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Abstract

This is a continuation of [3] and [4]. There are some fine structural problems
in the proof that normalizing commutes with lifting to a background universe
that were overlooked in [3]. We solve those problems here. The solution
involves restricting the stacks 〈T ,U〉 under consideration, by requiring that T
be well-separated. It also involves a change to the way iterations are lifted to
a background universe. In the last section, we sketch a variant solution, one
that involves changing the definition of “premouse” so as to demand a form of
projectum free spaces.

1 Introduction

We assume the reader is familiar with [2], and the corrections to it in [3]. Those
corrections purport to lead to a proof that if (P,Σ) is a level of a background con-
struction C, and 〈T ,U〉 is a maximal stack of normal trees by Σ, and T is λ-separated,
then W (T ,U) is by Σ. The proof is based on the fact that normalization commutes
with lifting to the background, that is

W (T ,U)∗ = W (T ∗,U∗),

in the notation of [2].1 The hypothesis that T is λ-separated is used to show that
there is enough agreement between lifting maps that one can continue an inductive
proof that W (T ,U)∗ = W (T ∗,U∗).

Unfortunately, there is a fine structural case in which the agreement of lifting
maps is still not good enough to continue. One can see the source of it without going

1Actually, in a dropping case one only gets that W (T ,U)∗ is an initial segment of W (T ∗,U∗),
but that is good enough.
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into the details of the induction. Suppose we have Q = MC
ν,k, and two extenders E

and K on the Q-sequence, with lh(K) < lh(E). Let

σ : Q| lh(E)→ R

be the map resurrecting E from Q to R = MC
θ,0. That is, σ = σν,k[Q| lh(E)]. Let

τ : Q| lh(K)→ S

resurrect K, i.e. τ = σν,k[Q| lh(K)]. Finally, let

ϕ : R| lh(σ(K))→ N

resurrect σ(K) from R, that is, ϕ = σθ,0[R| lh(σ(K))]. What we need to keep the
induction going is that S = N , and

τ = ϕ ◦ σ�Q| lh(K).

In other words, the resurrection of K from Q should begin with the resurrection of
E, then continue with the resurrection of the image of K.

However, this need not be the case. For example, it could happen that τ(K) = K,
but λK = crit(σ). More generally, if the lh(K) and lh(E) dropdown sequences
~β and ~γ of Q have some associated projectum ρ in common, then we can have
τ(K) 6= ϕ ◦ σ(K).

For simplicity, let’s assume that ρ is the only projectum associated to ~β, and the
only one associated to ~γ, so that σ and τ are themselves the uncoring maps acting
on two levels Q|β and Q|γ projecting to ρ. If γ = β we have no problem. The other
case is that γ < lh(E), so K is coded by a subset of ρ belonging to Q| lh(E). We
have σ�ρ = τ�ρ = id . If σ(ρ) = ρ, then σ(K) = K, and since the resurrection of
K from R is just τ(K), ϕ(σ(K)) = τ(K), which is what we want in this simplified
case. But if σ(ρ) > ρ, then σ(K) 6= K, so ϕ(σ(K)) 6= τ(K).

In general, the source of a problematic clash between the resurrection maps
resν,k[N ] and resν,k[P ], where P � N , lies in some component of resν,k[N ] being
an uncoring with critical point equal to the current projectum.

We look more closely at such uncorings in the next section. In sections 3 and
4, we re-define resurrection and liftings to a background. In sections 5 and 6, we
define well-separated plus trees, and show that W (T ,U)∗ = W (T ∗,U∗) when T is
well separated. Finally, in section 7 we outline a variant approach.2

2We thank Benjamin Siskind for some very helpful conversations on the problems addressed
here, and in the earlier corrections to [2].
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2 Measurable projecta

Our problem stems from the possibilty of that some core taken in a construction C
might have an anti-core map whose critical point is the projectum. We can charac-
terize precisely when this happens.

Lemma 2.1 Let C be a pure extender w-construction, π : MC
ν,k+1 → MC

ν,k be the

anti-core map, and ρ = ρ(MC
ν,k); then

(1) there is no Mν,k-total E on the Mν,k-sequence such that crit(E) = ρ, and

(2) the following are equivalent:

(a) crit(π) = ρ,

(b) there is an Mν,k+1-total E on the Mν,k+1-sequence such that crit(E) = ρ,

(c) the Mν,k+1 sequence has a total order zero measure D on ρ, and there is
a (unique) elementary σ : Ult(M−

ν,k+1, D)→Mν,k such that σ(ρ) = ρ and
π = σ ◦ iD.3

Proof. For (1), we use the amenable closure argument. Let E be a total-on-Mν,k

extender from the Mν,k-sequence such that ρ = crit(E), and let A ⊂ ρ be the new
Σk+1 set. We have A ∩ α ∈ Mν,k for all α < ρ. Let σ : Mν,k| lh(E) → MC

θ,0 be the

resurrection map for E, and F = σ(E), and F ∗ = FC
θ its background. Since E is

total on Mν,k, all cores taken between 〈θ, 0〉 and 〈ν, k〉 corresponded to projecta > ρ,
so σ�ρ+,Mν,k + 1 = id. Letting M = MC

θ,0, this means Mν,k and M agree to their
common ρ+.

But now A = iF ∗(A) ∩ ρ, so A ∈ iF ∗(M) by the elementarity of iF ∗ . But M and
iF ∗(M) agree to their common ρ+. Hence A ∈M , contradiction.

For (2), clearly (c) implies (b), and (b) implies (a) by part (1). So we must see
that (a) implies (c). For this, we just inspect the usual proof that Mν,k+1 is solid
and universal. Let M = Mν,k and H = Mν,k+1. We compare (M,H, ρ) with M .
The usual proof shows that the final model on both sides is the same. Call it Q.
We also get that Q is above H on the phalanx side, and the branches H-to-Q and
M -to-Q do not drop. The branch embeddings i : H → Q and j : M → Q are such
that crit(i) ≥ ρ and crit(j) ≥ ρ.4 We have also that i(p(H)) = j(p(M)) = p(Q).

3For P a premouse, P− is the same as P , except that k(P−) = k(P )− 1.
4The phalanx side ends with Q above H by Dodd-Jensen. It cannot drop on the branch to Q by

Dodd-Jensen. The M side cannot end with P such that Q�P because otherwise the new subset of
ρ would be in P , hence M . So P = Q, and the M -to-P branch of U does not drop. Its embedding
j has crit(j) ≥ ρ because ρ = ρ(H) = ρ(Q) = ρ(P ).
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Since i(p(H)) = j(p(M)), and i�ρ = j�ρ = id, we get

π = j−1 ◦ i.

But crit(j) > ρ by part (1), and crit(π) = ρ, so crit(i) = ρ.
By (1) and crit(j) > ρ, ρ is not the critical point of a total on Q extender from

Q. It follows that the first extender used in i is the order zero total measure on ρ
from the H-sequence. Call this D. We get the desired σ : Ult(H,D)→M by setting
σ = j−1 ◦ k, where k is the branch tail of H-to-Q, i.e. i = k ◦ iD. �

Remark 2.2 The equivalence of (2)(a) and (2)(b) requires only that we are dealing
with a mouse and its core. Part (1), and the equivalent (2)(c), rely on amenable
closure. So these only work for the cores taken in a background construction. It is
easy to produce a counterexample otherwise, by taking M = Ult(H,E) for E not of
order zero.

Definition 2.3 For M a premouse, M+ is the same as M , except that k(M+) =
k(M) + 1. If k(M) > 0, then M− is the same as M , except that k(M−) = k(M)− 1.
We let ρ−(M) = ρ(M−) = ρk(M)(M).

Of course, M+ is only a premouse if M is sound.

Definition 2.4 For N a premouse,

(a) N is projectum-critical iff there is a total-on-N extender E on the N-sequence
such that crit(E) = ρ−(N).

(b) (N,D) is a pfs-violation iff D is a total-on-N extender on the N-sequence, and
crit(D) = ρ−(N).

(c) A pfs-violation (N,D) has order zero iff D has order zero.

Here “pfs” stands for “projectum-free spaces”. Clearly, N is projectum-critical iff
there is a (unique) order zero pfs-violation of the form (N,D). We will sometimes
say that (N, κ,D) is a pfs-violation, if (N,D) is a pfs-violation and κ = crit(D) =
ρk(N)(N).
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3 Resurrection re-defined

Lemma 2.1 says that the uncoring π : MC
ν,k+1 → MC

ν,k has critical point ρ(Mν,k) iff
Mν,k+1 is projectum-critical. We are going to change slightly how the resurrection
maps work at such points. It will also help a little to change the standard notation
for them.

Let C be a w-construction, let 〈η, l〉 <lex lh(C), and let N � Mη,l. We define
analogs of Resη,l[N ] and ση,l[N ]. These were the complete resurrection of N from
stage 〈η, l〉, along with its resurrection map. We want to also look at intermediate
resurrections, from 〈η, l〉 to some 〈ξ, k〉 >lex Resη,l[N ].

We can reduce the number of subscripts by making use of the fact that in any
construction C, MC

η,l determines 〈η, l〉. Fixing C, we write

P ≤C Q⇔ ∃η, l, ξ, k(P = MC
η,l ∧Q = MC

ξ,k ∧ 〈η, l〉 ≤lex 〈ξ, k〉).

If Q is a model of C and N � Q, we define R = ResQ[N ] and σ = resQ[N ]. We
shall have R ≤C Q, k(R) = k(N), and σ : N → R is elementary.5 For S such that
R ≤C S ≤C Q, we shall also define the partial resurrection ResQ,S[N ] and its map
resQ,S[N ].

For any Q, we let

ResQ[Q] = Q, and resQ[Q] = id.

The remainder of the definition is by induction on the place of Q in <C. Suppose
first that Q = Mν,k+1, let R = Mν,k, and let

π : Q− → X = Mν,k

be the uncoring map.6 π is cofinal and elementary. We define ResQ,X [N ] and
resQ,X [N ] for N � Q. If Q is not projectum-critical, the definition is the usual
one, which simplifies in that case to

ResQ,X [N ] = π(N),

and
resQ,X [N ] = π.

5It may not be cofinal.
6For S a premouse with k(S) > 0, we let S− be the same as S, except that k(S−) = k(S)− 1.
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If Q is projectum-critical, then let (Q,D) be the unique order zero pfs-violation, so
that crit(D) = ρ−(Q) = ρ(X). We have the factor map σ : Ult(Q,D) → X, with
π = σ ◦ iD, and σ�ρ(X)+,X = id . We set

ResQ,X [N ] =

{
σ(N), for o(N) < lh(D),

π(N), otherwise,

and

resQ,X [N ] =

{
σ�N, for o(N) < lh(D),

π�P, otherwise.

The standard resurrection maps differ from these at N such that ρ(X)+,X ≤ o(N) <
lh(D), where the standard maps would have values π(N) and π�N . The maps above
reflect the fact that although Q and Ult(Q,D) agree past N in this case, we shall be
thinking of N as an initial segment of Ult(Q,D) when we lift an ultrapower by D to
the background universe.

If N = Q−, then ResQ,X [N ] = X is the complete resurrection of N from Q, and
we write ResQ[N ] for it, and resQ[N ] for its map. (I.e. π.) If N �Q− and Y <C X,
we then define ResQ,Y [N ] and resQ,Y [N ] for Y <C X by composing:

ResQ,Y [N ] = ResX,Y [ResQ,X [N ]],

and
resQ,Y [N ] = resX,Y [ResQ,X [N ]] ◦ resQ,X [N ].

The <C least Y such that ResQ,Y [N ] is defined is the complete resurrection of N
from Q, or ResQ[N ]. The complete resurrection map is resQ[N ] : N → ResQ[N ].

The limit case, when k(Q) = 0, is handled as before.7

Some simple observations:

(i) ResQ[N ] is the <C-least X such that ResQ,X [N ] is defined.

(ii) k(N) = k(ResQ,X [N ]), and resQ,X [N ] is elementary.

(iii) If P �N , then ResQ[P ] <C ResQ[N ].

(iv) Suppose k(N) > 0 and ResQ,X [N ] is defined; then ResQ,X [N−] = (ResQ,X [N ])−.

7Let Q = Mν,0 and N � Q. Let ρ be the minimum value of ρk(R)(R) for N � R � Q, and let
N � R � Q be such that ρk(R)(R) = ρ. For R ≤C S <C Q, ResQ,S [N ] = N and resQ,S [N ] = id .
For S <C R, ResQ,S [N ] = ResR,S [N ], etc.
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(v) If ResQ[N ] = Mν,k+1, then ResQ[N−] = Mν,k. Moreover, if π : (Mν,k+1)− →
Mν,k is the uncoring map, then π ◦ resQ[N ] = resQ[N−].

These are easy to prove by induction.
The resurrection maps on the way to ResQ[N ] and resQ[N ] can also be defined

using the N-dropdown sequence of Q. This is a good way of organizing things.

Definition 3.1 Let N �Q. The N -dropdown sequence of Q is given by

(1) A0 = N ,

(2) Ai+1 is the least B �Q such that Ai �B and ρ−(B) < ρ−(Ai).

We let n(Q,N) be the largest n such that An is defined. We write Ai = Ai(Q,N).

‘
Let Q be a level of a background construction C, and N �Q. Let 〈Ai | i ≤ n〉 be

the N -dropdown sequence of Q, and set κi = ρ−(Ai). For i > 0, k(Ai) > 0, so set
ki = k(A−i ). ‘We can analyze the partial resurrections ResQ[Ai] and resQ[Ai], starting
with i = n and working down to i = 0, where we reach the complete resurrection of
A0 = N . This was done in FSIT; here is a quick summary, adapted to our slightly
changed resurrection maps.

(1) An ≤C Q, ResQ[An] = An, and resQ[An] is the identity.

(2) Thus if n = 0, then N <C Q. In this case, ResQ[N ] = N and resQ[N ] is the
identity. Moreover, for P �N , ResQ[P ] = ResN [P ] and resQ[P ] = resN [P ].

For the remaining facts, we assume n > 0. Then

(3) Let An = Mη,kn+1, so that κn = ρkn+1(An). We let πn : (Mη,kn+1)− →Mη,kn be
the uncoring map. We have then that ResQ[A−n ] = Mη,kn and resQ[A−n ] = πn.

(4) If An is not projectum-critical, then for all P � An, ResQ,Mη,kn
[P ] = πn(P )

and resQ,Mη,kn
[P ] = πn�P . If An is projectum-critical, this holds except when

κn ≤ o(P ) < lh(D), where D is the order zero measure of An on κn. In that
case, ResQ,Mη,kn

[P ] = P and resQ,Mη,kn
[P ] is the identity.

(5) In particular, when P �N , then ResQ,Mη,kn
[P ] = resQ,Mη,kn

[N ](P ) unless An is
projectum-critical, and for D the order zero measure of An on κn, κn ≤ o(P ) <
lh(D) ≤ o(N).
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(6) For i ≤ n − 1, let A1
i = πn(Ai). Then the πn(N) dropdown sequence of Mη,kn

begins with 〈A1
i | i ≤ n−1〉. If it is the entire sequence, i.e. n(Mη,kn , πn(N)) =

n−1, then we are back where we began, replacingQ byQ1 = Mη,kn = ResQ[A−n ],
and N by πn(N). The projecta associated to the new dropdown sequence are
the πn(κi) for i ≤ n − 1, except that we may have (The projecta are also
preserved, except that we may have ρ−(A1

n−1) = supπn“κn−1 < πn(κn−1), in
the case that An−1 = A−n .)

(7) It can happen that the πn(N) dropdown sequence of Mη,kn has one more term,
namely A1

n = Mη,kn . This can happen when κn−1 = ρkn(An) = ρ−(A−n ), but
An−1 � A−n , so that A−n is not in the N -dropdown sequence of Q. If also
πn is discontinuous at κn−1, then sup πn“κn−1 = ρkn(Mη,kn) < πn(κn − 1) =
ρ−(A1

n−1).

(8) If (7) applies, let τ0 : M−
η,kn
→ Mη,kn−1 be the uncoring. The τ0 ◦ πn(N) drop-

down sequence of Mη,kn−1 starts with 〈τ0(A1
i ) | i ≤ n − 1〉. If that is all of it,

set Q1 = Mη,kn−1 and σn = τ0. Now go back to step 1, replacing Q by Q1 and
N by σn ◦ πn(N).

(9) If the τ0 ◦πn(N) dropdown sequence of Mη,kn−1 has another term at the end, it
is Mη,kn−1 itself, and we have τ0 ◦πn(κn−1) = ρkn−1(Mη,kn−1), and the uncoring
τ1 : Mη,kn−1 →Mη,kn−2 is discontinuous at τ0 ◦ πn(κn−1).

(10) Eventually we reach l ≤ kn and σn : Mη,kn → Mη,l the composition of the
uncoring maps τj such that the σn ◦ πn(N) dropdown sequence of Mη,l is 〈σn ◦
πn(Ai) | i ≤ n− 1〉. Set Q1 = Mη,l, N1 = σn ◦ πn(N), and go back to step 1.

This analysis lets us write

resQ[Ai] = σi−1 ◦ πi−1...σn ◦ πn,

and
resQ[A−i ] = πi ◦ resQ[Ai].

Some of the σi and πi may be the identity. In general,

πi : ResQ[Ai]→ ResQ[A−i ]

is an uncoring map of C. The projectum associated to πi is ρ−(ResQ[Ai]). We have
ρ−(ResQ[Ai]) ≤ resQ[Ai](ρ

−(Ai)), but strict inequality is possible, for the reason
described in item (6).

Here are a few more general facts.
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Lemma 3.2 Let C be a background construction, let Q be a model of C, and let
N �Q. Suppose that ResQ[N ] ≤C X ≤C Y ≤C Q; then

(1) ResQ,X [N ] = ResY,X [ResQ,X [N ]], and

(2) resQ,X [N ] = resY,X [ResQ,Y [N ]] ◦ resQ,Y [N ].

Moreover, if P �N , then ResQ[P ] <C ResQ[N ], and either

(3A) ResQ,Y [P ] = resQ,Y [N ](P ), and resQ,Y [P ] = resQ,Y [N ]�P , or

(3B) letting 〈Ai | i ≤ n〉 be the N-dropdown sequence of Q, some Ai is projectum-
critical, and letting D be the order zero measure of Ai on ρ−(Ai), ρ−(Ai) ≤
o(P ) < lh(D) ≤ o(N).

The consistency-of-resurrections property (3)(A) is what we would like to have in
our proposed proof that W (T ,U)∗ = W (T ∗,U∗). Unfortunately, it is weakened by
the presence of alternative (3)(B). Alternative (3)(B) is needed to take into account
the possibility of projectum-critical uncorings. For the standard resurrection maps,
we can add to (3)(B) that κ ≤ o(P ) < κ+,M . We seem to have just made matters
worse with our re-defined resurrection maps, as now κ+,M ≤ o(P ) < lh(D) is a
possibility. But these maps are going to be used in a revised lifting procedure, and
the two revisions, together with a restriction on T , will yield a proof that W (T ,U)∗ =
W (T ∗,U∗).

4 lift(T ,M,C) re-defined

We now need to make a small change to the way plus trees on MC
ν,k are lifted to the

background. The change is: when D = (ETα )− is part of an order zero pfs-violation
(N, κ,D) such that N �MT

α , then at the background level we may not copy the
relevant ultrapower, we may realize it instead. When we do realize, (2)(c) of Lemma
2.1 gives us a next lifting map that agrees appropriately with the earlier lifting maps.

More precisely, lift(T ,M,C) = 〈T ∗, 〈ψα | α < lh(T )〉, 〈ηα, lα | α < lh(T )〉〉 is
defined as before8, but with the following exception. We say that α is lift(T ,M,C)-
anomalous if this exception applies. The following paragraphs define what it is to be
anomalous, and describe ψα+1 in that case.

Set Mα = MT
α , E = (ETα )−, and let κ = crit(E). If there is no B such

that Mα| lh(E) � B �Mα and (B,E) is an order zero pfs-violation, then α is not

8Using the new resurrection maps defined above.
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lift(T ,M,C)-anomalous. Suppose now there is such a B, and let B be the first such
initial segment of Mα. E is a normal measure, so α = T -pred(α + 1), and

MT
α+1 = Ult(B,Eα),

by the rules of normal trees. Here Eα = E or Eα = E+. Now let

Qα = MCα
ηα,lα

,

where Cα = iT
∗

0,α(C), so that
ψα : Mα → Qα.

Let K = ψα(E), κ = crit(K), and A = ψα(B). Thus (A, κ,K) is an order zero pfs-
violation. The usual lifting would let ET

∗
α be the background in Cα for the complete

resurrection
G = resQα [Qα| lh(K)](K),

of K, but we may not want to do that.9 We shall follow the standard procedure iff
resQα [A] involves no projectum-critical uncoring.

Let
N = Qα| lh(K).

Notice that A is in the N -dropdown sequence of Qα. (Let this sequence be 〈Ai |
i ≤ n〉. Then A0 = N and ρ−(A0) = o(N). A1 = N+, and ρ−(A1) ≤ κ+,N . If
ρ−(A1) ≤ κ, then A = A1, and otherwise, A = A2.) Moreover, we can factor

resQα [A−] = π ◦ resQα [A],

where
π : ResQα [A]→ ResQα [A−]

is the uncoring map of Cα associated to ρ−(ResQα [A]). Let R = ResQα [A], and
S = ResQα [A−].

Let τ = resQα [A], so that
τ : A→ R

is elementary, and ρ−(R) ≤ τ(κ). We say α is lift(T ,M,C)-anomalous iff ρ−(R) =
τ(κ). If α is not lift(T ,M,C) anomalous, and we let ET

∗
α be the Cα-background of

G, as usual.

9It doesn’t matter here whether Eα is E or E+, since the background for G also backgrounds
G+.
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Suppose τ(κ) = ρ−(R) =df µ. We must have that µ = crit(π), because otherwise
µ = crit(G), and the background extender G∗ for G also has critical point µ, so
ResQα [A−] would be amenably closed at µ = ρ(ResQα [A−]), contradiction. Let

D = τ(K) = τ ◦ ψα(E).

By Lemma 2.1, we we get a natural realization

σ : Ult(R,D)→ S

by setting σ([{µ}, f ]Rτ(K)) = π(f)(µ).10

There are now two cases, depending on whether Eα = E or Eα = E+. Suppose
first Eα = E. Let

i : Ult(B,E)→ Ult(R,D)

be the copy map, given by i([{κ}, f ]BE) = [{µ}, τ ◦ ψα(f)]RD. We let

ψα+1 = σ ◦ i,

and Qα+1 = S = ResQα [A−]. We also let MT ∗
α+1 =MT ∗

α in this anomalous case. We
set

resα = σ ◦ τ�N.

We have that ψα+1 agrees with resα ◦ψα on lh(ETα ). (i agrees with τ ◦ ψα on lh(E),
so σ ◦ i agrees with σ ◦ τ ◦ ψα on lh(E).) Note that resα ◦ψα realizes the generators
of Eα in S| crit(G)+, rather than copying them into iG∗(S)| lh(G∗), as would be done
in the standard procedure when Eα is not of plus type.

Suppose next that Eα = E+. Let i : Ult(B,E)→ Ult(R,D) and σ : Ult(R,D)→
S = ResQα [A−] be as above. Let B1 = Ult(B,E), E1 = iBE(E), R1 = Ult(R,D), and
D1 = iRD(D). Thus

MT
α+1 = Ult(B1, E1).

We are going to set
Qα+1 = iG∗(S),

and let ψα+1 be the natural map, which we now describe.
Let i1 : Ult(B1, E1)→ Ult(R1, D1) come from copying under i. Let D2 = π(D) =

σ(D1). Let σ1 : Ult(R1, D1) → Ult(S,D2) come from copying under σ. Finally, let
θ = resS[S| lh(D2)] so that θ(D2) = G. If A = A1, then D2 = G and θ is the

10This is a k(R)-ultrapower, so the formula applies to f given by Skolem terms.
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identity, and if A = A2, then crit(θ) > crit(D2) = crit(G).11 We have a natural map
ϕ : Ult(S,D2)→ iG∗(S) given by setting

ϕ([a, f ]SD2
) = [θ(a), f ]

MT ∗α
G∗ .

We set
ψα+1 = ϕ ◦ σ1 ◦ i1.

Again, we let resα = σ ◦ τ�N . Recall that our convention is that lh(E+) = lh(E).
i� lh(E) = i1� lh(E), σ1� lh(D) = σ�lh(D), and ϕ�σ(lh(D)) = ϕ� crit(D2)+,S, and
θ� crit(D2)+,S = id . So again, we get

ψα+1� lh(Eα) = resα ◦ψα� lh(Eα).

Again, this relies on our convention on the lengths of plus extenders. Note that in
the plus case too, resα ◦ψα maps the the generators of Eα, namely λ(E) ∪ {λ(E)},
into S| crit(G)+, rather than copying them into iG∗(S)| lh(G) as would be done in
the plus case by the standard procedure.

If α is not anomalous, then as usual, we let

resα = resQα [Qα| lh(K)].

We get that ψα+1 agrees with resα ◦ψα on λ0(Eα) in general, and on lh(Eα) + 1 in
the plus case, as before.

Having redefined our lifting process, we get the following useful agreement lemma.

Lemma 4.1 Let α be lift-anomalous. Using the notation above (ψα : MT
α → Qα,

N = Qα| lh(ψα(ETα )), and resurrection maps computed according to Cα = iT
∗

0,α(C)),
we have that for P �N

(a) resα(P ) = ResQα,ResQα [N ][P ], and

(b) resα agrees with resQα,ResQα [N ][P ] on P .

The lemma follows easily from the way we have re-defined ResCαQα [P ] and resQα [P ]
in the case that the resurrection involves uncoring a pfs-violation, and the way we
have re-defined resα in the lift-anomalous case.

The same agreement conclusions hold if Qα, N, and P are such that no relevant
projectum-critical uncoring is possible:

11G and D2 are unsound order zero extenders. So the fact that they yield the same normal
measure does not imply they are equal.
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Lemma 4.2 Using the notation above (ψα : MT
α → Qα, N = Qα| lh(ψα(ETα )), and

resurrection maps computed according to Cα = iT
∗

0,α(C)), let P�N , and suppose there
is no pfs violation (A, κ,D) such that (i) A is in the N-dropdown sequence of Qα,
and (ii) κ ≤ o(P ) < lh(D); then

(a) resα(P ) = ResQα,ResQα [N ][P ], and

(b) resα agrees with resQα,ResQα [N ][P ] on P .

Proof. We are not in the anomalous case, so resα = resQα [N ]. Because there are no
pfs violations of the sort described, Lemma 3.2(3)(A) must apply, and we have that
resQα [N ](P ) = ResQα,ResQα [N ][P ] and resQα [N ] agrees with resQα,ResQα [N ][P ] on P . �

Note that (a) and (b) of Lemma 4.1 would fail in the anomalous case if we defined
resα to be resQα [N ] in that case. This would be a problem for normalizing in the
case P = ψα(Mα| lh(F )), where F is being inserted into T as part of the normalizing
process. By lifting as we have done in the lift(T ,M,C)-anomalous case, we have
avoided this problem.

Neither Lemma 4.1 nor Lemma 4.2 covers the case that there is a pfs-violation
(A, κ,H) such that A is in the N -dropdown sequence of Qα and κ ≤ o(P ) <
lh(H), but we are not iterating it away, that is, H 6= ψα(ETα ). Then resα(P ) 6=
ResQα,ResQα [N ][P ] is possible, and it causes trouble in showing W (T ,U)∗ is an initial
segment of W (T ∗,U∗) in general. We shall see in the next section that we can afford
to restrict ourselves to trees T such that his troublesome case will never occur in the
proof that W (T ,U)∗ = W (T ∗,U∗).

5 ρ-separated iteration trees

We now isolate a class of plus trees for which the troublesome case in lifting to a
background that we just described cannot occur.

Definition 5.1 Let T be a normal plus tree on a premouse, with models Mα and
exit extenders Eα. We say that T is ρ-separated iff whenever α + 1 < lh(T ), then
there is no pfs-violation (N, κ,D) such that

(a) D is on the sequence of Mα strictly before E−α , and

(b) Mα| lh(Eα) �N �Mα.

13



In a ρ-separated tree, whenever we encounter a pfs-violation (N, κ,D), we must
either iterate by D, or skip past N . We are not allowed to iterate by an extender
that is in N , but past D. In particular, if E−α is part of a pfs violation, then E−α must
have order zero. (Otherwise, letting D to be the order zero measure on crit(E−α ), D
is on the Mα-sequence before E−α .)

Recall that a λ-separated tree is one in which every ETα has plus type.

Definition 5.2 A normal plus tree is well separated iff it is both λ-separated and
ρ-separated.

Iterations into a backgrounded construction can be organized as well-separated
plus trees.

Lemma 5.3 Let P be a countable premouse, and Σ a UB iteration strategy for P
defined on normal plus trees. Let C be a w-construction, suppose that (P,Σ) iterates
strictly past each MC

η,j for 〈η, j〉 <lex 〈ν, k〉. Let T be the unique λ-separated plus tree
whereby (P,Σ) iterates past MC

ν,k; then T is ρ-separated.

Proof. Suppose that T fails to be ρ-separated at α. Let N, κ,D be a pfs-violation
such that for E = ETα andM =MT

α , we haveM | lh(E)�N�M . D is on the sequence
of M before E, so it is also on the Mν,k-sequence. D is total on N , so κ < λE. Since
Mν,k�MT

∞ and E was used in T , lh(E) is a cardinal in Mν,k. Also, ρj(Mν,k) ≥ λ(E)
for all j < k.12 This implies that D resurrects to itself in C, and hence has a
background extender D∗ such that D ⊆ D∗. But then Mν,k|| lh(E) is amenably
closed at κ, whereas ThNk(N)+1(κ ∪ p(N)) witnesses that Mν,k|| lh(E) = M || lh(E) is
not amenably closed at κ. �

We believe that one can show that if Σ for P has strong hull condensation, then its
action on well-separated trees determines its action on arbitrary normal plus trees.
Here is a sketch. Given an arbitrary normal T on P , we define a well-separated
tree T ws on P , and a tree embedding of T into T ws, by induction. Suppose we
have determined Uα = T ws�v(α) + 1, and a tree embedding Φα : T �(α + 1) → Uα.
Let sα : MT

α → Q = MUα
v(α) be given by Φα. Let E = ETα and F = sα(E−). Let

N = Q| lh(F ).
We first iterate away all the order zero pfs violations corresponding to points

Ai(Q,N) in the N -dropdown sequence of Q, We start with the largest such i, that

12Suppose not. Since lh(E) is a cardinal in S =MT∞, S and Mν,k are the same, except possibly
that k(S) > k. S is j-sound, so all extenders F used in T on the branch to S satisfy λ(F ) ≤ ρj(S).
On the other hand, this branch must use an F such that λ(F ) ≤ λ(E), contradiction
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is the smallest ρ−(Ai). If new violations appear as we iterate, we iterate them away
too. The result is a finite (possibly empty) normal iteration 〈Dk | k < n〉 of N by
order zero measures. Let G = i ~D(F ). Note that none of the ρ−(Ai) are strictly

below λ0(EUαγ ) for some γ < v(α). Hence S = U_α ~D is a normal tree with last model
indexed at v(α)+k, and v(α) <S v(α+1 <S ... <S v(α)+k. We set u(α) = v(α+k),
v(α + 1) = u(α) + 1, tα = i ~D ◦ sα, and Uα+1 = S_〈G+〉. One must then check that
we have extended our tree embedding Φα to Φα+1 : T �(α + 2)→ Uα+1.

6 W (T ,U)∗ = W (T ∗,U∗) when T is well-separated

Finally, we get

Theorem 6.1 Let P0 = MC
ν,k, where C is a w-construction. Let 〈T ,U〉 be a maximal

stack on P0 such that T is well separated, and U is normal; then W (T ,U)∗ is an
initial segment of W (T ∗,U∗).

Proof. We shall cut-and-paste the repair from [3], modifying it in the appropriate
places.

Let T be on MC
ν0,k0

, and

lift(T ,Mν0,k0 ,C) = 〈T ∗, 〈ηTξ , lTξ | ξ ≤ ξ0〉, 〈ψTξ | ξ ≤ ξ0〉〉.

Let

lift(ψTξ0U ,M
iT
∗

0,ξ0
(C)

ηTξ0
,lTξ0

, iT
∗

0,ξ0
(C)) = 〈U∗, 〈〈ηUξ , lUξ 〉 | ξ < lhU〉, 〈ρξ | ξ < lhU〉〉.

Let τξ :MU
ξ →M

(ψTξ0
)U

ξ be the copy map, and

ψUξ = ρξ ◦ τξ,

so that
ψUξ :MU

ξ → Qξ,

where Qξ is the appropriate model in iU
∗

0,ξ(C). We show that W (T ,U) lifts to an
initial segment of W (T ∗,U∗). This is done by induction: set Wγ = W (T ,U � γ + 1)
and W∗γ = W (T ∗,U∗ � γ + 1), and

lift(Wγ,Mν0,k0 ,C) = 〈S∗γ , 〈〈η
γ
ξ , l

γ
ξ 〉 | ξ < lhWγ〉, 〈ψγξ | ξ ≤ z(γ)〉〉.
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Here z(γ) = lh(Wγ) − 1. Let also z∗(γ) = lh(W∗γ) − 1. Because we have full
normalization at the background level,

MU∗
γ =MW∗γ

z∗(γ).

Let also Cγ
ξ = i

S∗γ
0,ξ(C) and Qγ

ξ = M
Cγξ
ηγξ ,l

γ
ξ
, so that

ψγξ : MWγ

ξ → Qγ
ξ .

We shall show that S∗γ = W∗γ�z(γ) + 1. Thus S∗γ is by Σ∗, so Wγ is by Σ. With
γ+ 1 = lh(U), this is what we want. The overall plan is summarized in the diagram:

Wγ S∗γ �W∗γ

Wν S∗ν �W∗ν

lift

Φν,γ

lift

Φ∗ν,γ

Here Φν,γ and Φ∗ν,γ are the tree embeddings we get from the two embedding normal-
ization processes.

We have by induction that the diagram holds at all ξ ≤ γ, and that

ψξz(ξ) ◦ σξ = ψUξ

for all ξ ≤ γ.13 Part of this is that 〈ηUγ , lUγ 〉 = 〈ηγz(γ), l
γ
z(γ)〉. Moreover, the construction

of MU∗
γ = MW∗γ

z∗(γ) agrees with Cγ
z(γ) up to this point, and the background universes

MW∗γ
z(γ) andMW∗γ

z∗(γ) agree to a rank past where all background extenders used for Cγ
z(γ)

live. In effect, it won’t hurt to assume z∗(γ) = z(γ).14 So

Qγ = Qγ
z(γ).

13σξ : MUξ →M
Wξ

z(ξ) comes from embedding normalization.
14This can only fail if [0, γ]U drops.
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We define

F = σγ(E
U
γ ),

H = ψγz(γ)(F )

= ψUγ (EUγ ),

G = res
Cγ
z(γ)

Qγ | lh(H)(H), and

G∗ = BCγ
z(γ)(G).

Here we are writing BD(K) for the background extender associated to a completely
resurrected K by a construction D.

Let
α = α(Wγ, F ).

The main thing we must show is that the background extender associated by Cγ
α to

ψγα(F ) is G∗. That was Claim 4.44 of [2], where the λ-error occurred, and Claim 6.4
of [3], where the ρ-error occurred. Our assumption that T is well separated helps us
avoid those errors.

Let

K = ψγα(F ),

P = Qγ
α| lh(K),

E = ψγα(EWγ
α ),

N = Qγ
α| lh(E).

The following is what we need

Claim 6.2 (a) G = resQγα [P ]C
γ
α(K),

(b) G∗ = BCγα(G), and

(c) α = α(W∗γ , G∗).

Proof.. If α = z(γ), then (a) and (b) are clear. That gives α(W∗γ , G∗) ≤ α. But if

G∗ is on the ~FC-sequence of MW∗γ
ξ , where ξ < α, then since it is also on the MW∗γ

α

sequence, the two sequences agree up to where G∗ sits by coherence of the background

sequences. But E
W∗γ
ξ is on the first sequence before G∗, and E

W∗γ
ξ /∈MW∗γ

α .
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So we may assume α < z(γ). Wγ was formed by inserting the Fξ for ξ < γ into
images of W0, moreover λ0(Fξ) < λ0(Fγ) for all ξ < γ. It follows from the way that
embedding normalization works that

α ∈ ran(uΦ0,γ ).

Since the plus case occurred everywhere in W0, the plus case occurs at α in Wγ. It
follows that that

ψγz(γ) � lh(E) = resγα ◦ψγα � lh(E)

Here resγα is the map we defined above when lifting Wγ at stage α, mapping the

generators of E into the generators of E
W∗γ
α . The displayed equality requires λ-

separation in the non-anomalous case. Without it the agreement would only be up
to λ(E), and the argument would break down when λ(E) < lh(K) < lh(E). In the
anomalous case, we don’t actually need λ-separation here, because of the way we
defined resα is that case.

We claim that one of the two agreement lemmas 4.1 and 4.2 applies to resγα. For
suppose Lemma 4.2 does not apply; then we have a projectum-critical A in the Qα-
dropdown sequence ofN . LetA be the first one, and let (A, κ,D) be an order zero pfs-
violation. Since N ∈ ran(ψα), we have (B, µ, C) such that ψα((B, µ, C)) = (N, κ,D).

Now let α = uΦ0,γ (β), t = t
Φ0,γ

β , and M = MT
β | lh(ETβ ). t is only partial, but

E
Wγ
α ∈ ran(t), and Σ1 facts about E

Wγ
α have witnesses in ran(t). It follows that we

have (I, ν, J) an order zero pfs violation such that I is in theMT
β -dropdown sequence

of MT
β .

But T is ρ-separated! Thus J = (ETβ )−, and moving back up under ψα ◦ t, we
get that K− = D. This means that Lemma 4.1 applies.

Let S = ResQγα [N ]C
γ
α be the complete resurrection of N in Cγ

α. Since P �N , 4.1
and 4.2 give

H = ψγz(γ)(F )

= resγα ◦ψγα(F )

= resγα(K)

= resQγα,S[P ](K).

Put another way, Qγ
z(γ)| lh(H) = ResQγα,S[P ]C

γ
α .

It is enough now to see that H is resurrected the same way in Cγ
z(γ) and Cγ

α, that

is, letting P1 = ResQγα,S[P ]C
γ
α ,

ResQγ
z(γ)

[P1]C
γ
z(γ) = ResS[P1]C

γ
α .
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But let E1 be the top extender of S, and let S0 be S with E1 removed. Let E∗1 =

BCγα(E1) = E
W∗γ
α . Note that Cγ

α�θ = Cγ
z(γ)�θ, where θ is such that E∗1 = FCγα

θ and

S = MCγα
θ,0 , by coherence at the background level. Thus both Cγ

z(γ) and Cγ
α reach S0

in the same way, so since P1 � S0,

ResS[P1]C
γ
α = ResS0 [P1]C

γ
α

= ResS0 [P1]C
γ
z(γ)

= ResQγ
z(γ)

[P1]C
γ
z(γ) .

The last equality holds because in Cγ
z(γ), no level between S0 and Qγ

z(γ) can project

across lh(E1).
This proves (a) and (b) of 6.2 in the case α < z(γ). We get (c) as in the case

α = z(γ).
�

If γ is not lift(ψTξ0U ,M
iT
∗

0,ξ0
(C)

ηTξ0
,lTξ0

, iT
∗

0,ξ0
(C)) anomalous, then the rest of the proof of

Theorem 6.1 is the same as that in [2].

So suppose γ is lift(ψTξ0U ,M
iT
∗

0,ξ0
(C)

ηTξ0
,lTξ0

, iT
∗

0,ξ0
(C)) anomalous. This case is actually less

involved. Suppose first EUγ is not of plus type. We get then

MU∗
γ+1 =MU∗

γ ,

W∗γ+1 =W∗γ , and

Wγ+1 =Wγ�(α + 1)_〈F 〉.

So z(γ+1) = α+1. What we need to see is that Qγ+1 = Qγ+1
α+1 and ψUγ+1◦σγ+1 = ψγ+1

α+1.
Let us assume α < z(γ), as the other case is easier.

Let us adopt the notation from the proof of 6.2. Qγ+1 is obtained by working

in MU∗
γ+1 = MW∗γ

z∗(γ) with its construction, up to the point where that construction

uses G∗ as a background extender for G. This is the same as working in MW∗γ
z(γ)

with Cγ
z(γ) up to the point G∗ is used. Say G∗ = F

Cγ
z(γ)

η , and let D = Cγ
z(γ)�η + 1.

What we do is resurrect H to G inside D, see that the last or second-to-last uncoring
π : ResQγ

z(γ)
[A]→ ResQγ

z(γ)
[A−] is projectum-critical15, and set

Qγ+1 = ResQγ
z(γ)

[A−]D.

15A is either Qγz(γ)| lh(H) or A1(Qγz(γ), Q
γ
z(γ)| lh(H)).
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To obtain Qγ+1
α+1, we resurrect K (i.e. P ) inside Cγ

α. Recall that in Cγ
α, S =

ResQγα [N ], and H = resQγα [N ](K) = resQγα,S[P ](K). Moreover, Cγ
α�θ = Cγ

z(γ)�θ =

D�θ, where S = MCγα
θ,0 and E∗1 = F

Cγ
z(γ)

θ . Note lh(D) < θ. So in Cγ
α, the resurrection

of H is a tail end of the resurrection of K, and it uses only D. It follows that the
same projectum-critical uncoring is encountered in resurrecting K, and

Qγ+1
α+1 = Qγ+1.

One can also check that ψUγ+1 = ψγ+1
α+1 ◦ σγ+1, and that things work out when EUγ

has plus type, too. The main points is just that the resurrrection of K in Cγ
α factors

into resurrecting it to H, and then resurrecting H in Cγ
α�θ = Cγ

z(γ)�θ. �

7 Semi-soundness and pfs-premice

Here we sketch a different approach to the resurrection-consistency issues above.
Namely, we change our constructions so that ρ(Mν,k) is always put into the hull
collapsing to Mν,k+1. This makes the resurrection maps more natural, but it leads to
a notion of premouse that is more complicated. Our purpose is not to advocate this
approach, but just to look briefly at how it might work. The approach resembles
the long extender fine structure theory of [1], in which one sometimes does not core
down “all the way”.

We stick with λ-indexing, and retain the notion of potential premouse from [5].
Cores, projecta, and elementarity of maps are defined as before. We want to ax-
iomatize the properties of the levels MC

ν,k of a construction C in which we always let
Mν,k+1 be the transitive collapse of hMν,k

“((ρ(Mν,k) + 1) ∪ p(Mν,k)).
One important property is a form of projectum free spaces. The naive statement

here would be that no projectum is the critical point of a total extender. Unfortu-
nately, the naive form is not generally true.

The amenable closure argument, together with our modified construction, lets us
show that ρk+1(Mν,k+1) is never measurable in Mν,k+1. However, it is possible that
ρk(Mν,k+1) is measurable in Mν,k+1. If this happens, then letting π : M−

ν,k+1 → Mν,k

be the uncoring map, it must be that π is discontinuous at ρk(Mν,k+1).16 One can
show that the discontinuity of π at ρk(Mν,k+1) is equivalent to Mν,k+1 satisfying that
ρk has Σk-cofinality some measurable cardinal µ ∈ (ρk+1, ρk). This gives us a first
order characterization of the projecta that are allowed to be spaces.

16ρk(Mν,k) = supπ“ρk(Mν,k+1), so if π is continuous at ρk(Mν,k+1), then ρk(Mν,k) is measurable
in Mν,k, which, as we said, cannot happen.
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Definition 7.1 Let (N,D) be a pfs-violation, k = k(N), ρk = ρk(N) = crit(D), and
ρk+1 = ρk+1 = ρk+1(N). Note ρk < o(N), so k > 0. We say that (N,D) is tame iff

(a) ρk+1 < ρk < ρk−1(N),

(b) letting µ be the ΣN
k cofinality of ρk, ρk+1 < µ < ρk, and there is a total measure

on the N-sequence with critical point µ.

Here “µ is the Σk cofinality of ρk” means that µ is regular, and there is a boldface
ΣN
k

17 partial function f with domain ⊆ µ and range cofinal in ρk. Since µ < ρk, we
can assume that f is total and increasing. The usual elementary argument shows
that there is at most one such µ, so “the Σk cofinality” is justified.

Remark 7.2 One can show that the tame order zero pfs violations are precisely the
order zero pfs violations that do not give rise to lift anomalies.

Definition 7.3 Let M be a potential premouse; then M has projectum free spaces
iff whenever (N,D) is a pfs-violation such that N �M , then (N,D) is tame.

If M has projectum-free spaces, and E is an extender on the M -sequence that is
not total on M , then κ = crit(E) is not a cardinal of M . For let M | lh(E) �N �M
be least such that some A ⊂ κ is N -definable, but not in N. We have o(N) < o(M),
so we can choose k = k(N) so that ρk(N) ≤ κ. If ρk(N) < κ, then κ is not a cardinal
of M . If ρk(N) = κ, then (N,E) is a pfs-violation. It is tame, so ρk+1(N) < κ, so
again, κ is not a cardinal of M .

The other important property is semi-soundness.

Definition 7.4 Let M be a potential premouse; then M is semi-sound iff letting
ρ = ρ(M) and N be the collapse of hM“(ρ ∪ p(M)), either

(a) M = N , or

(b) M = Ult(N,U), where (N+, U) is a nontame order zero pfs violation.

Definition 7.5 M is a pfs-premouse iff M has projectum-free spaces, and every
proper initial segment of M is semi-sound.

17That is, Σ1 over Nk−1.
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Iterable pfs-premice can be compared, moreover, if one side comes out strictly
shorter, then it cannot drop. The characterization of just when we are allowed to
depart from soundness is needed here; otherwise, we might be allowing constructions
which sometimes core at ρ and sometimes core at ρ + 1 in a random way, and that
would lead to incomparable premice.

To see how this plays out, let M and N be iterable pfs-premice. We get T on
M and U on N with comparable last models P and Q by iterating away the least
disagreement, as usual. This much doesn’t use semi-soundness or projectum free
spaces. Now suppose toward contradiction that P � Q and M -to-P dropped. Let
R =M∗,T

α+1 be what we dropped to last. So R is semi-sound, and we have j : R→ P
the branch tail embedding. Since we dropped, crit(j) ≥ ρ(R), and since P is semi-
sound, crit(j) = ρ(R), j has unique generator ρ(R), and R is fully sound. This
implies P = Ult(R,D), where D is a normal measure in R on ρ(R).

Since Ult(R,D) is a proper initial segment of Q, it is semi-sound. Ult(R,D) is
not fully sound, so it must be the ultrapower of its core R by an order zero measure
on ρ(R), which must then be D. Moreover, the core constituted a nontame pfs
violation; that is, (R+, D) is nontame. But R�MT

β , where β = T -pred(α+ 1), and
MT

β has projectum free spaces. This is a contradiction.

Definition 7.6 A PFS-construction is a sequence 〈(Mν,k, Fν)〉|〈ν, k〉 <lex 〈θ, n〉〉 sat-
isfying the properties of listed in [2], except that

(i) each Mν,k is a pfs-premouse, and

(ii) Mν,k+1 = transitive collapse of hMν,k
“(ρ+ 1 ∪ r),, where ρ = ρ(Mν,k) and r =

p(Mν,k).

We believe that we can show that PFS-constructions produce pfs-premice. Part
of this is the proof of Theorem 2.1, with an additional argument to the effect that in
2.1(2)(c), the pfs violation is nontame. There are some fine structural definability cal-
culations involved in showing that all projectum-critical initial segments correspond
to tame pfs-violations that we have not checked carefully.

The point of the new constructions is that there is no case split in the definition
of the resurrection maps. Letting

π : Mν,k+1 →Mν,k

be the uncoring map, and N �Mν,k+1,

ResMν,k+1,Mν,k
[N ] = π(N), and

resMν,k+1,Mν,k
[N ] = π.
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The definitions are uniform in N . We then get the consistency-of-resurrections state-
ment: let Q be a level of C and N � Q. Suppose ResQ[N ] ≤C Y ≤C Q. Then for
P �N ,

(a) ResQ,Y [P ] = resQ,Y [N ](P ), and

(b) resQ,Y [P ] = resQ,Y [N ]�P .

Of course, if one wishes to pursue this approach, there is a little more work left
to do.
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