lh(EZH) iff
Ih(EZT) > 1h(EZT,). Thus 7 and 77 have the same maximal delay intervals, and
(7)™ = 7™, But (£7)™™ is by X, so 7™ is by £”. The same proof works
for the tails of X, so we have (b). —

We conclude this elementary discussion by showing that a strategy that normal-
izes well is determined by its action on normal trees.

Suppose that ¥ normalizes well, and 7 is a normal tree on M with last model Q
that is according to X. Let ¢/ on Q be normal and by X1 o and of limit length, and let

b= ZTQ(Z/{) = Z(<T7u>)7
and

a=X(W(T,U)).
Then

a=bry%(c,b)

where ¢ is some branch [0, 7)7 or [0, 7] of T that is chosen by X. Moreover,
b=br) % (a).
In other words, X((7,U)) and X(W (T ,U)) determine each other, modulo 7.

PROPOSITION 7.1.7. Let X and ¥ be complete strategies for M with scope Hg
that normalize well, and suppose that ¥ agrees with ¥ on normal trees; then X
agrees with ¥ on finite, maximal M-stacks.

PROOF. We just gave the proof for stacks of length 2. Let s be finite, maximal
stack by both strategies such that X; = ¥, and 7 be a normal tree on M. (s) with
last model Q. We want to see that X~ 7y o = Wi~ (1) g, so let U be a normal
tree of limit length by both strategies. Let b = X~ 1) o(U) = Z,((T,U)) and
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Wy, = W(T,U"Db). Since X; normalizes well, W, is by X;. But then W, is by ¥,
and since W, determines b modulo (7,U), b = ¥;({T,U)), as desired. =

Strong hull condensation

We turn to strong hull condensation. The following convention will smooth our
terminology. Let us regard the empty tree on M as a pseudo-hull of every plus tree
on M, under the empty tree embedding.

DEFINITION 7.1.8. Let U be a plus tree on M of length 8 + 1; then the empty
tree on M is a pseudo-hull of I/, and 1404 B is the #-map of an extended tree embedding
of the empty tree into U/.

The point of this terminology is to streamline the following definition.

DEFINITION 7.1.9. Let X be a complete (A, 0) iteration strategy for a pfs pre-
mouse M; then X has strong hull condensation iff whenever s is a stack of plus
trees by X and N < M. (s), and U is a plus tree on N by X, y, then for any plus
tree 7 on N,

(a) if T is a pseudo-hull of U, then T is by X , and
(b) if ®: T — U is an extended tree embedding, with last -map 7, and Q <

dOIn(TC), then ZSA<7—>’Q = (an (L{),n(Q))n'

Because less is required of a tree embedding than is required of a hull embedding
in [37], the property is stronger than the property called Hull Condensation in [37].
Hence its name.

Clause (b) was not part of our original definition of strong hull condensation.
Benjamin Siskind then showed that (b) follows abstractly from (a) and normalizing
well (see [59]), via a strategy-comparison argument. We have made clause (b)
part of the definition here because it is useful, and one can obtain it directly for
background-induced strategies.

Because we have included clause (b) in the definition of strong hull condensation,
it implies pullback consistency. Recall that a pullback consistent strategy is one
that pulls back to itself under its own iteration maps. (See 5.3.1.) It is important
here that in clause (b) of 7.1.9 we have allowed Q to be a proper initial segment of
dom(7). This leads to pullback consistency for partial iteration maps, and thus the
very mild form of positionality described in 5.2.2.

LEMMA 7.1.10. Let £ be a complete strategy for M that has strong hull con-
densation; then
(a) X is pullback consistent, and
(b) X is mildly positional.
PROOF. For pullback consistency: suppose that { is a plus tree on M.(s) by X
oflength B+ 1,and that a <y B. Let T =U [+ 1and T = izé’ﬁ; then 7 is the last
t-map of an extended tree embedding from 7 into /. (If a > 0, its associated tree
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embedding is just the identity on 7 [ & + 1, and if & = 0, we appeal to Definition
7.1.8.) Suppose that Q < M7 and Q C dom(x). By part (b) of definition 7.1.9,
L~ 7.0 = (E~ ), n(0))” which is what we need. It is routine the extend this
argument to finite stacks by X, by pulling back under the branch embeddings of
the constituent normal trees, one at a time.

Part (b) follows from pullback consistency. We must see that if s is a stack by
L and P <IN < M.o(s), then (X, n)p = Z; p. Let us assume s = @ for simplicity.
Yy =X, where r = (T,N) is the empty tree 7 on M followed by a gratuitous drop
toN. (Ey)p =Xy, where u = (T,N,U,P), for U the empty tree on N. Letting 7
be the identity map on N, 7 is the main branch embedding of ¢/, and n(P) = P. So
we can pull back by 7, and we get Ep = X7 p =XT =¥, = (Xy)p, as desired.

Strong hull condensation is preserved by pullbacks:

PROPOSITION 7.1.11. Let w: M — N be nearly elementary, and let X be a strat-
egy for N having strong hull condensation; then £™ has strong hull condensation.

PROOF. (Sketch.) There is a relevant diagram below. Let s be a stack on M
with last model K, and let K* be the last model of s, with 6: K — K* the copy
map. Let U be on K and by (X7);, and let 7 be a pseudo-hull of /. It is not hard
to see that 87 is a pseudo-hull of 8U. Since OU is by Xz x+, 07 is by Xy g+, SO
T is by (X7);, as desired for part (a).

For part (b), let ®: 7 — U be an extended tree embedding with last -map
o: Q — R. By the (suppressed) construction of the first part, we have an extended
tree embedding W: 67 — 0U. Let 6*: Q* — R* be the last t-map of ¥. Let
v: Q — Q* come from the copying of 7 to 67, and ¢: R — R* come from
copying U to OU. We have the diagram

R*
c

N s K* *

0T Q ¢
v
™ 0 R
- W
o
M K 0
s T

This is quite similar to the diagram in 7.1.6, because the situations are quite similar.
Again, we calculate
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)¢06

(Z(s ) Z (ms,0U),R

G*
Eins.ouyre) Y

= (

=(

= ((Ziasouyrr)” )Y
= (Z(zs.07) ,Q*)W
=

im0

s

_|

We built pullback consistency into strong hull condensation. Internal lift consis-
tency is a form of strong hull condensation for iteration strategies that are defined
on non-maximal trees, but since we are avoiding non-maximal trees, internal lift
consistency will remain an independent regularity property.

All the regularity properties of iteration strategies we have encountered so
far are implied by strong hull condensation, internal lift consistency, and quasi-
normalizing well. We showed in §5.4 that if ¥* is a strongly unique iteration
strategy for V, then the iteration strategies it induces via PFS constructions are
internally lift consistent. In this chapter, we shall show that they quasi-normalize
well and have strong hull condensation.

We believe that a complete strategy with strong hull condensation need not nor-
malize well, although we have no example at the moment. However, any complete
strategy for normal trees that has strong hull condensation can be extended in a
unique way to a complete strategy for finite stacks of normal trees that has strong
hull condensation and normalizes well. This is a result of Schlutzenberg and the
author. Schlutzenberg also proved a stronger version of the theorem in which the
extended strategy can act on infinite stacks. See [54] and [59], and Theorem 7.3.11
in the next section.

Remark 7.1.12. The papers [71] and [59] introduce a still weaker sort of embed-
ding of iteration trees, and make use of the resulting “very strong hull condensa-
tion”. It turns out that strategies for premice that have strong hull condensation also
have very strong hull condensation, and this implies that they fully normalize well.
However, the proof of this requires a strategy-comparison argument. Strong hull
condensation has the virtue that we can verify it directly for background-induced
strategies, SO we can use it in proving a comparison theorem.

The following elementary lemma on extending tree embeddings at limit steps
will be useful.

LEMMA 7.1.13. Let X be a strategy for the premouse M having strong hull
condensation, and let T and U be trees of limit length by X. Let ®: T — U be a
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tree embedding such that
Ja < h(U)VB(a < B < Ih(U) = B € ran(u®)).

Let b=X(T) and ¢ = X(U); then there is a unique tree embedding ¥: T b —
U c such that  C V.

PROOF. Let u = u®, and d = u~'“c. By our hypothesis that ran(u) contains
a final segment of the ordinals below 1h(l/), we see that d is cofinal in 1h(7).
Moreover, ® extends to a tree embedding of 7 d into " c¢. By strong hull
condensation, d = £(7") = b, so we are done. -

If one weakens the hypothesis of Lemma 7.1.13 by requiring only that ran(u®)
be cofinal in 1h({), then the conclusion may not hold.?%’

7.2. Coarse ['-Woodins and I'-universality

Of course, one cannot prove that there are any nontrivial iteration strategies
without making assumptions that go beyond ZF. Determinacy assumptions are
particularly useful in this regard. Under AD ™, every Suslin-co-Suslin set is Wadge
reducible to an iteration strategy; in fact, there are countable iterable structures at
every Suslin-co-Suslin degree of correctness. More precisely

DEFINITION 7.2.1. Let A C R. We say that (M, 0, 7,X) captures A iff
(a) M |=ZFC+“d is Woodin”,
(b) & is countable, and ¥ is a complete strategy with scope HC for Vg’_fH, and
(c) T €M is aCol(w,d)-term for a set of reals, and
(d) whenever i: M — N is by X and g is Col(w,i(0))-generic over N, then
i(t)g = ANNIg].

Notice here that (M, §,7,X) does indeed determine A, because for every real x
there are N and g as in (d) such that x € N|g].

The following came out of Woodin’s work in the late 1980s on large cardinals
in HOD under determinacy hypotheses. See [22] and [66].

THEOREM 7.2.2. [Woodin] Assume AD; then for any Suslin and co-Suslin set
A, there is a tuple (M, 8, T,X) that captures A.

Unfortunately, the models M produced by the proof of 7.2.2 are not given as fine
structural. However, one can use M as a background universe for the construction
of some fine structural premouse N, and hope to show that N and its induced
strategy capture some set close to A. This is the basic plan behind the proofs we
currently have for fragments of LEC and HPC, and it is therefore the main source
for the iteration strategies to which the theorems of this book apply.

In this context, it helps to be working with a background universe M having

207There is a counterexample in [59], just after Definition 1.3.
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more structure than is recorded in 7.2.1. We shall call the resulting pairs coarse
I'-Woodin pairs.

Assume AD™, and let I, T'; be good (i.e. closed under 3®) lightface pointclasses
with the scale property such that I' C A;. Let A be a universal I'; set, and let
U C Rcode {(¢,x) | Vo+1,€,A) = @[x]}. Let S and T be trees on some @ X kK
that project to U and —U. Using his work in [22], Woodin has shown ([66, Lemma
3.13]) that there is a countable transitive N* € HC, a wellorder w of N*, and an
iteration strategy X such that for & = o(N*),

(a) (fullness) N* = VBL(N*U{S.,T,W})’

(b) N*is f-Woodin, for all f: § — § such that f € Cr(N*,w),2%
(c) forlall n < 6, there is an f: 7 — 1 such that f € Cr, (VTIIV*,WQV,QV*) and
Vé\’ " is not f-Woodin, and
(d) X is an (o, )-iteration strategy for L(N*,S,T,<1), with respect to nice
trees based on N*.
Concerning item (d), recall that m;-iterability implies @; + 1-iterability, granted
AD.

DEFINITION 7.2.3. Assume AD™, and let " be a good pointclass with the scale
property, and let N*, 5,5, T, <1, and X be as in (a)-(d); then
(1) we call (N*,5,S,T,w, L) a coarse I'-Woodin tuple, and
(2) letting M = (LIN*,S,T,w],€,S,T), we call (M,X) a coarse T-Woodin pair.

Of course, S and T determine U, and hence A and I';. U is self-dual, so S is only
there for notational convenience. We write A = Ar. If (M, X) is a coarse [-Woodin
pair, then we write M oyM TM , and SM for the associated objects.

From [22] (see also [66, Lemma 3.13]), we have

THEOREM 7.2.4 (Woodin). Let I" be a good lightface pointclass with the scale
property, and assume that all sets in 1" are Suslin; then for any real x there is a
coarse T-Woodin pair (M,X) such that x € M.

LEMMA 7.2.5. Let (M,X) be a coarse I'-Woodin pair, § = M, T = TM, and
S=SY. Let s be a M-stack all of whose models are wellfounded, with iteration
map i: M — Q; then

(i) pli(T)] = p[T]| and p[i(S)] = pS], and

(ii) if g is Col(w,i(6))-generic over Q, then for A = Ar, (VG?EL €,ANQ[g]) <
(Va)+17 G,A)~

PROOF. Asusual: p[T] C p[i(T)] and p[S] C p[i(S)], while p[i(T)]|Np[i(S)] =0
because Q is wellfounded, and wellfoundedness is absolute to wellfounded models.

208For a countable and transitive, Cr(a) is the largest countable I'(aU {a}) subset of P(a). Its theory
(under determinacy hypotheses) was first developed by Kechris and Moschovakis. See [1], [2], and the
survey [67]. Harrington and Kechris showed in [3] that Cr(a) = P(a) NL[T,al, for any tree T of a T’
scale on a universal I set. This is probably the most useful characterization of Cr(a) in our context.
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This gives us (i). For (ii), we use the Tarski-Vaught criterion. Suppose x € N[g] and
(Vo+1,€,A) =3y € Ro[y,x]. There is then a branch of T of the form (¢, (y,x), f).
But then (¢, (y,x),i(f)) is a branch of i(T), so there is a branch (¢, (y,x),h) of
i(T) such that y € N[g], as desired.

_|

Note that we did not assume in the lemma that s was by X. We shall show in a
moment that this follows, that is, that ¥ witnesses strong unique iterability.

If we drop down from M to L(N*,W,w), where W is the tree of a I'-scale on a
universal I set, then 6 becomes Woodin, and Lemma 7.2.5 yields a pair capturing
I" in the sense of Definition 7.2.1.

COROLLARY 7.2.6. Let (M,X) be a coarse T-Woodin pair, and § = ™. Let W
be the tree of a scale on a universal T set, and let T be the natural term for p|W/;
then (L[VY',wM W], 8,7,%) captures p[W].

Let M = L[N*,S,T,w], where (N*,6,S,T,w,X) is a coarse ['-Woodin tuple. Let
A =Ar, and let I'; be the good pointclass whose universal set is A. If P is a
wellfounded iterate of M, and g is is P-generic over Col(®,i(5)), then P[g] is
projectively-in-A correct. Thus the Cr and Cr, operators are correctly defined
over P[g]. It follows that M and its iterates are Cr,-full, and X is guided at 7 by a
Q-structure in Cr, (M(T)), where

MT)=( U Vag, U ioaw)nvus ).
o<Ih(T) a<Ih(T)

(We have omitted some superscript 7 ’s here.) That is,

LEMMA 7.2.7. Assume AD™, and let (M,X) be a coarse U-Woodin pair. Let
7’,2/ be a stack of nice trees played by ¥; then the following are equivalent
(1) Z4(U) =b,
(2) Cr\(MM)) € MY,
(3) le;{ is wellfounded.

PROOF. Just outlined. .

It follows that if (M, X) is a coarse I'-Woodin pair, then all its iterates are coarse
I'~Woodin pairs, and X is positional, that is, X o depends only on Q. (Cf. 9.3.9.)
Moreover, if Q is an iterate of M via the stack s, then for 6 = o,

(i) Q is strongly uniquely (6, 0)-iterable, and

(il) Q = “Tam strongly uniquely (6, 6)-iterable.”
The strategy witnessing (i) is Xp, and the strategy witnessing (ii) is g [ Q. More-
over, ¥ is definable over (Vj11,€,A) from the parameter (VSQQ, w?), uniformly

in Q, and Q and its generic extensions are correct for the theory of (Vg41,€,A).
So we have
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COROLLARY 7.2.8. Assume AD™, and let (M,X) be a coarse T'-Woodin pair;
then M is strongly uniquely iterable for countable stacks of countable normal trees.
Moreover, for kK = a)Y,

M = “I am strongly uniquely (K, K)-iterable”.

If (M,X) is a coarse I'-Woodin pair, and C is any PFS-construction in the sense
of M, then C is good (never breaks down), because all its levels have iteration
strategies induced by Z. If there are enough extenders in FC to witness that 5 is
I'-Woodin in M, then C is I"-universal, in the sense that every pfs premouse in Vg”
that has a I iteration strategy iterates into some level of C. We shall prove this in
Section 8.1.

It is easy to see that a strongly unique strategy has strong hull condensation and
normalizes well.

THEOREM 7.2.9. Let (M,€,w,F) be a coarse extender premouse, and let ¥
witness that M is is strongly uniquely (1,0, F)-iterable; then ¥ has strong hull
condensation and normalizes well.

PROOF. Strong hull condensation is immediate. For if ¢/ is by X5 and 7 is a
psuedo-hull of ¢/, then all models of 7 are wellfounded, so 7 is by X,. Further, if
7 is the map on last models, then Zf_u = X 7 because qu chooses wellfounded
branches, and X, 7 chooses unique wellfounded branches.

We show now that the complete strategy induced by X normalizes well. So let s
be by X and (7 ,U) by ¥,; we must see that W(7T,U) is by L,. Since X is strongly
unique, this implies that V(7 ,U) is by L.

Let Ih(U) = u+ 1, and for y < u set

Wy =W(T,Uy+1).

We show by induction on y that Wy is by X;.
Wo =T is by Z,. Suppose now that W, is by X, and let

W7+1 = W(WV7W’)/7F)7

where F = G,,(E? ). Since we are in the coarse case, full normalization coincides
with embedding normalization, and oy is the identity, but we don’t need this.
Let 0 = a(Wy,Wy,F) an B = B(Wy, Wy, F). We assumed that (w,F) is a
coherent pair, so ¢ is the least 1 such that lh(E,;/v ") > Ih(F). We have that
Wy a+1=Wy | o+11is by Z;. So it is enough to show by induction that
Wy [+ A+ 1is by Z, forall A < Th(WWy). Clearly, we may assume that A is
a limit ordinal.

The construction of W (W, W,, F) gives us a tree embedding ® from W, |
B+ A into Wy | @+ A whose u-map satisfies u(f +&) = a+ 1+ & for all
& < A. We can use 7.1.13 to extend ®. If

c= ZX(W}’+1 f a—’_l),
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then letting b = u~'*“c, we can extend ® to a tree embedding of W, | B+A4)"b
to Wy41 [ @+ 4) " ¢, and since psuedo-hulls of normal trees by X are by Z,

b:Zx(WV Fﬁ"'_)‘)

So b= [0,B+Alw,, so ¢ = [0,a + Aw,,,, as desired.

Now suppose A is a limit ordinal. We want to see W, is by X;. Let W =
W(T,U 1) and let a = X(W). The results of §6.6 go through in the coarse case,
as we explained at the end of that section. Adopting the notation of §6.6, let

b=br)) (a)

be the cofinal branch of U/ | A determined by a. So W (T ,U)"a is an initial segment
of W, and is by X;.

We show by induction on & that W), | & + 1 is by X, the proof being like the
one in the successor case above. Let n = h(W (T ,U [1)). Let

D =D, T—=W,

be the “putative tree embedding” we get from the construction of WW,. (We don’t
know yet that the models of W, are wellfounded, so @ may not be a true tree
embedding.) Let u = u®, and let 7 be such that
1 = sup oy = u(T),
Y<A
so that T < Ih(7), and 7 = m(b,T,U [A). We show by induction on & that if
N < & <1h(Wj), then W), [(§ + 1) is by ;. This is trivial if & is a successor
ordinal, because X, cannot lose at a successor step. But if £ is a limit, then we have

& =u(f)
for some limit ordinal & < 1h(7"). Moreover, § —m is contained in ran(u). Thus
by 7.1.13, letting c = X, (W), | &) and d = [0,&)r = Z(T 1), we have u“d C c.
It follows that ¢ = [0, & )w,, so that W, | £ + 1 is by X, as desired.

So W), is by Z. But there is an embedding of MY into the last model of W,
S0 ./\/11};’ is wellfounded, so b = L,((T,U | A)), thatis b =[0,A)y, and W =W,
is by X, as desired.

This shows that W (7T ,U) is by ¥;. Let 7 be the embedding normalization map
from the last model of U to the last model of W (T ,U). (x is the identity in this
coarse case, but we don’t need that.) Then X7 W) = X~ (1) because the
m-pullback strategy picks wellfounded branches, and these are unique. —

Let us assume AD™ for a while. Let (M,X) be a coarse I'-Woodin pair. M is
uncountable, because it incorporates the trees S and 7. ¥ acts on countable iteration
trees based on Vg” , which is countable, but if we think of £ as moving only Vé‘/
for some o < a)}/, then there will no longer be unique wellfounded branches, just
unique Cr, -full branches. To get equivalent (3) of Lemma 7.2.7, we really needed
to let izlf acton S and 7. This showed up in the proof of 7.2.5.
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In the AD™ context it is natural to be working with countable base models. This
leads us to

DEFINITION 7.2.10. A coarse extender pair is a pair ((N,w, F),X) such that
(N,w,F) is a coarse extender premouse, and for some 6 > w;, X is a (6,0)-
iteration strategy for (N,w, F) that normalizes well and has strong hull condensa-
tion.

We can reformulate some of the results of this section as follows:

THEOREM 7.2.11. Assume AD™, and let A C R be Suslin and co-Suslin; then
there is a coarse extender pair (M, €,w,F),X) such that

(a) M is countable,

(b) Xisan (o), m,) iteration strategy for (M, €, w, F),
(c) 8(w) is F-Woodin in M, and

(d) (M,e,w, F),X) captures A.

PROOF. Let (N,X) be a coarse I-Woodin pair, where A € TNT". Let § = 8",
w=w", and let F be the set of all nice extenders E € V} such that for n =

1h(E), ip(w) OVT[]J}:gN’D —wnVMVE) et § < a < o/ be such that VY = ZFC.

n+1
The results above yield at once that ((VY,€,w,F),X) is a coarse extender pair
satisfying (a)-(d). =

In Chapter 9 we shall introduce coarse strategy pairs. See Definition 9.4.14.
These are the appropriate background universes for a strategy mouse construction.
The analog of Theorem 7.2.11 is Theorem 9.4.16, according to which AD™ implies

that every Suslin-co-Suslin set is captured by a coarse strategy pair.

7.3. Strong unique iterability from UBH

We now look at consequences of the Unique Branches Hypothesis for for the
existence of iteration strategies. The value of these iterability proofs that assume
UBH is an open question. Perhaps they will play an important role in the ultimate
construction of iteration strategies for mice with very large cardinals, perhaps
not. Perhaps in the end UBH will be simply be a corollary of strategy-existence
theorems that are proved without assuming it. This is closer to the way inner model
theory has developed so far. In any case, we devote this section to describing some
consequences of UBH for iterability.

DEFINITION 7.3.1. Let F be a set or class of extenders; then 7 — UBH holds iff
whenever T is a normal F-tree on V, then 7 has at most one cofinal, wellfounded
branch.

In particular, nice-UBH is the restriction of UBH to nice, normal trees. Every
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nice tree of limit length has the same cofinal branches as its normal companion, so
nice-UBH is equivalent to UBH for arbitrary nice trees.

Woodin has observed that a Lowenheim-Skolem argument shows that #-UBH
follows from F-UBH for countable trees.

Although F7-UBH involves only normal trees, we can show

LEMMA 7.3.2. Let F be a class of nice extenders, and suppose that F-UBH
holds; then whenever s is a stack of F-trees with last tree U, then U has at most
one cofinal, wellfounded branch.

PROOF. Suppose first that we have a stack s = (7,) of length two. Let b and
¢ be cofinal, wellfounded branches of . Let W = W (T ,U), and let

a="br(b,T,U)
and
d="br(c,T,U).

It will be enough to show that a = d, for then b = ¢ by the results of Section 6.6.
We have assumed F-UBH for normal trees, so it is enough to show that M},’V and
MZV are wellfounded. The situation is symmetric, so it is enough to show M};V is
wellfounded. So suppose toward contradiction that

MY is illfounded.

Adopting our usual notation for embedding normalization, let T be such that
uop(7) =1Th(W(T,U)). We have then that

M = UM Ep),

where FE}, is the extender of b.
We need some elementary covering properties of the models in 7. For n <

1h(7), let
vy = sup({Ih(G) | Gis used in [0,n)7}).
It is clear that vy, is either inaccessible or a limit of inaccessibles in M%'

CLAIM 7.3.3. Let X C ./\/l%— be countable in V, then there is aY O X such that
YEMnTandM,7{|:|Y| <.

PROOF. There are f,, € V, for n < w, such that every x € X is of the form
io.n (fn)(a), for some a € [vy]=®. So we can take Y = {ip 5 (fn)(a) |[n < w and a €

(v <0}

CLAIM 7.3.4. Suppose My |=“0 is regular but not measurable”; then 0 has
uncountable cofinality in'V.
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PROOF. We prove this by induction on 7. It is trivial for 1 = 0. Suppose we
have it for ) < A, where A is a limit ordinal. Let 6 be regular but not measurable
in M, and let 6 = iy 5 (B). By induction, cof’ (B) > . But ig ) is continuous
at 3, because f is regular but not measurable in M. Thus cofv(e) > .

Finally, suppose the claim holds at 1, and let 8 be regular but not measurable
in My, Letv = lh(EnT) = Vp41. If 8 < v, then the agreement between M,
and My implies @ is regular but not measurable in My, so cof” (8) > o by
induction. If & = v, then 6 is regular but not measurable in M, by our hypothesis
on the extenders in F', so again cof” () > @. Finally, if 8 > v and cof" (8) = o,
then 6 is singular in My, 1 by claim 7.3.3, contradiction. -

Now let v = vey = lh(E7). We have that i¥(v) > §(U), for if not, then
up»(T) < A. (See 6.6.1, and the discussion near it.) But v is regular and not
measurable in MY = M7, so i is continuous at v. Moreover, cof’ (V) > o,
while cof” (§(U)) = o because b is not the only cofinal branch of /. Thus we can
fix p such that

p <vand i (p)>8U).
Since the measures in E}, all concentrate on bounded subsets of p, we also have
ve <p.

Let us fix a witness to the illfoundedness of Ult(M7 , E}), namely f, € M and
ay € [6(U)]<? such that w(f,+1)(ant1) € w(fn)(an) for all n, where

n: M — Ult(MT Ep)

is the canonical embedding. By 7.3.3, we can cover {f, | n < ®} by asetY € M7
such that |Y| < p in MZ Let Y C N, where N is a rank initial segment of MZ—,
and let P be the transitive collapse of Hull¥ (Y U p). Letting g, be the collapse of
[, We see that

Ult(P,E}) is illfounded,
as witnessed by the g,’s and a,,’s. But MZ({ agrees with MZ— up to Vv, so
Pe M.

Further, Ult(P, E,) embeds into & (P), so ! (P) is illfounded. But & (P) is well-
founded in MY, so Mi’ is illfounded, contradiction.

This takes care of the case that s has length two. Given an arbitrary finite stack
s =1t U, with ¢ having last model N, set 7 = W (t). Because we are in the coarse
case, 7 has last model N. But 7 is normal, so the proof above shows that ¢/ has at
most one cofinal, wellfounded branch.

One can prove the full lemma for arbitrary stacks using the normalizability of
such stacks. This is shown in [54].

_|
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We shall see below that one cannot drop the niceness hypothesis in Lemma 7.3.2
completely.

We turn to branch existence. The main results here come from [26]. That paper
shows that nice-UBH implies that every countable, normal tree on V has a cofinal
wellfounded branch. Combining it with Lemma 7.3.2, we get

LEMMA 7.3.5. Let F be a class of nice extenders, and suppose that F-UBH
holds; then'V is strongly uniquely (@, ®,,F)- iterable.

For iterations of uncountable length, we need UBH in the appropriate collapse
extension.

THEOREM 7.3.6 (Folk.). Let F be a class of nice extenders such that 68 <
crit(G) for all G € F. Suppose that F-UBH holds in V|G|, where G is Col(w, )
generic over V; then 'V is strongly uniquely (6" ,0, F)-iterable.

Sketch. Given T inV of limit length < 6, we can regard 7 as a tree on V[G]
because 6 < k. In V[G], T is countable, so by UBH in V[G] and [26] in V[G], it
has a unique cofinal, wellfounded branch. Because the collapse is homogeneous,
this branch is in V. —

In one situation, UBH in V implies instances of UBH in V[G]:

THEOREM 7.3.7 (Woodin). Let 8§ be Woodin, and assume that F-UBH holds,
where F is a class of extenders with all critical points > 8. Let T be a normal F-
tree, with | T| < 8, and let G be V -generic for a poset of size < 8; then V|G| |= “T
has at most one cofinal, wellfounded branch”.

Sketch. We may assume G is countable in V[H], where H is V-generic for the
countable stationary tower Q5. Suppose toward contradiction that b and ¢ are
distinct cofinal branches of 7 in V[G]. T can be regarded as a tree on V[H], and b
and c are still wellfounded when it is regarded this way.

Butlet 7: V — M = Ult(V, H) be the generic elementary embedding. Since M
is closed under countable sequences in V[H], ©7 € M, and one can check that b
and c are wellfounded as branches of 77 (Essentially the same functions into the
ordinals are used in forming MZ and ./\/IZT, for example.) One can also check that
inM, nT is a w(F)-tree. Thus w(F)-UBH fails in M, contrary to the elementarity
of 7. =

At supercompacts, we catch our tail:

THEOREM 7.3.8 (Woodin). Suppose that k is supercompact, F is a class of
nice extenders such that crit(G) > « for all G € F, and F-UBH holds; then for
all 0,V is strongly uniquely (0,0, F)-iterable.

PROOF. Given s an F-stack on V with last normal tree T, with s € Vj, let
J:V =M, crit(j) =x, j[Vy € M. In M, the lifted stack js has size < j(x),
and all its critical points are above j(x). So by 7.3.6 and 7.3.7, j7T has a cofinal
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wellfounded branch b in M. (Note j(k) is a limit of Woodin cardinals in M.) The
copy map O : MhT — M;T witnesses that b is wellfounded branch of 7. -

In the theory of strategy mice, it is important that strategies be moved to their
tails by their own iteration maps. We call this property pushforward consistency.
More precisely, we would like to know thatif i: M — N comes from a stack of trees
7 by X, then i(ENM) = L5 y NN. We shall obtain this from the corresponding
property of coarse strategies ¥ such that £ witnesses that V is strongly uniquely
(4,0, F)-iterable.

LEMMA 7.3.9. Let F be a class of nice extenders, and let ¥ witness that V is
strongly uniquely (A, 0, F)-iterable. Suppose thati: V. — N comes from a stack of
trees T by ¥; then i(¥) = X1 yNN.

PROOF. Both i(X) and X7 , choose wellfounded branches. Since these are
unique (in V'!), the two strategies cannot disagree. —|

Some failures of UBH

The remainder of this section contains examples and results related to unique
iterability that are somewhat removed from the main line of this book.

First, there are some counterexamples to forms of UBH to keep in mind when
considering strong unique iterability for stacks on V. The counterexamples involve
extenders overlapping Woodin cardinals, and thus do not apply to the I'-Woodin
models of 7.2.3, which have no such extenders. They involve stacks of trees that
are not nice.

If we allow our trees to use extenders that do not have w-closed ultrapowers
in the models where they appear, then Woodin has shown in [79] that there are
in fact normal trees of length @ on V having distinct wellfounded branches. (His
construction requires a supercompact cardinal.) The construction relies heavily on
the non-w-closure, and it is quite plausible to the author that normal trees on V
using only extenders that are w-closed in the models they are taken from can have
at most one cofinal wellfounded branch.

When one moves to stacks of normal trees, @-closure is no longer enough to
avoid counterexamples, as Woodin has shown. His example builds on one due to
Neeman and the author. In [35], they construct a stack U= (Up,Uy) of normal
iteration trees on V such that for some strong limit cardinal § of cofinality ,

(i) Uy = (F), where IhF = strength (F) = 6,

(i1) U is an alternating chain on Vg = V;J (v.F)
and
(iii) both MZ‘ and MY are wellfounded.

The key here is that because V5 = V5U V) both szA' and ! can be extended so

, with distinct branches b and c,

as to act on V, and the construction arranges that i, (F) = i.(F). But then M?l =
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Ult(V,ip(F)) = Ult(V,i.(F)) = MY, So not only are b and ¢ both wellfounded
as branches of I/, in fact le;ll = M4

In the example above, Ult(V, F) is not closed under w-sequences. However,
Woodin showed that under stronger large cardinal assumptions, we can modify
the example so as to get a stack of length 2 of “almost nice” trees on V. Namely,
suppose we start with ( a normal measure on &y, where &y is Woodin, and F an
extender with length = strength equal to §. Let Z be a linear iteration of u of
length @, with direct limit model N. Let F and 0 be the images in N of Fy and &.
Then let Uy be the normal tree determined by Z7(F'), so that the last model of U
is M = Ult(V, F). and let U; be an alternating chain on M with branches b and ¢
which, when acting on N, satisfy i,(F) = i.(F). The construction of [35] gives us
this U5 ; we only need cof(8) = o to hold in V, it need not hold in N. Again we
have ./\/lZI;7 = /\/lf’, 50 both branches are wellfounded. But now U/ is satisfies all the
requirements of niceness, with the exception that 1h(Fp) is measurable in M.

Remark 7.3.10. We saw in 7.3.2 that this apparently small departure from nice-
ness is essential.

In both examples, the branches b and ¢ are not equally good. For example,
consider the first example. Let Ej, and E, be the two branch extenders. Since
our chain was constructed by the one-step method, exactly one of Ult(V,E})
and Ult(V,E,) is wellfounded. But in (Uy,U,"b) and (Uy,U) c), these branch
extenders are applied to Ult(V, F') rather than V. We have taken advantage of non-
normality to hide the difference between b and c. If we normalize, the difference
shows up:

W (Uo,Us "b) = Uy b i (F)
and
W (Uy,U,"c) = Ulﬁcﬂizc/ll (F).

Here U, "b and U "¢ are acting on V, where only one of the two is actually an
iteration tree, in that all its models are wellfounded.

Strategy extension

Our analysis of the counterexample above suggests that we might iterate V for
finite stacks by simply choosing branches that are consistent with the iteration tree
we get by normalizing. We shall show now that in fact any iteration strategy with
strong hull condensation that acts on normal trees can be extended in this way.

In the fine-structural context, this was first proved independently by Schlutzen-
berg and the author. Schlutzenberg went on to prove a stronger form of the theorem,
in which the extended strategy acts on infinite stacks. ( See [54].) The proof of
Schlutzenberg’s stronger form requires significant new ideas. The construction
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in the finite-stack case is at bottom the same as the one we are about to give in a
coarse setting. The details are simpler in the coarse case, however, because our as-
sumptions will imply embedding normalization coincides with full normalization,
and hence various maps are the identity that would not otherwise be.

We shall not actually use Theorem 7.3.11 anywhere later in the book. Instead
Theorem 7.2.9 will be our source for coarse iteration strategies that normalize well
and have strong hull condensation.

THEOREM 7.3.11. Let M = ZFC + “F is coarsely coherent,” and let ¥ be a
(1, 0,F ) iteration strategy for M. Suppose that ¥. has strong hull condensation;
then there is a unique (@, 0, F) strategy £* such that

(a) X CX* and
(b) X* normalizes well, and has strong hull condensation.

Remark 7.3.12. Let s be a stack of length @ all of whose finite initial segments
are by £*. We do not demand that the direct limit along s be wellfounded, as would
be required if X* were to be a complete strategy. Adding this demand would take
us into the difficulties that Schlutzenberg overcame in the fine-structural case.

Remark 7.3.13. We do not assume in 7.3.11 that ¥ witnesses strong unique iter-
ability. Coarse coherence simplifies a few things, but could probably be weakened
or avoided altogether.

PROOF. Since F is coarsely coherent, quasi-normalization, embedding normal-
ization, and full normalization coincide. In particular, if (7,U) is an F-stack on
M, with Q being the last model of 7 and N the last model of U, and W (T ,U)
exists, then W(7,U{) also has last model N. The embedding normalization map
o: N — N is the identity, and the last #-map of the extended tree embedding from
T into U is equal to the main branch embedding i: Q — N.

We begin by extending X to X, acting on stacks of length < 2. Let (7,U) be
a 2-stack of F-trees, with 7 by L. We define £,((7,)) by induction on 1h(Z/),
maintaining by induction that W (7 ,U{) is by Z. Let us write

Wy=W(T,UTy+1)

as before.
Suppose that W) is by X; we wish to show that Wy, is by X. For let 1 be such
that

Wy+1 = W(WnaF)7

where F = EYf. Let o = a(Wy,Wy,F) an B = B(Wy,Wy,F). We have that
Wy Ta+1=W, [ a+1isbyXZ. Soitis enough to show by induction that
Wy To+2A+1isby X forall A <Th(Wy). Clearly, we may assume that A is a
limit ordinal.

But now the construction of W (Wy, Wy, F) gives us a tree embedding & from
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Wy | B+ A into Wy | @+ A whose u-map satisfies u(f+&) = a+1+&. We
can use 7.1.13 to extend ®. To repeat its proof: if
= EWyii la+A),
then letting b = u~!“c, we can extend ® to a tree embedding of (Wy [ B+1)"b
to Wy41 [ @+ 4) " c, and since psuedo-hulls of normal trees by X are by X,
b=Z(Wy [ B+21).

So b =0, +Alw,,soc=[0,0t+Alw,,,, as desired.
Now suppose U of limit length A. It is enough show that there is a unique cofinal
branch b of U such that setting

Wy =W(T,U™D),
W, is by X. For then we can set
(T, U)) =b,

and our induction hypothesis remains true at A 4 1. To show this, let W =W (T ,U)
and let a = X(W). Adopting the notation of 6.6, let

b=br))(a)

be the cofinal branch of ¢/ determined by a. So W (7 ,U) " a is an initial segment
of W, and is by X. One can show by induction on & that W, | £ 41 is by . The
proof is identical to the corresponding argument in the proof of Lemma 7.2.9, so
we omit it.

This completes the definition of ¥, on stacks of length < 2. Clearly, normaliza-
tions of stacks by ¥, are by X. Suppose now we have ¥,, where n > 2, and
(%), whenever 7T is an F-stack of length < n played by X,, and having last model

R, then there is a normal F-iteration tree on V with last model R.

There is then exactly one such 7 by 2.9.12, and we write

—

T=W(T).
We define X, | as follows: if 77(U) is a stack of length < n+ 1 played by X, 1,
1 (TU)) = 22(W(T),U)).

Clearly, ¥,,41 is an F-iteration strategy defined on stacks of length at most n+ 1,
extending X,,. If 77(U) is a stack on V by X, with last model R, then (W (7), 1)
is a 2-stack by X, with last model R, so W (W (7)) is a normal tree with last
model R. Thus (), holds, and we can go on.

Let
=%
n

We now show that ¥ normalizes well. For this, the following definition is useful.
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DEFINITION 7.3.14. (1) Let W be a normal iteration tree, and  a limit ordi-
nal. We say that b is a §-branch of W iff § = sup{Ih(E}Y) | a+1 € b}.
(2) Let W and U/ be normal iteration trees, let b be a branch of I/ of limit order
type (perhaps maximal), and let ¢ be a branch of W (perhaps maximal). We
say that b fits into c iff for any extender F used in b, there is an extender G
used in ¢ such that crit(G) < crit(F) < 1h(F) < 1h(G).

LEMMA 7.3.15. Let W and U be normal iteration trees, and let 8 be a limit
ordinal; then for any 6-branch ¢ of W, there is at most one 8-branch b of U such
that b fits into c.

PROOF. Suppose a and b fit into ¢, where a # b. We get the zipper pattern,
that is F,’s used in @ and G,’s used in b such that crit(F,) < crit(G,) < v(F,;) <
crit(Fy11) < v(Gyp). If H is used in ¢ and Fj fits into H, then Gy must also fit into
H, since it doesn’t fit anywhere else in ¢. By induction, all the F,, and G,, fit into H.
But then 6 < v(H), contradiction. -

LEMMA 7.3.16. Let (T,U) be a stack of nice iteration trees on M, and b be a
cofinal branch of U; then b fits into br(b, T ,U).

PROOF. This is clear from the construction, and the fact that the o-maps of
embedding normalization are the identity in this coarse case. See the earlier
diagrams of the extender tree of W (7 ,U). o

We show now that all tails of ¥ 2-normalize well. So let S be a stack by £
with last model Q, and let (T ,U) be by Xz ,, with last model R. We must see that

W(T,U)is by Xz ,, and that s ra0R = E§~w(T ),k Here we are making

use of the fact that the o-maps in this coarse case are all the identity.

The proof is by induction on 1h(l{), and the harder case is lh(i/) = A + 1 for
some limit ordinal A, so let us just handle that case. Let b =[0,4)y, and 6 = 6 (Uf).
Since S™(T,U) is by X, we see from the definition of X that

Wo =W (W(E(T)),U)

is the unique normal F-tree on V with last model R = Mﬁ’ Moreover Wy chooses
the §-branch

a=br(b,V,U)=X Wy | 1),
where we have set W (S™(T)) = V. Letting
c=br(b,T,U),
and
c1 =E2(W(S),W(T,UTA)),
we must show that ¢ = ¢;. Setting

Wi =W(W(S),W(T,UIA)),
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we have by our induction hypothesis that W is according to X. Because the em-
bedding normalization o-maps are the identity, the common part model M (W) =

V5W (TUIR) _ V§ . By our uniqueness lemma for normal F-iterations,

Wl :WO [nv

so ¢ fits into £(W)) = a. Thus it is enough to see that ¢ also fits into a.
Let t=m(b,T,U), and

p: Bxt(T) — Ext(W(T,U))

be the map on extenders induced by the tree embedding ® of 7 into W (T ,U).
Suppose F is used in ¢; we must see that F fits into some H used in a. This is true
if F is used in b, since b fits into a. The other possibility is that F = p(G), where
G € ran(s]), so assume that. Let

q: Ext(V) — Ext(W))

be induced by the tree embedding ¥ of V into W (V,U), and let p = m(b,V,U).
Letting E}, be the extender of izg’, we have that 7 is least such that E;, is an ex-
tender over M7, and p is least such that Ej, is an extender over MY, so that
p is least such that ./\/l,‘)) agrees with M7 through dom(E;). It follows that

-

br([0,7)7,W(S), T [t+1) =[0,p)v, and thus G fits into some K that is used
in [0,p)y. But then F = p(G) fits into ¢(K), because > and t;,P are both Ej-
ultrapower maps, so agree with one another on 1h(K) + 1. (Letting N be the last
model of 7 and /: N — R the canonical embedding, ¢ and t;,P agree with the
common last z-map i of ® and W this far.) Since g(K) is used in a, we are done.
We shall not give a full proof that X has strong hull condensation. To see
how it goes, suppose ®: 7 — U is an extended tree embedding, where U is by
Y. Let m: N — P be its last t-map, where these are the last models of 7 and U.
We must see that 27y = X7} p. Let V be of limit length and by both strategies.
Now X7 (V) is determined by L(W(7,V)), and Xy p(7)) is determined by
L(W(U,nV)). Using P, we can obtain a tree embedding from W(T,V) into
W (U,rV). We can then use the fact that X condenses well on normal trees to show
that ZT7N(V) = Eu’p(ﬂ'V).
4|
This gives us a result on strong unique iterability that does not require a super-
compact.

THEOREM 7.3.17. Let F be coarsely coherent, and suppose that V is strongly
uniquely (1,0,F)- iterable; then V is strongly uniquely (®,0,F)-iterable. More-
over, letting ¥ be the complete strategy that witnesses this,

(a) X normalizes well and has strong hull condensation, and

(b) if s is a stack of length @ of countable normal trees on V with last models
M;(s), then the direct limit of the M;(s) under the iteration maps of s is
wellfounded.
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PROOF. By the first part of the proof of 7.3.11, we have a strategy ¥ witness-
ing that V is (@, 8, F)-iterable. Our hypothesis implies F-UBH, so by 7.3.2, £
witnesses strong uniqueness.

That ¥ normalizes well and has strong hull condensation follows from 7.2.9.
Item (b) in the conclusion comes from the branch existence arguments of [26].
Note for example that each 7;(s) is continuously illfounded off the branches it
chooses. n

7.4. Fine strategies that normalize well

Next, we show that if X* is an iteration strategy for a coarse N* that quasi-
normalizes well, then the strategies for premice induced by £* via a full background
extender construction also quasi-normalize well. The reason is simply that quasi-
normalization commutes with our conversion method. The proof of that is like the
proof that quasi-normalization commutes with copying given in 6.8.1, but there is
more to it because in addition to copying, we are passing to resurrected background
extenders. Indeed, this gap led to the resurrection consistency problem, which we
have solved by moving to pfs premice, and to the background coherence problem,
which we have solved by moving to plus trees and quasi-normalization. With
these changes to the basic definitions, the relevant diagrams now commute as they
should, and our job here is just to verify that.

THEOREM 7.4.1. Let N* be a coarse premouse, X* be a (A, 0) iteration strategy
for N* that quasi-normalizes well, and ¢ = (M, t,P,C,N*) be a conversion stage;
then the induced strategy Q(c,L*) for M quasi-normalizes well.

Remark 7.4.2. We believe that the proof of 7.4.1 works even if the construction
C is allowed to use extenders that are not nice, so that embedding normalization
does not coincide with full normalization at the background level. This just means
that certain embeddings are no longer the identity, and hence must be given names
in the proof to follow.

PROOF. We must show that all tails X; of ¥ 2-normalize well. This reduces at
once to the case that s is empty, so we assume that.
Let (7,U) be a maximal stack of plus trees on M of length two, and let

(T*,U*) =1ift((T,U),c)o

be the converted stack on N*. It suffices to show that V(7 ,U/) lifts to an initial
segment of a quasi-normalization V* of (7T*,U*).2%
The quasi-normalization V(7 ,U/) has associated to it plus trees JVy on M0

2091f 4 has successor length, then dropping along the main branch of 2/ can cause V (77,4 to lift to
a proper initial segment of our V*.
210We called them Vy in Section 6.7. They may not be normal.
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for y < 1h(Uf), and extended tree embeddings
Dy y: Wy =Wy
defined when ) <y y. The components of &y, , are

Dy = (Un y, vy, (07 | v € dom(up 4)), ()" (uny)))-
So uy, 4 maps an initial segment of In(Wy) to 1h(Wy), and t'" is a perhaps partial
map from M\lfv” to ME’]};(‘,). We have also

AW
Ry=Myy
and oy : Mz}f — Ry, and Fy = GY(E?), so that
WY+] = V(WmWy’Fy)
= Wy o+ 1) (Fy) iy ),

where 1 = U-pred(y+ 1) and oy = oo(Wy, Fy).
Wy is a tree on M, so it can be converted to a tree on N* using c. Let

lift(Wy,c) = Wy, (] | & < 2(v)))

= last model of Wy,

where
(M .7}, PL,C} M : .
We have Wy =T and W = T*. For all v, c0 = c. The conversion system that
lifts U is
lift(U, ) = (U*, (de | & <Th(U))),

where
= (Mlg, W§7Q5,D§,M?*>.

Thus yp = Qo = and ]Do = (Cz(O)
Finally, the qua31 normahzatlon V* has associated trees Vy on N* for y <
1h(U*) = h(Uf), together with tree embeddings

@y Vp =V
defined when 1 <y 7, or equivalently, 1 <y Y. P}, , determines a u-map uy, , :

1h(Vy;) — 1h(Vy), and for v € dom(uj, ,), a t-map ;;,”. Since X* normalizes well,
the Vy are by Z*, moreover, by 6.2.9, the last model of Vy is

M = MY
When 11 = U*-pred(y+ 1) (equivalently, 1 = U-pred(y+ 1)), we shall have that
1 = Vy [0y + 1)A<G;>AiG;“(V§)>CriI<G;)
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where
* _ U
G,=E, .
We shall prove that Wy = V7 [z(y) + 1 for all y. Since Vy is by £*, we get that

Wy is by Q(c,L*), as desired. The proof is by induction on y, with a subinduction
on initial segments of ¥V,. Our overall plan is summarized in the diagram:

lift
Wy ——————— Wi Vs

‘1>v.7 cI)"‘,vy

lift
Wy —————— Wi Vs

LEMMA 7.4.3. Let y < lh(U). Then

(1) Wy=vylzy)+1.

(2) Whenever v <y 7y and (v, Y]y does not drop in model or degree, then for all
& <hWy),

: Y _ VY pv

(i) PM;#(‘?Q —vtyé (f’g 7)/ and
(i) Mo () Ole = 1 077:%’.

(3) uny Cuyy . ifn,v<vyandn <y v.

4) ) QEY)H: Qy, and there is an 1 such that Qy € lev(Dy [ 1) and (sz In=
Dy .
(ii) If[0,Y]lu NDY =0, then z(y) = 2*(y), Wy = V; and Czym =D,
(iii) 7, 00y =y

PROOF. Here is a diagram related to 7.4.3:

Yy
e
My Ry Oye M,
ilfﬁ ZX'JJ ?Y@ﬁ
u ov ) Wi
My Ry Ov e M)
v

The fact that ”z.‘zv) and 7172/()0 map to Qy and Qy is (4)(i). The fact that the triangle

on the top commutes is (4)(iii). That the square on the right commutes is (2), in

211 This item is not needed to carry through the induction, it is just a simpler case to keep in mind.
The meta-tree determined by the W,’s drops whenever I/ drops. The meta-tree determined by the Vy’s
is coarse, so does not drop. Thus a drop in [0,¥]y can lead to z(y) < z*(7).
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the case & = z(v). We of course need (2) at other 7 as well. That square on the
left commutes is a basic fact about quasi-normalization.

The reader might look back at the diagram near the end of the proof of 6.8.2.
/\/ll\f* in that diagram corresponds to Qy in the present one. We can take R}, of
that diagram to also be Oy in the present one, because our tree on the background
universe is nice. We don’t actually need that; if the background extenders were not
nice, then in the present case we would be introducing some o, : Qy — R}, viaa
quasi-normalization of (7*,U*). nz‘zw would map into R}, rather than Q,, and the
present diagram would transform into the previous one. (See remark 7.4.2 above.)

We prove 7.4.3 by induction on y. For y=0, Wy =T and V5 =T, so (1)
holds. Since on(o) = Qo, Wy = 7'63(0), 0y = id, and Doy = (CS(O), (4) holds. (2) and
(3) are vacuous.

Now suppose Lemma 7.4.3 is true at all v < y. We show it at y+ 1. Let

v =U-pred(y+1), and

H= WY(E}/M)’
G = 0q,[0y| Ih(H)|"r(H),

and
G* =B"(G),
so that
* _ pU*
G =E,/ .
Let also
F = Fy, = oy(EY)),
a= aO(W%F)a
K =} (F).

. w. e
F is on the extended sequence of M, 7, and we can lift it by 7} to K on the

W
extended sequence of M, 7. Moreover,

_ 7
H =, F)

——
because yy = 7, © Oy.

The following is the main claim.
CLAIM 744, (a) G = o,y [P Ih(K)|%%(K).
(b) G* =BC(G).
(c) IfE < o, thenTh(E; ") <1h(G*), and if o < 2(y), then 1h(G") < Ih(Eg,").
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PROOF. We assume that a < z(7), and leave the other case to the reader. Let
E= E:x/vy. Since a = ap(Wy, F), either 1h(F) < A(E), or E is of plus type and
Ih(F) < 1h(E). In either case, the agreement properties of PFS conversion systems
imply that>!?

ml.,) 1h(F) + 1 = resg o lh(F) + 1.

Here res), is the o-th generator map of lift(Wy, c), that is, setting E| = yu(E) and
X = Py|Ih(Ey),

¥ cl

resg = 0, [X].
Thus
_ 7
H= T (F)

= resy omy (F)
= resy(K).
7
LetY = Resff [X], and E» = res}(E1). The last extender of Y is E, . To prove
(a) of the claim, we must show that
Cl
oy *[Y|Ih(H)](H) =G.

For then

G = oy[Y|Ih(H)] o 0,1 [X](K)

— 6,y [PLIh(K)](K),

as desired. The last step uses resurrection consistency in CJ, and is the reason we
moved to PFS constructions.

We have that E;Vy = BCu (E; ). Let & be such that Y[|o(Y) is the last model of
CY, 1 €. By our coherence lemma 4.7.7 for constructions,

ChIE=C], ¢,
Butlh(H) < o(Y), so
o [¥ [1h(H)] %% (H) = 000 [¥ [ 10(E)] 0 (1)
=0 [P Ih(H)) 0 (1)
=G,

as desired. Here we use that o(Y) is a cardinal of szm and o(Y) < p*(PZ’Ey)).

2128ee induction hypothesis (3)(a) in §4.8. This is where the fact that we are only quasi-normalizing
comes into play. If E7 is not of plus type, and A(Eq’") < Ih(F) < Ih(Ee""), then we don’t have
enough agreement between 7, and 7ry(y) to go on.

Z
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This proves part (a) of Claim 7.4.4. Part (b) follows from (a) and the fact that
ChLIE = (CZ()/) I €, where & is as above.

For (c), Ih(G*) < lh(E;:v ") because, in the notation above, E:x/v " = Bt (E5),
and E; is the last extender of Y, and G is the last extender of some Z such that
Z <¢r Y. On the other hand,

(W) T+ 1)7(G") = lft(Wy [+ 1) (F),c)o,

and the lift of a quasi-normal tree is quasi-normal. Thus lh(E;:vy) < 1h(G*) for all
<. .
Part (c) tells us that setting Vy, | = V; [(ay + 1)A(G;)AiG;&“(V,’;)X‘it(G;), as
we have done, is indeed a legitimate step of quasi-normalization at the background
level.
By definition, Wy [t +2 =W, [(a+1)"(F). So at the background level,
we have

CLAM 7.45. L Wy la+2=Wyl(a+1)(G") =Vy Ta+2.
2. BOWy, F) = B(Vy,G").

PROOF. That W*+1 foe+2 =Wy [(a+1)7(G") is just Claim 7.4.4 restated.
By definition, V| [a+2 =Vy [(a+1)7(G").

Part 2 follows at once from the agreement between W, and Vy, together with
the fact that Wy, is maximal. —|
Let f = B(Wy, F). Since the quasi-normalizations producing Wy, and V;_ | have
the same o and 3, we have uy y1 Cu, .. Moreover, if [0, 7+ 1]y NDY =0, then

2(v) =z"(v) by (ii), soz(y+1)= (@+1)+((V)=B)=(a+1)+(z"(v)-B) =

(Y + 1) We have uy y1 = u, ., in this case.

Remark 7.4.6. I DY N[0, y+ 1]y = @, then Ih(Wy.1) = 1h(W;

o) and iy 1 =

”T/,y+1'

We now show that (1) and (2) of Lemma 7.4.3 hold at y+ 1. For this, we show
by induction on &:
Induction Hypothesis ()¢:

(M) Wi 18 =Vy 16
(2) If (v, y+ 1]y does not drop in model or degree, and ug y+1(7) < &, then

1 * 1
@ BT =17 (PY)), and
(b) 7 y+l )ot;,/yH t: y+lo7r¥‘

Note that the 11m1t step in the inductive proof of ()¢ is trivial.

Base Case 1. £ = a + 1.
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We have Wy [(a+1) =Wy l(a+1) and Wy, [(a+1) =Wy [(a+1). Since
Lemma 7.4.3 holds at y, we get (T)g(1). For ()g(2), letuy y11(7) < o+ 1. Then

7 < B and uy y11(7) = 7. Moreover 7" and 7YY are the identity. So (T)e(2)

boils down to P/ = P}, and it = mY. This holds because W, [(t+1) =
Wyt [(T+ 1), so their lifts are equal.

Base Case 2. £ = a +2.
We proved (f)g(1) in Claim 7.4.5..
For ()¢ (2), the new case to consider is T = f3. We have

v _ Y+l

Mg =T
vl W
B ~ B+l

and

vl l.W;Jrl
B — "B,a+l”

The first because Wy [(B+1) =W, [(B + 1), and the second two by our defini-
tion of quasi- normalization. (Note we are in the case that (8, @+ 1]yy,,, is nota
drop in model or degree.) But

Y+ Wy Wi y+1

T Oﬂﬁ

a+1°18.a+1 = !B,a+1
holds because lifting maps commute with the tree embedding in a conversion
system. This gives

v, 7+1

v, y+1
ot
B

r+1
T =t
B

v
o+1 °© nﬁ

as desired.

If lh(OWy) =B+ 1or y+1 € DY, then Ih(Wy1) = ot +2, so we are done. So
suppose 1hV, > B +1, and (v, y+ 1]y is not a drop of any kind in /.
Inductive Case 1. (T)éH holds, and & > o+ 1.

We must prove (1) at § +2. We are assuming & +1 < Th(W,). Let

_ W+
E=E;,"".

Let o be the resurrection map for ﬂgﬂ (E) in (C?rl, that is,

o = 0,y [PI [h(z] " (E)).
¢

¢
Let
7+l
E*=B(co ngﬂ (E))Cé
_ gV

3



328 7. STRATEGIES THAT CONDENSE AND NORMALIZE WELL

v*
CLAIM74.7. E* =E, .

PROOF. Since & > o+ 1, we can write

& =uvyr1(p),
where p > 3. Let

D=E",
so that
E=1y"" (D).

Letting H =00 77,"%”rl (E), we have
H=oco (ﬂgﬂ ot},”yﬂ (D))

=oo(1y" om}(D))

by induction. Let 7 be the resurrection map for 7y (D) in Cy, that is,
T = Opy [Py |Th(my (D).

It is not hard to see that

() =o.

This is because z*‘; an (Py) = Pg *! by induction hypothesis (2)(a), and similarly

;‘\)’,}’+1(n.V(D)) _ EY‘*‘I([F‘)’«Y""](D)) = 77;7/+1(E). But then

P S 5
Vil vyl oV
Eé =1, (EpY)
* s 1 - v
= 1,7 (B(r(y (E)))")
v, 7+1 (Cy+1
=B(1,"" (t(my(D))))*
v y+1 crt
=B(o (17" (my(D))))
y+1
= B(H)"
= E*
as desired. = (Claim 7.4.7)
From Claim 7.4.7, we have that ; 11 1(§ +2) is the unique quasi-normal

v*
continuation of Wy, [(¢ +1) = Vy,, [(¢ +1) via E; "' That is, v (6 +

2) =Vy l(6+2).
It remains to show, keeping our previous notation:

_ ;v,)/Jrl

v, y+1
ot o1

p+1 oy

2!
CLAamM748. 1 ARE

E+1
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PROOF. Both maps act on M The left side embeds it into Pg i: and the

p+1°
right side embeds it into ;;ﬁrl(PI;’H). So first we show (T)¢1(2)(a):

v an|
SUBCLAIM 7.4.8.1. PgH =10 (PYL):

PROOF. Let
6 = Wy.i-pred(§ +1)
—Vj, -pred(€ +1)
= Wy, -pred(§ +1).
Recall that E = Egvy“ =137 (D).
Case 1. crit(D) > crit(F), or 6 < 3.
This is the case in which uy y4 | preserves tree predecessor, thatis, 8 =uy y,1(p) =
(p) for & = W,-pred(p + 1). We have

Wy _
MY, =UI(R, D),

3
”‘v,y—H

where R < Mgv". Let
s=13""(R).
Quasi-normalization leads to
Wyt
M«’;ﬂ

. .
Because W, is part of a conversion system,

= Ult(S,E).

T N 4% 1
Pg = leﬂﬁ‘l (Respgﬂ (73" (S)])

vy +1
= ’e,yﬁll (Respgﬂ (75" (S)]).

(The resurrection is in C}™'.) Note that ?g”ﬂ (PY) = PI™" by induction. Also,
TN EY(R) = my 1y T (R)) = w1 (S). Tt follows that

6 6
1 v+l
Res,i1 (x5 (s)) = 1y (Respy [y (R)]),
where the resurrections are in Cgﬂ and (Cg respectively. Thus

1Y 1
ng:l = zefgil(Reng+1 [né”’ S

W *
_ v.y+1
=g, 0Ty (Respg[n

_ vl LYy
=7, Olé,p+1(ReSP§ [

v, 7+1
= t[\)/l/l (P;;/Jrl)a

(R)])
(R))

i< Di<
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as desired.

Case 2. Otherwise.

In this case, we must have § < 6 and crit(D) < crit(F). It follows that 6 = 3,
and Wy-pred(p + 1) = Wy, i-pred(p + 1) = B. The argument above works, with
6=0=BandR=S, and tg7y+1 and ;g’Hl being replaced by the identity map. (
If 6 < B they are already the identity. This case is similar to the case 6 < f3.) The
relevant calculation is

+1 V Cy+1
P =it Resypa (R )
A% ()4
yg;(Respv)[ng(R)] h)
v+l LV C%
= iyt (Resyy [m (R)]F)
_ kvl
- tp+1 (P p+l)
The first equation holds because Vy_; [(§ + 2) =Wy, [(§ +2) is a conversion
system. The second comes from the fact that V., [(B+1) = V; [(B+1). The
third comes from properties of quasi- normahzatlon The last comes from V), being
a conversion system. B

We now finish proving Claim 7.4.8. We keep the notation above. Let us assume

that we are in Case 1. Let x € M"Y P +1 be arbitrary, and let

X = [avf]gv
where a C 1h(D) is finite and f € R. (We assume k(R) = O for simplicity.) Then

+1 v+l 1 vyt
mly oty () =ml, (0 ([, /15)

+1 +1 Ran|
—ng+1([tf‘)’y (a)vtgy (f)]%)v
by the properties of embedding normalization, and the fact tv v (R) =S and
ny 7" (D) = E. Thus
P vl YL vyl i vy+1 M
Te 1y Ip (x) = [607[1; 0755 (a),$ 0w, (f)]E*,e
where o resurrects 77:”1( E)in (Cy+ and ¢ resurrects ”y+1( S) in (Cg“.
On the other hand, letting

o=ip7"(6), and ¢=i;""(9),
we have | )
v,7+ vV, Y+

tpll o7Tp ():tp-g—/l (”p+l([a ] )

= I (G omy(a), Fomy (N2 )
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_ Vit
= [iy" o Gom)(a). iy oG omy (£
E v+1
4
v*
v vt v vt M,V
[GOII‘)/Y omy(a),o t‘-/y oy (f)]g°
_ Y+ vyt Y+ vy+l M:VH
= [607175 oty (a),pomy oty (f)]g

The first 4 lines come from the way normalization and conversion work. The last
line comes from our induction hypothesis.

We leave it to the reader to finish the proof in Case 2. This proves Claim 7.4.8.

_|

Returning to the inductive proof of (T)g, we see that the limit case is trivial. We
are left with

Inductive Case 2. & is a limit ordinal, and ().

We must prove ()¢, . We have W7, [§ =Vy,, [S. Since £* quasi-normalizes

well, the branch [0, é]y;+l of V.| produced by normalization is equal to £*(Wy_; [ ).
Thus Wy, [(§ +1) =V}, [(§ +1). One can then prove ()¢, by looking at

how the objects it deals with come from the MY*” and M\ﬁ for T <y, u;j, 1(8),
and using our induction hypothesis (T)z. We omit further detail.

This completes our inductive proof of (1) and (2) of Lemma 7.4.3. We have
already proved (3) of Lemma 7.4.3. We now prove (4). To simplify the notation a
bit, let us assume that [0, 7]y does not drop, so that Wi =V and WS, , = V3

Y+l Yyl
The following diagram summarizes the proof of (4).

Y+l

Oy+1 W, Tr+1)
(RN r+l1 y+1
My+l MZ(Y-H) P(y+1 cEM 2(7+1)
ilfwﬂ %vyf ' }!&* ‘ I*’X'ﬁ ‘
u Wy \% Vy
My = My T B € May

z2(v)

That the square on the right commutes is (1) (y11). Itis a basic fact about normal-

vy+1

ization that the square on the left commutes. Also, 2v) holds, because

v y+l
the o-maps are the identity in the case of coarse normalization.

We have that y, = nz‘zv) o oy by induction. Further, the diagram
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Yy+1 V¥ *
u v+1 v+l My+1
My Py €My =M
if//{yﬂw\ il\:{‘;ﬂw\
U____ . pv Wy gty
M " Pz(v) S MZM = M

commutes, since it is part of the conversion of I/ to U*. So

U "
Yyt1 00y yi1 =Ly y1° Wy
_ vl v
= Ly) ©Tyy)©0v

_ v+l U
= T(p1) O Or 1 O byt
7+l
T
y 9 Z(y+1)
ranig, ., union €(Ey’), where

Thus Yy agrees with 0 Oyt onraniy ., ;. But M/, | is generated by

£(G) = Ih(G) ifG is'of plus type,
A(G) otherwise.

So it is enough to show the two embeddings agree on E(EJL,’ ). But

Yy+1 fE(E?) =Yy fg(E)L/[)
= 7172/(7/) ooy [S(Ei,’l),

by the agreement in conversion systems and our induction hypothesis. Since
oy [ €(EY) = oyy1 | €(EY) (cf. 6.5.8), it is enough to show that xlt! ) re(F) =

v Z2(y+1
) [€(F). But

n!  1€(F)=m}€(F)
=y re(F)

:nj(;il) 'e(F).

The first line holds because either 1h(F) < Z(E;,/V ), or EQ is of plus type and
Ih(F) < Ih(Ey 7). '3 The second line holds because Wy [ @+ 1= Wy, [a+1,
and the third holds by the agreement of maps in lift(Wy41,c).

This completes the proof of (4) in Lemma 7.4.3 in the case that [0,y + 1]y does
not drop in model or degree. We leave the dropping case to the reader.

This completes the proof that if Lemma 7.4.3 holds at 7, then it holds at y+ 1.

213Here we use that we are only quasi-normalizing, that is, that  is ot (Wy, F) rather than ot(Wy, F).
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Now suppose 7 is a limit ordinal. Let

A =sup{ag | & <7}

So V(T ,UTy) =Wyl A, and Vy [y =Wy [A. Since £* quasi-normalizes well,
[0,4)y; =E*(Vy [4). Thus

Y
Wyl(A+1) =V, [(A+1).

We now go on to prove (1), for & > 4, by induction. The proof is similar to
the one above. Having ()¢ for & =1h)V,, we go on to prove (4) as above. We
omit further detail.

This proves Lemma 7.4.3. .

Now let y+ 1 =lh(l). By Lemma 7.4.3, Wy = V7 [z(y) + 1. Since X* quasi-
normalizes well, V)’j is by X*, so W;j is by ¥, so Wy is by Q(c,XL*), as desired.
We must also check the pullback clause, that is, that

Xiruy = Ew,r,) %,

Wy
() But

— u Y Y *
Eru) =AMy WP C X arn)

where Ry = M

_ u v Y Y *
= Q(My, 7 007, Py, Ty Tony)
_ Y Y Y * O
= QRy 710), P, Coiy Ty )™
= (ZWy,Ry)Gya
as desired.
This finishes our proof of Theorem 7.4.1. -

Strong unique iterability yields strategies for coarse premice that normalize well
for infinite stacks. In particular, assuming AD ™, if (M, X*) is a coarse I'~-Woodin
pair, then ¥* normalizes well for countable stacks. We believe that by extending
the proof of 7.4.1 one can show that normalizing infinite stacks commutes with
lifting to a background universe. Thus if we assume in the hypothesis of Theorem
7.4.1 that X* normalizes well for infinite stacks, we can conclude that the induced
strategies Q(C, M, X*) normalize well for infinite stacks.

7.5. Fine strategies that condense well

We show that if £* is an iteration strategy for V that has strong hull condensation,
then the strategies for premice induced by X* via a full background extender
construction also have strong hull condensation. The proof is routine, but we
include it for the sake of completeness. The corresponding result for ordinary hull
condensation was proved by Sargsyan in [37].
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THEOREM 7.5.1. Let ¢ = (M, 9,0,C,S) be a conversion stage, and suppose
that ¥* is a (A, 0) iteration strategy for (S,€,wC, FC) that has strong hull con-
densation; then the induced strategy Q(c,X*) for M has strong hull condensation.

PROOF. Let X = Q(c,X*). We show first that psuedo-hulls of plus trees by X are
by X. The proof applies equally well to tails of £. We then deal with the pullback
clause in the definition of strong hull condensaion.

Let U be a plus tree on M that is by X, and let ®: 7 — U be a tree embedding,
with

D = (u,v,(sg | B <Ih(T)),(tg | B+1<Ih(T)).
We must see that 7 lifts to a tree by L*. Let

lift(7,¢) = (T*,{ca | @ <Th(T))),

where
ca = (M, 0a,00,Ca, M)
and
lift(U,c) = (U*,(do | @ < 1h(U))),
where

d(x = <MZZXI7III(X7X(X7DOC7MZ(/X{ >
So ¢y = dy = c. Our plan, of course, is to construct a tree embedding ®*: 7* — U*
by induction on its initial segments, so that the diagram
lift

U——Uur

lift

T— T

commutes, in the natural sense. The components of ®* will be given by

@* = (u,v,(rg | B <1n(T)),(wg | B+1<1h(T))).

Notice here that u®" = u = u®, and similarly for v. Because ®* is to be a tree

embedding, u completely determines the putative ®*, and what we have to show is
just that the @* it determines is a tree embedding of 7* into U/*.
For y <1h(7), let

Oy =" [y=wH{E [ E+1 <y} vy (rp[B <) (wpg | B+1<7)).
We show by induction on 7 that
(1) @* [yis atree embedding of 7 [ yinto U™,
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(2) for a <7, V(o) ©Sa = T © Qar, and
(3) for a <7, ra(Qa) :Xv<a).
Let (*)y be the conjunction of (1)-(3). The following diagram illustrates the
situation:

Yu(a) «
u u
Mu(a) Xu((x) S Mu(a)
i M
v(ar),u(o) v(a).u(a)
Yi(a) %
u u ,
to Mv(a) E— Xv(oc) S Mv(a) Wa
Sa To

ME s Que MT

Some care is needed in reading this diagram. The bottom rectangle is just (2) and
(3) of our induction hypotheses, and is always valid. The top rectangle involves
only the conversion of U to U*, so our induction hypotheses are irrelevant. It
is valid if and only if (v(e),u(@)]y does not drop (in model or degree), so that
ilﬁ{(;),u(a)(xv(a)) = Xy (a)- In the case that (v(«),u(@]y drops, something like it is
valid. We discuss that below.

To start with, ®} is given by setting v(0) = 0 and ry = identity map from
S=MJ toS=MY".

If A is a limit, and (*)q for o < A, then

@; = | @
a<i

in the obvious componentwise sense. It is clear that (x), holds.

If y=2A+1for A <Ih(T) alimit such that (), then ® _ | is just @} together
with the map r,, defined as follows. Recall that v preserves tree order, and

V(A1) = sup v().

a<A

For ot <7 A and x € ./\/lz;*, we set

(i3 (0) = &g ) (ra(x))-
Using (1) at ¥ < A, we see that r; is well defined, elementary, and as required for
(*)at1-

Finally, suppose we have @, satisfying (*)q41. The whole of &7, is
determined by u(a), which is already given to us, but we must see this choice
works; that is, that ()2 holds for the system it determines.

The extenders used in 7* and U* are produced as follows. For any &, let

o = 0g, [Qe | h(z (E] )%,
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Re = Reso, [Q¢| (e (E] )],

T — 0, [Xe [ 1h(y (EX))]%%,

Ye = Resy, [Xz | Ih(yg (EY))] %
Then setting G = Eg;, G* = Eg;*, H= E,Z;Ea), and H* = Eil(;

G* = (B 0040 ¢a)(G),

) we have

and

H* — (B]D)u(a) 0Ty O Wu(a))(H)'

Set now
_aur
Wo = Lya) u(ar) ©Tts

as we are forced to do. Note that wg (Cq) = D)) Lemma 8.2.3 below will tell
us that the following claim is what we need.

CLAIM7.5.2. () Tu(a)© Yu(o) © gy u(a) S | (IN(G) +1) = ’%m
60 0 @q | (Ih(G)+1).
(b) wo(G*) =H*"
PROOF. We prove (a). Suppose first that (v(o),u(ct]y does not drop. In that
case, iﬁé;)’u( @) (Xv(a)) = X(a)» S0 the top rectangle in the diagram above is valid.
Expanding the diagram, we have

) Ol

Mu V(o) X Tu(ar) Y
u(or) u(o) ? Yu(a)
i“ e i“
v(a)u(a) v(ar)u(a) v(a).u(o)
/\/l“ Yi(a) X To(a) %
v(a) ? Kv(a) ? Yo(a)
Sa Ta To
T
M~ Qu —5— Ra

Notice that ro(0y) = Ty(a)- SO the diagram commutes, and in particular the two
routes from M7 to Y, («) around the outer edges are the same. This gives us (a).

Suppose now that (v(o),u(a)]y drops. Let I = 54(G). Since H = izvl(a)’u(a)(l)
and U is A-non-decreasing, all extenders used along (v(ot),u(c]y have critical
points less than or equal to the current image of A;.2!# For simplicity, let us assume
there is just one such drop, at &, where v(a) <y & <y u(a). Let 6 = U-pred(§).
We have the following diagram:

2141t is possible that, for example, v(a) = U-pred(& + 1), & + 1 = u(a), and Th(I) < dom(Eg{). In
this case Ih(E,(q)) < lh(E?), so U is not normal.
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Yu(a)
Mu /M*X\‘ N ) y
ww) " I uie) K@) T u(a) u(a)
o e -
' u(a) 1 u(a) L u(a)
h T
u
lg ig‘g Ig{;
Vo J 1
MY Xo Z Yo
"v(;)Ae "%;o.e
Yi(a) To(a)
u
B — e
Mv(oc) Xy(a) V)
So Fa Te
Do, Og
MT Qu Ry

In the diagram, j = ox,[Ve (ME’M]DB resurrects the drop in ¢/, and 79 = 1o j.

We have X; = ig’fé (), and T = izé’;: (1). Also, h = i%’:,; (j) and k = ig;(a)(h). The
unlabelled vertical arrows on the far left are the maps of /. Finally, ry(0y) = Ty(ar)-

The facts we have just enumerated imply that all parts of the diagram commute
on the image of 1h(G) + 1. (For the square at the bottom left, this is our induction
hypothesis.) The reason for restricting to the image of 1h(G) + 1 is that the
resurrection maps j, h,k and the 7’s and oy, are partial, defined on initial segments
of the models displayed above. But all are defined on the image of Ih(G) + 1 in
that model.

The fact that the two routes from MZ; to Y, (¢) going along the outer edges are
the same when restricted to 1n(G) + 1 gives us part (a) of the claim.

Part (b) follows easily from the fact that the images of G in ¥4 along the two
outer edges of the diagram are the same.

This proves Claim 7.5.2. -

By Lemma 8.2.3, there is a unique tree embedding ¥ from 7* [ (o +2) to U*
that extends @}, , | and satisfies u¥ (o) = u(a). Let @}, be this ¥. We check
now that ()42 holds.

Let § = T-pred(at + 1), and let T = U-pred(u(e) + 1). Because P is a tree
embedding, 7 € [v(B),u(P)]y. Let us assume for simplicity that there is no
relevant dropping, that is,

(@ (a+1)¢ D7, and
(b) DY N[v(B),v(e+1)] = 0.
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SoMl,, = Ult(./\/lE,G) and M%Hl) =Ult(MY H). Letp = isz{([i),r) osg and
p* = iij’&m org. The lifting construction yields MZC—Jr , = Ult(M},G*) and

M%LH) = Ult(MY"H*), moreover

X(ar1) = b(g) wias1) Ko(p)-
T'v(a+1) 18 given by the Shift Lemma:

T* u*
roaeny (@ fle? ) = wala), p* (NN

Here is a diagram of the situation.

Yy(a+1) %
szlowl) Xi(or1) € Msl(aﬂ)
To+1
/ /
Pa+1 -
M Qo1 € ML, H
H
Y ”
MY X € MY
G G
p u Vi) p* u*
Sg
B
T T

The diagram resembles the diagram associated to our proof the copying com-
mutes with embedding normalization. That is not an accident, of course. Embed-
ding normalization yields tree embeddings, and lifting to a background universe is
similar to copying.

We are asked to show that Vo(at1) ©Sa+1 = Qat1°Ta+l, in other words, that
the rectangle on the top face of the cube commutes. We argue just as we did
in the proof of 6.8.2. The rectangle on the bottom commutes by our induction
hypothesis. The rectangle in front commutes because 7 comes from lifting 7~
to the background universe. The diagram on the back face commutes because I/*
comes from lifting /. The maps on the left face commute because P is a tree
embedding of 7 into &/. The maps on the right face commute because we obtained
rg+1 from the Shift Lemma. (This of course is where we used that H* = wq (G*).)

It is clear from these facts that the top rectangle commutes on ran(iE ot ). Since
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4

’ﬁ,a+1) Ue(G), it is enough to see that the top square

MY, is generated by ran
commutes on £(G). But
Vi(ar1) ©Sa+1 [€(G) = Tu(a) © Wu(a) © iv(q) u(a) © S | €(G)

= & ou(@) ©Ta © Oa 0 9 | €(G)
= ro+10 Qat1 [ €(G).

Line 1 comes from the facts that s 1 agrees with izv”(a)’u(a) osq on €(G) by the
way it is defined using the Shift Lemma (cf. 6.4.8(c)), and that Vy(a+1) agrees with
Tu(a) © Wiu(a) O €(H) for a similar reason. Line 2 comes from Claim 7.5.2. Line 3
again comes from using the Shift Lemma, now at the level of 7* and /* 23

This completes the proof that ¥ condenses well on plus trees. The proof that its
tails do so as well is similar. Let us now consider the pullback condition, clause (b)
of 7.1.9. For this, let us keep our previous notation, but assume that 1h(7) = o+ 1,
Ih(U) = B+ 1, and that v(er) < B and P has been extended by adding the r-map

_ U
T = lv(oc),ﬁ OSq-

Let us assume J <dom(7), and let K = 7(J). We need to see that (X k)" = X7 ;.
For that, consider the diagram

Vs

u 2* u*
Mﬁ —l> le,ﬁ(Xe) P Xp Mﬁ
¥ ¥ iy
h "
u u
ig‘_; ig‘_g ig{g
Vo ] *
MY Xp z Mg
"6’({;).9 "E-/({;)Ae
Y(a) *
u u
M X,(a) M(a)
So Ta T
[ ,
M7 Qu MY,

In the diagram, j = o, ,[We (ME’M]D" , and h and k are its images under the /*

2151n our definition of tree embeddings on plus trees, we allowed the possibility that G is not of plus
type, and H = t((xG)f In this case, e(H) = 1¢(€(G)) + 1.
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embeddings. We are assuming for definiteness that &/ dropped once on (v(at), B]u,
at its step from 0 to &. The maps j, h, and k are defined only on initial segments
of the models displayed, but all are defined on the image of J in that model.

Let L = @g(J) and P = yg(K). Letalso N = i(K) = k~'(P). By the commuta-
tivity of the left column in the diagram, it is enough to see that the Dg-induced
strategy of P pulls back under k0,4 g o 7o to the Cq-induced strategy of L. The

following claims show this. Put Y = in’{(;) 8 (Xo(a))-

Claim 1. Q(Dg,Y, %} 15, )v = (D, Xp, 7. mﬂ)gg.

Proof. This follows at once from Lemma 4.8.8. O

*

Claim 2. Q(D‘,((X),Xv(a),z = _Q‘(]D)ﬁ’y7 Zli{‘ )iv(a)ﬁ_

Zt* rv(oc)+1) [B+1

Proof. Let w = izv”(;) B Because X* has strong hull condensation, it is pullback con-
sistent, s0 X = (I TB+1)H' But Q(Dg,Y, %}, m+1)’r = Q(Dy (), Xy (a)s (X erl)”)
g

by 5.1.3.

o+1)

Claim 3. Q(Cq, Qq, X Lo+l

) = Q(Dv(a)vxv(a)aza* [v(or)+1 )ra'

Proof: Since £* has strong hull condensation, X7, . | = (X ()41 ). We can
therefore apply Corollary 5.1.3 again. (]
Let A = Q(Dg, Xp,%;,. m_s_l)p. The claims imply that Q(Cq, Qo, X5 [oc+l)L

is the pullback of A under ko ibz;) O ras and hence that X ; is the pullback

v

of A under ko izf(;> pOra® Qo By commutativity, X7 ; is the pullback of A
under yp o il‘f( ap O Sa- But this means that it is the pullback of X5 1) x under
i% o) p O Sats A desired.

This completes the proof of Theorem 7.5.1.

7.6. Pure extender pairs

We have shown that if £* is a strongly unique iteration strategy for some coarse
premouse, then the iteration strategies X for premice that it induces via PFS
constructions are internally lift consistent, quasi-normalize well, and have strong
hull condensation. It seems that all of the nice behavior of iteration strategies one
could wish for follows from these properties.?!® One explanation for that is that
they imply that ¥ can be compared with other such strategies. Because of this, the
following is one of our central definitions.

DEFINITION 7.6.1. (P,XY) is a pure extender pair with scope Hg iff

216Byt see Remark 7.6.11 below.
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(1) Pis a pfs premouse of type 1, and P € Hg,

(2) X isacomplete (o, d) iteration strategy for P, and

(3) X quasi-normalizes well, has strong hull condensation, and is internally lift
consistent.

(P,X) is strongly stable iff P is strongly stable.

We have required that P be of type 1 because it simplifies some statements, and
we do not need greater generality.

We are only interested in the case that X is absolutely definable. In the most
important context, P is countable, X has scope Hy,, and its absolute definability
is witnessed by membership in a model of AD™. At other times we are working
under hypotheses that allow us to reach something close to this AD™" context in a
generic extension.

It would be more natural to require that an iteration strategy with scope Hg be a
(8, 0)-strategy, but then our existence proof for pure extender pairs would need a
version of Theorem 7.4.1 that applies to normalizations of infinite stacks.?!” There
is such a theorem, but it is not needed for the analysis of HOD in models of AD™,
so we have elected not to go into it in this book. 2!8

The following theorem summarizes much of our work so far.

THEOREM 7.6.2. Let ¢ = (P,¢,0,C,S) be a conversion stage, and suppose
that ©* is a strongly unique (®,8) iteration strategy for (S,€,w® FC), and let
Y =Q(c,X*); then (P,X) is a pure extender pair with scope Hg.

PROOF. This follows at once from 5.4.5,7.2.9, 7.4.1, and 7.5.1. -

It follows immediately from the definitions that any iterate of a pure extender
pair is also a pure extender pair. That is, if (P,X) is a pure extender pair with scope
Hg, and s is a P-stack by X with last model Q, then (Q,X;) is a pure extender pair
with scope Hs. We have already in effect proved another useful basic fact, namely,
that elementary submodels of pure extender pairs are pure extender pairs. More
precisely,

LEMMA 7.6.3. Let (M,Q) be a pure extender pair with scope Hg, and let
7: N — M be nearly elementary, where N is a pfs premouse; then (N,Q") is a
pure extender pair with scope Hg.

PROOF. Clearly, Q7 is a complete iteration strategy for N with scope Hg. Q"
normalizes well by 7.1.6, and has strong hull condensation by 7.1.11. Similar
calculations show that internal lift consistency pulls back under 7. .

217The comparison proof only needs to deal with stacks of length 2, because by 7.6.5 the action of
¥ on infinite stacks is determined by its action on single A-separated trees. For the existence proof,
one might try to quote the results of Schlutzenberg in [54] on strategy extension, but there seems to be
no way to show that the extended strategies are pushforward consistent if they are constructed by that
method.

218See [54] and [59].
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Another elementary fact is

LEMMA 7.6.4. Let (M,Q) be a pure extender pair; then

(1) Q is pullback consistent, and
(2) if s is a stack by Q and P AN I M. (s), then (s n)p = Q4 p.

PROOF. We proved this in Lemma 7.1.10. -

Concerning pairs with scope going beyond HC, the following lemmas will be
useful. The first says that the strategy restricted to countable A-separated trees
determines the strategy on all trees.

LEMMA 7.6.5. Let (P,X) and (P,A) be pure extender pairs with scope Hg, and
suppose that ¥ and A agree on countable A-separated plus trees; then ¥ = A.

PROOF. The two strategies are internally lift consistent, so they are determined
by their action on finite, maximal stacks of plus trees. They quasi-normalize
well, so in fact they are determined by their action on single plus trees. Since
T is a psuedo-hull of its A-separation 7P and the strategies have strong hull
condensation, they are determined by their action on A-separated trees.

Suppose then we have a A-separated tree 7 of limit length by both ¥ and A,
with 2(7) = b and A(T) = ¢, and b # c. Let H be countable and transitive, and

n.H—YV,

be elementary, with y large and everything relevant in ran(r). Let P, T,b,¢in H
be the collapses of P,7,b,c. So b # ¢. Letting

U=nT,

it is easy to see that /b is a pseudo-hull of 7"b. (For example, the relevant
u-map is just 7 [1h(l/).) Similarly, &~ ¢ is a pseudo-hull of 7" c. But by strong
hull condensation, /b is by £ and U "¢ is by A, so b = € because the strategies
agree on countable A-separated trees. This is a contradiction. -

Remark 7.6.6. Assuming AD™, if (P,X) is a pure extender pair with scope HC,
then X is also determined by its action on countable A-tight normal trees. The
proof here involves strategy comparison.

The reader should compare the following lemma to Proposition 2.7.13.

LEMMA 7.6.7. Let (P,X) be a pure extender pair with scope Hg, and let j: V —
M be elementary, where M is transitive and crit(j) > |P|; then j(¥) and X agree
on all trees in j(Hg) NHg.

PROOF. Otherwise we have a plus tree 7 with distinct cofinal branches b and
c such that 7~ b is by L and 7 c is by j(Z). As in the proof of the last lemma,
this gives us a countable plus tree U/ on P with distinct cofinal branches b and ¢
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such that U b is a pseudo-hull of 7~ b and U ¢ is a pseudo-hull of 7 c. Thus
X(U) = b. But since U is countable, and M is wellfounded,

M =U""cis a pseudo-hull of 7 c.

Thus j(X)(U) = ¢. But U is countable, hence fixed by j, so Z(U) = ¢, a contradic-
tion. -

Returning to regularity properties, let us consider strategy coherence. Let (P,X)
be a pure extender pair, 7" a plus tree by X, and N I M7 and N < M; Strategy
coherence requires that X7 4115 = X7 g41- In Theorem 5.2.5 we proved an
approximation to this directly in the case that X is induced by a strongly unique X*.
We can prove the same approximation abstractly for pure extender pairs, using the
fact that they quasi-normalize well.

LEMMA 7.6.8. Let (P,X) be a pure extender pair, let T be a plus tree on P by
Y and let N be an initial segment of its last model. Let v+ 1 <1h(T), and suppose
that either
(a) o(N) < A(E]), or
(b) E] is of plus type, and o(N) < 1h(E]);

then X1 1y11n = X7 N.

PROOF. Let R=M] and § = MZ.

0= R|[Ih(E]) if E] is of plus type,
"\ RIAE])  otherwise.

Since N 10, it is enough to show that X741 09 = X7 o, for then 7.6.4(b) implies
that X7y 1y = X7 n. So let U be a plus tree of limit length on Q that is by both
strategies.

Our plan is to show that (7 [ v+ 1,U) and (7 ,U/) have the same quasi-normalization.
Unfortunately, this does not make literal sense, because U/ is on Q, not R or S, and
we have not defined quasi-normalization for non-maximal stacks. So first we lift U/
to trees on R and S.

Let Uy and U be the lifts of &/ to R and S under the identity map, so that
(T Iv+1,Up) and (T ,U;) are by X by internal lift consistency. By internal lift
consistency, it is enough to show that X741 z(Uo) = X7 s(U; ). We shall show

@ V(T v+ 1,Uy) =V (T,U), and

(b) for any cofinal branch b of U, br(b, T [ v+ 1,Uy) = br(b, T, U,).
This is enough: letting a =X(V (T ,U)), there is a unique b such that br(b, T,U; ) =
a, moreover X1 s(U; ) = b because X quasi-normalizes well. But b= X7y, r(Uo)
by (a) and (b), as desired.

Since o(Q) is a regular cardinal in Mg and o(Q) < p~(S), MY < MY for all
o and the lift map is the identity. Thus U] uses the same extenders as {/. Using
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this it is easy to see that V(7 ,U;) = V(T [ v +2,U;). So we may assume
Ih(7)=v+2.

For & < Th(U), let W be the &-th tree in the meta-tree associated to V(7 [ v +
1,Up) and Vg be the &-th tree in the meta-tree associated to V(7 ,U;). So Wy =
Tiv+landVy=T =T [v+2. For§ <y n let

@5777 N W,g — WTI
and
\ngfl : V& — Vn

be the (possibly partial) branch embeddings of the two meta-trees. Let (W) =
(&) +1and Ih(Ve) = ZH(E)+1, and let

_oaq Ve
Re =Moo
and
Ve
Se =M

be the two last models. We shall show by induction that We = V¢ 120(E) +

1, and either z!(€) = z(§) +1 or z!(§) = 2°(&). (The latter can only happen
along branches [0, ]y of Uy that have dropped.) We shall also have that ®¢ , =
We , [dom(®g ) whenever § <y 1. Let

O : Mzg" — Rg
and
Té : M?l — Sé

be the final o-maps of the two quasi-normalizations.
The lift maps from the models of I/ to those of U/ are the identity, but those to
the models of /) may not be. Let

71'3;2 M%{ _>J§ ﬂMZ{O
be this map. Thus 7 is the identity, and MY = Jy = Q. Let also
Q¢ = o¢(Je ).

As usual, if Je = Mzgo, then Q¢ = Re. We shall also maintain by induction that
Tg = Og o Mg The following diagram summarizes the situation at stage E.
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R # (0]
\ X
Re Q¢
0'5[ 0'5

Y J— 7
13 > S

1A

L3

MY ; MUI
¢ < 14

If [0, €]y NDY = 0, then the initial segments displayed are all proper. Otherwise
parts of the diagram may collapse. Our inductive hypotheses are

(T)e

() We =Ve [2°(8) +1, and 21(§) € {(£),2°(§) + 1},
(ii) For & < 1, B¢ = ¥z | dom(Pg ).
(ii1) ’L';’: = 65 ¢} 7'[&.

To prove (f)y4+1, where & = U-pred(y+ 1), we chase through the diagrams
corresponding to (f)g and (). The first thing to see is that the two meta-trees use
the same extender as their Fy. But the W system uses 0(Ey") = 60 my(EY), and
the )V system uses T¢ (Ez}fl‘) =T (Ei,/’) These are the same by ().

Let F = O'y(EZ}f{O) = ’L'y(EZ}f{‘ ). The next thing to see is that
% (Vy, F) = oo (Wy, F).
Here is precisely where we use the restrictions on E that we have imposed.
(Without them, this could fail at y=0.) If V, = W, we are done. Otherwise,
Vy =W, (G), where
G =rtyois(E])
and
0, - {Ry| | }h(G) if G is of plus type
Ry||A(G) otherwise.

F is on the sequence of Qy, so ay(Vy,F) < 2°(y).2! This implies o(Vy,F) =

oo(Wy, F), as desired.
The remainder of the proof of (f)y41 consists of calculations like those we

29Without our hypotheses, g (Vy, F) = 2°(y) + 1 would be possible.
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have done several times already, so we omit it. (1), for A a limit is a routine
consequence of the commutativity clauses in (f)g for & < 4. R

As a corollary we get strategy coherence within A-separated trees.

COROLLARY 7.6.9. Let (P,X) be a pure extender pair. Suppose that s (T ) and
$(U) are stacks by ¥, and N is an initial segment of both last models. Suppose
that T and U are A-separated; then Lo~ mN =Z )N

In light of Theorem 5.2.5, we could have made this approximation to strategy
coherence part of the definition of pure extender pair without affecting the main
results of the book.

We shall show in the next chapter that pure extender pairs can be compared.
Here is some terminology related to the comparison process. It is appropriate to
the comparison of strongly stable, type 1 pairs.

DEFINITION 7.6.10. Let (P,X) and (Q,¥) be pure extender pairs with common
scope Hp; then

(@) (PX)<(Q,W)iff PIQand X = ¥p.

(b) (P.Z)<(Q,¥)iff P<iQ and £ = ¥p.

(c) (PX) iterates past (Q,¥) iff there is a A-separated tree 7 on P by X with
last model R such that (Q,¥) < (R,Z7 g). If P-to-R drops, or if Q <R, then
we say that (P,X) iterates strictly past (Q,¥). If Q = R and P-to-R does not
drop, then we say (P,X) iterates to (Q,¥V).

Note that if (P,X) iterates past (Q,¥), then the A-separated tree 7 on P witness-
ing this is determined completely by Q and X: it comes from iterating away least
extender disagreements, with the Q side never moving.?*’ No strategy disagree-
ments show up along the way, because there are no strategy disagreements at the
end, and (P,X) is strategy coherent.

We shall show that assuming AD™, for any two strongly stable, type 1 pairs
(P,X) and (Q,¥) with scope HC, there is a pair (R, Q) such that either

(1) (P,X) iterates to (R,Q), and (Q,P) iterates past (R,Q), or

(ii) (Q,?) iterates to (R,), and (P,X) iterates past (R, Q).
We believe that it is possible to compare pairs are not strongly stable or not of type
1, but the possible termination patterns involve some complexity that we do not
need to go into.??!

Remark 7.6.11. There is one further property of the pure extender pairs that are
produced in PFS constructions done in a strongly uniquely iterable background
universe that, unlike the ones described above, does not seem to follow abstractly
(even under AD™) from the definition. Suppose that (P,X) is a pure extender pair
and i: P — Qs an iteration map by X. Suppose that 7 is a plus tree by X, and

2201n the AD™ context, 7 can also be taken to be A-tight and normal.
221See Theorem 4.6.12.
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that 7 € P. Must (T be by Xy 0? This is true when (P,X) is produced by a
PES construction as above, but it does not seem to follow abstractly.222 We shall
eventually summarize the proper general form of this property by saying that X is
pushforward consistent.***1t is crucial for a theory of strategy mice.

If we assume AD™ and let (P,X) be a pure extender pair with scope HC, then
by the comparison theorem of the next chapter, there is an iterate (Q,A) of (P,X)
such that (Q,A) is pushforward consistent. But this does not seem to imply that
(P,Y) itself has the property.

222Pyllback consistency implies that the pushforward i/T of T is by Xy o, but 7 is only a
psuedo-hull of  (T), possibly a proper one.

223That more general form states that if X,¥ € M, and X C £ and Y NX = 0, then i/ (X) C X4 and
“(Y)NZy = 0. In the case of strategy mice, we can take X and Y to be relative complements.






Chapter 8

COMPARING ITERATION STRATEGIES

The standard Comparison Theorem of inner model theory applies to mice. One
statement of it is

THEOREM 8.0.12. Let P and Q be premice of size < 0, and suppose ¥ and ¥
are 0" + 1-iteration strategies for P and Q respectively; then there are normal
trees by ¥ and U by ¥ of size 0, with last models R and S, such that either

(a) R4S, and P-to-R does not drop, or
(b) SR, and Q-to-S does not drop.

This theorem, and the comparison process behind it, are the main engines driving
inner model theory, but they have a clear defect. We haven’t really compared the
data. We were given (P,X) and (Q,¥), and we only compared P with Q. Whether
it is the P-side or the Q-side that comes out shorter could depend on which iteration
strategies for P and Q we use. (See Proposition 9.3.11.)

The standard way to to avoid this problem when it might arise is to make
assumptions that imply P and Q can have at most one iteration strategy. This is
good enough for practical purposes in many situations, but it is unnatural, and leads
to somewhat awkward devices like the Weak Dodd-Jensen Lemma. The better
response would be to strengthen the Comparison Theorem by finding a process
which will compare all the data.

In this chapter, we shall do that. The resulting comparison process is the key
to developing the theory of a class of strategy mice sufficiently rich to analyze
HOD in models of ADg+ NLE. This theory is the practical payoff for the work
we do here, but one can see without knowing anything about HOD in models of
determinacy that we are filling a gap in basic inner model theory.

We shall prove the main comparison theorem for strongly stable pure extender
pairs (P,X). We believe that it is possible to compare pairs (P,X) that are not
strongly stable or not of type 1, but this adds some complexity 22, and we don’t
need to do it in this book.?>> One can probably compare premouse pairs in ms-
indexing in a very similar way. Once strategy mouse pairs have been properly

224See Theorem 4.6.12.
22584.10 shows how to avoid such comparisons in the one place they seem relevant at first.
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defined, the comparison argument of this chapter will apply to them with little
change.

What really matters is that X quasi-normalizes well, is internally lift consistent,
and has strong hull condensation. This good behavior of X is used heavily in the
comparison argument, and it is unlikely that one could drop it as a hypothesis. It
does not seem to be a restrictive hypothesis; for example, every iterable P has an
iteration strategy with these properties. (See Proposition 9.3.10.)

By Lemma 7.6.5, iteration strategies with this good behavior are determined by
their action on A-separated trees. We shall make strong use of that in this chapter.
In the A-separated case, the agreement of maps in conversion systems and tree
embeddings is better, in that it is tied to the lengths of the extenders that have been
used up to some point, rather than to their A’s. A A-separated tree is determined
by its last model, together with the choice of branches at limit ordinals. If 7 is
A-separated, then

T-pred(a + 1) = least B s.t. dom(E] ) < MZ;—
= least 8 s.t. dom(E ) <o /\/l[}r

V(T,U) =W(T,U) when T is A-separated, and if U/ is also A-separated, then
V(T,U) is A-separated. None of this is true for plus trees in general. For that
reason, when we compare (P,X) with (Q,A), what we shall compare directly are
the actions of X and A on stacks of A-separated trees.??®

The first three sections contain some preliminary lemmas. The last contains the
comparison argument.

8.1. Iterating into a backgrounded premouse

The idea that if one compares a countable mouse P with some level Mi(,{ cofa
background construction, then only the P side moves, goes back to Baldwin and
Mitchell, and in some sense even to Kunen. The proof is very much like the proof
one learns now that least disagreement comparisons terminate. The Skolem-hull-
of-V embedding is replaced by by some background extender embedding, and one
gets thereby that no backgrounded extender ever particpates in a disagreement.

The argument has been used many times at the level of Woodin cardinals (cf.
[43, Theorem 2.5] for example), but we know of no exposition in print of the very
simple form we need in this book. So we give one here. We also check that the
iteration tree on P can be taken to be A-separated.??’

We need to take some care when comparing pfs premice by this method, however.
All Mg « have type 1, but even if we start with a P of type 1, nondropping iterates

2201f T is merely normal, it is possible that crit(E] ) = i(EBT), in which case the second equality
dislpayed fails.
2278ee [55] for a variation on the method.
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of it could have type 2. The net effect of this is that P could iterate to Ult(MS oD),

for some order zero D on the sequence of Mg > and not to any actual level of C.
Fortunately, we can arrange that this awkward case does not arise by restricting
ourselves to strongly stable P.??8

Recall here that M is strongly stable iff there is no M-total extender E on the

M-sequence such that crit(E) = n%M). By Lemma 4.4.6, if M is a strongly stable

type 1 pfs premouse, and 7 is a plus tree on M, then all M, are type 1 pfs premice,
and all branch embeddings ig; p are elementary and exact.

DEFINITION 8.1.1. Let M and P be premice, and let X be an iteration strategy
for P; then

(a) (PX) iterates past M iff there is a A-separated iteration tree 7 by X on P
with last model Q such that M < Q,

(b) (P,X) iterates to M iff there are 7 and Q as in (a), and moreover, M = Q, and
the branch P-to-Q of 7 does not drop.

(c) (P,X) iterates strictly past M iff it iterates past M, but not to M.

LEMMA 8.1.2. (Only the mouse moves.) Let C be a PFS construction such that
FC C Vs, where § is inaccessible. Suppose that all extenders in F© have critical
point > K, and let P be a strongly stable pfs premouse such that |P| < k. Let ¥ be
a 8-iteration strategy for P, and suppose that whenever E* € FC, then

ip+ (L) C X

Let M € 1ev(C), and suppose that (P,X) iterates strictly past N for all N <¢ M;
then (P,X) iterates past M.

PROOF. We deal first with the case that M is a successor level of C. This is the
place where we use that M is strongly stable.

CLAIM 1. For any N € lev(C), if (P,X) iterates strictly past N, then (P,¥)
iterates past its core €(N).

PROOF. Let 7 with last model Q witness that (P, X) iterates strictly past N. If
N and €(N) are the same except for their distinguished soundness degrees, then T
witnesses that (P,X) iterates past €(N) (perhaps not strictly), as desired. Otherwise
N is not sound. Because P is strongly stable, Q has type 1, and thus its proper
initial segments are sound (not just almost sound). Thus Q = N. Lemma 4.4.6
then inplies that 7~ dropped on the way to Q, and €(N) = ME’T for some & on the
main branch of 7. This implies that 7 [ £ + 1 witnesses that (P,X) iterates past
¢(N). -

2281n the solidity/universality proof for strategy mice, we may need to compare a type 1 M that is not
strongly stable with the levels of some construction C. But in that case, we can simply replace M with
N = Ulty (€4 (M), D), where D is the order zero measure of M on n,’(”. It is easy to see that 77/1(\] = n?”,
and N is a strongly stable premouse of type 1. This is what we did in §4.10.
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Next is the case that it is the w-th level after some point.

CLAIM 2. Ifv = u+1, and (P,X) iterates strictly past My x for all k < o; then
(P,X) iterates past My o.

PROOF. The literal premouse M .k s eventually constant as k — ®. Thus
there is a fixed A-separated tree 7 of minimal length witnessing that (P,X) iterates
strictly past M, ; for all k < w. Letting Q be the last model of 7, we have My, ; <1Q
for all sufficiently large k, and thus M, 110 < Q. =

Next we have the case that M = Mg.o for some limit ordinal v, and M is passive.

CLAIM 3. If v is a limit ordinal, and (P,X) iterates strictly past My ; for all
N <V, and My is passive, then (P,X) iterates past My o.

PROOF. This is immediate. =

By the claims, we may assume that M = M, ¢ is active, and (P,X) iterates past
M=<V. Let E be the last extender of M, and let E* = F\(,C be the background extender
for E, and let 7 be the A-separated tree by ¥ on P of minimal length iterating it
past M||Ih(E) = M<V. Since T is normal, it is completely determined by M<V
and X: for each + 1 < 1h(T), E] = F*, where F is on the sequence of M}
and M7 ||1h(F) = M<Y|Ih(F). Since the lemma is failing, E gets used in the
comparison of P with M. So setting @ + 1 =1h(7), we have that

(i) M|[Ih(E) = MZ||Ih(E),

(ii) M|Ih(E) # ML |Ih(E), and

(iii) forall & < a, lh(Eg ) < Ih(E).
Let x =crit(E), let ig=: V — N be the canonical embedding, and let &/ = ig=(T).
Note that because |P| < k and K is a (measurable) cardinal, k¥ < o.. Let A = ig« (k).

CLAIM 4. k <y A, [k, A)y does not drop, and i+ | M = ii[,/l'

PROOF. If B <7 k, then B = ig+(B) <y A. Since [0,4)y is a closed set of
ordinals, k <y A. Since [0, k)7 has only finitely many drops, these are the same as
the drops of [0,4)y, so [k, 1)y does not drop. Finally, if x € M7, then we have
B <r x and ¥ such that iEK()E) = x. But then

as desired. =

CLAIMS. Uisby L, andUa+1="T.
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PROOF. U is by ig+(X). Butig+(X) C X, soU is by . Soin N, U is obtained
by iterating P, using X, so as to remove least disagreements with ig« (M). Since E*
certifies E, we have ig+(M)|1h(E) = Ult(M|1h(E),E)||1h(E) = M||1h(E). Thus
the process that produces U is the same as the process that produced 7, until

extenders with length > Ih(E) are used, so T =U [ o+ 1. -
Now let G = Ef:”, where ¥ = U-pred(§ +1) and £ +1 <y A. G is an initial

segment of the extender of iZ’K‘ 5, because its generators (including i(G)) are not
moved, so by Claim 4, G is C(;mpatible with E. Since G has plus type, G cannot
be a proper initial segment of E, and since E is not of plus type, G # E. Thus E
is an initial segment of G~. But then E is on the sequence of ./\/llg and 1h(E) <
1h(G™). Since 1h(E) <1h(G™), a < &, and since Ih(EY) > 1h(E), E must be on
the sequence of MY = M. But this means that E was not part of the least
disagreement between /\/lg and M, contradiction. -

Remark 8.1.3. The proof also shows that there is a A-tight normal tree V
whereby (P,X) iterates past M.

We can use Lemma 8.1.2 to show that the output of a maximal construction
done below a Woodin cardinal is universal for mice of size strictly less than its
additivity. This argument has probably been known since the late 1980s, but we
can find no appropriate reference. A stronger version involving partial background
extenders and universality with respect to weasels traces back to the paper [29] by
Mitchell and Schindler. The author adapted the stronger version to full background
constructions, where the Woodin cardinal becomes necessary. See [63, Lemma
11.1] and [36].

THEOREM 8.1.4. (Universality at a Woodin cardinal) Suppose that C is a PFS
construction, and 8 is Woodin, as witnessed by extenders in FC. Let P be a
strongly stable, type 1 pfs premouse such that |P| < crit(E) for all E € FC, and
let ¥ be a 8 + 1-iteration strategy for P. Suppose that whenever E* € FC, we have

ip+ (L) CX.
Then

(a) If v < & and C is not good at (v,k), then (P,X) iterates to M;‘f_’j Sfor some

(M,J) <tex (v, ).
(b) IfIh(C) =6, then (P,X) iterates to some M;(ijfor some 1M < 4.

Remark 8.1.5. The theorem is stated in such a way that there is no iterability of
the background universe assumed.

PROOF. We prove (a) first. Suppose C is not good at (v, k). If there is an
(M,J) <tex (V,k) such that (P,X) does not iterate strictly past My ;, then for the
lexicographically least such (17, j), (P,X) iterates to My, ;, by 8.1.2, so we are done.
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Thus we may assume (P,X) iterates strictly past My, ; for all (1, j) <iex (V,k). By
Lemma 8.1.2, we get that (P, L) iterates past M x.

P is iterable, so its iterates are pfs premice. It follows that My ; is parameter
and projectum solid. Let us check the bicephalus clause in goodness. Let F and G
be such that (M<", F,G) is a nontrivial bicephalus, and F* and G* be background
certificates for F and G. Let T be the shortest tree by which (P,X) iterates past
My o||1h(F) = My o||1h(G), and let oo+ 1 = 1h(7). We now simply apply the
proof of Lemma 8.1.2 to both F and G, and it shows that both of them are on the
sequence of Mg. Thus F = G, contradiction.

Finally, suppose Mi(/:,o = (M<Y,F) is active, and F* = FC. We must see that
F* backgrounds F*. This too is implicit in the proof of 8.1.2. Let 7 be the
A-separated tree whereby (P,X) iterates past My o. Let U = ip+(T), and let G
be the first extender used in the branch (crit(F*), A (F*))y. We showed that G is
compatible with F*, so F* backgrounds G. But G has plus type and G~ = F, so
G = F*. (G is the extender of G~ followed by i;- (D) and F is the extender of
F followed by ir (D), where D is the order zero measure of My o on crit(F).)

This proves (a). For (b), suppose toward contradiction that (P,Y) iterates past
M, forall v < 6 and k < @. Let

M= (M<5)(C

be the unique passive premouse such that o(M) = & and for all £ < 8, M|§ IMS,
for all sufficiently large o < §. Clearly, (P,X) iterates past M. Let 7 on P be the
A-separated tree by X that witnesses this. We have that h(7)=0+1, 6(7) =9,
and

M<aM],

because 8 is inaccessible. Let b =[0,8)r, and for § < 8, let f(f) =min(b— (B +
1)). Since & is F©-Woodin, we can find a nice extender F* € FC with critical
point ¢ and length 1 such that for j = ip«

() ffa < o, and j(f)(a) <,

) M|In = j(M)||n, and

() j(b)ynm =bnNn.
Let T4 1 <7 & be such that o = T-pred(t+ 1), and let F = E7 . By (1) and (3),
T+1=j(f)() is the first point in j(b) above . Lettingf = j(T) and A = j(a),
we have as usual that M} = MY, and

JITME =15,
But in fact 7 | 7 =U | n by (2) and the fact that j(X) C X. So F = EY, and
o <y t+1 <y A € j(b), which implies that F* is a background certificate for F.
Let v be the least stage of C such that M||Ih(F) <M<". Because Ih(F) is

a cardinal of M, we must have M<¥ = M||1h(F). But then M, o = (M<",F),
because our construction is maximal. After (v,0) the levels of C do not project
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strictly below Ag, because M < MZ;. This implies that F is on the M-sequence,
contrary to its being used in 7. -

8.2. Extending tree embeddings

‘We shall prove an elementary lemma on the extendibility of tree embeddings.
Its proof uses

PROPOSITION 8.2.1. Let S be a A-separated iteration tree, let & <g 1, and

suppose that P < M3, but P 41 M3 whenever ¢ <g 8. Suppose also that P €
ran(i§ ). Let

o = least y such that P< Mf
= least 'y such that o(P) <1h(E}) or y =,

then o € [0,M]s, and

o = least y € [0,1n]s such that o(P) < crit(i‘;n) ory=n.
(We allow & = n, with the understanding is s is the identity.)

PROOF. By normality, for any y < n, P <My iff Ih(EJ) > o(P).?* So the
first two characterizations of ¢ are equivalent. Let 3 be the least y in [0,7]s
such that o(P) < crit(i‘;n) or y=1. Clearly, P < Mg, so a < 3. We have that
o(P) > 1h(ES) for all o < &, and hence by normality, for all ¢ <g § whatsoever.
Sod <a,and f €[5,n]s.

Suppose o < fB; then o(P) < lh(ES), so o(P) < lh(E5) where o is least
such that « < ¢ and 6 + 1 <g 8. But ES has plus type and P € ran(i‘g_n), SO
o(P) <Ih(EZ) implies o(P) < crit(E] ). Thus P4 M3 where y = U-pred(c +1),
contrary to our definition of 3. Thus a = 3, as desired. -

Remark 8.2.2. The lemma does need the hypothesis that S is A-separated. Oth-
erwise it is possible that the least y € [0, n]s such that o(P) < crit(z“;n) ory=n
is & + 1, rather than o. In that case, E5 is not of plus type, and A(E5) < o(P) <
lh(Eg). This would cause trouble in various arguments to follow.

The simpler agreement pattern in A-separated trees will be useful in this chapter.
Recall that when E has plus type, €(E) =1h(E) =1h(E™). If T is A-separated,
then

e =sup{Ih(E]) | & <}
= sup{Ih(E] ) | & <r a},

229Recall here our conventions that Ih(E) = Ih(E*), and if P <IN, then o(P) is not active in N.
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moreover
T-pred(ct+ 1) = least B s.t. crit(E] ) < /AI(EE)
= least B s.t. crit(E] ) < lh(Eg_)
= least f s.t. dom(E]) SIMZ;
= least B s.t. dom(E ) <o MZ;

Moreover, a A-separated tree is determined by its last model, together with the
choice of branches at limit ordinals.
On extending tree embeddings, we have

LEMMA 8.2.3. Let ® = (u,v,(sg | B < a),(tg | B < )) be a tree embedding
of T into U, where T and U are A-separated, and let F be a plus extender on
the extended MY, -sequence such that 1h(F) > lh(EﬁT) forall B < a. Let T™(F)
be the unique putative A-separated tree S extending T such that F = Eg . Let
& <1h(U); then the following are equivalent:

(1) There is a tree embedding ¥ of T (F) into U such that ® C ¥ and u” (a) =
&
2) v(a) <y &, andEé” = i%a)é 05g(F).
Moreover, there is at most one such V.

PROOF. It is easy to see from Definition 6.4.1 that (1) implies (2). We show
that (2) implies (1). Let us set My = M7 and N, = MY.

Suppose that & witnesses that (2) holds. Set u(a) = & and 74 = ilvj(a)‘é 0Sg.
Clearly, '

T

T
o ZSaFSa,

ta | €
and
crit(izf(a)i) > efza).
Let G =t4(F) and v(a +1) = & + 1. We shall define 541 so that ¥ = (u, v, (sg |
B<a+1),(tg | B <a))isatreec embedding of S = T (F) into U.
Let u = crit(F) and p* = crit(G). Let
— — T
B =S-pred(a+1) = leastn s.t. 4 <€, 4,

and

B*=U-pred(§ +1) = leastn s.t. p* < el .
We have that dom(F) = M|y, where y = (u*)Me/™(F) "and dom(G) = Nelv,

where y* = (u*T)VelMG)  Moreover, 1, (dom(F)) = dom(G). Because our trees
are A-separated,

B = least 1 s.t. dom(F) <IMn,
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and

B* = least n s.t. dom(G) < Ny,.

dom(F) and dom(G) are passive levels in Mg and Ng-. Suppose first that § < o.
We then have that < A, so

dom(G) =t (dom(F))
sg(dom(F))
tg(dom(F))
18).u(p) © 5p (dom(F)),

where the last equalities hold because u < iEﬁT Thus dom(G) is in the range of

ilvj(ﬁ)_u(ﬁ). Proposition 8.2.1, with 6 = v(f), n = u(f), and dom(G) as its P then
tells us that

B* =least n € [v(B),u(B)]u such that critil;M(B) > ilvl(ﬁ),n osg(u).

Let Q be the first level of Mg beyond dom(F') that projects to or below t, and
let Q" be the first level of Ng« beyond dom(G) that projects to or below JTRIREIN
Mg = Ult(Q,F) and Ng ;. = Ult(Q*, G). Let

U
T = (lv(ﬁ),ﬁ* OSﬁ)‘
We have that
m[dom(F) =tg [P =5q [P =tq [dom(F).
Letting k = k(Q), we let

21 ([0, £12) = ta(a), m(£)]27,
and

Sq+1 = completion of s, T

as we are required to do by Definition 6.4.1. Since (7,74): (Q,F) — (Q*,G), the
Shift Lemma tells us that sy as defined is well-defined, nearly elementary, and
agrees with #, as required in a tree embedding. That sq1 is elementary follows
from

CLAIM 8.2.4. (m,tg): (Q,F) = (Q*,G).

PROOF. Suppose first that § = a. We have the diagram

230The projecta are strictly below g and u* by projectum solidity.
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Ng-

1
Mo =7 Ny(ar)

Here s is defined on all of M, but © may only be defined on Q, and ¢, may
only be defined on My |1h(F). We have My |1h(F) < Q because 7T is maximal. Let
H =n(F)and a C g(F) be finite. F, is ZIQ in F and a, and 7 maps this definition
to a definition of Hy(,) over Q*. Thus it is enough to see that Hy(,) = G, (4)- But
g+ u(a)(H) = G and i« ;o) (7(a)) = ta (@), so this is indeed the case.

Suppose next that § < o and F is very close to My. Let A = i(Eg—), and let
a C g(F) be finite. We have that F, € Mg|A, and 1o (F,) = Gy, (q) because g is
elementary. But n(F,) = t4(F,) because 7 [dom(F) = t4 [dom(F), so we are
done.

Finally, suppose 8 < o and F is not very close to My. By the Closeness
Lemma, ¢ is a special node in 7 (F), so B <r a, and fixing 7 least in (§, |7,
DT N(n,alr =0, M;; 4Q, M;; has a last extender H, and setting

i=i goiy’,
we have
i(H=G
and

dom(H) < crit(i).
SUBCLAIM 8.2.4.1. B* <y v(N).
PROOF. Since B <r a, v(B) <y v(o) <y u(cx). Let
K= Sﬁ (H),
then
_ U
G = by(p) u(a (K-
Thus dom(G) € ran(iy,(g) u(a))- By Proposition 8.2.1

B* = least & <y u(a) s.t. crit(i?’u(a)) > 1,(g),¢ (dom(K)).
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But let
P= dom(E;rfl),
u
= dom(Eu(nq)),
and
Y= U-pred(v(n)).
Then dom(H) <]P<]M;;, so dom(K) <sp (P)and P* = v(B)u(e) (Sﬁ (P)) e ran(iv(ﬁ),u(m).
It follows from 8.2.1 that
y= least & <y u(a) s.t. crit(fg’u(a)) > Byp).& (55 (P))-
Thus B* <y 7. But ¥ <y v(n), so we have our subclaim. -
Here is a diagram of the situation. Let S = 7(Mp).
/ <a)
Vot
iT
n.a / (n)
My s—— N[;*
M 8)
SUBCLAIM 8.2.4.2. u(a) is special in U.
PROOF. Let ¥ be least such that f* <y v <y v(n), and let
j = il';ll,u(a) © i?l/{
We claim that § = M;‘,’u and DY N (y,u(a)]y = 0. This is true because 7(H ) is the
last extender of S, j(w(H)) = G, and p(S) < dom(w(H)) < crit(j) < o(S). Thus
the first extender used in j forces a drop at least as far as to S, but since j maps
the last extender of S to G, the drop cannot be further than S, and there can be no
further drops at all in (y,u(o]y.
To finsih the proof of the subclaim, we must show that if y <y & +1 <y u(@),
—®
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then Elg‘ is very close to Mg and to Mgfjl. This follows from the proof of 4.5.8(a).

If not, then & is special in U, so Mg’fl has a last extender with the same critical

point as Eé’ But last extender of Mgfl has the same critical point as w(H), and

this is strictly less than crit(EZg’ ). 4

Now let I = I,I gandJ = I;’M( @) be the branch extenders of i and j respectively.
By Lemma 4.5.8(b), I is very close to Q and J is very close to Q*. By Lemma
4.5.16

<7t7t06> : (Qal) ﬁ) (Q*a‘])

But then for any finite ¢ C £(F), I. and H constitute a good code of F. over M, .

7 moves this code to (1) = J;, () and 7(H ), which together code G, () over Q.
Thus

(m,tq): (Q,F) = (Q*,G),

as required by Claim 8.2.4. —

Let us check that v preserves tree order. The new case involves F' and G; we
must see that Y <7 a+ 1 iff v(y) <y £+ 1. Butif y <7 oc+ 1, then y <7 f3, so
v(y) <y v(B) <u B* <u & + 1. Conversely, if v(y) <y & + 1, then v(y) <y B*.
Butran(v) N (v(B),u(B)] =0, so v(y) <u v(B),so y <r B.

The case that & = f3 is similar. In this case, we apply the proposition to dom(G)
with § =v(B) and n = &. This gives us that

B* =least n € [v(B),&]y such that critig,g > izf(ﬁ)yn osg(u).

We leave the remaining details to the reader. -

U

Remark 8.2.5. The proof gives a formula for the point of application of Eu( @)

under a tree embedding of 7 into I/, namely
U-pred(u(a)+1) =least n € [v(B),u(B)]y such that
critiz,ff’u(ﬁ) > izv”(ﬁm osp (crit(E])),
where
B =T-pred(a+1).
In the course of the proof we showed

COROLLARY 8.2.6. Let @ = (u,v,(sg | B < &), {tg | B < &)) be a tree embed-
ding of T into U, where T and U are A-separated, and let F be a plus extender on
the extended MY, -sequence such that 1h(F) > lh(EﬁT) forall B < . Let

G =) ¢ °Sa(F),

and suppose lh(E,lf) < 1h(G) foralln < &. Let S and W be the unique putative
A-separated trees extending T and U | € + 1 of lengths ot + 2 and & + 2 such that
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F=E§ and G = E%/V then there is a unique tree embedding from S to W that
extends ® and maps F to G.

COROLLARY 8.2.7. Let ® = (u,v,(sg | B < o), (tg | B < &)) be a tree embed-
ding of T into U, where T and U are A-separated; then for any o,

o is special in T = u(a) is special in U.

Moreover, if B = T-pred(a+ 1) and B* = U-pred(u(a+1), and Q = M:;‘L and

o= MZ’(Z:X{)H, then setting T = ilj(ﬁ)ﬁ* osg, we have

(T,tq): (MZ’L,E;) = (M;Ez)H’EM(a))'

8.3. Resurrection embeddings as branch embeddings

We prove a technical lemma on A-separated iterations past levels of a background
construction.

Let (Py,X) be a pure extender pair with scope Hg, where 0 is inaccessible, and
let C be a PFS construction such that h(C) < § and F© C V5. Suppose that
Py is strongly stable and type 1, and |Py| < crit(E) for all E € FC. Let My =
M., fix (vo,ko) < length(C), and suppose that whenever (V,k) <oy (Vo,ko),
(Py,X) does not iterate to My ; via a A-separated tree. By Lemma 8.1.2, whenever
(v,k) <jex (Vo,ko), (Po,L) iterates past My, via a A-separated tree. Thus for
(v, k) <jex {Vo,ko), we have

Wiﬁ_yk = unique shortest A-separated tree on Py by X
with last model Q> M,, ;.

Our convention that P £ Q when Q is active and P = Q||o(Q) matters here: if My x
is passive, then o(M, ;) must be passive in the last model of W, ,.

Our technical lemma says that below (vy, ko), the resurrection embeddings of
C are captured by branch embeddings of the W; ,. Let us write Resy ;[P] for

Resw, ; [P] and o) ;[P] for O, [P].
LEMMA 8.3.1. Let (0, j) < (vo,ko), P<IMp ;,
o = least & such that M?)g’j > P
and
Mg,.j, = Rese ;[ P];
then

Wi Ha+1) =W, la+1),
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W
* 0:J0 __ ) i}
We,.jo has last model Mg = My, j,» and o Swﬂo‘.fo &, and

We
Go j[P] =1y 2 I P

Recall that if M is a premouse such that k(M) > 0, then M~ is the premouse
that is equal to M, except that k(M) = k(M) — 1.

SUBLEMMA 8.3.1.1. Suppose that My  is not k+ 1-sound. Letw: M | —
My i be the anticore embedding. Let & +1=1h(Wy ;) and & +1=1h(Wy;,);
then '

(a) W, has last model M ,

(B) Wy i1 = Wi 1(Go+1),

(¢) &ois the least ’)/SMCh that h(E, " "My > p(Myy), and
)

(d 50 <W* 51, and i& Vék =T.
o W;k . W;k
PROOF. By definition, M§1 "> M, . But My 4 is not k+ 1-sound, so M§1 =
M, . This gives (a).
By Lemma 4.4.6, the iteration W v« from Py to My must have dropped. The

last drop had to be to My 41, and it hes on the branch to M, ;. So we can fix n
such that

* *

W
My j+1 = domln 3
W*
We have that My 41 IMp " k
Letting p = p(My x), we have that M, 4| agrees with M, 4 to p Mk = ptMviet
Thus Wy, . and Wy ; use the same extenders E such that Ih(E) < p.

We claim that W5 k41 uses no extenders E such that Ih(E) > p. For if WS k1

uses E such that Ih(E) > p, then the branch Po—to—./\/lz:v'”' uses such an E, since
So+1=Th(Wy, ). Ih(E) < 0o(My k1) because Wy, .| was of minimal length.
But then p < cr1t(E) is impossible, because dom(E) C My 4.1, and My x4 is
sound. However, crit(E) < p is also impossible, since no model on the branch
[0, &] after E can project into (crit(E),1h(E)).

So we have that W, Kl = Wik & -+ 1. We have (a)—(c) of the sublemma

already. For (d), we need to see &y = 1. Since My 1 < M,«, ,E <. Suppose

toward contradiction that & < 1. We then have that o(My x11) < Ih(E, "*) be-

5
W* W*

cause My ;41 is an initial segment of both ./\/lé v and My vt Butlet 6+ 1 be

the successor of ) on the branch [0, ] of WY ;, that is, Wy, -pred(6 + 1) = 11 and
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0+1 <W* &i. Then My jy) = (M2+1)WV=’<, and so 1h(Ep ") < o(My 1) <

Ih(E 5 %), Thus 1 < &, a contradiction. =

PROOF OF LEMMA 8.3.1. We go by induction on (6, j). Suppose Lemma 8.3.1
holds for (6’, j') <iex (0, j), as well as for all Q </ P, where P I Mg ;. Let

S:AH(MGJ7P)7
where n = n(My ;,P), and

p=p ()
S is the last element of the (My ;, P) dropdown sequence. We can assume that
p < o(P), as otherwise T = identity, and all is trivial. Thus k(S) > 0.

If S <My j, then by Lemma 4.7.13(a), S = M ; for some some (6, j) <iex
(0,/). By 4.7.13(d), ogr j[S] [ P = 0p j[S] | P = 0p j[P]. So we can apply our
induction hypothesis at 6', j'. Note that Wy ; [(et+1) = Wg, , [(a+1).

Thus we may assume S = Mpg ;. So j =k(S) and j > 0. If 0g ;[S] = 09 j—1[S],
then as (6, j — 1) <jex (6, j), our induction hypothesis carries the day. Otherwise,
we have that Mg ;| is not sound. Moreover

Geﬁj[S] =T00p,j-1 [S},
where 7 : M, . — Mg, ;1 is the anticore embedding.
Leta+1= lh(We ]) and B+ 1 =1h(Wp ;_,). By the sublemma, S<1Ma

and Mg ;i —./\/lﬁ , o SwgﬁH B, and

W
_ A8
n—laﬁ .

W
Also, Wy ; uses only extenders of 1h < p, so & is the least ¥ such that P < ./\/17,9"
Let P, = w(P). Let
Wa.i-1
oy = least y such that Py I M, ©’

We can assume crit(7) < o(P), as otherwise P <IMpy ;_; and 0y j[P] = 09 j—1[P],
so we are done by induction.

CLAIM. o<y, , ™ <w; ., B
J J—

PROOF. Lety € (a, ﬁ]we be least such that o(P}) < cr1t(A ;’ "). We claim

that o = 7. Certamly, P < ./\/l . Also, P # /\/l . Since Pj is in the
Wi

range of i, g !, we get oy = ¥ from Proposition 8.2.1.23! n

2Uf the tree We. j—1 Were not A-separated, the proof of 8.3.1 would break down at this point.
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The claim also showed that
TP =1gq [P
Now we apply our induction hypothesis to Py <My ;1. We get 69, jo such that
L Wa, ol +1) =Wy . [(on +1).
2. W;O, io has last model Mg, j, = M;/Véo'jo, and

3. oy <y &,and og ; [P]:iw%‘j0
S Sw 6 0.j-11P1] =15 &7

B P = Pi]o . This yields g [P] = 1. 0% oy 0 = ;oo
ut g j[P] = 0g j—1[P1] o w. This yields o }_101«5 Oloa” =lge >

desired. - (Lemma 8.3.1)

as

8.4. Iterating into a backgrounded strategy

In this section we prove the basic comparison theorem for strongly stable pure
extender pairs. In the next chapter we shall generalize it to least branch hod pairs,
but all the main ideas occur in the pure extender proof.

The proof is based on proving (*)(P,X), for such pairs. This involves iterating
(P,X) to alevel (My x,Qy i) of some background construction C. In the statement
of (*)(P,X), C is the construction of some coarse I'-Woodin background universe
N* that captures X, but here we shall assume somewhat less about C.

DEFINITION 8.4.1. Let F be a set of nice extenders; then Q“fbh is the partial
iteration strategy for V: if 7"”((1 ) is a finite stack of quasi-normal F-trees by Q“fbh
such that ¢/ has limit length, then

QYN (T(U)) = b iff b is the unique cofinal, wellfounded branch of /.

So if V is strongly uniquely iterable for finite stacks of quasi-normal F-trees,
then Q“fbh is total, and it is the unique iteration strategy witnessing this. Moreover,
Q“fbh quasi-normalizes well, and has strong hull condensation. The results of
Chapter 7 show that this is the case if V is a coarse I'-Woodin model, and F = {E |
E is nice}, and under other hypotheses as well. But our notation allows the case
that QU is partial. QUM (7(4)) can fail to be defined because U has no cofinal
wellfounded branch, or because it has more than one cofinal wellfounded branch.

DEFINITION 8.4.2. Let C be a PFS construction, and suppose M, ; = Mgk

ubh '

FCo i.e.

exists; then Q(v:_’k is the partial strategy for My ; induced by Q

T is by QS iff Lift(7, My 4, C)o is by QU20,

whenever 7 is a finite stack of plus trees on My, .
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So if V is strongly uniquely (o, 8, FC)-iterable, then Q€ v is a complete strategy
with scope Hy that quasi-normalizes well and has strong hull condensation.
The following is essentially Theorem 1.8.5, but in the pure extender model case.

THEOREM 8.4.3. Let (P,X) be a strongly stable pure extender pair with scope
Hg, where 0 is inaccessible. Let C be a PFS construction of length < & such that
FC C Hs and for all E € F€, crit(E) > o(P). Let (v,k) <1h(C), and suppose
that (P,X) iterates strictly past (MS Q‘C ;). for all (n, j) <iex (V,k); then (P,X)

n.Jj’
iterates past (Mv o QC 0

Remark 8.4.4. X is total so if (P, ¥) iterates past (Mg Q5 ), then QF vz 18 total.
So although did not assume unique iterability in the hypothesw of Theorem 8.4.3,
we got the Q% ; are total, until we reach an M, 4 that is beyond X. Before that point,

C-lifted trees have unique cofinal wellfounded branches.

Theorem 8.4.3 yields at once a comparison theorem for pure extender pairs. The
following is the pure extender case of our main strategy comparison theorem.

THEOREM 8.4.5. (Pure extender mouse pair comparison) Assume AD™T, and
let (P,X) and (Q,¥) be strongly stable pure extender pairs, with scope Hy, ; then
there are countable A-separated trees T on P and U on Q by P, with last models
R and S respectively, such that either

1. P-to-R does not drop, RS, and X7 p = WYy r, or

2. Q-to-S does not drop, S AR, and ¥y s = X7 .

PROOF. By the Basis Theorem of AD", we may assume that Code(X) and
Code(\P) are Suslin and co-Suslin. (The paper [68] shows this directly, assuming
only AD.) So we have a coarse I'-Woodin tuple (N*,w,S,T,X*), where I is a
pointclass big enough that ¥ and ¥ are coded by sets of reals in I'. We may assume
P and Q are in N*, and countable there. Working in N*, let E € F iff E is a nice
extender and i (w) NVipg) 41 = w0 Vip(gy41- It is easy to check that (w, F) is a
coherent pair. Let C be the unique (maximal) PFS construction of N* of length &
such that w = w® and F = FC. By Theorem 4.11.4, there is a unique such C.

We now apply Theorem 8.1.4. This gives us a (v, k) such that ME viisaX- iterate

of P, and P iterates by X past M;(fj, for each (1, j) <jex (V,k). Similarly we have

(u,1) such that M(C  1s a W-iterate of Q, and Q iterates by ¥ past M;(]: j» for each
N, J) <iex (V,k). By Theorem 8.4.3, no strategy disagreements with the strategies
in C show up in these iterations. So if (v, k) <jex (,/), then by Theorem 8.4.3,
we get conclusion (1), with R = Mi(,:_k and X7 p = QS/« If (u,1) <jex (v,k), then
we get conclusion (2).
Let 7,U,R, and S witness in N* that either (1) or (2) holds. 7 and U/ are
countable in V, and N* is sufficiently correct that either (1) or (2) holds in V.
4|

Remark 8.4.6. When we generalize the comparison theorem for pure extender
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pairs to strategy mouse pairs in Chapter 9, we shall have to re-organize the proof a
bit. Lemma 8.1.2 and Theorem 8.1.4 don’t help in the strategy mouse context, so
in effect we must prove the analogs of both Theorem 8.4.3 and Lemma 8.1.2 as
part of one induction.

Remark 8.4.7. Suppose that (P,X) is not strongly stable, and let D be its order
zero measure on 1)/, where k = k(P). Let Q = Uly(€(P),D) and A be the
iteration strategy for Q we get from X. (Q,A) is a strongly stable pure extender
pair of type 1A. We can compare arbitrary pure extender pairs by comparing the
strongly stable pairs derived from them in this way, just as we did with premice in
§4.10. See §9.6, where an indirect comparison of this sort is needed.

The rest of this chapter is devoted to the proof of Theorem 8.4.3.

PROOF OF THEOREM 8.4.3. Suppose that (Pp,X) iterates past Mi(/{k for all
(v, k) <iex (Vo,ko). For (v, k) <iex (Vo,ko), let '
W, = unique shortest A-separated tree on Py by X
with last model Q> M, .

Let M = M, ;,. We must show that EWV* M= Q‘EO ko and for this it will be
0-%0 ’

enough to show that the two strategies agree on A-separated trees.>*> So let I/ be a
A-separated tree on M that is of limit length, and is by both EW; M and Q€
0:%0°

Vo.ko*
Let
¢ = (M,id,M,C,V),
lift(U, c) = (U*, (ca | @ < Th(U))),

and

Ca = <Mz&[7waaQaacOt7Sa>'

LEMMA 8.4.8. If b is a cofinal, wellfounded branch of U*, then Lyy: | uU) =
VoK’
b.

Lemma 8.4.8 implies that {* has at most one cofinal wellfounded branch.
Moreover, that branch is identified by ¥, if it exists, and X is universally Baire.
So a simple reflection argument will then give that /* has a cofinal, wellfounded
branch. From this we get that Ty« 5 (U) =QF |, (U).

Voiko’ 0,50

PROOF OF LEMMA 8.4.8. We write (W )57 for (v,k) <iex iff((Vo, ko)) to

stand for &, ((n,1) — W; )vk- Note that

if(Z)NS, =xNS,,

2321f Q4 is total, we can quote Theorem 7.6.5 here. In the general case, we can use the proof of
7.6.5.
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by Lemma 7.6.7. Also i, (Py) = Py. Thus (W; ;)% is by X.
Mg’* is wellfounded, so we have a last conversion stage

cb = (MY, Wy, Op, Cp, Sp)
in lift(U b, c). For y < 1h(U) or y=1D, let

(Ny,ly) = unique (n,I) such that 0y = Mf;;,
Wy = (Wy,1,)™

() = (W) ~ 1,

and
W
N'y - MZ*('}’)'

Thus Q) <INy, W)*, is the unique A-separated tree by X that iterates Py past Oy. If
v <y Y and (v,¥]y does not drop, then z%,”;,(Wj) = Wj. (This is not the case if we
have a drop.)

Now let’s look at the meta-tree associated to the embedding normalization
W ((W§,UT)). This is a maximal stack of A-separated trees, so our theory of
embedding normalization applies to it, and embedding normalization coincides
with quasi-normalization. If Qp = Ny, then U™ = U, but in any case, U and U
have the same tree order. Set

Wy =WW5,U" [(y+1))
for y < 1h(U), and
Wy, =WW5,(UT)7b).

So Wy = W;. The Wy’s are all by £, because ¥ normalizes well and " [(y+1) is
by X. Suppose that W, is by Z, and let Z((Wy,UT)) = c; then W, is by T because
¥ normalizes well, so br(b, Wy, U™t) = br(c, Wo,U™), so b = c. Thus if W), is by
X, then £((Wy,U ™)) = b, and hence Z((Wy,U)) = b by internal lift consistency.
This is what we want, so it is enough to show that W, is by X.

We shall show

SUBLEMMA 8.4.8.1. W), is pseudo-hull of Wj.

That is enough to yield Lemma 8.4.8, since W, is by X, and X has strong hull
condensation.

PROOF OF SUBLEMMA 8.4.8.1. We construct by induction on Yy an extended
tree embedding

Dy Wy — Wy
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We write z(y) + 1 = 1h(Wy), and
By = (7, (s} | B < 2(0). (1] | B < z(0).
Let p?: Ext(Wy) — Ext(WVy) be the associated map on extenders, given by

w Wi
P'(Eq") = Euy(ya)'

The domain of u? is z(y), and that of v¥ is z(y) 4 1. Because ®y is an extended
tree embedding, we have v¥(z(7)) <w; z*(7), and a last -map

y_ v _W y
=Ly = btz () ©Sen)

from M:(V;; to M:VZ;,) We let

AWy
Ry= MZ(Y)’
so that
t": Ry — Ny

is the last -map of ®,. As we noted above, the last -map of an extended tree
embedding determines the whole of the tree embedding.
The embedding normalization process gives us extended tree embeddings
\PV.Y: Wv — Wy,
defined when v <y y. We use ¢y y for the u-map of ¥y y, so that ¢y 5 : Ih(W,) —
1h(Wy), the map being total if (v, Y]y does not drop in model or degree. We write
ny"Y for the r-map t;PV’Y, so that
vV.Y. Wy WY
T MY — Mwy(r)
elementarily, for v <y y and T € dom ¢y 5. Let also ey , = p¥v7, so that
Wy
dvy(a)
is the natural partial map from Ext(Wy) to Ext()Vy). Let also

ev.y(sz/vv) =E

o) MY Ry
be the natural map from M%ﬁ to the last model of Wy, and
Fy = oy (EY),
so that
Wh1 =W (We, W, Fy)
where & = U-pred(n + 1). Finally,

. w
oy = least o such that Fy is on the My " sequence.
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We also have an extended tree embedding ¥, ,,: W;, — Wy defined when
v <y yand (v, 7]y does not drop. The maps of W), are all restrictions of il(,’;, SO
we don’t need to give them special names. Part of what we want to maintain as we
define the @y is that in this case, the diagram

P, .
—_
Wy 1%

\Pv.y \P\X/Ay

@, .

Wy —— Wy
commutes, in the appropriate sense. The other inductive requirements have to do
with the agreement between @y and ®¢ for n < &, and the fact that oy factors

into yy,. We spell the requirements out completely below.
Since Wy = W, @y is trivial, consisting of identity embeddings.

Remark 8.4.9. Before going through the induction in technical detail, let us look
at the definition of ®; in a simple case. This case contains the main idea.

Let F = E(Z)”+ = E§ = y&(EY). Let G be the resurrection of F in C, and
suppose G = F for simplicity. Let F* be the background extender for F' given
by C. Then Wiy = W(Wy,F) and W} = ip-(Wp). Let o = a(Wy,F). The
last model of W is ip+(M), and ip+ (M) agrees with Ult(M,F) up to 1h(F) + 1.
(See 4.7.7. The “plus 17 part is important, and it is one reason we were careful
about choosing our background extenders.) It follows that W} uses F; in fact
Wi T (o +2) =W [(o+2), with F = Eml = E:;\fl. This gives us the desired
tree embedding from W to W;. For example, the map p': Ext(W;) — Ext(Wy)
is given by:

p'(E)=E, ifE:EgV‘ for some § < o +1,
and if there is no dropping at o + 1,

p'(e0.1(E)) = ip+(E).

This is typical of the general successor step. Various maps that are the identity in
this special case are no longer so in the general case. In particular, the resurrection
maps may not be the identity. But the key is still that if W1 = W(Wy, W), F),
and H = y(EY) is the blowup of F in the last model of W;, and G is the
resurrection of / inside Sy, then Wy, = i¢-(Wy), and G is used in Wy, ;. [
There is a small revision to the first part of the conclusion in the dropping case.] In
showing this, we shall need to know that the map resurrecting H to G appears as a
branch embedding inside a certain normal tree YW, extending Wy.

Setting p¥*!(F) = G determines everything. For we certainly want p?*! to
agree with p? on the extenders used before F in Wy, 1. Moreover, we need to take
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a limit of the ®;,’s along branches of U in order to get past limit ordinals, and this
requires that p"*loe, = lv 7410 p". But this accounts for all the extenders in

dom(p v+l ), so we have completely determined p¥*1, and hence @, 1, from P,

Remark 8.4.10. All the plus trees on premice that we are dealing with now are
A-separated, that is, use only extenders of plus type. We shall sometimes say that
F is on the sequence of Q, or is its last extender, when we really mean that F~ is
on the sequence of Q, or is its last extender. (I.e. F' is on the extended Q sequence.)
Similarly, if F is a plus extender on the (extended) Q-sequence and y: Q — N,
then w(F) = w(F~)*. Similarly, B®(F) = B®(F~) whenever B®(F ) is defined.

The following little lemma says something about how z%‘?,(Wé) sits inside Wy.

lP*
In the language of tree embeddings, the map [ it describes is just s B v

LEMMA 8.4.11. Suppose v <y 7, and (v,Y]y does not drop. Let B < z(V);
then

sup iz\//{.y“ﬁ SW; il\//{,y(ﬁ)-
Moreover, setting 0 = sup iz\’,{;“ﬁ, we have that (6, iz(,{;(ﬁ)}w? does not drop, and
there is a unique embedding 1 : MEV" — MZVV such that
W* ur Wy
o405 0l =y TMp™
PROOF. We have

i%'l-,y(w\t) =W
because (v, ¥]y did not drop. If 8 is a successor ordinal, or zzf;, is continuous at
B, then 6 = lz",’}(ﬁ) and all is trivial. Otherwise, let T <y B be the site of the last
drop; then &, (1) is the site of the last drop in [0,/ (B)]w;, and &,(7) <y 6.
Finally, we can define [ by: if n € (7,8)w; and

p=im),
then
Wi R
1)) = i g ().
It is easy to see that this works. n

The following diagram illustrates the lemma.

/L/”)

P04>.MB
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Here jj o jo = z‘Lf’;,( J)- (The diagram assumes j exists, which is of course not the
general case.) jo is given by the downward closure of {z‘b,’}(E )| E is used in [0, B)w; }.
Again, [ is just SV,
We proceed to the general successor step. Suppose we are given ®p, for 1 <7,
and let us define ®y., 1. For any Y+ 1 < 1h(i/), let
e H, = l[/y(El}j{ ),
e X, = Qy|lh(Hy) = Ny|Ih(Hy), and
e resy = Og, (X,
(Recall here the conventions of Remark 8.4.10.) So resy is the map resurrecting
IIIY(E%,I) in Cy. Let also
o Yy =Resq,[X)]"7,
e Gy=resy(Hy), and
o G;=B%(Gy).
Soresy: Xy — Yy, Gy is the last extender of Yy, and G;‘, = E%,f Finally, let
0. AU 0 ut
oy My = K, IMy
be the copy/lifting map, and set
Oy = G; o 0}(,) ,
so that
oy: MY = K, <R,
To save notation below, we shall often just write oy : szf — Ry. The reader will
lose little by assuming that /{ =™ and K, = Ry.
Our induction hypothesis is
Induction Hypothesis .
(t)y (@) For& <n <7, ®¢ [(ae +1) =Py (0 +1).
(b) Forall p <y, is well defined; that is, v (z(11)) <w; z*(n).
(¢) Forv<n<y, s?(n) [(Ih(Fy)+1) =resyor” [(Ih(Fy) +1).
(d) Letv <n <y,and v <y 7, and suppose that (v, n]y does not drop. Let
= %,’*n, and let T = ¢y 5 (§); then
(i) if & < z(v), then u" (1) = i*(u¥(&)),
(i) if & < z(v), setting j = il/“,}(é) W (¢) and k= il/:?r) a1 (¢ there is an
eI\r/ll;eddmg l: MV‘,@ — Mvnw) such that kol =i*o j, and s7 o
L] — v
7'65 =1 08¢, and
o
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(iif) if & = z(v), then setting j = ivyvvfé)?z:(v) and k=i, . there
is an embedding I: Ml/yfé) — Ml/’;}?r) such that kol = i* o j, and
sa ong’n :los‘é.

(6) For n < Y WTI =11 O(Fn.
(f) Forall v <n <7,Y, agrees with N, strictly below 1hGy. Gy is on the
extended Yy -sequence, but Ih(Gy) is a cardinal of Ny,.

There is one further induction hypothesis to come.

Items (a), (¢), and (f) are our agreement hypotheses on the ®,,.

Clauses (c) and (f) should be read with clause (e) in mind. By (e), for all
n=<7v.

Gp =1"(Fy).

For v < m <, resyot” maps Ry|lh(F,) elementarily into Y, and s?(n
Ry || 1h(Fy,) elementarily into Ny, || Ih(Gy). But dropping last extender predicates,
the domain models are the same, and (f) says that the range models are the same.
By (c), the maps agree on 1h(F, ). (This also uses (a), and the agreement between
s and 7 maps in a tree embedding.) The upshot is that (), implies

resyot’ [(Ry || 1h(Fy)) = S?(n) [(Ry || Th(Fy)),

) maps

forallv<n<y.

Remark 8.4.12. Literally speaking, ()y.(c) does not make sense, because ¥ (Ih(Fy)) ¢
dom(resy ). As often, if : P — Q, then we extend o by setting o (o(P)) = o(Q).

Remark 8.4.13. (t)y.(c) implies that if v < 7, then
1" [1h(F,) + 1 =resy or¥ [Th(Fy) + 1.

For letting Gy = tgv (F,), we have that Crit(i::?z(n)).z*(n)) > Ag,. sot = tz?n)

agrees with s on v) + 1, and thus with res, ot* on v)+ .(c).
g 'hgw lh(F,) + 1, and thus with Voonlh(F,)+1by (T)y

We are using the A-separation of Wy here; otherwise Crit(il/v\;?z(n)) - (77)) = Ag,
would be possible.

Remark 8.4.14. (1)y implies that for v <n <7,
ta, [Th(Fy) + 1 =resyot” [Th(Fy) + 1.

This is because oy < z(1n), and Fy, = E;‘/‘\jn. So on 1h(Fy) + 1, g, agrees with s?(n)
by the agreement properties of tree embeddings (6.4.8), and hence with resy ot¥ by
(F)y-(e)-

If oty < z(V), then since @y, is a tree embedding, ¢V [ Th(Eg,’ )+ 1= to, Ih(EQY)+
1. But Ih(F,) < 1h(Ep."), so ¥ and ty, agree on lh(F,) + 1.
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Thus 1}, # 15" in general. (In fact, always.) The two maps agree up to Ih(Fy)
if resy is the identity on ¢ (lh(Fy)), but they need not agree past that, and they do
not agree below that if resy is not the identity that far. They may map into different
models.

This is all consistent with (7)y.(a), because ty, is not part of @y [(0t +1). The

3

. . We . .
map #y is recording how the extender £, ¢ is blown up into Wg As we go from

vtov+1, E}va is replaced by F, = EZ‘\/}"“. So the map blowing it up must be

changed somewhat — even below 1h(Fy ), if there is resurrection going on in S, .
But E},‘/\VJV is not part of Wy, [(ay + 1), so this does not affect (a).

Item (d) captures the commutativity hypothesis ®, o ¥y 5 = ‘PT/,n od,. Itis
written out in terms of the component maps of these tree embeddings; the map / in
part (d) is (svv(g))wﬂ. (t)y-(d)() says that p"(ey n(E)) = 1%,’9;1 (pY(E)). Here is
a diagram to go with the rest of this clause. In the diagram, T = ¢y (). The far
right assumes u” (&) exists, that is, § < z(Vv).

e/l * *

Wp 5% Wa k Wn
e — Mv’?(r) _ Muﬂ(r)
" : t

Here j and k are the branch embeddings of Wy, and Wjy. There is a similar
diagram when & = z(v), with z*(v) and z*(n) replacing u¥ (&) and u" (7).

Remark 8.4.15. The embedding along the bottom row of the diagram above is
either tg or 1V, depending on whether £ < z(Vv). The embedding along the top is
either 7 or M. So (1)y.(d) implies that

n v.n __ u* v
Loy n(&) ° e Tl Ol
if & < z(v), and

n vl _ uf v
t oﬂz(v)ilVJ’IOt'

Here is a diagram to go with (),(e).

1
Oy I

4
MY Ry Ny
VI VI VI
u o) 0 oy tY
Yy
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In diagrams below we shall condense this to

Oy 17

u
MY Ry Ny

~_

Yy

This is accurate if one remembers that the maps may only be nearly elementary as
maps into proper initial segments of the target model.

In defining @, 1, we shall make use of 8.3.1, which implies that resy is present
in a branch embedding of some (W; ,)57. Let

v,
Ty = least & such that X, < M;/v}*,'
Let’s also drop some subscripts for now, by setting
(F,H,G,G",X,T) = (Fy,Hy, Gy, G}, Xy, Ty).
CLAIM 8.4.16.  (a) If oty =z(Y), then T € ¥ (), 2" (V)] w;,
(b) If ty < 2(7). then T € [V (aty), 7 (0t

*

PROOF. For (a): If ay = z(7), then v¥(ay) <y; 2*(7). 17(F) = il/(\zy)7z*(y) o

SZ(Y) (F) is on the sequence of Mp}(yy) Since lh(E%/VY) < Ih(F) for all £ < ay,
]h(Py(E;/VY)) < Th(t"(F)) for all £ < a,. Cofinally many extenders used in

[0, v(ay))yy; are in ran p?, which gives Ih(s”,,(F)) > In(E; ") for all & < v¥(aty).

So v¥(oy) is less than or equal to the least 7 such that ¥(F) is on the M;/V v
sequence. That 7 is the least i such that t¥(F) = il/(va;ym OSZ(y) (F), so that
T € V¥ (ay), 2" (¥)]w; - (See Proposition 8.2.1.)

For (b):If a < 2(), then 17(F) =1, (F) = 'y osh, (F). In this case

vY (o) u¥(oy)
T =least B € [v(ay),u(0y)lw; such that crit(iz y(q,)) > y(q,) < (Ih(F)).
This can be shown as in the proof of (a). We omit the details. - (Claim 8.4.16)
By Lemma 8.3.1, there is a normal tree YW, * such that
(i) Wy*is by X, and extends Wy [(T+ 1),
(if) letting & =1h W;,‘* — 1, G is on the extended M;:;* sequence, and not on

the MZV;* sequence for any o < &y,
(i) T <yye &y and iyg [(Ih(H) + 1) = resy [(In(H) + 1).
Let
Wy
Sy
We shall show that WWy* is an initial segment of

Nj = M

;+1, and that G is used in
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W*
W; +1- SoGy=E & 1) By induction, the same has been true at all v < y. That
is, we have

Induction Hypothesis (7)y.

(T)y (g) - Forall v <y, Wy is an initial segment of Wy [(v¥(0y) + 1). The last
model of Wy* is Ny = .Mg" ,and Y, <Ny,

Here is a diagram showing where G came from, in the case that o, = z(7).

(NYﬂH)

Here k is the branch embedding of W, and it is the identity on Ih(H) + 1. [ is the
branch embedding of W}*, and it agrees with resy on Th(H) + 1.
If oy < z(y), then the corresponding diagram is:
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Wy
uY (o)

(Ny, H) (M

7H)

Here again, & is the branch embedding of W, and it is the identity on 1h(H) + 1.
[ is the branch embedding of W;*, and it agrees with res, on Ih(H) 4 1. Ry and
M(Zﬁy agree up to 1h(F)+ 1, and ¥ agrees with tgy on Ih(F)+ 1. (In fact, on
W
Ih(Ee").)
In either case, we get

CLAIM 8.4.17. resyot? agrees with i]‘:q\,}(yay) £, ° sz;y onlh(F)+1.

PROOF. Suppose &y < z(7). Let k and [ be as in the diagram above. Then for
n <Th(F),

resyor’(n) =resy orgy(n)

W*
— AV Y
=resyoko Br(ay) oy 05¢,(N)

*

as desired. The calculation when oty = z() is similar. =
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Now let
v =U-pred(y+1).
Thus we have
Sy+1 = Ult(Sy,G"),
where G* is the background extender for G = G, provided by C,. We write
G- = iz\//{,*yﬁ

for the canonical embedding.
Case 1. (v, 7+ 1]y does not drop in model or degree.

In this case, we have

Oyr1 =ic+(Qn)
Nyi1 = ig-(Ny)
and

Wyt = ig-(Wy)-

Our goal is to define @y, 1, and with it tY*1, so that the following diagram is
realized (among other things).

Yy+1
) m
Moy Nyt Sy+1
iG
igr
u Oy *
M v N \Y Wy+l S \Y
Py Py

As we remarked in the case Y+ 1 = 1, it is important to see that the resurrection
of the blowup of F', which is in our case G, is used in W;H.

CLAIM 8.4.18.  (a) Wy, 1& =W, 1&,.
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PROOF. Let u = crit(F), where F = Fy. Let 0(fi) = u, where i = crit(E}).
Since U does not drop at Y+ 1, no level of MY beyond 1h(EY) projects to or below
i1. So no level of Ry, beyond lh(Fy) projects to or below . So no level of N,
beyond Ih(Hy) projects to or below ¥ (). Thus resy is the identity on ¥ (u) "M,
and N 1V (u) ™M =Ny 11V (u) V. Also, 1V ()t < Ag,. Thus

Nolt¥ () = NG (1) 5 = e ()
But also, if v < 7, then no proper initial segment of Mz}’,’ projects to or below
1h(EY), so no proper initial segment of N, projects to or below 1h(Gy ), so res, = id
on 1h(Gy), and Ny|t?(u)*Nr = N;|t7’(/.1)+’N7*’. Thus in both cases (v < y and
v=7),
Nyl % = N () 1.

Letting A = 17(u) "7, we have then that ig- (Ny|A) = ig+(Ny|4). But Ult(Ny, G)
agrees with ig= (Ny|4) up to Ih(G) + 1. (We chose G* so that they would agree at
1h(G).) Thus
Nyi1 [[Th(G) = Ny || Th(G)

and 1h(G) is a cardinal in Ny . Since Wy, ; and W™ are A-separated trees by the
same strategy X, we get Claim 8.4.18. n

By Lemma 8.2.3, there is a unique tree embedding ¥ of Wy [(oty +2)
into W; 1 such that ¥ extends &y [(ay + 1), and u‘{’(ay) = &y, or equivalently,
pY(F) =G. We let @1 [(ay +2) be the unique such P.

In order to establish the proper notation related to @y 1 [(0t, +2), as well as its

relationship to ®,,, we shall now just run through the proof of Lemma 8.2.3 again.
Let’s keep our notation y = crit(F), and write

pr=1t"(u) =1t"(u) = crit(G).
Let
B=p""r,

so that F is applied to MEVV = M;Vy“ in Wyy 1. Let

B =Wy, -pred(&y + 1),
so that G is applied to M;\:”l = MZ\:;* in Wy, .
CLAIMBAI9. () B* < v, and My = MY = My = MT = M,
(b) p*=p"
(c) If B <z(v), then B* € [vW(B),u"(B)lw;-
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(d) If B =2z(v), then B* € Y (B),z"(V)]w;-
PROOF. Let P be the domain of F and P* the domain of G; that is,
P =Ry|lutFr
and
P = Nyl () = Nyl )5

(Ny agrees with Ny this far because we are not dropping when we apply F.) By the
rules for A-separated trees,

B* = least o such that P* = MY lo(P").

Put another way, Wy [ B* + 1 is unique shortest A-separated tree on Py by £
such that P* is an initial segment of its last model, and o(P*) is passive in its
last model. But we showed in the proof of Claim 8.4.18 that P* = N;|o(P*), and
o(P*) < A(Gy). We also showed that res, | P* = identity. Thus P* = Ny |o(P*),

A

and o(P*) < A(Hy). So P* is a passive initial segment of the last models of
Wy, Wyt Wy, Wy, and Wy, . Thus all these trees agree up to f* + 1. As
o(P*) <1h(Hy), B* < 7y. This yields (a).

For (b), note that u* is a cardinal of Sy, so |M2;VY| < U*in Sy, forall a < pu*.
It follows that

e = sup A(Ey") < B

a<p*

Since u* = crit(G) and G is on the extended sequence of Ny, u* # i(E:fy) Thus
pur < i(E:*VV), and hence B* < u*. So f* =pu*.
For (c): if B < z(v), then u < i(EZ;V"), )

pr=t"(u)=15(n)
_ Wy v
= v (v (p) ©5p(1)-
Also, 1" < A(EpYy ), s0 B* < u¥ (B) and P* <M || A(ELY).
‘We claim that

B* =least a € [v¥(B),u" (B)lw; such that crit(iy, v 5)) > ilviy) o (5§ (1)) or & =" (B).

This follows from Proposition 8.2.1, applied with S = W}, § =vV(f), and n =
u”(B). To see that the proposition applies, note that

P ue rani,y gy v (g):
AlsovY(B) < B*, since if E = E,‘{VV is used in [0, B)w,, then In(E) < u, and thus
lh(p¥(E)) =ty (Ih(E)) < t¥(Ih(E)) < #(u) = u*. Finally, by the agreement of
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Wy with Wy up to f*+ 1, B* is the least & such that P* = MZW |o(P*). Thus
Proposition 8.2.1 applies, and we have proved our claim.

This proves (c). The proof of (d) is similar. o

With regard to part (b) of the claim: it is perfectly possible that 3 is a successor
ordinal. In this case v¥(f) < B* = u*, and SE(M) < pu* as well. So B* = pu*is
strictly between v (f3) and either u”(B) or z*(v), as the case may be. This is a
manifestation of the fact that the tree embeddings @, are very far from being onto
when v > 0.

Our proof of Claim 8.4.19 actually showed

CLAIM 8.4.20. (a) If B < z(v), then B* = least o € [V (B),u" (B)|w; such

WY %
that crlt(zaﬁu‘,(ﬁ)) > lvv(ﬁm(s)g (w)).

(b) If B = z(v), then B* = least a € [v¥(B),z"(V]w; such that crit(iyi*<v) >
W '
lvV(B),a(sE (u))-

(c) In either case, the embeddings t", resy ot¥, and i:‘\’}(vﬁ),ﬁ* o SE all agree on the
domain of F.

PROOF. We have already proved (a) and (b). The following diagram illustrates
the situation when 8 < z(v).

w;
My (p)

k
wy
Mp*

Ny
1Y ]
MY =R M MU,

We have shown that both k and resy are the identity on the domain of G, that
is, on ¥ (u)* of M?j‘t. The agreement of ¥ with 75 on lh(Ez;V"), which is
strictly greater than (u™)®r, completes the proof of (c). The case that § = z(V) is
similar. n

Now let

W

— v
P ="twip)pe 5B

sothatp : MEVV — Mg\?. On the domain of F, p agrees with t¥ and with res,, or".
We can then define &, at , + 1. That is, we set

1
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PP TEXt(Wy T ay) = pY [Ext(Wy | o),
VI oy + 1=V Toy + 1,

r+1 Y
s =5y forn < ay,

and
=1 forn < ay.
Then we set
(o) = &y,
prTH(F) =G,
vV (o +1) = &+ 1,
and let s(};ﬁl be given by the Shift Lemma,
Wy W3
+1 M Mg
sz;ﬁl([aaf][? i’ ) = [res}’oty(a)ap(f>]0 b .

We have shown that p agrees with res, of¥ on the domain of F. By (¥),, p agrees
with ¢7 on the domain of F. Since resy is the identity on the domain of H (cf.
8.4.18), p agrees with resyot” on the domain of F, and we can apply the Shift
Lemma here. Let us also set

1 Aw**
1 = M4 os¥ .
Y v (ay).&y Y
W;H Wit

w
Then ¥+ MGYHI - M

Ih(F)+1, by claim 8.4.17.
This gives us @y [(oty+2).

— Y 7+1 : Y
W (o) Méy , and """ agrees with resyor? on

CLAIM 8.4.21. ®yyy [(ay +2) is a tree embedding of Wy [(ay +2) into

vi11(8y+2), and extends Py [(ay +1).

PROOF. We checked some of the tree embedding properties as we defined @y .
We must still check that tZ’J1 satisfies properties (e) and (f) of Definition 6.4.1.
Noting that Eg\;y = F and that tgjl agrees with resyor” on Ih(F) + 1, this is easy
to do. See the proof of lemma 8.2.3. -

We can define the remainder of the maps u?*! and p?*! of @, right now. If
B <& < z(v), then we set

urt! (‘Pv,yﬂ (g)) = iG* (”v(‘g))’

and

P’ (ev 1 (E)) = ig+ (p¥ (E)),



382 8. COMPARING ITERATION STRATEGIES

for E = E%/VV. Note that this then holds true for any E, since if E = E%/VV for some
& < B, then p"*!(ey 11 (E)) = pY*!(E) = p¥(E) = i (p¥(E)).

The definition of the s and #-maps of ®,, 1, and the proof that everything fits
together properly, must be done by induction.

As we define @y, 1, we shall check that it is a tree embedding, and we shall also
check the applicable parts of (1)y.41. We have @y [(0y +1) = Py [(ay+ 1) by
construction, which yields (1)y41(a). Claim 8.4.18 yields the agreement clauses
(f) and (g) of (f)y4+1, so we are left with (b)-(e). The new cases in clauses (b),
(c), and (e) have to do what happens at z(y+ 1), when the definition of @,
is complete. The new case in (c) is 7 = Y+ 1, and it is enough to show that

SZ(;LU h(F)+1 =resyot” [1h(F) + 1, since the rest of (c) follows by induction.

But given that &y, is a tree embedding, sz(;il) Mh(F)+1= séﬁl [Th(F)+1,
and 57!

dyt1 [Th(F)+ 1 =resyot? [1h(F) + 1 by the Shift Lemma. So we can ignore
©).

The new case in (d) is 7 = Y+ 1. We can assume by induction that the v <y y+1
referred to in (d) is U-pred(y+ 1), that is, the v we have already fixed. Clause
(d)(i) then asserts that u?™!(y y41(&)) = ig- (u(&)), which indeed is true by our
definition above. So we can ignore (d)(i).

So as we define the s and ¢ maps of ®y, we must check that @, is a tree
embedding, that the commutativity clauses (d)(ii)(iii) hold for n = y+ 1 and
v =U-pred(y+ 1), and that (b) and (e) hold for 1 = ¥+ 1 when we reach z(y+1).

We begin with

CLAIM 8.4.22. @y [(aty+2) satisfies the applicable clauses of ()y+1.

PROOF. Suppose that (F),41(b) is applicable, that is, that z(y+1) = oty + 1.
So z(v) = B. We have v*!(o, +1) = &+ 1. So what we must see is that
& +1 SW;H Z*(y+1). That is, we must see that G is used on the branch to
Z*(y+1). We are in the non-dropping case, so z*(y+ 1) = ig=(z"(v)). The
relevant diagram here is
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W;H
;

Wi
M, ] Mz (y+1)

igx (B*)

*
WY+ 1

Méyﬂ

iG

*(v)

Wi
Mv(p)

If s is the branch extender s = e;\?, then ig«(s(i)) = s(i) for all i € dom(s), and

W*

thus s Ce. "L . It follows that
i+ (B*)

Wit

wy _
Mﬁ* _MB* b

and that
. Wy Woii
ig [Mp" =g ge):
The factor map o in our diagram is the identity on the generators of G. It follows
W*
that G is compatible with the first extender used in i 137;1* ()’ and thus G is that

extender, as desired.

Turning to (1)y+1(d), the new applicable cases are (ii) and (iii), when & = f8 and
T = oy + 1. Let us suppose that it is (ii) that applies, that is, that § < z(v). The
last paragraph showed that G is used on the branch to ig«(*) in this case as well.
We have the diagram

wy, [ w;,

Y+1 Y+l
Mig (6 — Mty
(e}
W SHLI *
Y1 o y+1 L
—
May—H Méer] Lyl
iG
. wy h 4%
v Mp:" = Mol
p
f
tV
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MRV
Here ﬁg’yﬂ =i, P . The branch embeddings ¢ o & of Wy, and ho f of Wy
play the roles of k and j in (¥),.(d). The role of / is played by i o f. The diagram
commutes, so we are done. The case § = z(V) is similar.

We turn to (F)y.+1(€), that Yy 1 =171 o 6y.1. This is applicable when z(y+1) =

oy + 1, and hence since we didn’t drop, z(v) = B. So M;;V" =Ry, MZ\;"I]] =Ryi1,

* Wk
/\/l;/y(vv) = Ny, and Mz*(};:l) = Nyy1. Expanding the diagram immediately above a

little, while making these substitutions, we get

Yyt

— Nyp

Oy+1 Say+1

u r+1 Ut
M7+1 Ry+1 Mé ’l\{wl

[l/{
v.y+1

aa!
oy +1

Note first that Yy agrees with t"*' o oy on ran(iﬁ’_’y +1)- This is because

We have 17! = pocos andtV = hop.

U _u*
Yy+100y yr1 =Ly y41° Wy

— 10 (hopoay)

(by (T)v)

1 .
=1 ooy 00,
The last equality holds because of the commutativity of the non-y part of the
diagram.
U

M, | is generated by ran(i%f,,, ) Ue, where € = Ih(EYf). So it is now enough
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to show that Yy, | agrees with "o Oy+1 on €. But note

Wyii € =resyoyi! e
=resyot’ ooyl €

_ oyl
=t""ooyle
=1"ooy e

Line 2 follows from (+)y, and line 3 holds because t"*! agrees with resyot” on
lh(F'). The last equality holds because oy agrees with 6, on lIh(F) + 1, by our
earlier work on normalization. This proves ()y11(e).
This proves Claim 8.4.22.
_|

For the rest, we define ®,. [N+ 1, for oy +1 <1 < z(y+ 1), by induction on
7, and verify that it is a tree embedding. At the same time, we prove those clauses
in (T)y41 that make sense by stage 17. We have already verified (a), (c), (f), and (g).

First, suppose we are given ®y1 [( + 1), where oy +2 <n+1 <z(y+1).
We must define @y [(1 +2). Let

dvyi1(T) =1,
Wyt
E=E, AR
and
K=EM.
Let

E* = p"™(E) and K* = p¥(K).
We have already defined p"*! so that ig«(K*) = E*, and u?"'(n) = ig+ (u" (7).
We can simply apply lemma 8.2.3 to obtain @y [(1 +2) from @y [(n +1).
For we have the diagram from (¥)y.1(d).

r+1

M A s MO
n

Wi (n)

u*
Byt

W*
Taking & = u”*1(n), we see from the commutativity of this diagram that E £ =

W*
iy If(ln) 5O sTH(E)™1). Thus the condition (2) in 8.2.3 is fulfilled, and we can
| that

let @1 [(1 +2) be the unique tree embedding of Wy [(1 +2) into Wy,
extends @y 1 [(n + 1), and maps E to ig+(p” (K)).
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We now verify the applicable parts of (). The proofs are like the successor
case ) = aiy that we have already done. We consider first clause (d). The new case
to consider is § = 7+ 1. We have ¢y y1(T+1) =n+1. Let 6 = Wy-pred(t+1)
and 6 = Wy 1-pred(n + 1) index the places K and E are applied. Let 6* and 6*
index the models in Wy, and W}, to which K* and E* are applied. Let us write
i* =ig+. We have i*(K*) = E* and i*(0*) = 0*.

For purposes of drawing the following diagram, we assume 7+ 1 < z(v). The
situation is

T+ % *
Wysr il Wyt Wyii
M w1 Mv”‘( +1) >Mu7“(n+1>

v,y+1

"
E Wy St4+1
Mr+1
Wyt
MG Y+
‘SS
K
T
Wi
MGV -

Yo

Po P

There are two cases being covered in this diagram:

(Case A.) crit(F) < crit(K). In this case, 6 = ¢y y41(0), and 7 = 7", The map I
in our diagram is given by the part of (1) 1(d) we have already verified.

(Case B.) crit(K) < crit(F). In this case, = o < f3, where § = B"Wf'. Moreover,
Wy [(64+1) =Wy, [(0+1), and 7 is the identity. Moreover, B < o, by the

way normalization works, so the part of (1)y.1(a) tells us that s¢; = ng , and

% Wi
./\/ll/f(vc) = ./\/lvyﬁ('(”. We take / to be the identity as well. In other words, the

bottom left rectangle in the diagram above consists of identity embeddings.
We also have dom(E) = dom(K) < crit(i*) in this case (though E # K
is perfectly possible). So then dom(E*) = dom(K*), which implies that
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MY ot = /\/l o+ and i* [M?j‘*’ is the identity. Thus the bottom right rec-
tangle also consists of identity embeddings. ( It is however possible that
u’(o) # u'1 (o) in this case.)

In both cases, our job is to define & so that it fits into the diagram as shown.
Using the notation just established, we can handle the cases in parallel.
We define & using the Shift Lemma:

wy M

M *V ok ok *
h(la, flg-=" ) = [i*(a), " ()]
Note here that i*(u" (7)) = u”*!(n) by our induction hypotheses so i* maps

./\/ll/v( e the model where we found K*, elementarily into M the model

+1
‘/+1 >
that had E*. So the Shift Lemma gives us &, and that hoig+ = ig= oi ).

We shall leave it to the reader to show that the rectangle on the upper right of
our diagram commutes. If s is the branch extender of [0,u" (7 + 1)]yw; and 7 is the
branch extender of [0,u™! (1 + Dlw;,,» then i*(s) = 1. Moreover, if s(a) = K*
and 7(b) = E*, then i*(s [(a+ 1)) =¢ [(b+1). This implies that the upper right
rectangle commutes.

Wy
So we are left to show that hosy, | = s%ill o n:jryfrl. Letx = [b,f},/;/l" be in
M‘T/XV] Then
Wv
hosiy(x)) = h(sza([b, /1))
wy MU

= h([t;/ (b)7 iVV(VG),G* OS; (f)]l(* o
W*
" . W My
[ ort (b)), 0N oSk

The second step uses our definition of s ;. On the other hand,

+1 y+1 +1 +1 MY
sy oM () =spl (m T ([ A1 )
L ([l M
= sy (e (0), 2(N]E ° )
7HL vyt Wi 741 MW;H
[tn o7’ (b)aivﬁyl(g) «©Sg O”(f)]E*s

Now let’s compare the two expressions above. The function f is moved the same
way in both cases because the bottom rectangles in the diagram above commute.
That is,

Y
[e) o]
od sy

Wy+l e
c),0*

= lrti(g) e« %o °T
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So we just need to see that

I vyl
' om " =itor).

But this follows from the part of (1), (d) that we have already verified. The
relevant diagram is

Wyl Wy Wy
My Mw“(n) > Mu7+1(n)
71::'](4rl i
W S¥ W* W*
v vV o o ____ v
MY — MVV(T) > Muv(r)

Thus we have verified the new case of (1)y.1(d) that is applicable to &y 1 [(1 +
2).
We turn to ()y11(e). If it is applicable, then z(y+ 1) = 1 + 1, and because

we did not drop, z(v) = 7+ 1. We must show that Wy, = t*"! 0 6, 1. We have
Ry = anjfl, and R, = MK"I. Making these substitutions and expanding the
upper part of the diagram above, we get

han!

Oy+1 S:r+1) Wi Wi
u 1A 7+l o
/\/l},+1 Ry Mv7+1 (1)) S — Mz*(y+1 = Nyt1
Y+1 S
h ,
e i) * v
u M = v Wy
=
MY R, Mvv(z(v)) _ MZ*(V) Ny

The embedding across the bottom row is ¢V o 0y, and hence by induction, it is y,.
The embedding across the top row is 17! o Oy+1. The diagram commutes, so

U _ U
Yyr1 0ty pp1 =ty yO Wy
=i*otYoo0,.

ol U
=11 00y1100y 1.

Thus 17! 0 6541 agrees with Yy on ran(il(f# +1)- So it will be enough to show
the two embeddings agree on € = lh(EZ}j’ ). For that, we calculate exactly as we did
in the case N = oty + 1:

Yyr1 | € =rtesyoyy €
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=resyot’ ooyl €
=" oyl€
=1"ooy e
The last equality holds because oy agrees with 6,1 on Ih(F) + 1, by our earlier
work on normalization. This proves (f)y1(e).

Finally, suppose that A is a limit ordinal, and we have defined @, [ 1) for all
N < A. Then we set

Py (A= Py I
n<a

We are of course assuming @, 1 [ 7 is a subsystem of @, | [ B whenever n < 3,
and the tree embedding properties clearly pass through limits, so this gives us a
tree embedding of Wy [ A into Wi [A.

In order to define @, [(A +1), for A < z(y+ 1) a limit ordinal, let 7 be such
that

A= ¢y y1(7).
Wyt ).

Consider r = p*!(e, Since @y A is a tree embedding, p?! is C-
preserving on W;’fl Thus r is the extender of some branch b of Wy, . In
fact, b is the downward closure of {ig-(vV(&)) | & <w, T}. Recall that the v-maps

preserve tree order, so that {ig+(vV(&)) | & <w, T} is contained in the branch
[O, iG (VV(T)]W;H of W;_H. So

V() = suplic- (v'(8)) | & <w, ).

Wyt

wy . c
M using the commutativity given

741 |
Moreover, we can define s : M, L)

by (c) of definition 6.4.1:

W;H (Sg+1 (x))

V.
Y-H( o (x)) = lly+l(9) VL)

52 Vo
It is easy to verify the agreement of s%ﬂ with earlier embeddings specified in
clause (d) of 6.4.1. Thus @, [(A + 1) is a tree embedding.

We must check that the applicable parts of (), hold. Let us keep the notation
of the last paragraph. For part (b), we must consider the case z(y+1) = 1. We
have not dropped in (v,y+ 1]y, so z(v) = 7, and v¥(T) <w; z*(v) by (F)v. We
showed that v¥*1 (1) <wy,, i6* (vV(t)) in the last paragraph. So v**1(1) <wy,,
ig+(z*(v)) =2"(y+1), as desired.

For (1)y+1(d), the new case is § = 7, and A = ¢y y41(7). Everything in sight

commutes, so things work out. Let’s work them out. Settmg i = zv 41> and letting

k be the branch embedding from /\/l o +1 t /\/l (v t , the relevant diagram is
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wi(r)
Wy / Wy
M) My
Tﬂ(\;.y i*
Wy Wy
/ Mo S5 Muvie
P P

Here we are taking 6 = ¢y 11(0), where o <w, 7, and o is sufficiently large
that @y y41 preserves tree order above 6. We also take o to be a successor ordinal,
so that i*(v¥ (o)) = v*!(1). The map [ is defined by

* Wk
l(ir\yzg)_’vv(r) (x)) = ivyi/?r(lg)’vyﬂ(l) (i*(x))-
(Where of course we are taking the union over all such successor ordinals ¢.) If
we draw the same diagram with 7 replaced by some sufficiently large 7y <w, T and
A replaced by A9 = ¢y y11(70), then all parts of our diagram commute, because
we have verified ()y1 that far already. Since all these approximating diagrams
commute, / is well-defined, and the diagram displayed commutes. Moreover, it is
easy to check that kol = i* erXfﬂ. Thus we have (f)y+1(d).

The proof of ()y.1(e) is exactly the same as it was in the step from @y [N +1

to ®yy1 [N +2, so we omit it.

Remark 8.4.23. Actually, that proof seems to show that (¥),.(e) is redundant,
in that it follows from the other clauses.

This completes our work associated to the definition of @y, [A +1, for A > ay
a limit. Thus we have completed the definition of @y, and the verification of
(f)y+1, in Case 1.

Case 2. (v,y+ 1]y drops, in either model or degree.

Let
i :c1rit(E§,4)7
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P= dom(Egj’ )
J = first level of MY beyond P

that projects to or below [i.

Since we are in the pfs hierarchy, p(J) = fi is impossible. Also, I/ has dropped, so
M%l = Ul (J, EJZ;’), where k is k(J) rather than k(J) + 1. We have that

p— sz4|(ﬂ+)M%1h(Ey) _ MZ};I|(I.—L+)MI;{\Ih(E§/)'
Let
it = 0y () = crit(F),
= oy(P) = dom(F),
J = oy (J) = first level of R, beyond P

that projects to or below L.

Since oy agrees with o, on Ih(Fy,), we can replace 6, by oy in the first two
equations. ( Butif v < ¥, then J ¢ dom(oy).) We have that

P= va(‘qu)Rv\lh(Fv) :RY‘(M+)RY‘]h(F)-
In this case, z(y+1) = ay+ 1, and
Wyt =Wy 1(ay+ 1)~ (Ult(J, F)).

CLAIM 8.4.24. resyot? agrees with resy ot¥ on 1h(Fy).

PROOF. This is clear if v = 7. But if v < 7, then ¢ agrees with res, or¥ on
lh(Fy) by (1)y(b). (See the remarks after the statement of (f),.) But also, resy is
the identity on res, ot” (lh(Fy)), because v < 7. This yields the claim. 4

We have H =17(F) and G = resy(G). We have that resy : Ny|lh(H) — Ny|1h(G),

sk

and that resy agrees with i::éy on lh(H). Let
J* =Resq, [t" ()],
o" =0, 1" ()],
w =0o"(t"(u)), and
P =0o"(t"(P)).

o™ is a partial resurrection map at stage v. We had resy : Ny|lh(Hy) — N;j|1h(Gy).
o* resurrects more, namely ¥ (J), but doesn’t trace it as far back in C,. Because
no proper level of t¥(J) projects to ¥ (i), o* agrees with res, onz"(P). So

o otV [P =resyot” | P=resyot” [ P,
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the last equality being Claim 8.4.24. The embeddings displayed also agree at P,

where they have value P*. Note that P = dom(F) and P* = dom(G).

Letting J* = ng, we have that J* is the last model of (Wg ,)v. Set

T = W)™,
Lemma 8.3.1 tells us that 7* has the following form. Let £ be least such that
/() QML Then T* [E+1=W; [E+1, and letting In(T) =1 +1,& <7+ 71
and o* = ig;
We have that

Wyt =ic(T7)

and

Nysy1 = Qpy1 =ig=(J"),

by the way that lifting to the background universe works in the dropping case. As
in the non-dropping case, the key is

CLAIM 8.4.25. (i) Wy [§+1=W;"[§+1, and

(i) G = E;V

T

PROOF. We have that dom(G) = resyot?(P) = resy ot¥(P) by Claim 8.4.24, so
dom(G) = 6* o1V (P) = P* = J*|(u*)t’". Pis Mg\;ﬂlh(F) cut off atits 4. So
P* is resyoﬂ(/\/lg\mlh(F)), cut off at its (u*)™, that is, P* is /\/lz:;*ﬂh(G), cut
off at (u*)*.

Thus J* agrees with MZ:;* [1h(G) up to their common value for (u*)*. It

follows that ig«(J*) agrees with Ult(/\/lg:"* |Th(G),G) up to 1h(G) + 1, with the

agreement at 1h(G) holding by our having chosen a minimal G* for G. Claim
8.4.25 now follows from the fact that WWy* and Wy, are A-separated trees by the
same strategy. —|

We now get @, by setting p? ™! (F) = G, and applying Lemma 8.2.3. We must
see that (), holds. Part (a) is clear.

Let B* = Wy, -pred(&,).

W*
CLAIM 8.4.26. (i) Ih(T*)=B*+1, and J* = Mﬁ,ﬁ'.
(ii) B*=u*, and if s = sZL—:, then s: W* — V.



8.4. ITERATING INTO A BACKGROUNDED STRATEGY 393

W*
PROOF. By definition, 8* is the least o such that My "' |o(P*) = P*. But J*
is the last model of 7, and P* = J*|o(P"), so since 7™ and Wy, are A-separated

. 4%
trees by the same strategy, B* < 1h(7*) and MZ;* =M ﬁ*y“. This gives (i).
Part (ii) is proved exactly as in Case 1. -

Now consider (F)y11(b). We have v (ay+1) =&, + 1, and z*(y+ 1) =
ig+(1*). So we must see that &, + 1 <wy,, i6* (u*), that is, that G is used on the
branch of Wy, | to ig+(1*). Butif s = eﬁ, then s = ig+(s) [ 4, so u* is on the
branch of Wy, | to ig-(1*). Moreover, ig(s)(1*) is compatible with G, so it is
equal to G, as desired.

(t)y+1(d) is vacuous, because we have dropped. We shall leave the agreement
conditions (c), (f), and (g) to the reader, and consider (e¢). That is, we show
Wyt1 =171 o 6y 1. The relevant diagram is

v+l

MYy = Rye Mt~ M
[ w‘p T:‘G T
— oy J Y v ( ]) (e J*
.y
150
4% . .
Here k = iﬂﬁ(]ay )2 (1) Thus the embedding along the top row is 17! o Oyi1.

The lifting process defines Yy by

Yyt ([a. ) = lresyoyla). 0™ o W ()]G

where we have dropped a few superscripts for readability. Let us write 7 for il‘f’y 01

Then vy agrees with #Y"! 0 6y.1 on ran(7), because
"oy 0i=igroc ot ooy
=ig-o0 oy
= Yy 0l
The first line comes from the commutativity of the diagram, the second from

(t)v(e), and the last from the definition of vy ;.
So it is enough to see that v, | agrees with ttlo Oy+1 On €, where € = lh(Ey“).

But note that 1¥*! = ko 52;;1’ and crit(k) > 1h(G). So t"*! agrees with the copy
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Y+1

ay+1 00 1h(F). Thus t"+! agrees with res, of” on 1h(F). So we can calculate

map s

Yyi1 € =resyoyy €
=resyot’ ooy €
=1""ooy fe.

The second line comes from (f)y)(e), and the third from our argument above,
together with the fact oy, [ € = oy [ €.

This finishes Case 2, and hence the definition of ®y. and verification of (1)y1.

We leave the detailed definition of @, and verification of (1), for A a limit
ordinal or A = b, to the reader. The normalization W is a direct limit of the W,
for v € [0,A)y. The tree Wj is i, (W;), for v past the last drop. So it is a direct
limit too. We define @, to be the direct limit of the @, for v € [0,A)y past the
last drop. Part (d) of (1) tells us we can do that. We omit further detail.

This finishes our proof of Sublemma 8.4.8.1, that W}, is a psuedo-hull of Wj.

_|

That in turn proves Lemma 8.4.8 -

LEMMA 8.4.27. Let M = My, x,, and let U be a A-separated tree on M that is
of limit length, and is by both X+ M and Q€ . Let ift(U,M,C)o = U*; then
Vo-ko”

Vo,ko
U* has a cofinal, wellfounded branch.

PROOF. Let w: H — Vy be elementary, where H is countable and transitive,
and @ is sufficiently large, and everything relevant is in ran(x). Let S = 7~ (U),
S*=n'U*),and T =~ 1( " ko)-

By the proof of Lemma 7.6.7, 7! (X) = 2N H, so (T,S) is by £. Moreover,
letting

b=x((T,S)),

we have that b € H. (Because b € H|g] for all g on Col(w, ), for T € H sufficiently
large.) It will be enough to see that /\/lf* is wellfounded, as then the elementarity
of 7 yields a cofinal wellfounded branch of I/*.

By [26], S* has a cofinal, wellfounded branch c. The proof of Sublemma 8.4.8.1
shows that W, is a psuedo-hull of W, where W, = W (T,87¢) and Wi =iS"(T).
That is because we can run the construction of @, in H; we don’t need ¢ € H to
do that. But then W} is by X, so W, is by X by strong hull condensation, and
¢=X((T,S)) since X quasi-normalizes well. Thus c =b, and M is wellfounded,
as desired. -

We can now finish the proof of Theorem 8.4.3. We have just shown that ZW‘i oM
0+ko

agrees with Q%ko on A-separated trees. By Lemma 7.6.5, they agree on finite

stacks of plus trees, as desired.
This finishes the proof of Theorem 8.4.3. n



Chapter 9

FINE STRUCTURE FOR THE LEAST BRANCH
HIERARCHY

We now adapt the definitions and results of the previous sections to mice that are
being told their own background-induced iteration strategy.

The particular kind of strategy mice dealt with in this book we call least branch
hod mice. Paired with their iteration strategies, they become least branch hod pairs.
Least branch hod pairs and pure extender pairs share many basic properties, and
so we define a mouse pair to be a pair of one of the two varieties. §9.3 discusses
some of the basic properties of mouse pairs.

The deeper results about least branch hod pairs require a comparison theorem.
The proof of our comparison theorem for pure extender pairs generalizes in a
straightforward way to least branch hod pairs, provided that we have background
constructions for them that do not not break down that we can iterate our pairs into.
The main problem is to show that.

One might worry that the proofs we gave in Chapter 4 that PFS constructions
do not break down require a comparison, so we are being led into a vicious circle.
But this is not a problem, because if (M,X) is a least branch hod pair, and C is the
maximal hod pair construction of some coarse I'-Woodin mouse that captures X,
then C cannot break down until it has reached an iterate of (M,X). This means that,
under the appropriate large cardinal or determinacy hypotheses, we have enough
backgrounded hod pairs to prove termination for the comparisons needed to show
that hod pair constructions are good at all (v,k).

But we do in fact confront a new problem in adapting the proof that PFS
constructions are good everywhere ( Theorem 4.11.4) to hod pair constructions.
The main arguments all involved iterating away least disagreements in a phalanx
comparison. For example, in the proof that M, ; is parameter solid, we compared a
phalanx of the form (M, H, o) with M by iterating away least disagreements. Here
we must compare strategies as well, and this forces us to compare (M, H, o) with
M by iterating the two into levels of some common hod pair construction. The
result is that disagreements will very often involve the two sides agreeing with
each other, but not with the background. If we proceed naively, this renders invalid
the usual argument that we can’t end up above M on the phalanx side. Our solution

395



396 9. FINE STRUCTURE FOR THE LEAST BRANCH HIERARCHY

is to modify the way the phalanx is iterated, so that sometimes we move the whole
phalanx up, including its exchange ordinal.>3?

§9.1 and §9.2 lay out some elementary properties of least branch hod pairs. §9.3
contains some definitions which highlight the value of considering premouse and
iteration strategy as a pair. Sections 9.4 through 9.6 are devoted to background
constructions of least branch hod pairs, and the proof that all their levels are
parameter solid. We shall finish that proof, and consider the other components of
goodness for such constructions, in Chapter 10. This leads in §10.4 to our main
existence theorems for least branch hod pairs.

9.1. Least branch premice

Let £; be the language having the binary relation symbol €, predicate symbols
E,F,¥,B, and constant symbol 7. A least branch premouse (Ipm) is a pair (M, k),
where k < w, and

M = (M1, €, EM M M EM M)
is an £ structure such that [M| is transitive and M has various first order properties
described below. We call M the bare premouse associated to M and write k = k(M).
We often identify M with M, and usually write x € M instead of x € |M]|.

If M is an lpm, then its predicates are amenable to M, and hence can be amalga-
mated in some fixed way into a single amenable A = A*. Considered this way,
M = (J4,€,A) is an acceptable J-structure, so the basic fine structural notions
described in [49] and Chapter 2 apply. However we shall use instead the projectum
free spaces fine structure of Chapter 4, for the reasons described in §3.6. This
amounts to adding certain parameters to our cores. In particular, we adopt whole-
sale the definitions and notation of Chapter 4 concerning projecta, cores, solidity,
soundness, and elementarity and near elementarity of maps. The elementary results
of Chapter 4 concerning these notions hold in the current context, with the same
proofs. An lpm is just a pfs premouse expanded by one additional amenable
predicate, used to describe an iteration strategy for it. Our focus in this chapter
will be on the new elements this predicate introduces, and how to modify Chapter
4 so0 as to deal with them.

If M is k-sound lpm, then it is coded by its reduct M*, and its k + 1-st projectum,
parameter, strong core Q_ZkH, and core €| are given by

Pir1 = p1(MY),

Prr1 = p1(M"),
€4,1 = transitive collapse of d o h}wk“(pkﬂ U{Pk+1,wk}),

233W.H. Woodin and F. Schlutzenberg have, independently and earlier, developed and used this idea
in other contexts. See [50].
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Pri1 =0 "(prs1), and

€41 = transitive collapse of d* o h}uk“(pkH U{Pkt1,Prt1sWi})-

Here d* decodes M¥, 6: €| — M is the anticollapse map, and wy = (M, Px)
where 1y, is the rX; cofinality of py. M is k+ 1-solid iff

(a) M*is parameter solid; that is, py1 and py are solid and universal over Mk
and (&1 )* respectively,

(b) M* is projectum solid; that is, py,; is not measurable by the M-sequence,
and either
(i) Cpp1 = ¢k+17_0r _
(ii) €11 = Ultg(Cx11,D), where D is the order zero measure of €, on

Ph+1- and c = moip,

(c) M* is stable; that is, either n,f’[ < Pk+1, OF n,f” is not measurable by the
M-sequence, and

(d) M is weakly ms-solid; that is, if M is extender active, then the last extenders
of &1(M) and € (M) satisfy the weak ms-ISC.

M is k+ 1-sound iff M is k+ 1-solid and M = €| (M).
If M is an lpm, then o(M) is the ordinal height of M, and 6(M) is the o such
that o(M) = oa. The index of M is

[(M) = (6(M), k(M)).

If (v,I) <jex [(M), then M|{v,I) is the initial segment N of M with index [(N) =
(v,1). So EN =EMNN, FN =EM yN =3yMNN, and BY is determined by M
is a way that will become clear shortly.) In order that M be an lpm, all its initial
segments N must be k(N)-sound in the projectum free spaces sense of Definition
4.1.10. If v < 6(M), then we write M|v for M|(v,0).

As with ordinary premice, if M is an Ipm, then E is the sequence of extenders
that go into constructing M, and FM is either empty, or codes a new extender
being added to our model by M. FM must satisfy the Jensen conditions; that is,
if F = FM is nonempty (i.e., M is extender active), then M = crit(F)" exists,
and for p = crit(F)™, o(M) = i¥(u). FM is just the graph of & [(M|u). M
must satisfy the Jensen initial segment condition (ISC) in that the whole initial
segments of FM must appear in E¥; moreover every extender in EY must satisfy
the weak ms-ISC. If there is a largest whole proper initial segment, then 7/ is
its index in EM. Otherwise, 7 = 0. Finally, an I]pm M must be coherent, in that
M (EM) To(M)+1 = EM(0).

In other words, the conditions for adding extenders to M are just as in Jensen’s
work. The structure (|[M|,€,E™, F™ ") would be a pure extender pfs premouse
in the sense of Definition 4.1.11, except that ¥ has been used in generating |M|.

The definitions related to plus trees and iteration strategies defined on stacks of
them given in §4.4 and §4.6 extend to the case that the base model M is an Ipm
without change. The predicates ¥ and BM are used to record information about
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an iteration strategy € for M. The strategy Q will be determined by its action on
A-separated trees, in an absolute way, so that we need only tell the model we are
building how Q acts on A-separated trees, and then the model itself can recover
the action of Q on the finite stacks of plus trees that it sees. This is what we shall
do.234

Let us write M|(v,—1) for (M|{v,0))~; thatis, for M|(v,0) with its last extender
predicate set to 0.

DEFINITION 9.1.1. An M-tree is a triple s = (v, k,T) such that
(1) (v,k) <jex [(M), and
(2) T is a A-separated iteration tree on M|(v,k).

We allow here 7 to be empty. The case k = —1 allows us to drop by throwing
away a last extender predicate. Given an M-tree s we write s = (V(s),k(s), 7 (s)).
We write M.(s) for the last model of T (s), if it has one. We say 1h(7 (s)) is the
length of s.

What we shall feed into an Ipm M is information about how its iteration strategy
acts on M-trees.

M is a predicate that codes the strategy information added at earlier stages, with
Y™ (s, b) meaning that 7 (s) is a A-separated tree on M|(v(s),k(s)) of limit length,
and 7 (s)"b is according to the strategy. We write X/, for the partial iteration
strategy for M|(v,k) determined by ¥¥. We write

M (s) = b iff IM(s,b)
iff 2V (o) (T (5)) = b.

We say that s is according to TV iff T (s) is according to Z"‘,”(S)’k(s).

We now describe how strategy information is coded into the BY predicate. Here
we use the ‘B-operator discovered by Schlutzenberg and Trang in [56]. In the
original version of this paper, we made use of a different coding, one that has
fine-structural problems. The authors of [76] discovered those problems. The
discussion to follow is taken from [76].

DEFINITION 9.1.2. M is branch active (or just B-active) iff

(a) there is a largest n < o(M) such that M|n |= KP, and letting N = M|n,

(b) there is a <y-least N-tree s € N such that s is by £V, 7 (s) has limit length,
and XV (s) is undefined.

(c) for N and s as above, o(M) < o(N) +1h(T (s)).

Note that being branch active can be expressed by a X, sentence in Lo — {B}.
This contrasts with being extender active, which is not a property of the premouse
with its top extender removed. In contrast with extenders, we know when branches
must be added before we do so.

234Qur comparison method only applies directly to strategies acting on stacks of A-separated trees,
so we must restrict the part of Q being inserted into M at least that much.
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DEFINITION 9.1.3. Suppose that M is branch active. We set
nM = the largest 7 such that M|n = KP,
oM ={a|n" +acB"},

sM = least M|n™-tree s such that =¥ " (s) is undefined, and
vM = unique v such that n™ 4 v = o(M).

Moreover, for s = s,

(1) M is a potential Ipm iff b is a cofinal branch of T (s) [ v/.

(2) M is honest iff vM =1h(T (s)), or vM < 1h(T (s)) and b = [0,v™) 7).
(3) M is an [pm iff M is an honest potential Ipm.

(4) M is strategy active iff vM =1h(T (s)).

We demand of an Ipm M that if M is not B-active, then B¥ = 0.
The X predicate of an Ipm grows at strategy active stages. More precisely, let
M {ZM U{(sM,bM)} if M is strategy active, and

M otherwise.

Suppose that 6(Q) is a successor ordinal, and M = Q|(6(Q) — 1); then in order for
Q to be an Ipm, we must have

0 =$M
That is, ¢ = £M U {(s,bM)} if M is strategy active, and £¢ = ™ otherwise. If
6(Q) is a limit ordinal, then we require that £¢ = {J, _;(0)£¢. We see then

that if M is an Ipm and v < 6(M), then M1V C £ and M| is strategy active iff
$MIV £ $M.

This completes our definition of what it is for M to be a least branch premouse
of type 1, the definition being by induction on the hierarchy of M.

DEFINITION 9.1.4. M is a least branch premouse (Ipm) of type 1 iff M is an
acceptable J structure meeting the requirements stated above.

Type 2 lpms arise in the same way type 2 pfs premice did, via r¥; ultrapowers
that are discontinuous at py. See §4.2. In the end, we shall avoid them in the same
way that we did in §4.10. Type has to do with soundness properties, not the bare
premice. If k(M) = 0, then M has type 1.

Notice that if M is an lpm, then no level of M is both B-active and extender
active, because B-active stages are additively decomposable.

Returning to the case that M is branch active, note that " is a T} singleton,
because it is the least ordinal in B (because 0 is in every branch of every iteration
tree), and thus s is also a Zg” singleton. We have separated honesty from the
other conditions because it is not expressible by a Q-sentence, whereas the rest
is. Honesty is expressible by a Boolean combination of ¥, sentences. See 9.1.9
below.
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The original version of this book required that when o(M) < n™ +1h(7 (s)),
BM is empty, whereas here we require that it code [0,0(M))7(y), in the same way
that BM will have to code a new branch when o(M) = n™ 4-1h(7 (s)). Of course,
[0,v™)7(;) € M when o(M) < n™ 4-1h(T (s)) and M is honest, so the current BY
seems equivalent to the original BY = 0. However, B¥ = 0 leads to ¥ being
too weak, with the consequence that a ¥ hull of M might collapse to something
that is not an Ipm. (The hull could satisfy o(H) = n +1h(7 (s)), even though
o(M) < ™ +1h(T(sM)). But then being an Ipm requires B # 0.) Our current
choice for BM solves that problem.

Remark 9.1.5. Suppose N is an Ipm, and N |= KP. Tt is very easy to see that XV
is defined on all N-trees s that are by XV iff there are arbitrarily large £ < o(N)
such that N|& |= KP. So if M is branch active, then N is a successor admissible;
moreover, we do add branch information, related to exactly one tree, at each
successor admissible. Waiting until the next admissible to add branch information
is just a convenient way to make sure we are done coding in the branch information
for a given tree before we move on to the next one. One could go faster.

We say that an Ipm M is (fully) passive if F¥ = @ and B = 0.
We would like to see that being a bare lpm is preserved by the appropriate
embeddings. Q-formulae are useful for that.

DEFINITION 9.1.6. A rQ-formula of L, is a conjunction of formulae of the
form
(a) Yudv(u CvA @), where @ is a X formula of £y such that u does not occur
free in ¢,
or of the form
(b) “F # 0, and for u = crit(F)™, there are cofinally many & < u such that y”,
where Yy is X1.

Formulae of type (a) are usually called Q-formulae. Being a passive bare lpm
can be expressed by a O-sentence, but in order to express being an extender-active
bare Ipm, we need type (b) clauses, in order to say that the last extender is total.
rQ formulae are I, and hence preserved downward under ¥;-elementary maps.
They are preserved upward under X maps that are strongly cofinal.

DEFINITION 9.1.7. Let M and N be L;-structures and w: M — N be X and
cofinal. We say that 7 is strongly cofinal iff M and N are not extender active, or M
and N are extender active, and 7 crit(F) ™ is cofinal in crit(F) V.

It is easy to see that

LEMMA 9.1.8. rQ formulae are preserved downward under ¥|-elementary
maps, and upward under strongly cofinal Xy-elementary maps.

LEMMA 9.1.9. (a) There is a Q-sentence ¢ of L1 such that for all transitive
Ly structures M, M |= @ iff M is a passive bare lpm.
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(b) There is a rQ-sentence @ of L1 such that for all transitive Ly structures M,
M |= ¢ iff M is an extender active bare lpm.

(c) There is a Q-sentence ¢ of L such that for all transitive Ly structures M,
M |= ¢ iff M is a potential branch active bare Ipm.

PROOF. (Sketch.) We omit the proofs of (a) and (b). For (c), note that “B # 0
is £1. One can go on then to say with a X sentence that if 1] is least in B, then M|n
is admissible, and s™ exists. One can say with a IT; sentence that {a | B(n + )} is
a branch of 7 (), perhaps of successor order type. One can say that B is cofinal in
the ordinals with a O-sentence. Collectively, these sentences express the conditions
on potential lpm-hood related to B. That the rest of M constitutes an extender
passive lpm can be expressed by a I1; sentence. n

COROLLARY 9.1.10. (a) If M is a passive ( resp. extender active, potential
branch active ) bare lpm, and Ulty(M, E) is wellfounded, then Ulty(M,E) is
a passive (resp.extender active, potential branch active ) bare Ipm.

(b) Suppose that M is a passive (resp. extender-active, potential branch ac-
tive) bare Ipm, and w: H — M is X1-elementary; then H is a passive (resp.
potential branch active) bare lpm.

(¢) Let k(M) =k(H) =0, and m: H — M be X, elementary, then H is a branch
active bare lpm iff M is a branch active bare Ipm.

PROOF. rQ-sentences are preserved upward by strongly cofinal ¥y embeddings,
so we have (a). They are Il,, hence preserved downward by X;- elementary
embeddings, so we have (b).

It is easy to see that honesty is expressible by a Boolean combination of X,
sentences, so we get (c).

_|

Part (c) of Corollary 9.1.10 is not particularly useful. In general, our embeddings
will preserve honesty of a potential branch active Ipm M because XM and BM are
determined by a complete iteration strategy for M that has strong hull condensation.
So the more useful preservation theorem in the branch active case applies to hod
pairs, rather than to hod premice. See 9.2.3 below.

Remark 9.1.11. The following examples show that the preservation reults of
9.1.10 are optimal in certain respects.

(1) Let M be an extender active lpm, and N = Ulty(M,E), where E is a long
extender over M whose space is crit(F) ™", so that the canonical embedding
m: M — N is discontinuous at crit(F)**. Then 7 is cofinal and X, so that
M and N satisfy the same Q-sentences, but N is not an Ipm, because its last
extender is not total. 7 is not strongly cofinal, of course.

(2) The interpolation arguments in [44] yield examples of w: M — N being X
elementary, and N being an extender active bare Ipm, but M not being a bare
Ipm. Again, M falls short in that its last extender is not total.
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The copying construction, and the lifting argument in the iterability proof, do
give rise to maps that are only nearly elementary. However, in those cases we know
the structures on both sides are lpms for other reasons. On the other hand, core
maps and ultrapower maps are fully elementary, so we can apply (a) and (b) of
Corollary 9.1.10 to them. We do need to do this.

9.2. Least branch hod pairs

We are interested in least branch premice M that have well-behaved iteration
strategies, that is, strategies Q that are internally lift consistent, quasi-normalize
well and have strong hull condensation. Another aspect of the good behavior of
Q is that all Q-iterates of M are least branch premice whose strategy predicate is
consistent with the appropriate tail of Q. It is really the pair (M, Q) to which our
results apply.

DEFINITION 9.2.1. M is a least branch premouse, and let Q be a complete
iteration strategy for M with scope Hg; then (M, Q) is pushforward consistent iff
whenever s is a stack by Q and has last model N, then N is an lpm, and N C Qq.

Recall here that if N is strategy active, then £V includes the new branch infor-
mation present in BV,

DEFINITION 9.2.2. (M, Q) is a least branch hod pair (lbr hod pair) with scope
Hj iff
(1) M is aleast branch premouse of type 1, and Q is a complete iteration strategy
for M with scope Hg,>®
(2) Q quasi-normalizes well,
(3) Qs internally lift consistent and has strong hull condensation, and
(4) (M,Q) is pushforward consistent.

We have made it part of the definition that M has type 1 because it is convenient,
and we do not need more generality.

Definition 9.2.2 assumes we have made sense of quasi-normalization and tree
embeddings as they apply to iteration trees on least branch premice. The definitions
and basic results that apply to pure extender premice go over word-for-word, so
we shall simply assume this has been done.

There is one small difference in the two situations, in that the class of bare lpms
is not closed under X ultrapowers or ¥£; elementary embeddings, because of the
branch-honesty requirement. But we will always be dealing with hulls or iterates
of pairs, and Ipm-hood is preserved in that context. For iterates, that is just part of
clause (4) of 9.2.2. In the case of hulls, it is part of the following lemma.

235That is, Q is a winning strategy for Il in GT (M, ®, §). See §4.6.
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LEMMA 9.2.3. (Downward Extension for pairs.) Let (M, Q) be a least branch
hod pair with scope Hg, and k = k(M). Suppose that T: N — M is the completion
of my: (P,B) — M¥, where either

(a) myis Xy elementary, or
(b) my is cofinal and X1 elementary, or
(c) my is Xo elementary and N is an Ipm;

then setting k(N) = k, (N,QF) is a Ibr hod pair with scope Hs and soundness
degree k.

PROOF. Let us prove (a) and (b). Assume first that k = 0. N is then an Ipm
by 9.1.10, except perhaps when M is branch active and 7 is only cofinal and ¥
elementary. In this case, N is a potential branch active Ipm, and we must see that
N is honest.

Soletv=v¥ b=>5b",and T = T(s"). If v = Ih(T), there is nothing to show,
so assume Vv < 1h(7"). We must show that b = [0, v)r. We have by induction that
for 0 = N|n", (Q, Qp) is an Ibr hod pair, and in particular, that it is pushforward
consistent. Thus 7 is by QF, and so we just need to see that fortd =T [v,U"b
is by Q7 or equivalently, that 7/~ b is by Q. But it is easy to see that 7L/ b is a
pseudo-hull of 7(U/)~h¥, and Q has strong hull condensation, so we are done.

Thus N is an Ipm. Q7 is a complete iteration strategy defined on all N-stacks in
Hg, where Hy is the scope of (M, Q). Q" quasi-normalizes well by the the proof
of 7.1.6, and has strong hull condensation by the proof of 7.1.11. It is easy to see
that Q7 is also internally lift consistent.

Finally, we must show that (N, Q") is pushforward consistent. Let P be a Q"
iterate of N, via the stack s. Let Q be the corresponding iterate of M via s, and let
T: P — Q be the copy map. Then

U is by £ = t(UU) is by £2
= t(U) isby Qus 0
= U is by Qzs 0
= U is by (Q"),p,

as desired.23¢

This proves (a) and (b) when k = 0, and the proof also gave (c).
If k > 0, then we must also show that N is k-sound. The proof of the Downward
Extension Lemma 4.3.5 does this. n

Definition 9.2.2 records the properties of the hod pairs we construct needed to
prove the comparison theorem and the existence of cores. The other properties one
might hope for seem to follow from these, as they did in the case of pure extender

2361 P is strategy active, then I/ may be of the form 7 b". In this case, by () we mean
7(T) " b2. Copy maps are nearly elementary, so Tl is a pseudo-hull of 7(Z/) in this case too.
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pairs, and by the same proofs. For example, from the proofs of 7.1.10, 5.2.6, and
7.6.5, we get

LEMMA 9.2.4. Let (M,Q) be an Ibr hod pair with scope Hy; then

(a) (M,Q) is pullback consistent and strategy coherent on stacks of A-separated
trees®’, and
(b) if (M,¥) is an Ibr hod pair with scope Hy such that ¥ and Q agree on

A-separated trees, then ¥ = Q.
Inspired by these and many other similarities, we define

DEFINITION 9.2.5. (M, Q) is a mouse pair iff (M,Q) either a pure extender
pair, or an lbr hod pair.

The reader will naturally ask whether there are other classes of strategy pairs
(M,X) which behave like the two classes we have isolated here. The answer is
positive. The remarks to follow were stimulated by a suggestion by Hugh Woodin.

One can vary how much of ¥ gets encoded into ¥, and when that is done. One
can think each of these variations as associated to some X formula ¢(v). Roughly,
a @-premouse M starts to encode a branch for 7 when it reaches some ¢ such
that M|a |= @[T ]. Pure extender premice are ¢-premice, for ¢ = “v # v”. Least
branch premice are ¢-premice, for ¢ a X; formula that can be abstracted from §5.1.
Other X; formulae would lead to classes that might be called “@-mouse pairs”.
The requirements of normalizing well, strong hull condensation, and pushforward
consistency are the same for all classes of @-mouse pairs. What varies is how
much of the strategy X is encoded into M, and when that is done.

We should note that the rigidly layered hod pairs of [37] are not ¢-mouse pairs,
because the condition governing branch insertion is not first order. ¢-mouse pairs
have the condensation properties of pure extender pairs, while rigidly layered hod
pairs do not.

The analysis of HOD in models of AD™ that do not satisfy ADg may need ¢-
mouse pairs, for ¢ not one of the two formulae we have given privileged status in
Definition 9.2.5. But this is speculation right now, and we have no real applications
for classes of mouse pairs beyond those identified in 9.2.5, so we have avoided the
extra generality.?38

9.3. Mouse pairs and the Dodd-Jensen Lemma

Mouse is generally taken to mean iterable premouse, and the Comparison

237Namely, if s~ (7) and s~ () are A-separated stacks by Q and N is an initial segment of both
last models, then Qg ~ (7 y = Xy~ 4y v- This is what we proved for pure extender pairs in 5.2.6.

2381n order to analyze HOD in such determinacy models, it seems one must use pairs (M,X) such
that only the short tree component of ¥ is inserted into V. See also [38], [39], and [75]. To our
knowledge, there is as of now no general fine structure theory for such pairs.
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Lemma is taken to say that any two mice M and N can be compared as to how
much information they contain. But in fact, how M and N are compared depends
on which iteration strategies witnessing their iterability are chosen. There is no
mouse order on iterable premice, even of the pure extender variety, unless we
make restrictive assumptions which imply that the iteration strategy is unique. The
canonical information levels of the mouse order are occupied not by mice, but by
mouse pairs. These pairs are the objects to which the Comparison Lemma, the
Dodd-Jensen Lemma, and the other basic results of inner model theory apply. In
the special case that M can have at most one strategy, we don’t need to make the
pair explicit, but in general, we do.

Let us introduce some terminology that reflects this point of view. We have
already used some of it as it applies to pure extender pairs. (See 7.6.10.)

DEFINITION 9.3.1. Let (P,X) and (Q,€) be mouse pairs.

(@) (P,X)<(Q,Q)iff PAQand £ = Qp.

(b) m: (P,X) = (Q,Q) is elementary (resp. nearly elementary) iff 7 is elemen-
tary (resp. nearly elementary) as a map from P to Q, and ¥ = QF,

(c) An iteration tree on (P,X) is a an iteration tree 7 on P such that T is by X.
The a™ pair of T is (ME 271 0+1)-

(d) A (P,X)-stack is a P-stack by X. If s is a (P,X)-stack with last model Q, then
the last pair of sis (Q,Zs.0).

(e) (Q,¥) is an iterate of (P,X) iff there is a (P,X)-stack with last pair (Q,¥).
If s can be taken to be a single normal ( resp. A-separated, A-tight) tree, then
(Q,¥) is a normal (resp. A-separated, A-tight) iterate of (P,X). If s can be
taken so that P-to-Q in s does not drop, then (Q, V) is a non-dropping iterate
of (PX).

® (PX) <* (Q,Q) iff there is an iterate (R,¥) of 0,Q) and an elementary
m: (PX) — (R,¥). We call <* the mouse pair order.

Notice that the natural agreement of pairs in a stack of A-separated trees on
(P,X) follows at once from strategy coherence. Here are some further elementary
facts stated in this language.

LEMMA 9.3.2. Let (P,X) be a mouse pair with scope Hg, and let (Q,Q) be an
iterate of (P,X) such that Q has type 1; then (Q,Q) is a mouse pair with scope Hy.

PROOF. Quasi-normalizing well, internal lift consistency, strong hull condensa-
tion, and pushforard consistency are defined so that they pass to tail strategies. If P
is an Ipm, then Q is an Ipm by clause (4) of 9.2.2. -

In the mouse pair language, the elementarity of iteration maps amounts to
pullback consistency. So we have

LEMMA 9.3.3. Let (P,X) be a mouse pair, and let s be a (P,X)-stack; then
the iteration maps of s are elementary in the category of mouse pairs. That

is, if Q = MZ;'"(S)KV,I() and w: Q — Ma(s) is the iteration map of s, then for
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t=s[(m—1)"((Vin(s),km(s), Tu(s) [ (0t 4+ 1))), 7 is elementary as a map from
(Q,X10) 10 (Mes(s), Zy).

The appropriate statement of the Dodd-Jensen Lemma on the minimality of
iteration maps is:

THEOREM 9.3.4. (Dodd-Jensen Lemmay) Let (P,L) be an mouse pair, let (Q,Q)
be an iterate of (P,X) via the stack s, and let T: (P,L) — (Q,Q) be nearly elemen-
tary; then

(a) the branch P-to-Q of s does not drop, and
(b) letting is: P — Q be the iteration map, for all 1 < o(P), is(n) < m(N).

We omit the well known proof. Notice that it requires the assumption that
ZgQ =X. This was at one time a nontrivial restriction on the applicability of the
Dodd-Jensen Lemma, and led to the Weak Dodd-Jensen Lemma of [34]. Now that
we can compare iteration strategies, the restriction is less important.

We get the Dodd-Jensen corollary on the uniqueness of iteration maps.

COROLLARY 9.3.5. Let (P,X) be a mouse pair, (Q,Q) a non-dropping iterate
of (P,X) via the stack s, and suppose (Q,Q) < (R, W), where (R,¥) is an iterate of
(P,X) via the stack t; then

(a) (Q,Q) = (R,Y), and the branch P-to-R of t does not drop, and
(b) letting is and i; be the two iteration maps, i; = i.
In the language of mouse pairs, the Comparison Lemma reads

THEOREM 9.3.6. (Comparison Lemma) Assume AD™, and let (P,X) and (Q,P)
be strongly stable mouse pairs with scope HC of the same kind; then there are
iterates (R,A) of (P,X) and (S,Q) of (Q,¥), obtained via A-separated trees T on
P and U on Q, such that either

(1) (R,A)<(S,Q) and P-to-R does not drop, or
(2) (S,Q)<(R,A) and Q-to-S does not drop.

We proved this for pure extender pairs in 8.4.5, and we shall give the proof for
least branch hod pairs in 9.5.10. For now let us assume it. We get

COROLLARY 9.3.7. Assume AD™; then

(a) For (P,X) and (Q,¥) mouse pairs with scope HC of the same kind,

(PL) <" (Q,¥) <3(R,Q)In[(R,Q) is a dropping iterate of (Q,¥)
and t: (P,X) — (R, Q) is nearly elementary).

(b) When restricted to a fixed kind, <* is a prewellorder of the strongly stable
mouse pairs with scope HC.

PROOF. The left-to-right direction of (a) follows from the Comparison Lemma.
The right-to-left direction follows from Dodd-Jensen. For (b), the Comparison
Lemma implies that <* is linear. That it is wellfounded follows from (a), using the
proof of the Dodd-Jensen Lemma. —
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For the record

DEFINITION 9.3.8. Let (P,X) be a mouse pair; then X is positional iff whenever
(Q,¥) and (R, Q) are iterates of (P,X), and Q = R, then ¥ = Q.

The property is clearly related to what is called being positional in [37]. In the
present context it implies strategy coherence.
[59] proves

LEMMA 9.3.9. Assume AD", and let (P,X) be a strongly stable mouse pair
with scope HC; then X is positional.

Fortunately, this lemma is not needed in the proof of the Comparison Lemma
9.3.6. Its proof instead relies on a comparison argument.

Here are two propositions that explain the relationship between pure extender
mice and pure extender pairs.

PROPOSITION 9.3.10. Assume AD™, and let P be a countable, strongly stable,
o) -iterable pure extender premouse; then there is a ¥ such that (P,X) is a pure
extender pair.

PROOF. Let ¥ be an arbitrary @ iteration strategy for P. We may assume W is
Suslin and co-Suslin by Woodin’s Basis Theorem. ( See [64], Theorem 7.1.) Thus
there is a coarse strategy pair?>® ((N*,€,w, F,X),X*) that captures ¥. Working
in N*, we get that P iterates by ¥ to a level (Q,Q) of the pure extender pair
construction of N*. Since X* exists, Q can be extended to to have scope HC. Let
7: P — Q be the iteration map; then (P, Q%) is a pure extender pair. -

PROPOSITION 9.3.11. Assume AD", LEC, and 8y < 0; then there are strongly
stable pure extender pairs (P,X) and (P,Q) such that (P,L) <* (P,Q).

PROOF. (Sketch.) By LEC, there is a pure extender pair (P,Q) such that Q is
not ordinal definable from a real. Fix such a pair. By the Basis Theorem, there is
a X such that (P,X) is a pure extender pair, and X is ordinal definable from a real.
Suppose toward contradiction that (P,Q) <* (P,X); then

for some stack s and iteration map 7. Thus Q is ordinal definable from a real,
contradiction. -

It follows that under the hypotheses of 9.3.11, there are pure extender pairs (P,X)
and (P, Q) such that for some R, P iterates normally by X to a proper initial segment
of R, and normally by Q to a proper extension of R.

The proofs of Lemmas 7.6.5 and 7.6.7 go over from pure extender pairs to least
branch hod pairs with no change. We get

29See Definition 9.4.14.
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LEMMA 9.3.12. Let (P,X) and (P,A) be mouse pairs with scope Hg, and sup-
pose that ¥ and A agree on countable A-separated trees; then ¥ = A.

LEMMA 9.3.13. Let (P,X) be a mouse pair pair with scope Hg, and let j: V —
M be elementary, where M is transitive and crit(j) > |P|; then j(¥) and X agree
on all trees in j(Hs) NHsg.

Weak Dodd-Jensen

Because we can compare iteration strategies, we shall be able to use the full
Dodd-Jensen Lemma instead of the weak one in the proof of solidity and univer-
sality of standard parameters. Nevertheless, let us state the weak one, for the sake
of completeness.?*?

Note that the proofs we have given that background induced strategies are
internally lift consistent, quasi-normalize well and have strong hull condensation
actually yield (m;, @) strategies Q such that each QF, for Ih(s) < @, is internally
lift consistent, quasi-normalizes well and has strong hull condensation. Here
Q! is the complete strategy, defined on finite stacks ¢, given by Q (t) = Q(s71).
The same will be true for pushforward consistency. This is used in the Weak
Dodd-Jensen argument.

Just as in the pure extender case:

DEFINITION 9.3.14. An iteration strategy € for an Ipm M has the Weak Dodd-
Jensen property relative to an enumeration € of its universe in order type @ iff
whenever N = M..(s) for some stack s by Q, then

(1) if there is a nearly elementary embedding fom M to an initial segment of
N, then the branch M-to-N of s does not drop, and the iteration map * is
é-minimal, and

(2) if M has type 1A, k = k(M), and there is a £y elementary map from M(lj to
NE, then the branch M-to-N of s does not drop in model.

LEMMA 9.3.15. (Weak Dodd-Jensen) Let (M,Q) be a mouse pair with scope
Hg, and let € be an enumeration of the universe of M in order type ®. Suppose that
Q is defined on all countable M-stacks s from Hg, and that for any such s having a
last model, (M(s), ) is a mouse pair; then there is a countable M-stack s by Q
having last model N = Mw(s), and a nearly elementary w: M — N, such that

(1) (N,(Qs)™) is a mouse pair, and
(2) ()™ has the Weak Dodd-Jensen property relative to €.

PROOF. The proof from [34] goes over verbatim. Notice here that any such
(N, (€4)™) is an lbr hod pair, by 9.3.2 and 9.2.3. -

240We shall need it in the proof of Theorem 10.2.3.
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We have stated the elementary results about lbr hod pairs in this section as
results about mouse pairs, because that is their natural context. We are mainly
interested in 1br hod pairs for the rest of this book, so we shall return to that level
of generality.

9.4. Background constructions

It is easy to modify the background constructions of pure extender premice de-
scribed in Section 4.7 so that they produce least branch hod pairs. The background
conditions for adding an extender are unchanged. If we have reached the stage
at which M, j is to be defined, then our construction, together with an iteration
strategy for the background universe, will have provided us with complete iteration
strategies 2y ; for My, ;, for all < v. We must assume here that the background
universe knows how to iterate itself for trees that are of the form lift(7", My, ;,C)o.
Each (Mn,l, QHJ) will be a least branch hod pair. If My  is to be branch active
according to the Ipm requirements, then we use the appropriate €2, ; to determine
BMvo.

The additional strategy predicates in our structures affect what we mean by
cores and resurrection, but otherwise nothing much changes. We shall therefore go
quickly.

The simplest sort of iterability hypothesis under which we can carry out a least
branch construction is the following.

DEFINITION 9.4.1. IH, s is the assertion: if (w, F) is a coherent pair such that
F C Vs and VE € F(crit(E) > k), then for all 0, (V,€,w, F) is strongly uniquely
(0, 0)- iterable.

Assuming AD™, we have by Corollary 7.2.8 that whenever (N*,8,S,T,w,X*) is
a coarse I'-Woodin tuple, then L(N*,w,S,T) |= IH,, 5, where § is the I'-Woodin of
N*. So we could be doing our background construction inside this model.

What we actually need from unique iterability is an iteration strategy for the
background universe an quasi-normalizes well, has strong hull condensation, and
is pushforward consistent.

DEFINITION 9.4.2. A coarse strategy premouse is a structure (M, €,w, F,X)
such that (M, €,w,F) is a coarse extender premouse, and ¥ € M, and letting
6 = &(w), the following hold in M:

(a) & is inaccessible and

(b) Xisa (0,0, F)-iteration strategy for V that quasi-normalizes well and has
strong hull condensation, and

(c) Xis pushforward consistent, in thatif i: V — N is an iteration map associated
to the stack s by X, then i(X) C X;.

We showed in Chapter 7:
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LEMMA 9.4.3. Assume \H, 5 and that § is inaccessible. Let (w, F) be a coher-
ent pair such that 6 = 0(w) and YE € F(crit(E) > k). Let ¥ be the unique
(0,0) iteration strategy for (V,€,w,F); then for any transitive M such that
Vs U{w,F} C M and M |= ZFC, (M, €,w, F,X) is a coarse strategy premouse.

PROOF. Notice that since & is inaccessible, ¥ € M, and ¥ witnesses strong
unique iterability for Vs in M. The rest follows from Theorem 7.2.9 and Lemma
7.3.9. B

Now suppose that (V,€,w, F,X) is a coarse strategy premouse. We shall define
what it is to be a (w, F,X) construction. This is a tuple

C=wWF,(Myi, Qi) Fv | (v,k) <iex In(C)))

whose levels (My 4, Qy x) are 1br hod pairs. We require that C add an extender to
the current (M<V,0) whenever there is one with a suitable background in F. Fy is
then the minimal such background extender. The Q. ; are the strategies induced
by X and C. There is at most one (w, F,X)-construction of length (7, j), but there
may be none, if the unique attempt at such a construction breaks down before it
reaches this stage. We say that C is good at (v, k) iff it does not break down at
(v, k).

DEFINITION 9.4.4. Let C be a least branch construction, (v,k) < 1h(C), and
k > 0; then C is good at (v, k) iff Mi(,:k is solid (that is, k + 1-solid).

The other clauses in goodness apply at stages of the form (v, —1) such that My o
is extender active. We shall state them below. In general, if C is not good at (v, k),
then My x| is undefined, and 1h(C) = (v,k+1).

The first level of C must be (M, Q), where M is the passive l]pm with universe
Ve, and Q is its unique iteration strategy. Given (v, k) < Ih(C) such that k > 0 and
Cis good at at (v, k), we set

My ji1 = C(My )

MV4
= cHull )y (1 U{Prrts Prs 1w })-
We are using here the notation of §4.1: pr1 = p(Myx), prr1 = p(Myx) =

My .
pi(My ), and wy = (1, pi), where py = p~ (My ) and mi = M, " is the r¥;
cofinality of py.

My i+1 is an Ipm of soundness degree k + 1. We require that

Qy i1 =QC,My 4 y1,L)

be the induced strategy. Let us review briefly what that means.
C determines resurrection maps Resy x and oy x for (v,k) <jex 1h(C) as in
Section 4.7:
1. If N =M,y i1, then Resy i1 [N] = N and Oy ;1 [N] = identity.
2. If N<My 1, then letting 7w : My 41 — M, be the anticore map, Resy 4.1 [N] =
Resy x[7(N)] and Oy 41 = Oy k[T(N)] o .
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3. For N aMy o, Resy o[N] is the common value of Resy, ;[N] for all sufficiently
large (1, j) <iex (V,0), and similarly for oy o[N].
Because we are using the pfs fine structure, clauses (2) and (3) are appropriate, and
our resurrection maps are consistent with one another. If Q = My, ;, we often write
Resq[N] and 0, [N] for Res, ¢ [N] and &y x[N]. This is justified because there is at
most one (V,k) such that Q = M, ;.
A conversion stage is a tuple

= <M’ lI/’ Q’ D’ S>

such that S is a coarse strategy premouse, [D is a least branch construction in the
sense of S, Q0 = M?ik for some v,k, and y: M — Q is nearly elementary. If 7 is a
plus tree on M, then lift(7,c) is the conversion system

Lift(7,c) = (T", {ca | @ < 7)),

where
Co = <Mga WanavDasz;*>

is the o-th stage in the conversion, defined exactly as in §4.8. We resurrect Wy (EJ)
inside Dg in order to obtain E, . Either ¥ = Ih(T) or M, is illfounded, in
which case conversion stops. It is important for conversion that F” backgrounds
F™, for F the last extender of MRO. This is part of D being good at (v, —1). If £*
is an iteration strategy for S and 7 is a plus tree on M, then

T is by Q(c, L") iff lift(7, ¢) is by X*.

Of course, S = (|S],€,w,F,X) is a coarse strategy premouse, with its internal
strategy X. We shall only be interested in the case that ¥ C ¥*. So if |S| =V, then
¥ = ¥* is the interesting case. Stacks of plus trees are converted in succession, as
before. In the special case M = Q and y = id, we write

Q(D,M,x*) = Q((M,id,M,D,S),*),

in the case that S can be understood from context.

In our case, S = (V,€,w, F,X), so £ =X*, and D is what we are calling C. Thus
Q(C,My y41,L) does indeed exist, and it is a (6, 0) iteration strategy. We can then
let Qy ;1 be its restriction to finite, maximal stacks of plus trees, as we did above.

LEMMA 94.5. Let (V,€,w, F,X) be a c