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1 Introduction

It is well known that for any n < ω, the reals in the minimal fully iterable
L[ ~E]-model with n Woodin cardinals are exactly the reals which are ∆1

n+2

in a countable ordinal ([8]). In a similar vein, the reals in the minimal fully

iterable L[ ~E]-model with ω Woodin cardinals are exactly those which are

∆
L(R)
1 in a countable ordinal, or equivalently, ODL(R) ([7]). Rudominer ([5])

has extended these theorems to other pointclasses in L(R).

Definition 1.1 A set X of reals is a mouse set iff X = R ∩M for some
ω1 + 1-iterable premouse M.

Definition 1.2 For any pointclass Γ,

CΓ = {x | x is ∆ in some countable ordinal}.

We relativise to a real x by letting CΓ(x) = CΓ(x) be the set of reals which
are ∆(x) in some countable ordinal.

In this language, the theorems cited above state that for Γ = Σ1
n+2 or Γ =

Σ
L(R)
1 , CΓ is a mouse set. ( What is more, however, they also identify the

mouse via large cardinal properties.)
It is natural to conjecture that if Γ is any level of the (lightface) Levy

hierarchy for L(R), then CΓ is a mouse set. ( See [5] for a precise version of
this conjecture.) In this note we shall prove the following theorem of Hugh
Woodin, which settles the matter in many cases.
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Theorem 1.3 (Woodin) Assume ADL(R), let λ be a limit ordinal, and let
Γ be the pointclass of sets which are definable over Jβ(R) for some β < λ;
then CΓ is a mouse set.

It is easy to see that if Γ is as in 1.3, then CΓ is the set of reals which are
ODJβ(R) for some β < λ.

Woodin actually proved a somewhat more general theorem. It is slightly
easier to state the theorem in the context of full AD, so that is what we
shall do. Recall that, in this context, θ is the least ordinal not the surjective
image of R, or what is the same, the order type of the Wadge hierarchy.

Definition 1.4 Assume AD, and let α < θ; then

1.

Pα(R) = {A ⊆ R | A has Wadge ordinal < α},
Pα(Vω+1) = {A ⊆ Vω+1 | A is coded by some B ∈ Pα(R)}.

2. Dfα is the pointclass consisting of all subsets of R definable from no
parameters over the structure (Pα(Vω+1),∈).

Theorem 1.5 (Woodin) Assume AD, and let α < θ be such that Pα(R) is
closed under ∃R, and every set in Pα(R) has a scale in Pα(R). Suppose that
every countable premouse having an ω1-iteration strategy in Pα(R) is tame.
Let

Γ =
⋃
β<α

Dfβ;

then CΓ is a mouse set.

An ω1 iteration strategy for a countable premouse can be naturally coded
as a set of reals, so the hypothesis of 1.5 makes sense. A premouse is tame
if, roughly speaking, it has no extenders overlapping Woodin cardinals.( See
[7].) It is worth noting that AD implies ω1 is measurable, and hence that
every ω1 iteration strategy on a countable premouse extends to an ω1 + 1
iteration strategy. AD therefore implies that any two ω1-iterable countable
premice have a successful coiteration.

The proof of 1.5 we give here was, at least in its essentials, communicated
to the author by Hugh Woodin in January,1994. The author’s memory is less
than perfect, so there may be some divergence in detail between the proof to
follow and Woodin’s. This paper is an update of an earlier version in which
we proved only 1.3. All unattributed results to follow are due to Woodin.
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2 Inner model operators

It has been known for a while, at least implicitly, that 1.5 is true on a cone.
In order to explain why, we need the notion of an inner model operator , for
which we refer the reader to [6]. Roughly speaking, an inner model operator
is a Turing invariant function M associating to each real x a countable set
M(x) of reals closed under Turing jump, join, and ”recursive in” and such
that x ∈ M(x). Turing invariance means that x ≡T y → M(x) = M(y).
(There must also be an accompanying function assigning a wellorder <x

to M(x) and such that if x ≡T y, then M(x) can ”translate” <x to <y.)
If M and N are inner model operators, then M ≤m N iff for a cone of x,
M(x) ⊆ N(x). AD implies that ≤m prewellorders the inner model operators.
(Cf. [6].)

Definition 2.1 An inner model operator M is fine structural iff for a
cone of reals x, there is an ω1 + 1-iterable, countable x-mouse Px such that
M(x) = R ∩ Px.

(By an x-premouse, we mean a level of an L[ ~E] model built over x; that is,
x is thrown in at the bottom.)

Theorem 2.2 (Rudominer, Steel) Assume AD, and let N be a fine struc-
tural inner model operator; then for any M ≤m N , M is fine structural.

Theorem 2.2 is proved in [6, section 2] in the case that N is the inner model
operator x 7→ R ∩ L[x]. The proof given there generalizes routinely so as to
yield 2.2.

If Γ is as in the hypothesis of 1.5, then M is an inner model operator,
where M(x) = CΓ(x) for all x. It is a theorem of Woodin that, assuming AD,
there is a fine structural N such that M ≤m N (see 4.1 below). (One can
show more directly that if there are ω Woodin cardinals with a measurable
above, and Γ is in L(R), then there is a fine structural N such thatM ≤m N .)
From 2.2 we get that M is fine structural, that is, that M(x) is an ” x-mouse
set” for a cone of x. The same argument works for other pointclasses to
which Woodin’s proof of 1.5 doesn’t seem to apply. For example, if Γ is a
good pointclass ( see definition 3.1 below) in L(R), then x 7→ CΓ(x) is an
inner model operator, and if ADL(R) is true, then it is ≤m some fine structural
operator in L(R), and hence fine structural itself. On the other hand, there
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are good ”lightface” Γ in L(R) for which we cannot prove CΓ is a mouse set.

( The first such Γ is the pointclass Σ
J2(R)
3 .)

Our questions about mouse sets arose in part from the following conjec-
tures.

Conjecture 1. Assume ADL(R), and let M be an inner model operator in
L(R); then for a cone of x, there is a wellorder of M(x) in L(M(x)).

Conjecture 2. Let M be a countable, ω-small, ω1 + 1 iterable premouse;
then there is a wellorder of R ∩M in L(R ∩M).

Any proof of conjecture 2 will no doubt relativise to premice built over
a real. Since L(R) satisfies ” all ω1 iterable premice are ω-small”, and all
inner model operators in L(R) are fine structural, this means that a proof
of conjecture 2 will no doubt also yield conjecture 1. Despite the progress
represented by 1.3 and 1.5, both conjectures appear to be open.

3 Coarse structural Γ-Woodin mice

Definition 3.1 A pointclass Γ is good iff Γ is ω-parameterized, closed un-
der recursive substitution, number quantification, and ∃R, and has the scale
property.

One reason to focus on good pointclasses in connection with the CΓ op-
eration is the following well known theorem of Kechris:

Theorem 3.2 (Kechris,[2]) Assume AD, and let Γ be good; then CΓ is the
largest countable Γ set of reals, moreover CΓ has a ∆-good wellorder.

We shall use <Γ,x for the ∆(x)-good wellorder of CΓ(x) provided by Kechris’
theorem.

It is useful to extend the operator x 7→ CΓ(x) to countable transitive sets.
For a countable transitive and f :ω → a a surjection, we let xf (〈m,n〉) = 0
iff f(m) ∈ f(n) , and call xf a real coding a. Clearly, xf determines f . For
b ⊆ a and x = xf , we let bx(n) = 0 iff f(n) ∈ b, and say that bx codes b
relative to x. The space of all f :ω → a is homeomorphic to the Baire space,
and the set of surjections is comeager, so we can make sense of the phrase
”for comeager many x coding a”.
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Definition 3.3 For a countable and transitive,

CΓ(a) = { b ⊆ a | for all x ∈ R coding a, bx ∈ CΓ(x)}.

It is a result of Harrington and Kechris ([1]) that if Γ is good and T is the
tree of a Γ-scale on a universal Γ set, and enough determinacy (e.g. AD) is
true, then CΓ(x) = R ∩ L[T, x] for all reals x. This characterization extends
easily to CΓ(a).

Theorem 3.4 (Harrington and Kechris, [1]) Assume AD. Let Γ be a
good pointclass, and T the tree of a Γ- scale on a universal Γ set. Let a be
countable and transitive; then

1. CΓ(a) = { b ⊆ a | for comeager many x coding a,bx ∈ CΓ(x)},

2. CΓ(a) = P (a) ∩ L(a ∪ {T, a}).

Proof.(Sketch) For the nontrivial inclusion in (1), fix any real y coding a.
Note that we can fix α such that for nonmeager many x coding a, bx is the
αth real in <Γ,x. Using the Γ-definability of the ”nonmeager many” quantifier
applied to Γ relations, we get that by is ∆(y) in any code for α, so by ∈ CΓ(y).
For (2), note ⊇ is trivial by [1]. As to ⊆, let b ∈ CΓ(a); then for comeager
many x coding a, bx ∈ L[T, x] by (1) and [1]. We can then find x0 and x1

pairwise generic over L[a ∪ {T, a}] such that b ∈ (L(a ∪ {T, a})[x0] ∩ L(a ∪
{T, a})[x1]), so b ∈ L(a ∪ {T, a}). �

We note in passing that there may be no wellorder of a in L(a ∪ {T, a}),
and hence no wellorder of CΓ(a). We can, however, define in L(a∪ {T, a}) a
natural norm on CΓ(a) by letting, for b ∈ CΓ(a), ϕΓ,a(b) be the least α such
that for nonmeager many x coding a, bx is the αth real in <Γ,x. Every proper
initial segment of the prewellorder associated to ϕ is the surjective image of
a in L(a ∪ {T, a}). Indeed if we define π = πΓ,a by setting π(p, α) = b iff
p ∈ a<ω and for comeager many f extending p, bxf

is the αth real in <Γ,xf
,

then for any α, π”(a<ω × α) = { b | ϕ(b) < α}, and π is in L(a ∪ {T, a}) by
the definability of forcing. The order type of ran(ϕ) is the least ordinal, call
it θΓ(a), which is not the surjective image of a in L(a∪{T, a}). (If the order
type is strictly less than θΓ,a, then L(a∪ {T, a}) satisfies that there is a map
of a× a onto P (a).)

The closure of Γ under the category quantifiers easily yields the following
lemma, whose proof we omit.
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Lemma 3.5 Assume AD, and let Γ be good; then the relations

C(x, y) ⇔ x codes a countable transitive set a

and y = bx for some b ∈ CΓ(a),

I(x, y, z) ⇔ x codes a countable transitive set a and

y ∈ WO codes an α < θΓ,a and

z codes πΓ,a � (a<ω × α) relative to x and y,

are in Γ.

We need a condensation property of the CΓ operation. The first easy
lemma is an abstract version of the fact that if M is the transitive collapse
of a hull of L, then for any β ∈M , P (β)M is a ≤L-initial segment of P (β)L.

Lemma 3.6 Assume AD, let Γ be good, and let T be a tree such that p[T ]
is a universal Γ set. Let a be countable and transitive, and suppose N is an
admissible set such that T, a ∈ N . Then CΓ(a) ⊂ N , and in fact CΓ(a)
is ΣN

1 ({T, a}). Moreover, if π:M → N is elementary and π(〈T̄ , ā〉) =
(〈T, a〉), then π−1”CΓ(a) is an initial segment of CΓ(ā) under its canonical
prewellorder.

Proof.(Sketch) Use 3.5 and the definability of the forcing relation for Col(ω, a)
over N to prove the first assertion. The ”moreover” assertion follows from
3.5 and the fact that p[T̄ ] ⊆ p[T ]. �

What do we need to add to the hypotheses of 3.6 to guarantee that
π−1”CΓ(a) = CΓ(ā)? This of course does not follow from the hypotheses of
3.6 themselves, as a simple example with Γ = Σ1

2, N an initial segment of L,
and a = ω shows. It suffices to add that there is a tree U in ran(π) which
projects to the complement of a universal Γ set, and this would be enough
for our purposes here, but we prefer to prove a sharper result which is useful
elsewhere. (This sharper result is due to Woodin.) As a bit of motivation,
consider the following fact about Σ1

2 and L: if π:M → N is elementary and
π(ᾱ) = α, and if for each n < ω the type, with parameters < α, of the first n
L-indiscernibles above α is in ran(π), then P (ᾱ)L ⊆M . Now the type of the
first n L-indiscernibles yields the first n norms of the Martin-Solovay scale
on Π1

2, and it turns out that it is these norms which must be in ran(π).
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Lemma 3.7 Assume AD, let Γ be good, let T be a tree such that p[T ] is
a universal Γ set, and let a be countable and transitive. Let M and N be
admissible sets such that T, a ∈ N and N ∈ M . Let 〈ψn | n < ω〉 be a
scale on ¬p[T ], and let ≤n be the prewellorder associated to ψn. Suppose that
for each n there is a term τn ∈ M such that whenever G is M-generic over
Col(ω,N),

τG
n =≤n ∩M [G].

Let π: M̄ → M be elementary with π(ā) = a, and suppose in addition T,N
are in ran(π), and

{ τn | n < ω} ⊆ ran(π).

Then CΓ(ā) ∈ M̄ , and in fact

π(CΓ(ā)) = CΓ(a).

Proof.Let Z = ¬p[T ] be our universal Γ̆ set. Let ϕn be a term in M such
that for any G, ϕG

n is the norm on Z ∩M [G] determined by τG
n . Let U̇n be a

term for the nth level of the tree associated to these norms; that is, for any
M -generic for Col(ω,N) set G,

U̇n
G

= { (x|n, (ϕG
0 (x)...ϕG

n−1(x))) | x ∈ Z ∩M [G]}.

Since τG
n = τH

n whenever M [G] = M [H], we see that U̇n
G

is independent of
G and in the ground model; that is, there are Un ∈M such that

U̇n
G

= Un, for all M -generic over Col(ω,N) sets G.

Let U be the tree whose nth level is Un. (Of course, U 6∈M is possible.)

Claim. For any M -generic over Col(ω,N set G, Z ∩M [G] ⊆ p[U ]. More-
over, p[U ] ⊆ Z.

Proof. The first statement is obvious. Now suppose (x, f) ∈ [U ]. Pick any

G which is M -generic over Col(ω,N). Since the nth level of U is U̇n
G
, for all

n, we can find for each n a real xn ∈ Z ∩M [G] such that x|n = xn|n and
∀i < n(ϕG

i (xn) = f(i)). But then for each i, ϕG
i (xn) is eventually constant as

n→ ω, and hence ψi(xn) is eventually constant as n→ ω. Thus x ∈ Z.

7



The main reason that the CΓ completeness of M reflects to M̄ is that it
is a Γ̆ statement. More precisely, we can fix a k0 < ω such that for all reals
x and y,

(k0, x, y) ∈ Z ↔ (∀w ∈ CΓ(x))(∃i ∈ ω)(w = (y)i).

Let us fix terms σ and ρ such that for anyM -generic over Col(ω,N) set G,
σG is the real coding a and ρG the real enumerating R∩N [σG] determined by
G. We have then that ∅ forces overM in Col(ω,N) the sentences ”(ǩ0, σ, ρ) ∈⋂

i<n dom(ϕi)” and ”((ǩ0, σ, ρ) � n, 〈ϕ0((ǩ0, σ, ρ)), ..., ϕn−1((ǩ0, σ, ρ))〉) ∈ Ǔn.
Letting (N, σ, ρ, ϕi, Ui) = π(N̄ , σ̄, ρ̄, ϕ̄i, Ūi), we have the same sentences with
bars everywhere are forced by ∅ over M̄ in Col(ω, N̄).

This means that if H is M̄ -generic over Col(ω, N̄), then (k0, σ̄
H , ρ̄H) ∈

p[U ], the witness being 〈π(ϕ̄H
i ((k0, σ̄

H , ρ̄H)) | i < ω〉, and therefore CΓ(σ̄H) ⊆
M̄ [H]. Since this is true for all such H, CΓ(ā) ⊆ M̄ . We leave the proof that
π(CΓ(ā) = CΓ(a) to the reader. �

There is a stronger version of 3.7 proved in [9].
We only need here a crude version of 3.7, and as it has a cleaner statement,

we record it now.

Corollary 3.8 Assume AD,let Γ be good, and let T and U be trees projecting
to a universal Γ set and its complement. Let a be countable and transitive,
and let M be a Σ2-admissible set such that T, U, a ∈ M . Let π: M̄ → M
be elementary, with π(ā) = a and T, U ∈ ran(π); then CΓ(ā) ∈ M̄ , and
π(CΓ(ā)) = CΓ(a).

We turn now to Γ-Woodin mice.

Definition 3.9 Let a be countable and transitive; then a is Γ-amenable iff
whenever x ∈ a and b ∈ CΓ(a), then b ∩ x ∈ a.

Γ-amenability is sometimes called Γ-completeness or Γ-fullness.

Definition 3.10 Let N be countable and transitive; then N is a coarse Γ
Woodin premouse iff

1. N |= ZFC,

2. N is Γ-amenable,and
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3. letting δ = OR ∩N , for any f : δ → δ such that f ∈ CΓ(N), there is a
κ < δ such that f”κ ⊆ κ and an E such that N |= E is an extender
with critical point κ and ViE(f)(κ) ⊆ Ult(V,E)).

Let T be the tree of a Γ scale on a universal Γ set, where Γ is good, and
assume AD. Let N be countable transitive and δ = OR ∩ N . It is easy
to see then that N is a coarse Γ-Woodin premouse iff N = V

L(N∪{T,N})
δ and

L(N ∪ {T,N}) |= δ is Woodin.
Our condensation result 3.8 easily yields the following lemma.

Lemma 3.11 Assume AD, and let Γ0 and Γ1 be good pointclasses such that
Γ0 ⊆ ∆1. Let N be a coarse Γ1- Woodin premouse; then for some η <
OR ∩N , V N

η is a coarse Γ0-Woodin premouse.

Proof. Let T1 be the tree of a Γ1 scale on a universal Γ1 set, and let T, U ∈
L(N∪{T1, N}) be trees projecting to the universal Γ0 set and its complement.
Let δ = OR∩N , and letM be a Σ2 admissible set of the form Lα(N∪{T1, N})
such that T, U ∈M . As δ is strongly inaccessible in L(N ∪ {T1, N}) we can,
working in this universe, form a hull of M whose intersection with V M

δ (= N)
is of the form V M

η for some η < δ. Letting M̄ be the collapse of this hull, we
have CΓ0(V

N
η ) ⊆ M̄ by 3.8. On the other hand, δ is Woodin in M , so η is

Woodin in M̄ . Therefore V N
η is a coarse Γ0-Woodin premouse. �

Finally, we can use the results of this section to construct a Γ-Woodin
premouse having an iteration strategy which is reasonably close to Γ.

Lemma 3.12 Assume AD, and let Γ0,Γ1, and Γ2 be good pointclasses such
that Γ0 ⊆ ∆1 and Γ1 ⊆ ∆2; then for any real y there is a coarse Γ0-Woodin
mouse M such that y ∈M , and M has an ω1-iteration strategy Σ such that

1. Σ is coded by a set of reals in Γ2,and

2. every iterate of M via Σ is a Γ0-Woodin mouse.

Proof. Let Γ3 and Γ4 be further good pointclasses such that Γi ⊆ ∆i+1 for all
i < 4. It is a well known result of Woodin that, assuming AD, for any set S
of ordinals, HOD

L[S,x]
S |= (ω

L[S,x]
2 is Woodin) for a cone of reals x. Applying

this with S = (T4, y) we get a Γ4- Woodin premouse P such that y ∈ P .
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Let η < OR∩P be least such that V P
η is a Γ0-Woodin premouse, and notice

that by 3.11, for all ξ ≤ η, V P
ξ is not Γ1-Woodin, so that there is a function

f : ξ → ξ in CΓ1(V
P
ξ ) witnessing non-Woodinness. Let T and U be trees for

the universal Γ1 set and its complement which are constructible from T4. Let
N be a Σ2 admissible set of the form Lα(V P

η ∪{T, U}), and let π: N̄ → N be
elementary, with π, N̄ in P and countable there, and π(η̄, T̄ , Ū) = (η, T, U).

Claim In P it is true that N̄ is ω1-iterable, for iteration trees formed using
extenders from V N̄

η̄ and its images via the strategy of choosing the unique
π-realizable branch.

Proof. Work in P . From [3] we know that there is always a maximal such
branch, so it suffices to see that if T on N̄ has cofinal π-realizable branches b

and c, then b = c. Let δ = δ(T ) and Q = V
MT

b
δ = V

MT
c

δ . Let σ and τ be the
realizing maps for b and c respectively. Since T and U are in ran(σ), 3.8 gives
that CΓ1(Q) ∈ MT

b and σ(CΓ1(Q) = CΓ1(V
N
ξ ), where ξ = σ(δ) ≤ η. By our

choice of η, this implies there is an f ∈ CΓ1(Q) witnessing non-Woodinness
for Q. Since CΓ1(Q) ∈MT

c by the same proof, f ∈MT
b ∩MT

c . From [3], we
get then b = c.

The proof of the claim easily gives

Claim In P , if b is a cofinal π-realizable branch of a countable T on N̄

using extenders from V N̄
η̄ and its images, then setting Q = V

MT
b

δ(T ) , b is the

unique cofinal branch d of T such that CΓ1(Q) ⊆MT
d .

It follows easily from the claims that P satisfies that N̄ has a Γ2 iteration
strategy. But P is Γ4-correct, so this is indeed true. �

4 Proof of Theorem 1.5

Our plan is to first prove that a version of the theorem holds on a cone ( that
is, that certain inner model operators are fine structural), and then add the
base of such a cone to a ”lightface” mouse via Woodin’s ”every real generic”
extender algebra. The next lemma executes the first step of the plan.
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Lemma 4.1 Assume AD, and let α < θ be such that Pα(R) is closed under
∃R, every set in Pα(R) has a scale in Pα(R), and every premouse having an
ω1-iteration strategy in Pα(R) is tame. Let Γ ( Pα(R) be good; then the
inner model operator x 7→ CΓ(x) is fine structural.

Proof. By 2.2, it is enough to find a fine structural inner model operator
which is above x 7→ CΓ(x) in ≤m. By the comparability of inner model
operators, this follows if we show that for any real y, there is an x ≥T y, an
ω1-iterable x-mouse R, and a real z ∈ R such that z 6∈ CΓ(x). So fix a real
y.

Let Γ0 be a good pointclass such that Γ ⊆ ∆0 ( Pα(R). LetM be a coarse
Γ0-Woodin premouse which has an ω1-iteration strategy in Pα(R) and is such
that y ∈ M ; the existence of M is guaranteed by 3.12. Let Ω = OR ∩M ,
and 〈Nη | η ≤ Ω〉 be the levels of the L[ ~E, y] construction of [4] done inside
M . (So y is thrown in at the bottom, and we use full background extenders.)
Since M is fully iterable, all Nη are fully iterable, and the construction never
breaks down.(Cf. [4].) As Ω is Woodin in L(M ∪ {M}), Ω is Woodin in
Q, where Q is the premouse of height OR whose Ωth level J Q

Ω is NΩ. Since
Q has an ω1-iteration strategy in Pα(R), Q is tame. It follows that for all
sufficiently large η < Ω, η is not Woodin in Q.

There is a club B ⊆ Ω in L(M ∪ T0,M) such that for all η ∈ B, V M
η is

Γ-Woodin and Nη = JQη . (Here T0 is the tree of a Γ0 scale on a universal
Γ0 set. We actually use here the proof of 3.11, and not just its statement.)
Fix η ∈ B such that η is not Woodin in Q. Now JQη is the output of the

L[ ~E, y]-construction done up to η in L(V M
η ∪ {T}), where T is the tree of

a scale for Γ, and η is Woodin in this universe. It follows from [4] that if
f : η → η is in CΓ(V M

η ) and amenable to JQη , then JQη is Woodin with respect
to f . Since η is not Woodin in Q, we can fix a subset b of η which is in Q
but not in CΓ(V M

η ). Let P = JQξ+1, where b ∈ (JQξ+1 \ J
Q
ξ ).

Now let g:ω → JQη be Q-generic for Col(ω, JQη ) and such that, setting
x = xg, we have bx 6∈ CΓ(x); there are in fact comeager many such g. Clearly,
y ≤T x and bx ∈ P [x]. It remains only to show that P [x] can be re-arranged
as an x-mouse R. This is a simple result due to the author. We define R
by adding E to the R-sequence with index α just in case η < α , α indexes
an extender F on the P-sequence, and E is the canonical extension of F to
JRα = JPα [x] determined by the fact that that this structure is a small forcing
extension of JPα . One can prove by induction on β, using the quantifier-by-
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quantifier definability of the forcing relation over JPη+β, that JRβ has the same
projecta and standard parameters as JPη+β, and hence is ω-sound. We leave
the details to the reader. �

Proof of Theorem 1.5. For B ⊆ R, let

AB = (Vω+1 ∪ {C∗ | C ≤W B},∈),

where C∗ is the subset of HC coded by C. We wish to show that there is
an ω1-iterable, fine structural premouse ”over ∅ ” whose reals are precisely
those which are definable from a countable ordinal parameter over some AB

for B ∈ Pα(R). ( Here Pα(R) is as in the hypothesis of 1.5.)
For this, it will suffice to show that if z is a real which is definable over

AB from a countable ordinal, and B ∈ Pα(R), then there is a (fine structural,
lightface) premouse Q such that z ∈ Q and Q has an ω1-iteration strategy
which is in Pα(R).(Proof: We may as well choose Q = Qz so that it projects
to ω and is ω-sound. Letting η = OR ∩Q, we then have that Q is definable
over AB from η as the unique ω1-iterable, ω-sound premouse of height η
projecting to ω, whenever B is so large that Q has an iteration strategy in
AB. If we then let M be the premouse whose proper initial segments are
precisely the Qz’s, z ∈ R ∩ M iff z is definable from a countable ordinal
over some AB for B ∈ Pα(R).) So fix z ∈ R and B ∈ Pα(R) such that z is
definable over AB from a countable ordinal, say by a Σn formula.

Let Γ ( Pα(R) be a good pointclass such that B ∈ ∆ and for all reals
x, (CΓ(Vω ∪ {x}),∈, B ∩CΓ(Vω ∪ {x})) is a Σ1

n+9-elementary substructure of
(Vω+1,∈, B). The closure of Pα(R) under ∃R and scales enables us to find such
a Γ. Let Γi, for i ∈ ω, be a strictly increasing sequence of good pointclasses
contained in Pα(R), with Γ ( Γ0. By 4.1 we can fix a real y such that for all
x ≥T y, CΓi

(x) is a mouse set for all i. The proof of 4.1 also shows that if
w ∈ CΓi

(x), for x ≥T y, then there is a x−mouseM such that w ∈M and
M has an ω1-iteration strategy in Γi+1. (Cf. 3.12.) We may assume that
z ≤T y.

Claim 1. For any x such that y ≤T x, there is a fine-structural, ω1+1-iterable
x-mouse Qx such that

(a) Qx ∈ CΓ(x),
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(b) Qx |= ZFC+ “there is a Woodin cardinal η and an η+-universally Baire
set B such that z is ordinal definable over AB”, and

(c) Qx is pointwise definable (in the language of x-premice).

Proof. We argue just as in the proof of 4.1. Let N be a coarse Γ9-Woodin
mouse having an ω1-iteration strategy in Pα(R) and such that x ∈ N . Let

〈Nη | η ≤ Ω〉 be the models of the L[ ~E] construction of N done over the real
x) of N . Just as in the proof of 4.1, we can fix an η < Ω such that V M

η is
Γ8-Woodin and JNΩ

η = Nη, and such that some level of NΩ projecting to η
is not in CΓ8(V

N
η ). Let us choose S to be the first level P of NΩ such that P

projects to η and P 6∈ CΓ8(Nη ∪ {Nη}). Notice that S |= (η is Woodin).
By our choice of S, there are comeager many f :ω → JSη such that S

is not coded by any real in CΓ8(xf ). We can therefore fix such an f which
is Col(ω, JSη ) generic over S. Let w = xf . Clearly, x ≤T w. Also, w is S
generic over a poset of size η in S, and w codes JSη , so by the level-by-level
definability of forcing we can find a w-premouse R whose universe is S[w].
The iterability of S guarantees that of R. Since S projects to η, R projects
to ω. By our choice of w, the real canonically coding R, its first order theory
with parameter w, is not in CΓ8(w). On the other hand, every proper initial
segment of S projecting to η is in CΓ8(J

S
η ), and therefore every proper initial

segment of R projecting to ω is in CΓ8(w). But w is in the cone above
y, so that CΓ8(w) is a mouse set. By comparison we see easily that in fact
R ∩R = CΓ8(w).

Subclaim A. There is a γ < (η+)S = ω
S[w]
1 such that

(a) S|γ |= every set has cardinality η,

(b) R ∩ S[w]|γ is CΓ3-closed, and

(c) there is no CΓ3(S[w]|γ) collapsing structure for S[w]|γ, in the sense
that if S[w]|ξ ∈ CΓ3(S[w]|η), then γ is still uncountable in S[w]|ξ.)

Proof sketch. If subclaim A fails, we could show CΓ8(w) ⊆ CΓ7(w), as we’d
have for w-premice M projecting to ω

M = S[w]|ξ for some ξ < ω
S[w]
1

13



if and only if

∀α(M|α is iterable above its ω1 via a Γ4 iteration strategy.)

We use here that for y ≤T s, CΓ3(s) has been captured by mice with Γ4

iteration strategies. �

Fix γ as in subclaim A. Since γ is countable in S[w], we can fix ξ least
such that γ is countable in S[w]|(ξ + 1).

Subclaim B. γ = η+ in S|ξ, S|ξ projects to η, and CΓ(S|γ) ⊆ S|ξ.
Proof. The first two assertions are immediate consequences of the correspond-
ing facts for S[w], using the forcing relation. For the third, fix X ∈ CΓ(S|γ.

Note that (S|ξ)[w] projects to ω, and so is coded in a simple way by a
real u such that u 6∈ CΓ((S|γ)[w]). It follows that S|ξ projects to η, and if
Y ⊆ η codes S|ξ via its theory in the natural way, then Y 6∈ CΓ(S|γ).

But then for comeager many u:ω → S|η, the theory of (S|ξ)[u] is not in
CΓ((S|γ)[u]. Now any such u is essentially a real in the cone above y, and
S[u] is a u-mouse. By our choice of y, and a comparison argument, we have
that CΓ((S|γ)[u]) ⊆ (S|ξ)[u], and hence that X ∈ (S|ξ)[u]. Since this last
statement is true for comeager many u, we have that X ∈ S|ξ, as desired. �

We can now finish the proof of claim 1. Let T be the tree of a scale
on a universal Γ set. Since B ∈ ∆, there are trees U0, U1 in L[T ] such
that p[U0] = B and p[U1] = ¬B. By a Skolem hull argument conducted in
L[T,S|γ], we can find trees Ū0, Ū1 in L[T,S|γ], and having cardinality γ = η+

in L[T,S|γ], such that whenever g is S-generic over Col(ω, η), then

p[Ū0] ∩ (S|γ)[g] = B ∩ (S|γ)[g],

and
p[Ū1] ∩ (S|γ)[g] = ¬B ∩ (S|γ)[g].

By the result of Harrington and Kechris, Ū0 and Ū1 are in CΓ(S|γ), and
hence by subclaim B, they are in S|ξ. Since γ = η+ in S|ξ, we see from the
formulae just displayed that

S|ξ |= Ū0, Ū1 witness that B ∩ S|ξ is η+-universally Baire.
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(Note that B ∩ S|ξ ∈ S|ξ by subclaim B.)
We leave it to the reader to show that there is a ξ∗ such that γ < ξ∗ ≤ ξ,

Ū0, Ū1 ∈ S|ξ∗, and S|ξ∗ |= ZFC. Clearly, S|ξ∗ satisfies demands (a) and (b)
on Qx of Claim 1. (We use the fact that Vω+1 ∩ S|ξ∗ is CΓ-closed to show
that S|ξ∗ satisfies that z is OD over AB∩S|ξ∗ .) In order to satisfy demand (c)
as well, we simply take Qx to be the pointwise-definable (in the language of
x-premice) Skolem hull of S|ξ∗. This proves claim 1. �

Claim 2. Let y ≤T x, and let Qx be as in claim 1. Then z is ordinal definable
over Qx.

Proof. Working in Qx, and letting B be the witness to part (b) of claim
1, we have that B is η+-universally Baire, where η is a Woodin cardinal.
Thus B is < η-homogeneous, so that the Wadge hierarchy below B is semi-
prewellordered. It follows that AB is definable from the Wadge ordinal of B,
and thus z is ordinal definable. �

We are ready to complete the proof of 1.5. Recall that we are seeking a
“lightface” premouse Q such that z ∈ Q, and Q has an ω1-iteration strategy
in Pα(R). We get Q by running yet again the proof of 4.1.

So let M be an ω1-iterable, coarse Γ9-Woodin mouse such that y ∈ M .
Let L[ ~E] be the output of the fully backgrounded “lightface” Kc-construction

done inside M . As before, since L[ ~E] does not reach a Woodin limit of

Woodins, we can fix an η < ORM such that V M
η is Γ8-Woodin, but L[ ~E] |= η

is not Woodin. Let Q be the corresponding Q-structure, that is, Q = J ~E
γ ,

where γ is least such that some f : η → η witnessing non-Woodinness of J ~E
η

is in J ~E
γ+1. Thus (the subset of η naturally coding) Q is not in CΓ8(V

N
η ).

Since all levels of L[ ~E] are tame, η is a cutpoint of Q. Clearly, Q has an
ω1-iteration strategy in Pα(R). We shall show z ∈ Q.

Let P be the every-real-generic poset of Q (up to η). Here we only use ex-
tenders from the JQη sequence which are total and strong out to their lengths
to define the identities. Since the JQη sequence has background extenders
from V M

η (which haven’t been collapsed in the construction) for these exten-
ders on the JQη sequence, every real in M is P generic over Q. In particular,
y is so generic.

By our choice of Q, there are comeager many f :ω → JQη ∪ {y} such that
Q is not coded by any real in CΓ8(xf ). We can therefore fix such an f which
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is Col(ω, JQη ∪{y}) generic over Q[y]. Let x = xf . Clearly, y ≤T x. Also, x is
Q generic over a poset of size η in Q, and x codes JQη , so by the level-by-level
definability of forcing we can find an x-premouse R whose universe is Q[x].
The iterability of Q guarantees that of R. Since Q projects to η, R projects
to ω. By our choice of x, the real canonically coding R, its first order theory
with parameter x, is not in CΓ8(x). Since x is in the cone above y, we have
by comparison that CΓ8(x) ⊆ R.

Letting Qx be as in claim 1, we have by a comparison argument that
Qx = R|ξ for some ξ. That is,

Qx = (Q|ξ)[x],

where the two are considered only as structures for the language of set theory.
But then z is ordinal definable over (Q|ξ)[x], which is a homogeneous forcing
extension of Q|ξ. Thus z ∈ Q|ξ, as desired.

This completes the proof of 1.5 �
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