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In this note, we give a proof of one direction of a version of Woodin’s derived model theorem:

Theorem 0.1 (Woodin) Let λ be a limit of Woodin cardinals, let G be V -generic over
Col(ω,< λ), let R∗ =

⋃
{R ∩ V [G � α] | α < λ}, and let Hom∗ = {p[T ] ∩ R∗ | ∃α < λ(T ∈

V [G � α] ∧ V [G � α] |= T is < λ absolutely complemented )}; then

(1) L(R∗,Hom∗) |= AD+,

(2) Hom∗ = {A ⊆ R∗ | A is Suslin and co-Suslin in L(R∗,Hom∗)}.

Woodin proved the theorem in perhaps 1986 or 1987, using stationary tower forcing and
(through the work of Martin and the author) iteration trees. The proof we give here uses
only iteration trees. Stationary tower forcing is replaced by “genericity iterations”, as it can
be in certain related contexts as well. We believe that the unity of method in the resulting
proof gives it some interest.

The first stationary-tower-free proof of the special case L(R∗) |= AD+ was discovered
by the author in the early 90’s. That proof uses fine-structural mice and Woodin-style
genericity iterations to replace the stationary tower forcing. The fine-structural mice were
needed because Woodin-style genericity iterations require ω1 + 1-iterable structures, and we
do not know how to prove that kind of iterability for countable M ≺ V . In the mid 90’s,
Neeman found a new kind of genericity iteration that requires only ω + 1 iterabilty, which
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we do know how to prove for countable M ≺ V . This gave the proof that L(R∗) |= AD+

with the greatest conceptual economy; only the tools of [3] were used. Neeman’s work can
be found in [4] and[5]. Our proof here uses Neeman’s genericity iterations to prove the full
0.1.

The basic structure of our proof is that of Woodin’s original proof. That proof, along
with related material, is exposited in [6]. Larson’s monograph [2] is an excellent source on
stationary tower forcing, including some of the material in [6], although it does not prove
Theorem 0.1 itself.

Woodin actually proved a stronger version of Theorem 0.1. (See [6, p. 28] for a statement
of this version.) We do not know whether our proof here gives that stronger result as well.
Both of these results are definitive, in that the Suslin-co-Suslin sets of any model of AD+ can
be realized as some Hom∗ as above, while the L(P (R)) of any model of AD+ can be realized
as a derived model in the sense of the stronger result.

1 Universally Baire to weakly homogeneous

Let us say that an iteration tree T is 2ω- closed iff for all α, MT
α |= “ Ult(V,ETα ) is closed

under 2ω-sequences”. We say that T is above µ if crit(ETα > µ for all α. The following
lemma is essentially due to K. Windszus. (See [1].)

Lemma 1.1 Let π : M → Vθ be elementary, where M is countable and transitive and let
µ ∈M . Put

W = {T | T is a 2ω-closed iteration tree

on M of length ω + 1, T is above µ

and MπT
ω is wellfounded}

Then W is π(µ)-homogeneously Suslin.

Proof sketch. By a Skolem hull argument, we can find a transitive N of cardinality 2ω, and

σ : M → N and ψ : N → Vθ

such that π = ψ ◦ σ, and for all T on M of length ω + 1,

MπT
ω is wellfounded ⇔MσT

ω is wellfounded.

We can now define our homogeneous tree U projecting to W . On the first coordinate,
branches of U attempt to build a length ω + 1 iteration tree T on M which is 2ω-closed
and above µ. (A node of length k must specify the k-th element of [0, ω]T .) On the second
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coordinate, they attempt to build a ψ-realization map τ : MσT
ω → Vθ. A node of U approx-

imates the τ it is building with a map τi : MT
i → Vθ, where i is largest such that the node

has determined that iTω. These maps must commute with the tree embeddings of σT , so
that along infinite branches of U they will fit together into the desired realization τ .

It is easy to see that p[U ] is the set of iteration trees T on M such that T is of length
ω + 1, above µ, and 2ω closed, and MσT

ω is ψ-realizable. But by our choice of N , this set is
W .

Finally, we get a homogeneity measure µ on U for the space associated to a finite tree T
on M which has i distinguished as the last element of [0, ω]T specified so far. Let

φk : MσT
k →MπT

k ,

be the copy map, and put

A ∈ µ⇔ 〈iπTk,i (φk) | k ∈ [0, i]T 〉 ∈ iπT0,i (A).

It is not hard to show this works. �
Although we shall not need it directly, the following well known result is an easy corollary.

Theorem 1.2 (Woodin) Let δ be Woodin; then every δ+-universally Baire set of reals is
< δ -weakly homogeneous.

Proof. Let (T, S) be a pair trees which project to complements after the collapse of δ. Let
γ < δ; we wish to show p[T ] is γ -weakly homogeneous. Let π : M → Vθ, where M is
countable transitive, and π(µ) = γ. Let Wb be the set defined from π,M, and µ as in
Windszus’ theorem. Let π(T̄ , S̄) = (T, S). Since the existential real quantification of a
homogeneously Suslin set is weakly homogeneously Suslin, it will be enough to prove:

Claim. For any real x, x ∈ p[T ] iff ∃T (T ∈W ∧ x ∈ p[iT0,ω(T̄ ].

Proof.If T is as on the right hand side, then as T ∈W , there is a realization map σ : MT
ω →

Vθ. But then σ embeds iT0,ω(T̄ ) into T , and therefore x ∈ p[T ], as desired.
Now let x ∈ p[T ]. By Neeman’s genericity theorem ([4]), we can find T ∈ W such that,

letting i = iT0,ω and N = MT
ω , x is Col(ω, i(δ))-generic over N . Since T ∈ W , we have a

realization σ : N → Vθ. But then if x ∈ p[i(S̄)], we get x ∈ p[S] using σ, a contradiction.
Since i((T̄ , S̄)) is absolutely complementing over N , we must then have x ∈ i(T̄ ), as desired.

�
The claim completes the proof. �
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2 Hom is a basis for (Σ2
1)
L(R∗,Hom∗)

We shall use the notation of [6] for towers of measures, homogeneity systems, and the like.
See section 1 of that paper. In particular, if A = p[T ] for some < λ-absolutely complemented
T , and we are given R∗ as the reals of a symmetric collapse below λ, then A∗ = p[T ] ∩ R∗.
The notation is justified because A∗ is independent of the particular T chosen.

If Y ⊆ meas(Z<ω), then we write TWY for the set of all towers of measures µ̄ such that
each µi ∈ Y . A function f : TWY → TWR is Lipschitz just in case f(µ̄) � n is determined
by µ̄ � n, for all µ̄ and n. We need the following lemma, which combines [3] with a result of
Woodin (see [6, Lemma 1.5]).

Lemma 2.1 Let δ be Woodin, and let Y ⊆ measδ+(Z<ω) be such that |Y | < δ. Then for
any γ < δ there is some W and R ⊆ measγ(W

<ω), and a Lipschitz

f : TWY → TWR

such that whenever G is V -generic over a poset of size < γ, then for all µ̄ ∈ (TWY )V [G],

µ̄ is wellfounded ⇔ f(µ̄) is illfounded.

Proof. We should note that f induces a map from (TWY )V [G] to (TWR)V [G], which we have
also called f , because the forcing is small.

We use Woodin’s proof that the set of wellfounded µ̄ ∈ TWY is δ+-homogeneous. Fot
working in V , pick for each illfounded tower µ̄ ∈ TWY sets Aµ̄

i ∈ µi such that they witness
the countable incompleteness of µ̄, in that ¬∃f∀i(f � i ∈ Ai). For ν a finite tower from Y ,
and i < lh(ν), let Bν

i =
⋂
{Aµ̄

i | ν ⊆ µ̄}. Because |Y | < δ, Bν
i ∈ νi for all i. For ν a finite

tower of length k from Y , put

(ν, t) ∈ T ⇔ ∀i < k(t � i ∈ Bν
i ).

It is easy to check that T is a tree, that p[T ] is the set of wellfounded µ̄ ∈ TWY , both in
V and in generic extensions by posets of size < δ, and that T is δ+-homogeneous. (The
homogeneity measure on Tν is the last measure in ν.)

T is a tree on W × U , for some set W of size < δ. Let S be he Martin-Solovay tree pro-
jecting to TWY \ p[T ] which we get from the homogeneity of T . By [3], S is γ-homogeneous;
let ν̄ 7→ f(ν̄) be a homogeneity system for S consisting of γ-additive measures. Then f is
the desired Lipschitz function. �

The heart of the matter is the following theorem.
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Theorem 2.2 (Woodin) Let G be Col(ω,< λ)-generic over V , where λ is a limit of

Woodin cardinals. Let A ∈ Hom
V [G�α]
<λ , where α < λ. Let ϕ be a sentence in the language of

set theory with two additional unary predicate symbols, and suppose that

∃B ⊆ R∗[B ∈ L(R∗,Hom∗) ∧ (HC∗,∈, A∗, B) |= ϕ];

then
∃B[B ∈ Hom

V [G�α]
<λ ∧(HCV [G�α],∈, A,B) |= ϕ].

Proof. We may as well assume A ∈ HomV
<λ.

Claim 1. For some B ∈ L(RV ,HomV
λ ), (HC,∈, A,B) |= ϕ.

Proof. Fix a < λ- absolutely complemented pair (S, U) such that A = p[S]. Let

π : M → Vθ,

where θ is sufficiently large and M is countable transitive, with π((S̄, Ū , λ̄) = (S, U, λ).
Working in V Col(ω,R), we can use the genericity iterations of [4] to form an R-genericity
iteration of M , below λ̄, that is, a sequence

I = 〈Tn | n < ω〉

such that the Tn are length ω + 1 iteration trees whose composition

T = ⊕nTn

is a normal iteration tree on M , with

Mω = limnMn,

the direct limit along the main branch of T (where Mn is the base model of Tn, and the last
model of Tn−1 if n > 0), being such that RV is the reals of a symmetric collapse over Mω

below λω, the image of λ̄. Let
in,k : Mn →Mk

be the canonical embedding, for 0 ≤ n ≤ k ≤ ω, and λk = i0,k(λ0). We write

Hom∗
I =

⋃
{p[T ] ∩ RV | ∃x ∈ RV (Mω |= T is < λω absolutely complemented)},

so that L(RV ,Hom∗
I) is a derived model of Mω at λω whose set of reals is R∗ = RV . Because

our individual genericity iterations Tn have length ω + 1, M is iterable enough that we can
do them, realizing the Mn and M∞ in Vθ in the process. Thus we have realizing maps

σk : Mk → Vθ,
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for all k ≤ ω, such that
σn = σk ◦ in,k

whenever n ≤ k ≤ ω. (σ0 = π.) Finally, we arrange that there is an increasing sequence
ordinals δk, k < ω, with sup λω, such that

δk < crit(ik,ω),

together with Mk-generic objects gk for Col(ω, δk), such that

RV =
⋃
k<ω

R ∩Mk[gk],

and gk ∈Mn[gn] if k < n. If k ≤ n ≤ ω, then ik,n lifts to an embedding

ik,n : Mk[gk] →Mn[gk],

moreover, RV =
⋃

k<ω Mω[gk].
Since σω ◦ i0,ω((S̄, Ū)) = (S, U), we easily get that RV ∩ p[i0,ω(S̄]) = A. Written another

way, i0,ω(Ā)∗ = A. The claim will then follow from the elementarity of i0,ω, provided we can
show Hom∗

I is a Wadge initial segment of HomV
<λ. Since Hom∗

I is closed downward under
Wadge reduction, it suffices to show:

Subclaim 1.1. Hom∗
I ⊆ HomV

<λ.

Proof. Let C ∈ Hom∗
I , and fix k and a pair (T,W ) ∈ Mk[gk] such that (T,W ) is < λk

absolutely complementing in Mk[gk], and C = p[ik,ω(T )] ∩ RV . Working in Mk[gk], and
letting ρ be the least Woodin cardinal > δk, we have a sequence 〈µ̄η | ρ < η < λk〉 such that

Mk[gk] |= µ̄η is a δ(η)+-complete homogeneity

system such that Sµ̄η = p[T ],

where δ(η) is the least Woodin cardinal > η, and Sµ̄ = {x ∈ R | µ̄x is a wellfounded tower }.
Note each component measure (µ̄η)u, for u ∈ ω<ω, is actually in Mk (essentially), because gk

was generic for a partial order of size < δ(η). We may therefore define

(ν̄η)u = σk(µ̄η)u),

for all η < λk and u ∈ ωω. It is not hard to see that ν̄η is a σk(δ(η))-complete homogeneity
system in V , for each η. Recalling that there is a ξ < λ such that Homξ = Hom<λ, we see
that

Sν̄η ∈ HomV
<λ
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for all sufficiently large η. We may assume this holds for all η by re-indexing. We shall
complete the proof by showing that Sν̄η = p[ik,ω(T )] ∩ RV for all η.

Subclaim 1.1a. If δk < η < γ < λk, then Sν̄η = Sν̄γ .

Proof. Fix η and γ, and let x ∈ R. Working in Mk, we can cover the sets of possible values
for the (µ̄ξ)u with sets Yξ such that |Yξ| ≤ δk for all ξ. We have by Lemma 2.1 in Mk a
sequence of Lipschitz maps

fξ : TWYξ
→ TWZξ

having the properties of that lemma, with the measures in Zξ being each ξ-complete. Now
let j : Mk → N come from a genericity iteration of Mk which is above δk and below ρ, using
the Neeman method, so that x ∈ N [gk][h] for some h on Col(ω, j(ρ)). Let τ : N → V be a
realizing map, so that σk = τ ◦ j. By Lemma 2.1, we have that exactly one of the following
is true

(1) j(µ̄η)x and j(µ̄γ)x are wellfounded, while j(fη)(j(µ̄η)x) and j(fη)(j(µ̄γ)x) are both
illfounded,

(2) j(µ̄η)x and j(µ̄γ)x are illfounded, while j(fη)(j(µ̄η)x) and j(fη)(j(µ̄γ)x) are both well-
founded.

Now illfoundedness of the towers above passes upward to their (pointwise) images under
τ . Thus in case (2), both (ν̄η)x and (ν̄γ)x are illfounded. In case (1), both σk(fη)((ν̄η)x)
and σk(fγ)((ν̄γ)x) are illfounded, and since σk(fη) and σk(fγ) flip wellfoundedness of towers,
we have that (ν̄η)x and (ν̄γ)x are both wellfounded. Since x was arbitrary, subclaim 1.1a is
proven. �

Now fix η such that δk < η < λk, and let x ∈ RV . We wish to show x ∈ p[ik,ω(T )] iff
(ν̄η)x is wellfounded. Fix k < n < ω so that x ∈ Mn[gn]. It will suffice to show that if
x ∈ p[ik,n(T )], then (ν̄η)x is wellfounded, and if x ∈ p[ik,n(W )], then (ν̄η)x is illfounded.

Since ik,n lifts to Mk[gk], we can set

〈τ̄ξ | ξ < λn〉 = ik,n(〈µ̄ξ) | ξ < λk〉,

and
〈hξ | ξ < λn〉 = ik,n(〈fξ) | ξ < λk〉.

For ξ > δn, we define ρ̄ξ by
(ρ̄ξ)u = σn((τ̄ξ)u).

The proof of subclaim 1.1a gives

Subclaim 1.1b. If ik,n(ρ) < ξ < γ < λn, then Sρ̄ξ
= Sρ̄γ .
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This is proved just as in 1.1a; given an arbitrary real z, we iterate Mn above δk and below
ik,n(ρ) to obtain N such that z is N [gk]-generic for the collapse of the image of ik,n(ρ), and
use a realizing map σ : N → Vθ extending σn to draw the required conclusion.

By 1.1a, we may and do assume η > ρ. The commutativity of the realizing maps gives

ν̄η = ρ̄ik,n(η),

so that by 1.1b, it will be enough to show that for γ > δn, x ∈ p[ik,n(T )] implies (ρ̄γ)x is
wellfounded, and x ∈ p[ik,n(W )] implies (ρ̄γ)x is illfounded.

But if x ∈ p[ik,n(T )], then the elementarity of ik,n : Mk[gk] → Mn[gk] gives that (τ̄γ)x is
wellfounded. (If not, the tree searching for an x ∈ p[ik,n(T )] such that (τ̄γ)x is illfounded
would have an infinite branch, and therefore have an infinite branch in Mn[gk], contrary to
the elementarity of ik,n.) It follows that gγ((τ̄γ)x) is illfounded, and hence σn(gγ)((ρ̄γ)x)) is
illfounded, and hence (ρ̄γ)x is wellfounded. A completely symmetric argument shows that if
x ∈ p[ik,n(W )], then (ρ̄γ)x is illfounded.

This proves subclaim 1, and hence Claim 1. �

Let us write Hom = HomV
<λ, and Hom � α for the collection of sets in Hom having

Wadge rank < α. By Claim 1, we have a lexicographically least pair 〈α, β〉 such that
there is a B ∈ Lβ(Hom � α) such that (HC,∈, A,B) |= ϕ. Let 〈α0, β0〉 be this pair. Let
C ∈ Hom � α0 be such that some such B is ordinal definable over Lβ0(Hom � α0) from the
parameter (A,C). We can eliminate the need for the ordinals by minimizing them, and as a
result we can fix B such that (HC,∈, A,B) |= ϕ, and a formula ψ such that

x ∈ B ⇔ Lβ0(Hom � α0) |= ψ[x, (A,C)].

We now show B is HomV
<λ, completing the proof.

Case 1. Hom � α0 = Hom.

Proof.
Let (T, S) be a < λ absolutely complementing pair of trees such that p[T ] = (A,C). Let

π : M → Vη

be elementary, with M countable transitive, η large, and

π((T̄ , S̄, λ̄)) = (T, S, λ).

Let

θ(u, v, w) = “u is a limit of Woodin cardinals, v ∈ R, and

w is a tree on ω × λ, and if R∗,Hom∗ are derived

from Col(ω,< u), then there is a β such that

∃B ∈ Lβ(Hom∗)((HC,∈, (p[w])0 ∩ R∗, B) |= ϕ,

and for the least such β, Lβ(Hom∗) |= ψ[v, p[w]].
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Let µ be chosen large enough that any π(µ)-weakly homogeneous set of reals is in
Hom. Let W be the set defined from M , π, and µ as in Theorem 1.1, so that W is π(µ)-
homogeneous. Let ρ be the least Woodin cardinal of M which is > µ.

Claim 2. For any real x, the following are equivalent:

(a) x ∈ B,

(b) ∃T ∈ W∃g (g is MT
ω -generic over Col(ω, iT0,ω(ρ)), and x ∈ MT

ω [g], and MT
ω [g] |=

θ[iT0,ω(λ̄), x, iT0,ω(T̄ )]).

Proof. Let x ∈ RV . Let T ∈ W and g on Col(ω, iT0,ω(ρ)) be such that x ∈ MT
ω [g]. (There

are such T and g by [4].) It is enough to show that

x ∈ B ⇔MT
ω [g] |= θ[iT0,ω(λ̄), x, iT0,ω(T̄ )]).

Setting M0 = M , M1 = MT
ω , and g1 = g, we can continue to form an R-genericity

iteration I, with models 〈Mi | i ≤ ω〉 and embeddings ik,n : Mn → Mk, as in the proof of
Claim 1. We have also realizations σk : Mk → Vθ, as in the proof of Claim 1. Since i1,ω is
elementary on M1[g], it will be enough to show that Mω[g] |= θ[i0,ω(λ̄), x, i0,ω(T̄ )]. However,
since σω ◦ i0,ω((T̄ , S̄)) = (T, S), we have that p[i0,ω(T̄ )] ∩ RV = (A,C). Moreover, as in
Subclaim 1.1, Hom∗

I is a Wadge initial segment of Hom.
Let γ = OR ∩ Mω. By the hypothesis of 2.2, and the elementarity of σω, there is a

D ∈ Lγ(RV ,Hom∗
I) such that (HC,∈, A,D) |= ϕ. Since Hom∗

I is a Wadge initial segment of
Hom, our case hypothesis then gives that Hom∗

I = Hom. We then get that β0 < γ. It follows
that β0 is the ordinal β referred to by the formula θ when it is interpreted in Mω[g] at the
relevant parameters. From this we easily get the equivalence displayed above, and thus we
have proved Claim 2. �

According to Claim 2, B is defined by existential real quantification from π(µ)-homogeneously
Suslin sets. It follows that B ∈ Hom, as desired. This finishes Case 1. �

Case 2. Hom � α0 6= Hom.

Proof. Let D ∈ Hom have Wadge rank α0. We use the argument of Case 1, but replacing
the parameter (A,C) by (A,C,D). We take θ to be the natural formula defining B from
this parameter, as the first witness to ϕ constructed in L({X | X <w D}). The rest goes as
in Case 1. �

This finishes the proof of Theorem 2.2. �
The derived model theorem, Theorem 0.1, follows easily from Theorem 2.2. See [6] for

some details.
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