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We shall exposit here one of the basic theorems leading from large cardinals to determinacy,
a result of Woodin known as the derived model theorem. The theorem dates from the mid-
80’s and has been exposited in several sets of informally circulated lecture notes (e.g., [12],
[14]), but we know of no exposition in print. We shall also include a number of subsidiary
and related results due to various people.

We shall use very heavily the technique of stationary tower forcing. The reader should
see Woodin’s paper [15] or Larson’s [3] for the basic facts about stationary tower forcing.
The second main technical tool needed for a full proof of the derived model theorem is the
theory of iteration trees. This is one of the main ingredients in the proof of Theorem 2.1
below, but since we shall simply take that theorem as a “black box” here, it is possible to
read this paper without knowing what an iteration tree is.

The paper is organized as follows. In §1, we introduce homogeneity, weak homogeneity,
and universal Baireness. The main result here is the Martin-Solovay theorem, according to
which all weakly homogeneous sets are universally Baire. We give a reasonably complete
proof of this theorem. In §2 and §3, we show that in the presence of Woodin cardinals,
homogeneity, weak homogeneity, and universal Baireness are equivalent. We also give, in
§3, an argument of Woodin’s which shows that strong cardinals yield universally Baire rep-
resentations after a collapse. In §4 we prove the tree production lemma, according to which
sets admitting definitions with certain absoluteness properties are universally Baire. §5 con-
tains a generic absoluteness theorem for (Σ2

1)Hom∞ statements. In §6 we state and prove the
derived model theorem. In §7 we prove that in derived models, the pointclass Σ2

1 has the
Scale Property, and in §8, we use this to produce derived models which satisfy ADR.

This paper was written in Fall 2002, and circulated informally. In 2004, Larson’s mono-
graph [3] on stationary tower forcing appeared. Much of the material in §2, §3, and §4 can be
found in section 3.3 of [3]. Sections 3.2 and 3.4 of [3] use this machinery to prove important
results of Woodin concerning generic absoluteness. In another direction, Neeman’s recent
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paper [10] gives a proof of ADL(R) which avoids stationary tower forcing entirely, relying en-
tirely on iteration trees instead. Finally, author has published a stationary-tower-free proof
of the full derived model theorem in [11].

1 Homogeneously Suslin and universally Baire sets

If Y is a set, then Y ω = {x | x : ω → Y } is the set of infinite sequences of elements of Y . We
often regard Y ω as being equipped with the Baire topology, whose basic open sets are just
those of the form Ns = {x ∈ Y ω | s ⊆ x}, for s ∈ Y <ω. We are most interested in the case
Y = ω. We call the elements of ωω reals, and write R for ωω. In this section we introduce
three regularity properties a set A ⊆ Y ω might have.

The first of these, homogeneity, derives from Martin [4], and was first explicitly isolated
by Martin and Kechris. In a word, a set A ⊆ Y ω is homogeneously Suslin just in case it is
continuously reducible to wellfoundedness of towers of measures. Here is some further detail.

We shall use the terms ultrafilter on I and measure on I interchangeably; thus all our
measures take values in {0, 1}.

Definition 1.1 For any Z, measκ(Z) is the set of all κ-additive measures on Z<ω. We let
meas(Z) = measω1(Z).

Clearly, if µ ∈ meas(Z), then there is exactly one n < ω such that µ(Zn) = 1. We call n
the dimension of µ, and write n = dim(µ).

If µ, ν ∈ meas(Z), then we say that µ projects to ν iff for some m ≤ n < ω, dim(µ) = n,
dim(ν) = m, and for all A ⊆ Zm

ν(A) = µ({u | u � m ∈ A}.

We say µ and ν are compatible if one projects to the other. If µ projects to ν, then there is
a natural embedding

πν,µ : Ult(V, ν)→ Ult(V, µ)

given by π([f ]ν) = [f ∗]µ, where f ∗(u) = f(u � m) for all u ∈ Zn.
A tower of measures on Z is a sequence 〈µn | n < k〉, where k ≤ ω, such that each

µn ∈ meas(Z), and whenever m ≤ n < k, then dim(µ) = n and µn projects to µm. If
〈µn | n < ω〉 is an infinite tower of measures, then

Ult(V, 〈µn | n < ω〉) = dir limn<ωUlt(V, µn),

where the direct limit is taken using the natural embeddings πµn,µm , which commute with
one another.1 We say that the tower 〈µn | n < ω〉 is countably complete just in case whenever

1Note that Z0 = {∅}, so in any tower, µ0 is principal, and Ult(V, µ0) = V .
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µx�n(An) = 1 for all n < ω, then ∃ f ∀ n (f � n ∈ An). It is easy to show that 〈µn | n < ω〉
is countably complete if and only if Ult(V, 〈µn | n < ω〉) is wellfounded, and so we shall say
that a tower is wellfounded just in case it is countably complete.

Definition 1.2 A homogeneity system over Y with support Z is a function

µ̄ : Y <ω → meas(Z)

such that, writing µs = µ̄(s), we have that for all s, t ∈ Y <ω,

1. dim(µt) = dom(t), and

2. s ⊆ t⇒ µt projects to µs.

If ran(µ̄) ⊆ measκ(Z), then we say that µ̄ is κ-complete.

Definition 1.3 If µ̄ is a homogeneity system over Y with support Z, then for each x ∈ Y <ω,
we let µ̄x be the tower of measures 〈µx�n | n < ω〉, and set

Sµ̄ = {x ∈ Y <ω | µ̄x is countably complete }.

Definition 1.4 Let A ⊆ Y <ω; then A is κ-homogeneous iff A = Sµ̄, for some κ-complete
homogeneity system µ̄. We say A is homogeneous if it is κ-homogeneous for some κ.

For the collection of all κ-homogeneous sets we write

HomY
κ = {A ⊆ Y <ω | A is κ-homogeneous }.

We set
HomY

<λ =
⋂
κ<λ

HomY
κ ,

and
HomY

∞ =
⋂
κ∈0R

HomY
κ .

We write Homκ for Homω
κ , etc. It is clear that HomY

κ is closed downward under con-
tinuous reducibility (also called Wadge reducibility, at least if Y = ω). It is not too hard
to show HomY

κ is closed under countable intersections. One cannot prove closure under
complementation in ZFC. We don’t know whether closure under union is provable in ZFC.

Homogeneity is often considered in conjunction with trees. A tree on a set X is a set
T ⊆ X<ω such that ∀s ∈ T∀k(s � k ∈ T ). We let [T ] = {f ∈ Xω | ∀n < ω(f � n ∈ T )} be
the set of infinite branches of T , so that T is wellfounded (under reverse inclusion) iff [T ] = ∅.
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We think of a tree on Y ×Z as a set of pairs (s, t) ∈ Y <ω×Z<ω such that dom(s) = dom(t).
If T is a tree on Y × Z and s ∈ Y <ω, then

Ts = {t | (s, t) ∈ T},

and for x ∈ Y ω,

Tx =
⋃
n<ω

Tx�n.

The projection on Y ω of [T ] is given by

x ∈ p[T ] ⇔ Tx is illfounded

⇔ ∃f ∈ Zω∀n((x � n, f � n) ∈ T ),

for x ∈ Y ω. We call T a Suslin representation of p[T ], and say that p[T ] is Z-Suslin via T .

Proposition 1.5 (Woodin) Let A = Sµ̄, where µ̄ is a homogeneity system over Y with
support Z. Suppose that µ̄ is |Y |+-complete; then there is a tree T on Y × Z such that

A = p[T ],

and for all s ∈ Y <ω,
µs(Ts) = 1.

Proof. For each x ∈ Y ω \ A, pick a sequence of sets Bx
n witnessing that µ̄x is not countably

complete, so that µx�n(Bx
n) = 1 for all n, but 6 ∃f∀n (f � n ∈ Bx

n). Then put

(s, u) ∈ T ⇔ u ∈ Zdom s ∧ ∀ x ⊇ s (x /∈ A⇒ u ∈ Bx
dom s).

Since the additivity of any measure is a measurable cardinal, each µs is sufficiently additive
that µs(Ts) = 1. If x ∈ A, then the countable completeness of µ̄x implies there is an f such
that for all n, f � n ∈ Tx�n, so that x ∈ p[T ]. On the other hand, if x /∈ A, then the choice
of the Bx

n guarantees that x /∈ p[T ]. �
The completeness hypothesis on µ̄ in 1.5 is redundant in the case Y is countable. If T

is related to µ̄ as in 1.5, and µ̄ is κ-complete, then we shall say that T is a κ- homogeneous
tree, and µ̄ is a homogeneity system for T . We also say that p[T ] is κ-homogeneously Suslin.

K. Windszus has proved a stronger version of 1.5, showing that if A ⊆ Y ω is continu-
ously reducible to wellfoundedness of direct limit systems on |Y ω|-closed models, then A is
homogeneously Suslin.

Remark 1.6 Let Y ⊆ measκ(Z), and let

A = {〈µn | n < ω〉 ∈ Y ω | 〈µn | n < ω〉 is wellfounded }.

It is clear that A is κ-homogeneous, the homogeneity system over Y being simply the identity
function. As one might suspect, this is not a very useful fact. If in addition |Y | < κ, then
by 1.5, A is κ-homogeneously Suslin, which is more useful. (See remark 2.2.)
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The first and most important fact about homogeneously Suslin sets is

Theorem 1.7 (Martin [4], essentially) If A ⊆ Y ω is |Y |+-homogeneous, then the two-
person game of perfect information on Y with payoff set A is determined.

We now consider a weakening of homogeneity, also first isolated by Kechris and Martin.

Definition 1.8 A weak homogeneity system over Y with support Z is an injective function
µ̄ : Y <ω → meas(Z) such that for all s ∈ Y <ω

1. dim(µs) ≤ dom(s), and

2. if µs projects to ν, then ∃i(µs�i = ν).

Definition 1.9 If µ̄ is a (κ-complete) weak homogeneity system over Y , then we set

Wµ̄ = {x ∈ Y ω | ∃〈ik | k < ω〉 ∈ ωω(〈µx�ik | k < ω〉 is a wellfounded tower )},

and say that Wµ̄ is (κ-)weakly homogeneous via µ̄.

So a weak homogeneity system over Y associates continuously to each x ∈ Y a countable
tree of towers of measures, and x is in the set being represented iff at least one of the branches
of this tree is a wellfounded tower.2 This leads us to

Proposition 1.10 Let A ⊆ Y ω. If there is a measurable cardinal, then the following are
equivalent:

1. A is κ-weakly homogeneous,

2. there is a κ-homogeneous set B ⊆ Y ω × ωω such that x ∈ A⇔ ∃y(x, y) ∈ B, for all x.

We leave the proof to the reader. The measurable cardinal is needed for a minor technical
reason: if there are no measurables, then Y ω × Zω is the only homogeneous B ⊆ Y ω × Zω,
while the projection of any closed B ⊆ Y ω×Zω is weakly homogeneous. This situation could
be remedied by allowing partial µ̄ as homogeneity systems, but in any case, homogeneity isn’t
very interesting if there are no measurable cardinals.

For trees we make the following definition:

Definition 1.11 A tree T on Y × Z is κ-weakly homogeneous via µ̄ iff µ̄ is a κ-complete
weak homogeneity system over Y such that

2Had we taken a weak homogeneity system to be any function µ̄ : Y <ω → meas(Z), we would have
obtained the same class of sets Wµ̄. Our restrictions on µ̄ make some manipulations easier. Note that
they imply µ∅ is principal, and that if 〈ik | k < ω〉 is a sequence witnessing x ∈ Wµ̄ then i0 = 0 and
k < l⇒ ik < il.
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1. p[T ] = Wµ̄, and

2. ∀s ∈ Y <ω∃k(µs(Ts�k) = 1.

We say that p[T ] is κ-weakly homogeneously Suslin in this case.

Parallel to 1.5 we have:

Proposition 1.12 Let µ̄ be a |Y |+-complete weak homogeneity system over Y with support
Z; then there is a tree T on Y × Z such that which is weakly homogeneous via µ̄.

So if A ⊆ Y ω and κ > |Y |, then A is κ-homogeneous iff A is κ-homogeneously Suslin,
and A is κ-weakly homogeneous iff A is κ-weakly homogeneously Suslin. In the sequel, Y
will almost always be countable, so these equivalences apply. Our characterization of weak
homogeneity for trees also simplifies a bit in the case Y is countable:

Proposition 1.13 A tree T on ω × Z is κ-weakly homogeneous iff there is a countable set
σ ⊆ measκ(Z) so that ∀ x

x ∈ p[T ] ⇔ There is a tower 〈µn | n < ω〉 of

measures from σ such that

µn(Tx�n) = 1 for all n, and

〈µn | n < ω〉 is countably complete.

Proof. Given such a σ, let σ = {νi | i < ω} be a one-one enumeration such that if νi projects
to µ, then ∃k ≤ i(νk = µ). Setting µs = νdom(s), it is clear that T is weakly homogeneous via
µ̄. Conversely, if T is weakly homogeneous via µ̄, then take σ = ran(µ̄). Since Wµ̄ = p[T ], if
x ∈ p[T ], then there is a countably complete tower from σ concentrating on Tx. The converse
is true in general, because of countable completeness. �

A still further weakening of homogeneity is the property of being κ-universally Baire (see
[1]).

Definition 1.14 We say G is < κ-generic over M iff G is M-generic for some poset P such
that M |= |P| < κ.

Definition 1.15 Let T on X × Y and U on X × Z be two trees; then we say T and U are
κ-absolute complements iff whenever G is < κ-generic over V

V [G] |= p[T ] = Xω \ p[U ].

We say T is κ-absolutely complemented iff ∃U (T and U are κ-absolute complements).
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If p[T ] ∩ p[U ] = ∅ in V , then the same is true in any generic extension of V by the
absoluteness of wellfoundedness. We shall use this simple observation again and again.
What absolute complementation adds is that T and U are sufficiently ”fat” that in the
relevant V [G], we have p[T ] ∪ p[U ] = Xω.

Definition 1.16 (1) A set A ⊆ Xω is κ-universally Baire, or κ-absolutely Suslin iff A =
p[T ] for some κ-absolutely complemented T .

(2) UBκ = {A ⊆ ωω | A is κ-universally Baire}.

Every provably-in-ZFC ∆1
2 set of reals is κ-universally Baire for all κ. This is the key to

Solovay’s proof that such sets are Lebesgue measurable and have the Baire property. Indeed,
any (2ℵ0)+- universally Baire set of reals has these regularity properties ([1]).

It is one of the main results of Martin–Solovay [6] that every κ-weakly homogeneous
Suslin set is κ-universally Baire. Here is a brief review of the Martin–Solovay construction.

For simplicity, we begin with a homogeneity systems.

Definition 1.17 Let µ̄ be a homogeneity system over Y . For any ordinal θ, we define the
Martin-Solovay tree ms(µ̄, θ) on Y ×OR by

(s, 〈αn | n < e〉) ∈ ms(µ̄, θ) ⇔ s ∈ Y e ∧ α0 < θ ∧
∀n(n+ 1 < e⇒ πµs�n,µs�(n+1)

(αn) > αn+1).

That is, ms(µ̄, θ)x searches for a proof that Ult(V, µ̄x) is illfounded below the image of θ.
(This last restriction makes it a set, rather than a proper class.) It is not hard to see that if
µ̄ has support Z and is illfounded, then it is illfounded below the image of |Z|+. It follows
easily that for any θ ≥ |Z|+,

p[ms(µ̄, θ)] = Y ω \ Sµ̄.

Thus if µ̄ is a homogeneity system for T , then ms(µ̄, θ) and T complement each other in V .
Now suppose µ̄ is κ-complete, and G is < κ-generic over V . The measures µs extend to

measures µ∗s in V [G], where

µ∗s(A) = 1⇔ ∃B ⊆ A(µs(B) = 1).

(We shall use this *-notation in this way without much comment in the future.) Moreover,
for every function f : Z<ω → V such that f ∈ V [G] there is a function g ∈ V such that
f(u) = g(u) for µ∗s-a.e. u. Thus µ̄∗ is a homogeneity system in V [G], whose associated
embeddings, when restricted to V , are those of µ̄. It follows that ms(µ̄, θ)V = ms(µ̄∗, θ)V [G],
and that p[ms(µ̄, θ)V ] = Y ω \ Sµ̄∗ in V [G].

Finally, suppose in addition that µ̄ is a homogeneity system for T in V . In order to
see that ms(µ̄, θ) is a κ-absolute complement for T , it is enough to show p[T ] = Sµ̄∗ in
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V [G].3 Now if x ∈ Sµ̄∗ , then the tower µ̄∗x is countably complete, and since its measures
concentrate on Tx, we get that Tx is illfounded, so x ∈ p[T ]. Conversely, if x ∈ p[T ], then
x 6∈ p[ms(µ̄, θ)V ], because the projections of these two trees were disjoint in V . As we showed
above, this implies x ∈ Sµ̄∗ in V [G], as desired.

We can extend this construction to weak homogeneity systems.

Definition 1.18 Let µ̄ be a weak homogeneity system over Y , and θ be an ordinal. We
define the Martin-Solovay tree ms(µ̄, θ) on Y ×OR by

(s, 〈αe | e < n〉) ∈ ms(µ̄, θ) ⇔ s ∈ Y n ∧ α0 < θ ∧
∀e < k < n(µs�k projects to µs�e ⇒ πµs�e,µs�k(αe) > αk).

Lemma 1.19 Suppose that µ̄ is a κ-complete weak homogeneity system over Y with support
Z, and θ ≥ |Z|+. Let G be < κ-generic over V ; then ms(µ̄, θ)V = ms(µ̄∗, θ)V [G], moreover
p[ms(µ̄, θ)] = Y ω \Wµ̄∗ in V [G].

Proof. We claim first that p[ms(µ̄, θ)] = Y ω \Wµ̄ in V . It is clear that if x ∈ p[ms(µ̄, θ)] then
x 6∈ Wµ̄, since a branch through ms(µ̄, θ)x illfounds all the relevant towers, and in fact does
so continuously. Conversely, suppose x 6∈ Wµ̄. All the relevant towers are then illfounded,
but we must see this is true continuously, and below the image of θ. For that, pick, for each
increasing t : ω → ω such that 〈µx�t(n) | n < ω〉 is a tower, a sequence Atn witnessing the
countable incompleteness of this tower. (So Atn ⊆ Zn and µx�t(n)(A

t
n) = 1.) For any k, let

Bk be the intersection over all t, n such that t(n) = k of the Atn. (n is in fact determined by
k, since µx�k(Z

n) = 1.) Then letting

(k, u)R(l, v)⇔ k > l ∧ u ∈ Bk ∧ v ∈ Bl ∧ v ⊆ u,

we have that R is wellfounded. Set

fk(u) = rank of (k, u) in R

and let
αk = [fk]µx�k .

It is easy to check that 〈αk | k < ω〉 is a branch through ms(µ̄, θ)x, as desired.
The remainder of the lemma is proved as it was for homogeneity systems. �

Theorem 1.20 (Martin, Solovay [6]) Let T be κ-weakly homogeneous via µ̄, and θ >
|T |+; then T and ms(µ̄, θ) are κ-absolute complements.

3This also shows that µ̄∗ is a homogeneity system for T in V [G].
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The proof of 1.20 is just as it was for homogeneity systems, so we omit further detail.
The proof also shows T remains weakly homogeneous via µ̄∗ in < κ-generic extensions.

Corollary 1.21 If A ⊆ R is κ-weakly homogeneous, then A is κ-universally Baire.

To summarize: Any κ-homogeneous set is κ-weakly homogeneous, and any κ-weakly
homogeneous set is κ-universally Baire.

2 Weak homogeneity to homogeneity

In the next two sections we show that the implications above have converses, in a certain
sense. Namely, if δ is Woodin, then any δ+-universally Baire set is < δ-weakly homogeneous,
and any δ+-weakly homogeneous set is < δ-homogeneous. Thus if λ is a limit of Woodins,
then Hom<λ = UBλ.

Theorem 2.1 (Martin, Steel [7]) Let δ be Woodin, and let µ̄ be a δ+-complete weak ho-
mogeneity system over Y , where |Y | < δ; then for all sufficiently large θ, ms(µ̄, θ) is κ-
homogeneous for all κ < δ.

Proof. Omitted. �

Remark 2.2 Our hypothesis that |Y | is strictly less than the completeness of µ̄ implies that
there is a tree T on some Y × Z which is weakly homogeneous via µ̄. Given T in advance,
the construction of [7] homogeneity system for some ms(µ̄, θ) in a way which is continuous
in µ̄, in that finite bits µ̄ � i are needed to determine the next measure in the homogeneity
system for ms(µ̄, θ).

Woodin has observed that this has the following nice consequence. Let Y ⊆ measγ(Z),
and |Y | < δ < γ for some Woodin cardinal δ. Let

I = {〈t ∈ Y ω | t is an illfounded tower }.

We observed in remark 1.6 (essentially) that Y ω \ I is γ-homogeneous.4 It then follows from
the continuity implicit in the construction of [7] that I is κ-homogeneous for all κ < δ. One
should compare this with 1.6.

If A ⊆ Q× S, we write ∃QA for {s | ∃q(q, s) ∈ A}, and ∀QA for {s | ∀q ∈ Q(q, s) ∈ A}.
If B ⊆ Q, then we write ¬B for Q \B, when Q is clear from context.

4One must intersect with the set of all towers in order to apply 1.6, but since the set of all towers is closed
in Y ω, this is not a problem.
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Corollary 2.3 If A ⊆ R2 is δ+-homogeneous, where δ is Woodin, then ¬∃RA is κ-homogeneous
for all κ < δ.

Proof. By 1.10, ∃RA is δ+-weakly homogeneous, so its complement is < δ-homogeneous by
2.1. �

Corollary 2.4 If λ is a limit of Woodin cardinals, then Hom<λ is closed under ∃R, negation,
and continuous (i.e., “Wadge”) reducibility.

So if λ is a limit of Woodins, then projective determinacy (PD) holds, and in fact holds
in all < λ-generic extensions (since λ remains a limit of Woodins in such an extension). In
fact, we get projective generic absoluteness for such extensions, even with names for sets of
reals in Hom<λ, as we now show.

The following lemma gives us our names.

Lemma 2.5 Let (T, U) and (R, S) be pairs of κ-absolute complements, and suppose p[T ] =
p[R] in V . Then for any < κ-generic G, p[T ] = p[R] in V [G].

Proof. Say x ∈ V [G] and x ∈ p[T ] but x /∈ p[R]. Since S complements R, we have x ∈ p[S].
Thus p[T ] ∩ p[S] 6= ∅ in V [G], hence in V , a contradiction. �

So we can think of a κ-absolutely complemented pair (T, U) as a name for p[T ], and we
have that two names which agree on V also agree on any < κ-generic V [G]. If A = p[T ]
for such a (T, U), then we sometimes write AV [G] for p[T ]V [G] if G i < κ- generic. There is
no ambiguity because AV [G] does not depend on which absolutely complemented name we
choose.

Theorem 2.6 (Woodin) Let λ be a limit of Woodin cardinals, and A ∈ Hom<λ. Let G be
< λ-generic over V . Then

(HCV ,∈, A) ≡ (HCV [G],∈, A).

Notice that if x is a real, then {x} is Hom<λ, and any sequence of Hom<λ sets can be
coded by a single one. Thus 2.6 implies a superficially stronger version of itself.

Proof. Fix A ∈ Hom<λ. To each formula ϕ(~v, Ȧ) in the language of second order arithmetic
with additional predicate symbol Ȧ, and each κ < λ, we associate a κ-homogeneous tree Tϕ,κ
such that whenever G is < ka- generic

V [G] |= p[Tϕ,κ] = {~y ∈ R<ω | ϕ(~y, AV [G])}.
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The absoluteness of wellfoundedness and the Tarski-Vaught criterion then imply that V is
ϕ-elementary in V [G], as desired.

The trees Tϕ,κ are constructed (for all κ) by induction on ϕ. For ϕΣ1
1, we use the given

trees for the A. Now suppose ϕ = ¬∃ wψ, and κ < λ. Let κ < δ < λ, where δ is Woodin.
Now Tψ,δ+ is δ+-homogeneous as a tree on (ω × ω)× Z, and hence δ+-weakly homogeneous
as a tree S on ω × (ω × Z). Of course, p[S] = ∃Rp[Tϕ,δ+ ] in all generic extensions. Let
µ̄ be a δ+-complete weak homogeneity system for S, and θ be sufficiently large, and set
Tϕ,κ = ms(µ̄, θ). This works by the Martin–Solovay and Martin–Steel theorems.

Up to logical equivalence, all Σ1
n formulae can be built up from Σ1

1 using ¬∃ w, so we are
done. �

Here is a sometimes useful observation about Hom<λ. It is due independently to Woodin
and the author.

Theorem 2.7 Let λ be a limit of Woodin cardinals; then there is a κ < λ such that Homκ =
Hom<λ.

Proof. Clearly, α < β ⇒ Homβ ⊆ Homα. Each Homα is a boldface pointclass, that is, it is
closed downward under Wadge reducibility ≤w. Thus if the theorem fails, we have an infinite
descending sequence A0 >w A1 >w . . . in the Wadge order. But also, we have projective-in-
A0 determinacy, and so Martin’s proof that <w is wellfounded yields a contradiction. �

3 Universally Baire to weakly homogeneous

Our method for obtaining weak homogeneity originated in Martin’s unpublished proof that
ADR implies that every tree on ω×κ is weakly homogeneous. Woodin extended the method to
the context of large cardinals with Choice, and eventually obtained the following remarkable
results.

Theorem 3.1 (Woodin) Let δ be Woodin, and let T and U be δ+-absolutely complementing
trees on ω × Z; then T is κ-weakly homogeneous for all κ < δ.

Proof. We shall actually just use that p[T ] = R \ p[U ] in V [G], whenever G is generic for the
“countable” stationary tower Q<δ. (Conditions are stationary a ⊆ Pω1(Vα), for α < δ. See
the appendix.) Names for reals modulo Q<δ are elements of Vδ, so if we let T ∗ and U∗ be the
subtrees of T and U consisting of all nodes definable over Vη from T , δ, U , and parameters
in Vδ (where η � δ and T, U ∈ Vη), then T ∗ and U∗ have size δ and are forced in Q<δ to
project to complements. Rearranging and renaming, we may assume T and U are on ω× δ.
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Let κ < δ be given; we wish to show T is κ-weakly homogeneous. We may assume κ is
T -reflecting in δ, since there are arbitrarily large such κ < δ. That is, for each λ such that
κ < λ < δ, there is j : V →M with crit(j) = κ such that Vλ ⊆M and j(T ) ∩ Vλ = T ∩ Vλ.

Let κ < λ < δ and j be as above. We define a continuous function Σλ,j on the branches
of T ∩ Vλ whose outputs are towers of measures on T ∩ Vκ. Namely, for (s, u) ∈ T ∩ Vλ, and
X ⊆ Vκ, let

Σλ,j(s, u)(X) = 1 iff u ∈ j(X).

Writing Σ = Σλ,j, we see

(a) Σ(s, u) is a κ-complete measure concentrating on Ts ∩ Vκ.

(b) (s, u) ⊆ (t, v)⇒ Σ(s, u) is compatible with Σ(t, v).

(c) If (x, f) ∈ [T ∩ Vλ], then the tower Σ(x, f) =
df.
〈Σ(x � n, f � n) | n < ω〉 is wellfounded.

(Note that its ultrapower embeds into M .)

(d) In any generic extension V [H] of V , if (x, f) ∈ [T ∩ Vλ], then Ult(V,Σ(x, f)) is well-
founded. (Here the ultrapower is formed using functions in V .) This is because the
tree of attempts to produce (x, f,−→α ) such that (x, f) ∈ [T ∩Vλ] and −→α is a descending
sequence in Ult(V, Z(x, f)) is wellfounded in V , hence in V [H].

Now let G be Q<δ generic over V , and

i : V → N ⊆ Ult(V,G)

be the generic embedding. It suffices to show that i(T ) is i(κ)-weakly homogeneous in N .
In fact, we show

Claim. σ = i′′measκ(κ
<ω) is a witness that i(T ) is i(κ)-weakly homogeneous in N .

Proof. Since ωN ⊆ N in V [G], we have σ ∈ N and is countable in N . Now let x ∈ p[i(T )]
and x ∈ N . Since T and U are absolutely complementing, either x ∈ p[T ] or x ∈ p[U ]. But

x ∈ p[U ]⇒ x ∈ p[i(U)]⇒ p[i(U)] ∩ p[i(T )] 6= ∅,

whereas p[i(U)]∩ p[i(T )] = ∅ because this is true in N , which is a wellfounded model. Thus
x ∈ p[T ].

Let λ < δ be such that x ∈ p[T ∩ Vλ]; note here δ = ω
V [G]
1 , so there is such a λ. Choose

λ < κ, and let j be such that Σ = Σλ,j exists in V . Letting (x, f) ∈ [T ∩ Vλ], we have

N |= every tower in i(Σ)′′[i(T ∩ Vλ)] is wellfounded,
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so
N |= 〈i(Σ)(x � n, i(f � n)) | n < ω〉 is wellfounded.

But 〈i(Σ)(x � n, i(f � n)) | n < ω〉 is a tower of measures from σ concentrating on i(Tx).
This proves the claim, and hence the theorem. �

Remark 3.2 It is possible to prove the theorem using the extender algebra at δ, and itera-
tions to make reals generic, rather than stationary tower forcing. One then uses that T and
U are complementing in V [G], whenever G is generic for the extender algebra at δ. Here is a
sketch: let κ be T -reflecting in δ. Let X < Vθ be countable, with θ large, and κ, δ, T, U ∈ X.
Take σ = {µ ∈ X | µ is a κ-complete measure concentrating on some Ts ∩ Vκ}. We claim
σ witnesses that T is κ-weakly homogeneous. To see this, let π : N ∼= X be the transitive

collapse. Let x ∈ p[T ]. We can iterate N
i−→M to make x generic over M for the extender

algebra at i(δ), and we have

N
π→ Vθ
↘
i
↑ τ

M

for some realizing map τ . Letting T̄ = π−1(T ), etc., we can arrange crit(i) > κ̄. Then
x ∈ p[i(T̄ )], as otherwise x ∈ p[i(Ū)], so x ∈ p[σ(i(Ū))], so x ∈ p[U ]. Now then if Σ is the
appropriate Σλ,j, and (x, f) ∈ p[i(T̄ ∩ λ̄)], then (τ ◦ i)(Σ̄)(x, τ(f)) is a wellfounded tower
from σ concentrating on Tx.

This seems to require a certain amount of iterability, but by being more careful, we
can make do with a form of iterability which is provable. (Use δ > κ which is Woodin
in L(Vδ, T ), and is the least such. In the extender algebra, use only identities induced by
T -strong extenders with critical point above κ.)

Remark 3.3 3.1 also holds for trees T and U on Y × Z, where |Y | < δ. Both proofs
generalize easily.

The functions Σλ,j of the last theorem are useful in other ways. Here is another example:

Theorem 3.4 (Woodin) Let δ be Woodin, and let T on ω×Z be any tree; then there is a
κ < δ such that

V Col(ω,κ) |= T is α-weakly homogeneous, for all α < δ.

Proof. Let
S = {ξ < δ | ξ is T -reflecting in δ},
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and let κ be S-reflecting in δ. We shall show that in V Col(ω,22κ ), T is α-weakly homogeneous
for all α < δ. So let α < δ be given. Let ξ < δ be such that κ, α < ξ and ξ is T -reflecting in
δ. Let ξ < λ < δ, where λ is large enough that

Col(ω,22κ )

 p[T ] = p[T ∩ Vλ],

and pick j : V →M with critical point κ such that j(κ) > λ, Vλ ⊆M , and j(S)∩Vλ = S∩Vλ.
Thus

M |= ξ is j(T )-reflecting in j(δ),

and we can find an embedding k : M → N (with extender) in N such that

V M
j(κ)+2 ⊆ N and k(j(T )) ∩ V N

j(κ) = j(T ) ∩ V N
j(κ).

Working still in V , we can use j and k to associate to each κ-complete measure µ on some
Ts ∩ Vκ a ξ-complete measure ν = ν(µ) on Ts ∩ Vξ: we put, for A ⊆ Ts ∩ Vξ

A ∈ ν ⇔ k(A) ∩ V N
j(κ) ∈ j(µ).

Thus ν is an “average” of measures which knit together into j(µ) in the k-ultrapower. It is
easy to check that ν is a ξ-complete measure on Vξ. Note ν(Ts) = 1, since

k(Ts ∩ Vξ) ∩ V N
j(κ) = k(j(Ts) ∩ Vξ) ∩ V N

j(κ)

= j(Ts) ∩ V N
j(κ) ∈ j(µ),

using the reflecting properties of j and k.
Now let G be V -generic over Col(ω, 22κ), and for ν ∈ measκ(Vκ), let ν∗ be the canonical

extension of ν to V [G]; note here 22κ < ξ and ν is ξ-complete. Letting

σ = {ν∗ | ν ∈ measκ(Vκ)},

we have that in V [G], σ is a countable family of ξ-complete measures. In order to see σ
witnesses that T is ξ-weakly homogeneous in V [G], fix x ∈ p[T ] in V [G]. By choice of λ, we
have an f such that (x, f) ∈ [T ∩ Vλ]. Now consider the tower

〈ν(Σλ,j(x � n, f � n))∗ | n ∈ ω〉.

This is a tower concentrating on Tx, and its measures are in σ. If it is illfounded, then the
tree of all attempts to produce (y, g) ∈ [T ∩Vλ] together with an infinite descending sequence
−→α in Ult(V, 〈ν(Σλ,j(y � n, g � n)) | n < ω〉) has a branch (y, g, ᾱ) in V . (Note here it doesn’t
matter whether we compute the ultrapowers in V of V [G], as the measures are ξ-complete.)
But for such (y, g), Σλ,j(y, g) is wellfounded, so j(Σλ,j(y, g)) is wellfounded, which easily
implies 〈ν(Σλ,j(y � n, g � n)) | n < ω〉 is wellfounded, a contradiction.
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Thus 〈ν(Σλ,j(x � n, f � n))∗ | n < ω〉 is wellfounded in V [G], and we have shown σ
witnesses that T is ξ-weakly homogeneous in V [G]. �

In fact, if κ is merely a λ-strong cardinal, as witnessed by j, then in V Col(ω,22κ ) we get an
approximation to λ-weak homogeneity for j(T ).

Theorem 3.5 (Woodin) Let λ = |Vλ|, and j : V → M witness that κ is λ-strong, with
ωM ⊆M , and let T be any tree on some ω × Z. Let G be V -generic over Col(ω, 22κ); then

V [G] |= j(T ) has a λ-absolute complement.

Proof. By a Skolem hull argument, we have a tree T ∗ on ω×κ such that p[T ] = p[T ∗] in any
< κ-generic extension of V . Notice that measκ(κ

<ω) is countable in V [G]. Let a

m : ω
onto−→ j′′measκ(κ

<ω)

be an enumeration in V [G] such that each m(e) concentrates on κn, for some n ≤ e. Of
course, the measures in j′′measκ(κ

<ω) do not extend to V [G], however, they do extend to
M [G], and in fact to M [G][H] whenever H is size < λ generic over V [G], and hence over
M [G]. This will be enough for our purpose, which is to form an analog of the Martin-Solovay
tree. More precisely, we put

(s, 〈α0, . . . , αn−1〉) ∈ S ⇔ s ∈ ωn ∧ α0 < j(κ)+ ∧ ∀i, e
(i < e < n ∧m(e)(j(T ∗)s) = 1 ∧m(e) projects to m(i)

⇒ αe < πm(i),m(e)(αi)).

We claim S is a λ-absolute complement for j(T ) in V [G]. For let x ∈ V [G][H] be a real,
where H is size < λ generic over V [G].

For (s, t) ∈ j(T ∗), let Σ(s, t) be the measure on T ∗s given by

A ∈ Σ(s, t)⇔ t ∈ j(A).

Then if (x, f) is a branch of j(T ∗) in V , we have that Σ(x, f) is a wellfounded tower of
measures concentrating on T ∗x , and hence 〈j(Σ(x � n, f � n)) | n < ω〉 is a wellfounded
tower in M concentrating on j(T ∗)x. A simple absoluteness argument shows this remains
true for any branch (x, f) of j(T ∗) in V [G][H]; that is, Ult(M, 〈j(Σ(x � n, f � n)) | n < ω〉)
is wellfounded. So if x ∈ p[j(T )]V [G][H] = p[j(T )]M [G][H] = p[j(T ∗)]M [G][H], then one of the
towers Sx is trying to prove illfounded is actually wellfounded, so that x /∈ p[S].

On the other hand, suppose x /∈ p[j(T )]. Then x /∈ p[j(T ∗)], so we have a rank function

f(u) = |u|T ∗x ,

15



and f ∈M [G][H] because x ∈M [G][H]. For m(e) a measure in j′′σ concentrating on some
j(T ∗)x�n, let

αe = [f ]m(e),

which makes sense because f is equal modulo m(e) to a function in M . Set αe = 0 if m(e)
is not such a measure. It is easy to check that 〈αe | e ∈ ω〉 is an infinite branch of Sx, as
desired. �

Corollary 3.6 Let κ be λ-strong, where λ = |Vλ|, and let T and U be λ-absolute comple-
ments. Let G be V -generic over Col(ω, 22ka); then in V [G] there are λ-absolute complements
R and S such that p[S] = ∃Rp[T ] in all generic extensions.

Proof. Here T is a tree on (ω × ω) × Z for some Z. Let S be T , regarded as a tree on
ω × (ω × Z). So p[S] = ∃Rp[T ] in all generic extensions.

By the theorem, in V [G] there is a λ-absolute complement R for j(S), where j : V →M
witnesses κ is λ-strong. It is enough then to see that p[S] = p[j(S)] in V [G][H], for any
size < λ generic H. For this, it is enough that p[T ] = p[j(T )] in V [G][H]. But clearly
p[T ] ⊆ p[j(T )]. If (x, y) /∈ p[T ], then (x, y) ∈ p[U ], so (x, y) ∈ p[j(U)], so (x, y) /∈ p[j(T )].
Thus p[j(T )] ⊆ p[T ], and we are done. �

Corollary 3.7 (Woodin) If there are n strong cardinals which are ≤ κ, where 1 ≤ n < ω,

then in V Col(ω,22κ ):

(a) For any η, there is a tree Tη such that in any < η-generic extension, p[Tη] is the
universal Σ1

n+3 set,

(b) all Σ1
n+2 sets are ∞-universally Baire, and

(c) any two set generic extensions are Σ1
n+3 equivalent, that is, if x ∈ R ∩ V [G] ∩ V [H],

and ϕ is Σ1
n+3, then V [G] |= ϕ[x] iff V [H] |= ϕ[x].

The proof of this corollary is an easy induction on n, with the Martin- Solovay trees for
Σ1

3 providing the starting point in the n = 1 case.

Corollary 3.8 If there are infinitely many strong cardinals below λ, then in V Col(ω,λ), pro-
jective formulae are absolute for all further set forcing.
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4 The tree production lemma

We shall show that formulae with certain generic absoluteness properties define universally
Baire sets.

Let ϕ(v0, v1) be a Σn formula of the language of set theory, and let a be a parameter
(not necessarily a real parameter). We are interested in the κ-universal Baireness of {x ∈
R|ϕ(x, a)}.

Let X ≺Σn V , with X countable and κ, a ∈ X. Let

π : N ∼= X ≺Σn V

be the transitive collapse, with π(κ̄) = κ and π(ā) = a. We then say that X is (ϕ, a, κ)-
generically correct iff whenever g in V is N -generic over some P ∈ HN

κ̄ , then for all reals
x ∈ N [g],

N [g] |= ϕ[x, ā]⇔ V |= ϕ[x, a].

Lemma 4.1 Let ϕ(v0, v1) be a Σn formula, let a be a parameter, and let M be transitive
with Hκ ∪ {κ} ⊆ M , and σ : M → V a Σn+5-elementary embedding with a ∈ ran(σ) and
crit(σ) > κ. The following are equivalent:

(1) There are club many X ∈ Pω1(M) such that σ′′X is (ϕ, a, κ)-generically correct.

(2) There are trees T and U such that whenever G is V -generic over some P ∈ Hκ, then

V [G] |= p[T ] = {x | ϕ(x, a)} and p[U ] = {x |⇁ ϕ(x, a)}.

Proof. Assume (1), and let F : M<ω → M be such that whenever X ∈ Pω1((M) and
F ′′X<ω ⊆ X, then X ≺M and σ′′X is (ϕ, a, k)-generically correct. For x, y ∈ R let

A(x, y) ⇔ y codes a transitive (N, ε, κ̄, ā) |= ZFC−, and

∃g(g is < κ̄-generic overN ∧ x ∈ N [g] ∧N [g] |= ϕ[x, ā].

Here y ∈ ωω codes (N, ε, κ̄, ā) as follows: we have (ω,Ey, 0, 1) ∼= (N, ε, κ̄, ā), where
〈n,m〉 ∈ Ey iff y(2n · 3m) = 0. By ZFC− we mean all the Σ5 consequences of ZFC; these
are of course all true in M . The set of y which are codes is Π1

1, so A is Σ1
2, so there is a

tree S on ω × κ such that p[S] = A in any size < κ generic extension. We now define T
on ω × ω × κ ×M . Let 〈un | n < ω〉 be an enumeration of ω<ω, with domun ⊂ n. Put
a∗ = σ−1(a), and (u, v, r, s) ∈ T iff

(a) (u, v, r) ∈ S,
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(b) 0 ∈ dom(s)⇒ s(0) = κ, and 1 ∈ dom(s)⇒ s(1) = a∗,

(c) 2k + 2 ∈ dom(s)⇒ s(2k + 2) = F (s ◦ uk), and

(d) if 2n · 3m ∈ dom(v), then v(2n · 3m) = 0 iff s(n) ∈ s(m).

Similarly, replacing ϕ by⇁ ϕ, we can define a Σ1
2 relationB(x, y), and from the Shoenfield

tree for B, a tree U on ω × ω × κ×M .
Let (x, y, f, π) ∈ [T ]. Then (x, y, f) ∈ [S], so A(x, y). By (b) and (d), π is an isomorphism

between (ω,Ey, 0, 1) and (X, ε, κ, a∗), where X = ran(π). By (c), F“X<ω ⊆ X. Thus
X ≺ M and σ“X is (ϕ, a, κ)-generically correct. It follows then that ϕ(x, a) is true in V .
Thus p[T ] ⊆ {x | ϕ(x, a)} in V , and similarly, p[U ] ⊆ {x |⇁ ϕ(x, a)} in V .

Now letG be size< κ generic over V , and suppose V [G] |= ϕ[x, a]. ThenM [G] |= ϕ[x, a∗],
as σ is sufficiently elementary. We can find a countable Z ≺M [G] with G, a∗, x, κ ∈ Z such
that setting X = Z ∩M , F ′′X<ω ⊆ X. Letting X = ran(π), we can find y, f such that
(x, y, f, π) ∈ [T ]. Thus x ∈ p[T ]V [G]. Similarly, if V [G] |=⇁ ϕ[x, a], then x ∈ p[U ]V [G], and
hence x /∈ p[T ]V [G], since p[T ] and p[U ] are disjoint in V , hence in V [G]. Thus p[T ] = {x |
ϕ(x, a)} in V [G], and similarly for U , as desired.

For the (2)⇒ (1) direction, just note that σ is sufficiently elementary that there must be
trees T and U as in (2) (with a∗ replacing a) such that T, U ∈ M . But then any countable
X ≺M such that κ, a∗, T, U ∈ X is such that σ“X is (ϕ, a, κ) generically correct. �

Recall that Q<δ is Woodin’s “countable” stationary tower forcing (see appendix). Con-
ditions in Q<δ are stationary sets b ⊆ Pω1(Z), for some Z ∈ Vδ.

Theorem 4.2 (Tree production lemma, Woodin) Let ϕ(v0, v1) be a formula, let a be
a parameter, and let δ be a Woodin cardinal. Suppose

(1) (Generic absoluteness) If G is < δ-generic over V , and H is< δ+-generic over V [G],
then for all x ∈ R ∩ V [G],

V [G] |= ϕ[x, a] iff V [G][H] |= ϕ[x, a],

and

(2) (Stationary tower correctness) If G is Q<δ-generic, and j : V → M ⊆ V [G] is the
generic elementary embedding, then for all x ∈ R ∩ V [G]

V [G] |= ϕ[x, a] iff M |= ϕ[x, j(a)].

Then there are trees T and U such that whenever g is< δ- generic over V , then

V [G] |= (p[T ] = {x | ϕ(x, a)} ∧ p[U ] = {x |⇁ ϕ(x, a)}).

In particular, {x | ϕ(x, a)} is δ-universally Baire.
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Proof. It is enough to find for each κ < δ trees Tκ and Uκ which work for all< κ-generic
g, since then we can take T =

⊕
κ<δ Tκ and U =

⊕
κ<δ Uκ. For if g is < κ-generic over V ,

where κ < δ, then if V [g] |= ϕ[x, a], then x ∈ p[Tκ], so x ∈ p[T ]. On the other hand, if
V [g] |=⇁ ϕ[x, a], then x ∈ p[Uκ], so x /∈ p[T ]. Note here that if p[Uκ] ∩ p[Tα] 6= ∅ in some
< δ generic V [H], then p[Uκ] ∩ p[Tα] 6= ∅ in V , and this easily contradicts condition (1).

So fix κ < δ. Let ϕ be Σn. Let M be transitive, Hκ+ ⊆M , and |M | < δ, and σ : M → V
be Σn+5 elementary, with a = σ(a∗) and σ � κ+ = identity. Let

b = {X ∈ Pω1(M) | X ≺M andσ′′X

is (ϕ, a, k)-generically correct

It is enough to show b contains a club in Pω1(M). If not, Pω1(M) \ b is a condition in Q<δ,
so we can find a Q<δ generic G such that Pω1(M) \ b ∈ G. Let

j : V → N ⊆ V [G]

be the generic embedding. Then j′′M ∈ j(Pω1(M) \ b). Since j′′M ≺ j(M), we have
that j(σ)′′j′′M is not (ϕ, j(a), j(κ)) correct in N . Since j(σ)(j(z)) = j(σ(z)), we see that
j(σ)′′j′′M collapses to M , and the image of j(κ) under the collapse is κ, while the image of
j(a) = j(σ(a∗)) is just a∗. But then for any g ∈ N which is M -generic over poset of size < κ
in M , and any x ∈ R ∩M [g], we have

M [g] |= ϕ[x, a∗] ⇔ V [g] |= ϕ[x, a]

⇔ V [G] |= ϕ[x, a]

⇔ N |= ϕ[x, j(a).

The first equivalence holds because σ lifts, the second by generic absoluteness, and the third
by stationary tower correctness. Thus j(σ)′′j′′M is (ϕ, j(a), j(κ))-generically correct in N , a
contradiction. �

The Tree Production Lemma was first used by Woodin, although he did not formally
state it, in the case that the parameter a ∈ R, so that j(a) = a. The author made the trivial
adaptation to the case a /∈ R as part of the proof of the following theorem. Woodin then
formally isolated the Tree Production Lemma as we have stated it.

Theorem 4.3 (Steel) Let λ be a limit of Woodin cardinals; then every Hom<λ set has a
Hom<λ scale.

For the proof, we need some elementary lemmas. The first is well-known. Let µ be a
κ-complete ultrafilter on I, and g be < κ- generic over V . In V [G], for A ⊆ I put

A ∈ µ∗ ⇔ ∃ B ∈ µ(B ⊆ A).

Then µ∗ is a κ-complete ultrafilter on I in V [g]. Moreover
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Proposition 4.4 If I ∈ V , and g is < κ generic over V , and ν ∈ V [g] is a κ-complete
ultrafilter over I in V [g], then ν = µ∗ for some µ ∈ V .

Proof. Note first that if A ∈ ν, then there is a set B ⊆ A such that B ∈ ν and B ∈ V .
(Work in V [g], and let A = Ȧg. By κ-completeness of ν, we can fix p ∈ g so that p decides
“̌i ∈ Ȧ” for µ-a.e. i ∈ I. Then take B = {i | p  ǐ ∈ Ȧ}.)

Let ν = ν̇g. We claim there is a set B ∈ ν ∩ V such that for all C ⊆ B such that C ∈ V

‖Č ∈ ν̇‖ = ‖B̌ ∈ ν̇‖ or ‖Č ∈ ν̇‖ = 0.

We can then define in V

µ = {C ⊆ I | ‖B̌ ∈ ν̇‖ ≤ ‖Č ∈ ν̇‖},

and it is easy to see that µ = ν ∩ V , so that ν = µ∗.
If there is no B as desired, then working in V [g], we define a κ-sequence of sets Bα ∈ ν∩V

such that
α < β ⇒ ‖B̌α ∈ ν̇‖ > ‖B̌β ∈ ν̇‖.

We get Bα+1 from the fact that Bα is not as desired. At limit λ < κ, let A =
⋂
α<λBα. Since

A ∈ ν, we can find Bλ ∈ ν ∩ V so that Bλ ⊆ A, and continue. But now g was generic for
a poset of size < κ, so there cannot be a strictly decreasing κ-sequence of Boolean values,
even in V [g]. �

The second lemma we need is a minor variation on the well-known fact that if µ and ν
are normal ultrafilters on κ and λ, with κ < λ, and j : V → M = Ult(V, µ) is the canonical
embedding, then j(ν) = ν ∩M , and Ult(M, j(ν)), which is the ultrapower computed using
functions in M , is the same as Ult∗(M, ν), where the * indicates that the ultrapower is
computed using functions in V . The variation comes from letting j be a generic embedding.

Lemma 4.5 Let δ be Woodin, and G be Q<δ generic over V , with

j : V →M ⊆ Ult(V,G)

the canonical embedding. Let µ be a δ+-complete ultrafilter on some I, with µ ∈ V . Then

(1) For any A ⊆ j(I) in M ,

A ∈ j(µ)⇔ ∃ B ∈ µ(j(B) ⊆ A),

(2) Ult(M, j(µ)) ∼= Ult∗(M,µ∗), where the first ultrapower is computed using all f : j(I)→
M such that f ∈M , and the second ultrapower is computed using all f : I →M such
that f ∈ V [G], or equivalently, all f : I →M such that f ∈ V .
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(3) Let ν ≤RK µ via p : I → J , that is, let µ be the measure given by ν(A) = µ(p−1(A))
for A ⊆ J . Let

i : Ult(V, ν)→ Ult(V, µ)

be the canonical embedding given by i([f ]ν) = [f ◦ p]µ for all f ∈ V . Let

i∗ : Ult(V [G], ν∗)→ Ult(V [G], µ∗)

be its lift to V [G], given by i∗([f ]ν∗) = [f ◦ p]µ∗ for all f ∈ V [G]. (Thus i ⊆ i∗.) Then

j(i) = i∗ � Ult(M, j(ν)),

and in particular, j(i) agrees with i on the ordinals.

Proof. The ⇐ direction of (1) is trivial. For the ⇒ direction, let A ∈ j(µ), and A = [f ]G
where f ∈ V . We may assume f : Pω1(Z)→ µ for some Z ∈ Vδ. It is easy to see that

B =
⋂
{f(X) | X ∈ Pω1(Z)}

is as desired.
For (2), note first

Claim. If f : I →M and f ∈ V [G], then there is an h ∈M and B ∈ µ such that

f(u) = h(j(u))

for all u ∈ I.

Proof. Work in V [G]. Let ḟG = f . For each u ∈ I, pick au ∈ G such that for some g ∈ V
with domain Pω1(Zu)

au
Q<δ
 ḟ(ǔ) = [ǧ]Ġ.

We can fix au = a and Zu = Z for µ∗-a.e. u. We then have a set B ∈ µ such that au = a
and Zu = Z for all u ∈ B. Going back to V , we can find for each u ∈ B a function gu with
domain Pω1(Z) such that

a
Q<δ

 ḟ(ǔ) = [ǧu].

Now, for X ∈ Pω1(Z) in V , set
hX(u) = gu(X)

for all u ∈ B. Then for all u ∈ B,

[λX.hX ]G(j(u)) = [gu]G = f(u),
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by Los’ theorem and the fact that a ∈ G. Thus h = [λX.hX ]G is as desired.
Now for each f : I → M in V [G], pick an hf ∈ M such that hf (j(u)) = f(u) for µ∗-a.e.

u. Notice that if [hf ]j(µ) 6= [hg]j(µ), then by (1) we can find B ∈ µ s.t. hf (v) 6= hg(v) for all
v ∈ j(B), and hence hf (j(u)) 6= hg(j(u)) for all u ∈ B, so that f(u) 6= g(u) for all u ∈ B;
that is, [f ]µ∗ 6= [g]µ∗ . Thus the map

π([f ]µ∗) = [hf ]j(µ)

is well-defined on equivalence classes. A similar argument shows

[f ]µ∗ ∈ [g]µ∗ iff [hf ]j(µ) ∈ [hg]j(µ),

so π is an ∈-isomorphism with its range. But if h : j(I) → M and h ∈ M , then letting
f(u) = h(j(u)) for all u ∈ I, we have f ∈ V [G] and [h]j(µ) = [hf ]j(µ). Thus π is onto, and
hence an isomorphism of the ultrapowers in question.

For (3), let p : I → J and ν(A) = 1 iff µ(p−1(A)) = 1. We need to see that the diagram

Ult∗(M, ν∗)
i∗−→ Ult∗(M,µ∗)

σ l l τ
Ult(M, j(ν))

j(i)−→ Ult(M, j(µ))

commutes, where σ and τ are the isomorphisms of part (2). This then means j(i) = i∗ �
Ult∗(M, ν∗) after the ultrapowers have been transitivised. So let X = [f ]ν∗ ∈ Ult∗(M, ν∗).
Then

j(i)(σ(x)) = j(i)([hf ]j(ν))

= [hf ◦ j(p)]j(ν),

and

τ(i∗(x)) = τ([f ◦ p]µ∗)
= [hf◦p]j(µ),

where we have adopted the notation from the proof of (2) in analyzing σ and τ . From the
proof of (2), we see that it suffices to show that hf ◦ j(p) and hf◦p agree at all points in j′′B,
for some B ∈ µ. But now

hf◦p(j(u)) = (f ◦ p)(u) = f(p(u))

for all u ∈ B0, where B0 ∈ µ. Also

(hf ◦ j(p))(j(u)) = hf (j(p)(j(u)))

= hf (j(p(u)))

= f(p(u))
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for all u ∈ B1, where B1 ∈ µ. Thus hf◦p(j(u)) = (hf ◦ j(p))(j(u)) for all u ∈ B0 ∩ B1, as
desired. �

From the last lemma we get a stationary tower correctness result for homogeneity systems.

Corollary 4.6 Let δ be Woodin, G be V -generic over Q<δ, and

j : V →M ⊆ Ult(V,G)

be the generic embedding.

(1) Let 〈µ∗s | s ∈ ω<ω〉 be a homogeneity system in V [G], where each µs is a δ+-complete
ultrafilter in V ( although the system 〈µs | s ∈ ω<ω〉 may not be in V ); then for any γ

ms(〈µ∗s | s ∈ ω<ω〉, γ)V [G] = ms(〈j(µs) | s ∈ ω<ω〉, γ)M ,

and
(S〈µ∗s |s∈ω<ω〉)

V [G] = (S〈j(µs)|s∈ω<ω〉)
M .

(2) If λ > δ is a limit of Woodin cardinals, then Hom
V [G]
<λ is an initial segment of j(Hom<λ)

under Wadge reducibility.

Proof. This follows at once from the last lemma. �

The corollary also holds for weak homogeneity systems, but we shall not need this fact.
The corollary is due independently to Woodin and the author.

Proof of Theorem 4.3. Fix γ0 < λ such that

Homγ0 = Hom<λ .

Let γ0 < δ0 < δ1 < δ2 < λ, where the δi’s are Woodin. Let B ∈ Hom<λ. It will be enough
to find a scale {θn} on B such that the relation

S(n, x, y)⇔ θn(x) ≤ θn(y)

is δ+
1 -universally Baire. For then, S is δ+

0 -weakly homogeneous by 3.1, and hence γ0-
homogeneous by 2.1, and hence in Hom<λ.

Let 〈µs | s ∈ ω<ω〉 be a homogeneity system consisting of δ+
2 -complete measures such

that
R \B = S〈µs|s∈ω<ω〉.
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Let γ be a strong limit cardinal of cofinality > δ2, and let

T = ms(〈µs | s ∈ ω<ω〉, γ).

Let {θn} be the leftmost-branch scale of T ; that is, for x ∈ p[T ] define `x : ω → OR by

`x(n) = least α such that ∃ g(g � n = `x � n ∧ g(n) = α ∧ g ∈ [Tx]),

and put
θn(x) ≤ θn(y) iff `x � n ≤lex `y � n,

where ≤lex is the lexicographic order. It is well-known folklore that {θn} is a scale on
p[T ] = B.

To see that the relation S(n, x, y) is δ+
1 -universally Baire, we apply the tree production

lemma at δ2. Let ϕ(v0, v1) be the natural formula defining S from the parameter T .
For generic absoluteness, let G be size < δ2 generic over V , and H size δ2 generic over

V [G], and (n, x, y) ∈ V [G]. Clearly x ∈ p[T ]V [G] iff x ∈ p[T ]V [G][H], and similarly for y; also,

`
V [G]
x = `

V [G][H]
x and similarly for y. Thus

V [G] |= `x � n ≤lex `y � n iff V [G][H] |= `x � n ≤lex `y � n,

as desired.
For stationary tower correctness, let j : V →M ⊆ V [G] where G is V -generic over Q<δ2 .

Clearly j(γ) = γ. But then

j(T ) = j(ms(〈µs | s ∈ ω<ω〉, γ))

= ms(〈j(µs) | s ∈ ω<ω〉, γ)M

= ms(〈µ∗s | s ∈ ω<ω〉, γ)V [G]

= T,

using our previous lemmas. The absoluteness of wellfoundedness then tells us

V [G] |= ϕ[(n, x, y), T ] iff M |= ϕ[(n, x, y), j(T )],

as desired. �

5 (Σ2
1)Hom<λ absoluteness

The observation that Hom
V [G]
<λ is a Wadge-initial segment of j(Hom<λ), recorded in 4.6, can

be used to strengthen our projective generic absoluteness result. What we get is “(Σ2
1)Hom<λ

generic absoluteness”. More precisely

24



Theorem 5.1 (Woodin) Let A ∈ Hom<λ, where λ be a limit of Woodins, and let G be
< λ-generic over V ; then for any sentence ϕ in the language of set theory expanded by
adding two new unary predicate symbols,

∃B ∈ HomV
<λ(HC

V ,∈, A,B) |= ϕ⇔ ∃B ∈ Hom
V [G]
<λ (HCV [G],∈, AV [G], B) |= ϕ.

Proof. The left-to-right direction is an immediate consequence of our projective generic
absoluteness result, 2.6. For the right-to- left direction, let H be Q<δ-generic over V for
some Woodin cardinal δ < λ, with G ∈ V [H]. (Since Q<δ collapses all η < δ, general forcing
theory tells us there is such an H.) By the upward absoluteness of (Σ2

1)Hom<λ from V [G] to

V [H], we have a B ∈ Hom
V [H]
<λ such that

(HCV [H],∈, AV [H], B) |= ϕ.

Letting j : V →M = Ult(V,H) be the generic embedding, we see from 4.6 that j(A) = AV [H]

and B ∈ j(HomV
<λ). Of course, HCV [H] = HCM as well. Thus

M |= [∃B ∈ j(HomV
<λ)(HC,∈, j(A), B) |= ϕ].

The elementarity of j now yields the desired conclusion. �

Remark 5.2 Let Mω be the minimal iterable proper class mouse satisfying “there are in-
finitely many Woodin cardinals”, and let λ be the supremum of the Woodin cardinals of
Mω. If α < ωMω

1 , then the canonical iteration strategy for Mω|α is HomMω
<λ , in the sense that

there is a λ-absolutely complemented tree T ∈ Mω which projects to this iteration strategy
in all < λ-generic extensions of Mω. It follows then that in Mω, every real is (Σ2

1)Hom<λ in a
countable ordinal. This statement, and the statement

∀x ∈ R∃Γ ∈ Hom<λ(Γ is an ω1- iteration strategy for the mouse N ∧ x ∈ N)

have the form ∀x ∈ Rψ, where ψ “is” (Σ2
1)Hom<λ . The statements are false in Mω[x], where

x is a Cohen real over Mω. This puts a limit on what statements about Hom<λ are provably
< λ- generically absolute which lies just beyond the positive result of 5.1.

Remark 5.3 It follows from the last remark that if

j : Mω → N = Ult(Mω, G)

the the generic embedding, where G is Q<δ-generic over Mω, then

Hom
Mω [G]
<λ 6= j(HomMω

<λ ).
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The reason is that N satisfies both of the statements ∀x ∈ Rψ referred to in 5.2, while
Mω[G] satisfies neither.5 Since N and Mω[G] have the same reals, it must be that HomN

<λ 6=
Hom

Mω [G]
<λ .

Remark 5.4 A closely related fact is that Mω satisfies the statement “there is a (Σ2
1)Hom<λ

wellorder of the reals”. The wellorder is not a Hom<λ set from the point of view of Mω, since,
for example, it does not have the Baire property. This shows that it is possible (consistent
with the existence of infinitely many Woodins) that there are (Σ2

1)Hom<λ sets of reals which
are not Hom<λ. This in turn shows that the stationary tower correctness hypothesis of the
tree production lemma is necessary, since the formula (Σ2

1)Hom<λ formula defining a wellorder
of the reals in Mω is generically absolute over Mω.

Remark 5.5 The last three remarks probably generalize from Mω to any other mouse M
and ordinal λ such that M |= λ is a limit of Woodin cardinals. This is already known for
many of the more natural M . We would guess, for example that the assertion that every
real is (Σ2

1)Hom<λ- definable from a countable ordinal, for all λ which are limits of Woodin
cardinals, is consistent with the existence of arbitrarily large superstrong cardinals. This is
because we would guess that current inner model theory, which is based on the existence of
homogeneously Suslin iteration strategies, goes at least this far.

Remark 5.6 Finally, the last remark should not be taken to mean that superstrong car-
dinals yield no generic absoluteness beyond that given by 5.1. Large cardinal hypotheses
stronger than “there are infinitely many Woodin cardinals” will imply there are more Hom<λ

sets of reals, and hence that more statements can be expressed in (Σ2
1)Hom<λ form. For exam-

ple, if we add that there is a measurable cardinal above λ, then we have that R] is in Hom<λ,
which implies that the first order theory of L(R) is < λ-generically absolute. (This much
generic absoluteness fails in Mω.) One actually gets a many-one reduction of the theory of
L(R) to the set Σ of all (Σ2

1)Hom<λ truths. Still stronger large cardinal hypotheses provide
explicit provable many-one reductions to Σ of the truth sets for more powerful languages,
and hence yield still stronger generic absoluteness theorems.

Woodin’s Ω-conjecture implies that, granted there are arbitrarily large Woodin cardinals,
all generic absoluteness theorems come through many-one reductions to (Σ2

1)Hom∞ .

6 The derived model theorem

Let λ be a limit of Woodin cardinals. As explained in the last section, we cannot hope to
show that L(R,Hom<λ) |= AD, since if V is a canonical inner model, then L(R,Hom<λ) has a

5Let x be a real in Mω[G] \Mω. If x were (Σ2
1)Hom<λ in Mω[G], then by 5.1 that would remain true in

Mω[H] for some Col(ω, η)-generic H, with η < λ sufficiently large. So x would be OD in Mω[H], and hence
x would be in Mω, a contradiction.

26



wellorder of R in it. (At least this is true if V = Mω, and in many other cases.) Nevertheless,
one can find a model very close to L(R,Hom<λ) which satisfies AD. This so-called derived
model is obtained by collapsing everything below λ to be countable.

More precisely, let λ be a limit of Woodin cardinals, and let G be V -generic over Col(ω,<
λ). Let us write G � α for G ∩ Col(ω,< α). We set

R∗ = R∗G =
⋃
α<λ

R ∩ V [G � α)],

and

Hom∗ = Hom∗G = {p[T ] ∩ R∗ | ∃α < λ(T ∈ V [G � α) ∧
V [G � α] |= T is λ-absolutely complemented)}.

Put another way, for any α < λ and A ∈ Hom
V [G�α]
<λ , we set

A∗ =
⋃

α<β<λ

AV [G�β],

and we have
Hom∗ = {A∗ | ∃α < λ | A ∈ Hom

V [G�α]
<λ }.

Then L(R∗,Hom∗) is called a derived model of V at λ. Of course, it is not literally accurate
to speak of the derived model, since the model depends not just on V and λ, but on R∗,
which can be realized in different ways with different G. However, the forcing is sufficiently
homogeneous that the first order theory of L(R∗,Hom∗) is independent of G, so there is no
ambiguity if we say that “the” derived model at λ satisfies ϕ.

Theorem 6.1 (Derived model theorem, Woodin) Let λ be a limit of Woodin cardi-
nals, and L(R∗,Hom∗) be a derived model at λ; then

(1) L(R∗,Hom∗) |= AD+,

(2) Hom∗ = {A ⊆ R∗ | A is Suslin and co-Suslin in L(R∗,Hom∗)}.

AD+ is the theory AD + DCR + Ordinal Determinacy + “all sets of reals are ∞-Borel”.
These are local consequences of scales 6: if every set in M is Suslin in some perhaps bigger
model N of AD having the same reals as M , then M |= AD+.7 Many of the consequences
of being Suslin in a larger model of AD are theorems of AD+. The following converse to the
derived model theorem is further evidence of the significance of AD+.8

6AD+ used to be called “Within Scales”.
7In particular, if every set of reals in M is Hom<λ, then M |= AD+.
8AD+ was first isolated by Woodin. It is open whether any or all of the additional axioms of AD+ are

provable in ZF + AD.
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Theorem 6.2 (Woodin) Let M |= AD+, and let Γ be the pointclass consisting of all sets
of reals which are Suslin and co-Suslin in M ; then L(RM ,Γ) is a derived model of some N
at some λ.

The model N referred to in 6.2 exists in a generic extension of M . Its λ is ωM1 , as it must
be if RM is to be the set of reals of a derived model at λ. We shall not prove 6.2 in these
notes.

According to 6.1 and 6.2, being the pointclass of all Suslin and co-Suslin sets in a model
of AD+ is equivalent to being the pointclass of all Suslin and co-Suslin sets of a derived
model (and this is equivalent to being the Hom∗ of a derived model). Woodin has found
a generalization of the derived model construction, and shown that the generalized derived
models it produces are precisely the models of AD+. We shall not prove this strengthening
of the derived model theorem here. 9

We proceed toward the proof of the derived model theorem. The following little lemma
will be useful.

Lemma 6.3 Let G be Col(ω,< λ)-generic over V , where λ is a limit of Woodin cardinals.

For any α < λ and A ∈ Hom
V [G�α]
<λ , (HCV [G�α],∈, A) ≺ (HC∗G,∈, A∗).

Proof. From our projective absoluteness result 2.6, we have that whenever α < β < γ < λ,
then (HCV [G�β],∈, AV [G�β]) ≺ (HCV [G�γ],∈, AV [G�γ]). The lemma now follows by the Tarski-
Vaught theorem on unions of elementary chains. �

The heart of the matter is the following reflection result.

Lemma 6.4 Let G be Col(ω,< λ)-generic over V , where λ is a limit of Woodin cardinals.

Let A ∈ Hom
V [G�α]
<λ , where α < λ. Let ϕ be a sentence in the language of set theory with two

additional unary predicate symbols, and suppose that

∃B ⊆ R∗(B ∈ L(R∗,Hom∗) ∧ (HC∗,∈, A∗, B) |= ϕ);

then
∃B(B ∈ Hom

V [G�α]
<λ ∧(HCV [G�α],∈, A,B) |= ϕ).

Before proving 6.4, let us use it to complete the proof of the derived model theorem. So
let G be Col(ω,< λ)-generic over V , where λ is a limit of Woodins, and R∗ = R∗G and Hom∗ =
Hom∗G. We show first that L(R∗,Hom∗) |= AD. For if not, there is a B ∈ L(R∗,Hom∗) such
that

(HC∗,∈, B) |= the game with payoff B is not determined.

9Let λ be a limit of Woodin cardinals, and R∗ = R∗G where G is Col(ω,< λ)-generic over V . Let M be
the union of all models P ∈ V (R∗) such that P |= AD+ (plus V = L(P (R)) ?); then M is a generalized
derived model of V at λ.
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By 6.4, we can find B ∈ HomV
<λ such that

(HC,∈, B) |= the game with payoff B is not determined.

This contradicts Martin’s theorem 1.7.
The remaining axioms of AD+ are true in L(R∗,Hom∗) for similar reasons. In each case

the axiom can be expressed in the form “∀B ⊆ R(HC,∈, B) |= ϕ”, and there are no Hom<λ

sets B such that (HCV ,∈, B) |= ϕ. For the axiom DCR both parts are obvious. The other
two axioms have the form ∀B ⊆ R∃C ⊆ OR...., but using the Coding Lemma the quantifier
on C can be reduced to a real quantifier over the field of a prewellorder which is projective
in B. For Ordinal Determinacy, this is obvious, but for the assertion that B has an infinity-
Borel code C, we need a preliminary argument which bounds the least size of such a code
by some ordinal projective in B. This can be done.10 Finally, the fact that there are no
Hom<λ counterexamples B to Ordinal Determinacy or the assertion that every set of reals
is ∞-Borel follows from the fact that every Hom<λ set has a Hom<λ scale, together with
Hom<λ- determinacy.11

To see that all Hom∗ sets are Suslin in L(R∗,Hom∗), fix C in Hom∗. We then have

A ∈ Hom
V [G�α]
<λ , for some α < λ, such that C = A∗. By 4.3 there is B ∈ Hom

V [G�α]
<λ which

codes a scale on A. This fact can be expressed using only real quantifiers, and thus by 6.3,
B∗ codes a scale on A∗ in L(R∗,Hom∗), so C is Suslin in L(R∗,Hom∗), as desired. Since
Hom∗ is closed under complement, all Hom∗ sets are co-Suslin in L(R∗,Hom∗).

Conversely, suppose A is Suslin and co-Suslin in L(R∗,Hom∗), and let T and U be
the trees which witness this. We can fix a set C ∈ Hom∗ such that T and U are ordinal
definable over L(R∗,Hom∗) from C. (Every set in L(R∗,Hom∗) has this form.) We then have
W ∈ V [G � α], where α < λ, such that C = p[W ]∩R∗. It follows that T and U are definable
in V [G] from the parameter R∗ and parameters in V [G � α]. But V [G] = V [G � α][H] where
H is generic for Col(ω,< λ), and there is a term τ such that τH = R∗ and Col(ω,< λ) is
homogeneous with respect to τ , in that ∀p, q∃π(π is an automorphism of Col(ω,< λ) and
π(p) is compatible with q and πτ = τ). Since T and U are subsets of V [G � α], we have
that T, U ∈ V [G � α]. But now T and U project to complements over R∗, and hence in any
V [G � β] for β < λ. Since the collapse forcing is universal, this implies that T and U are
< λ-absolute complements in V [G � α]. Thus p[T ] ∈ Hom∗, as desired. This completes the
proof of the derived model theorem, modulo 6.4. �

One key step toward the proof of 6.4 is to show that the reals of a symmetric collapse
below λ can be realized as the reals of a stationary tower ultrapower. For this we use
the following elementary lemma. For G Col(ω,< λ) generic, let HC∗G be the collection of
hereditarily countable sets having codes in R∗G.

10The locality of ∞-Borel codes is due to Woodin.
11For Ordinal Determinacy, this is due independently to Moschovakis ([9]) and Woodin. It is folklore that

all Suslin sets are ∞-Borel; see e.g. [2].
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Lemma 6.5 Let N be a countable transitive model of ZFC, and let λ be a strong limit
cardinals of N . Let X be countable. The following are then equivalent:

(1) X = HC∗G for some G which is Col(ω,< λ)-generic over N ,

(2) ∀y ∈ X(y is < λ generic over N and V
N [y]
λ ⊆ X), and ∀y ∈ X∃f ∈ X(f : ω

onto→ y).

Proof. It is clear that (1) implies (2). For the converse, let X = {yn | n < ω}. We construct
the desired G by defining G � αn by induction on n, where αn is an increasing sequence
with limit λ determined by the construction. We maintain that G � αn is coded by a real in
X as part of the induction. Let 〈Dn | n < ω〉 enumerate the dense subsets of Col(ω,< λ)
lying in N . Given such G � αn, we have by hypothesis that yn is < λ-generic over N , and
hence over N [G � αn]. By general forcing theory, the complete Boolean algebra for adding
y is a complete subalgebra of the collapse algebra at some β < λ such that αn < β. Thus
yn ∈ N [G � αn][H] for some Col(ω, β)-generic H. We can take H ∈ X, because V

N [G,yn
λ ⊆ X

and every set in X has a counting in X. It is now easy to find αn+1 and G � αn+1 ∈ X
extending G � αn such that H ∈ N [G � αn+1] and G � αn+1 ∩Dn 6= ∅.

This completes the construction. It is clear that G is Col(ω,< λ)- generic over N , and
HC∗G = X. �

We now look at stationary tower forcing up to λ. Since λ may not itself be Woodin,
Q<λ-generic G may be such that Ult(V,G) is illfounded. However, because λ is a limit of
Woodins, we can find G ⊆ Q<λ such that Ult(V,G) has wellfounded part as long as desired,
and such that R ∩ Ult(V,G) is the set of reals in a symmetric collapse.

Our G will not actually be Q<λ-generic. However, G ∩ Q<δ will be Q<δ-generic for
cofinally many Woodin cardinals δ < λ. This is enough to make sense of Ult(V,G), since the
functions used in computing this ultrapower all have domain of the form Pω1(Vξ) for some
ξ < λ (and are in V ). If ξ < δ and G∩Q<δ is V -generic, then G∩Q<δ measures all subsets
of Pω1(Vξ) which lie in V . Thus Ult(V,G) makes sense.

Let us call δ a successor Woodin cardinal if δ is a Woodin Cardinal which is not a limit
of Woodins.

Lemma 6.6 (Woodin) Let λ be a limit of Woodin cardinals, let H be Col(ω,< λ)-generic
over V , and let α ∈ OR; then for any b ∈ Q<λ there is a Q<λ-generic G over V such that
b ∈ G and

(a) for any successor Woodin cardinal δ < λ such that
⋃
b ∈ Vδ, G ∩ Q<δ is Q<δ-generic

over V ,

(b) α is in the wellfounded part of Ult(V,G), and
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(c) R ∩ Ult(V,G) = R∗H , and Hom∗H is a Wadge initial segment of iG(Hom<λ), where
iG : V → Ult(V,G) is the canonical embedding.

Proof. There is such a G if and only if there is such a G in V [H]Col(ω,α), because this universe
is Σ1

1-correct. Thus the existence of such a G is a first order question about R∗H , b, Vλ and α
inside V [H]. Because R∗H is the denotation of a symmetric term, this question is decided by
the empty condition in Col(ω,< λ). So it is enough just to find some H and G related as in
the statement of 6.6.

For this, we need the following sublemma

Sublemma 6.7 There are stationarily many X ∈ Pω1(Vλ) such that (X ∩
⋃
b) ∈ b, and

whenever δ ∈ X is a successor Woodin cardinal such that
⋃
b ∈ Vδ, and A ∈ X is a maximal

antichain in Q<δ, then there is an a ∈ A such that (X ∩
⋃
a) ∈ a.

Proof sketch. If there is an a ∈ X∩A such that (X∩
⋃
a) ∈ a, then one says that X captures

A. In order to see that there are stationarily many X capturing all their maximal antichains
at successor Woodins below λ but above

⋃
b, and such that (X ∩

⋃
b) ∈ b, it is enough to

find one such X ≺ Vλ+ω with λ ∈ X.
We construct X as the union of a countable elementary chain. Let X0 be any countable

elementary submodel of Vλ+ω such that λ ∈ X0 and (X0 ∩
⋃
b) ∈ b. We can find such an

X0 because b is stationary. Given Xα ≺ Vλ+ω, let δ be the least successor Woodin in Xα

not yet considered, and such that
⋃
b ∈ Vδ. We form an elementary chain Yi ≺ Vλ+ω for

i < ω, setting Y0 = Xα and γ0 =
⋃
{η | η < δ and η is Woodin }. Given Yn and γn, let A

be the “next” maximal antichain of Q<δ, and let γn+1 ∈ Yn be such that γn < γn+1 < δ and
A∩Q<γn+1 is semiproper. We can find such a γn+1 since δ is Woodin. Now we get Yn+1 which
captures A and such that Yn ≺ Yn+1 ≺ Vλ+ω and Yn+1 ∩ Vγn = Yn ∩ Vγn , as a consequence
of semiproperness. The end-extension below γn+1 relationship guarantees that all antichains
captured at earlier stages are still captured by Yn+1, and that Yn+1∩

⋃
b = Yn∩

⋃
b ∈ b. Let

Xα+1 =
⋃
n Yn. With a little care as to the meaning of “next antichain”, we shall have that

Xα+1 captures all maximal antichains of Q<δ such that A ∈ X.
At limit stages τ , set Xτ =

⋃
α<τ Xα. It is not hard to show that there is some countable

α such that Xα captures all maximal antichains at successor Woodins which it knows about,
so that X = Xα is as desired. �

We proceed to the proof of 6.6.12

Fix an α and b; we may as well assume α > λ. We claim there are G and H as desired
in V Col(ω,α).

12The argument to follow is due to the author. Woodin had a somewhat different way of using the
sublemma. The observation that Hom∗ is a Wadge initial segment of iG(Hom<λ) (6.6(c)) is due independently
to the author.
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Let θ = α + ω, and let
α, λ ∈ X ≺ Vθ,

where X is countable and in the stationary set given by sublemma 6.7. Let

π : N ∼= X

be the transitive collapse, and let π(〈ᾱ, λ̄, b̄〉) = 〈α, λ, b〉. We define G ⊆ QN
<λ̄

by using initial

segments of X as our typical objects. More precisely, for a ∈ QN
<λ̄

, let

a ∈ G⇔ π“
⋃

a ∈ π(a).

It will be enough to show that for some H, G and H have the properties (a), (b), and (c) of
6.6 vis-a-vis N and ᾱ, λ̄, b̄. For then by Σ1

1 absoluteness, NCol(ω,α) satisfies that there are G
and H with these properties (at ᾱ, λ̄, and b̄), and since π is elementary, we are done.

It is clear that b̄ ∈ G. For (a), let δ be a successor Woodin cardinal of N below λ̄, and
let A be a maximal antichain in QN

<δ. Then π(A) is a maximal antichain in Q<π(δ) and
π(A) ∈ X, so X captures π(A), say via π(a). This means

π“
⋃

a = X ∩
⋃

π(a) ∈ π(a) ∧ π(a) ∈ π(A),

so that a ∈ G ∩ A. Thus G meets all the necessary maximal antichains.
For (b), we can embed Ult(N,G) into Vθ as follows: let f ∈ N be a function, and

dom(f) = Pω1(Vγ)
N where γ < λ̄. We set

σ([f ]G) = π(f)(π“
⋃

dom(f)).

It is easy to check that σ is well-defined and elementary (and extends π, in that π = σ ◦∞G,
where iG is the generic embedding). Thus Ult(V,G) is in fact fully wellfounded, and so ᾱ is
in its wellfounded part.

It follows immediately from (a) and lemma 6.5 that there is a Col(ω,< λ̄)-generic H
over N such that R∗H = R ∩ Ult(N,G). To see that Hom∗H ⊆ iG(HomN

<λ̄), fix η < λ and

A ∈ Hom
N [H�η]
<λ ; we must see that A∗ ∈ iG(HomN

<λ̄). Let γ > η be a successor Woodin
cardinal such that H � η ∈ N [G ∩Q<γ]. Clearly, A∗ = (AN [G∩Q<γ ])∗, so to save notation, let
us re-name A = AN [G∩Q<γ ]. It follows from 4.6 that A ∈ iγ(HomN

<λ), where

iγ : N → Ult(N,G ∩QN
<γ)

is the canonical embedding. Let

σ : Ult(N,G ∩QN
<γ)→ Ult(N,G)
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be the natural embedding. (That is, σ([f ]G∩Q<γ ) = [f ]G.) It is enough to see that σ(A) = A∗.
For that, it is enough to see that

iγ,δ(A) = AN [G∩Q<δ]

whenever δ > γ is a successor Woodin cardinal and iγ,δ : Ult(N,G ∩Q<γ)→ Ult(N,Q<δ) is
the canonical embedding. But pick any δ+-complete homogeneity system ν̄ in N [G ∩ Q<γ]
such that

A = S
N [G∩Q<γ ]
ν̄ ,

so that νs = µ∗s for some µs ∈ N , and

A = S〈iγ(µs)|s∈ω<ω〉

in Ult(N,G ∩Q<γ). Then
iγ,δ(A) = S〈iδ(µs)|s∈ω<ω〉

in Ult(N,G ∩Q<δ), and
AN [G∩Q<δ] = S〈µ∗∗s |s∈ω<ω〉

in N [G ∩Q<δ] as a consequence of the Martin-Solovay construction. Now 4.6, applied at δ,
gives the desired conclusion. �

Proof of 6.4 Let H be Col(ω,< λ)-generic over V , and let A ∈ Hom
V [H�α]
<λ , and assume there

is a B ∈ L(R∗,Hom∗) such that (HC∗,∈, A∗, B) |= ϕ. Let us call such a B a ϕ-witness for

A∗. What we are looking for is a ϕ-witness for A in Hom
V [H�α]
<λ . By 5.1, it will suffice to find

a ϕ-witness for AV [H�β] in Hom
V [H�β]
<λ , for some β < λ. We consider two cases:

Case 1. There is an C∗ ∈ Hom∗ such that some B ∈ L(C∗,R∗) is a ϕ-witness for A∗.

Proof. By increasing α, we may as well assume that C ∈ Hom
V [H�α]
<λ . We can also easily

arrange that A ≤w C.
Let γ0 be least such that there is some ϕ-witness B for A∗ with B,A∗ ∈ Lγ0(C∗,R∗).13

Fix x0 ∈ R∗ such that some such B is ordinal definable over Lγ0(C∗,R∗) from x0 and A∗, C∗.
We may as well assume x0 ∈ V [H � α]. The least sequence of ordinals from which one can
define a ϕ-witness B from 〈x0, A

∗, C∗〉 over Lγ0(C∗,R∗) is definable from 〈x0, A
∗, C∗〉 over

Lγ0(C∗,R∗), and so we may assume that B is definable without ordinal parameters. Say

u ∈ B ⇔ Lγ0(C∗,R∗) |= ψ[〈x0, A
∗, C∗〉, u].

Let
ϕ̄(v0, v1) = “v0 is a ϕ-witness for v1”,

13We set L0(Z,R∗) = R∗ ∪ {Z}, then iterate first order definability as usual.
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and let θ(v, u) be the natural formula defining B from 〈x0, A
∗, C∗〉:

θ(v, u) = “v is 〈v0, v1, v2〉 where L(v2,R) |= ∃Bϕ̄(B, v1)

and if γ0 = is the least γ s.t. Lγ(v2,R) |= ∃Bϕ̄(B, v1),

then Lγ0(v2,R) |= ψ[v, u]”

The key is that θ gives us an absolute definition of B. More precisely, letting N = V [H �
α] and g ∈ HC∗,

Claim. For all u ∈ R ∩N [g]

N [g] |= θ[〈x0, A
N [g], CN [g]〉, u]⇔ u ∈ B.

Proof. Of course, R∗H = R∗K for some Col(ω,< λ)- generic K over N [g]. (This follows from
6.5.) Let G ⊆ Q<λ be as given by 6.6, with N [g] playing the role of V , K the role of H, and
γ0 the role of α. Let

i : N [g]→ Ult(N [g], G)

be the canonical embedding; then

i(AN [g]) = A∗ and i(CN [g]) = C∗

by the proof of 6.6(c). Since γ0 is in the wellfounded part of Ult(N [g], G) and R∗ = R ∩
Ult(N [g], G), we get

Ult(N [g], G) |= (L(i(CN [g]),R) |= ∃Bϕ̄[B, i(AN [g]]

and
Ult(N [g], G) |= θ[〈x0, i(A

N [g]), i(CN [g]〉, u]⇔ u ∈ B.

Since i is elementary and the identity on reals, we have proved our claim. �

Taking g = ∅ in the above, it follows from the meaning of θ that B ∩ RN is a ϕ-witness
for A in the sense of N . We will be done with case 1 if we show that B ∩ RN ∈ HomN

<λ.
This follows easily from the tree production lemma. Let (T, U) and (R, S) be < λ-absolutely
complementing pairs in N such that

p[T ] = A and p[R] = C.

Let
τ(〈x0, T, R〉, u) = θ(〈x0, p[T ], p[R]〉, u).

(The author trusts the reader will untangle the confusion of language and metalanguage
here.) We apply the tree production lemma to τ , with 〈x0, T, R〉 playing the role of the
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parameter a. The generic absoluteness hypothesis of the lemma is an immediate consequence
of our claim and the universality of the symmetric collapse. For stationary tower correctness,
let δ < λ be Woodin in N , and

i : N →M = Ult(N,G)

the canonical embedding associated to a Q<δ-generic G over N . Then

N [G] |= p[T ] = p[i(T )] and p[R] = p[i(R)],

as the reader who is still with us can easily show. Thus for u ∈ R ∩N [G],

M |= τ [〈x0, i(T ), i(R)〉, u] ⇔ M |= θ[〈x0, p[i(T )]M , p[i(R)]M〉, u]

⇔ N [G] |= θ[〈x0, p[T ]N [G], p[R]N [G]〉, u]

⇔ N [G] |= τ [〈x0, T, R〉, u]

This completes the proof of 6.4 case 1. �

Case 2. Otherwise.

Proof. From case 1 and our proof of the derived model theorem modulo 6.4, we get

∀C ∈ Hom∗(L(C,R∗) |= AD+).

For C ∈ Hom∗, let C] be the type of a club class of indiscernibles for L(C,R∗), in the
language of set theory expanded by names for each x ∈ R∗. We regard C], if it exists, as a
subset of R∗ under some natural coding.

Claim 1. ∀C ∈ Hom∗(C] exists and C] ∈ Hom∗).

Proof. Fix C, and let D ∈ Hom∗ be such that C 6∈ L(D,R∗). Now Hom∗ is semi-linearly
ordered by ≤w by 6.314, and clearly D is not Wadge-reducible to either C or R∗ \ C. Hence
C ≤w D. But now

AD+ |= ∀C ⊆ R(∃D ⊆ R(D 6∈ L(C,R)⇒ C] exists ).

(See [13]; the result is due independently to the authors of that paper and to Kechris and
Woodin.15) Since L(D,R∗) |= AD+, we get L(D,R∗) |= C] exists. But L(D,R∗) is correct
about sharps because it has all the ordinals, so C] exists. Finally, C] ≡w ⊕n<ωBn, where Bn

14The continuous reductions in question here are coded by reals in R∗.
15Here is a short sketch. Work in AD + DCR. By Wadge, every set of reals in L(C,R) is ≤w D. Thus

θL(C,R) < θ, so we can find a measurable cardinal κ such that θL(C,R) < κ. Let U be a κ-complete normal
ultrafilter on κ. One can use U to get the dersired indiscernibles in the usual way. The key here is that U is
R-complete over L(C,R): is Ax ∈ U for all x ∈ R, and the function x 7→ Ax is in L(C,R), then

⋂
xAx ∈ U .
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is the type of the first n indiscernibles. Bn ∈ L(C,R∗), so Bn ≤w D, for all n. This implies
that ⊕n<ωBn ≤w D. Since Hom∗ under Wadge reducibility, C] ∈ Hom∗. �

Claim 2. For any g ∈ HC∗, Hom
V [g]
<λ is closed under sharps.

Proof. Let C ∈ Hom
V [g]
<λ . Let B ∈ Hom

V [g][h]
<λ , where h ∈ HC∗, be such that B∗ = (C∗)].

Such a B exists by our first claim. The relation X = Y ] on sets of reals is uniformly Π1
1

in X, Y , so it follows at once from 6.3 that B = (CV [g][h])] holds in V [g][h]. But then by
(Σ2

1)Hom<λ-absoluteness (cf. 5.1), V [g] has a sharp for C in its Hom<λ. �

We let L0(R∗,Hom∗) = R∗ ∪Hom∗, and obtain Lγ(R∗,Hom∗) for γ > 0 by iterating first
order definability, as usual. Let

γ0 = least γ s.t. ∃B(Lγ(R∗,Hom∗) |= ϕ̄[B,A∗]) ∧ ∀C ∈ Hom∗(|C|w < γ)).

Again, let N = V [H � α].

Claim 3. Let g ∈ HC∗, and let G ⊆ QN [g]
<λ be such that G ∩ QN [g]

<δ is N [g]-generic, for
arbitrarily large Woodin cardinals δ < λ of N [g]. Suppose R∗ = R ∩ Ult(N [g], G) and γ0 is
in the wellfounded part of Ult(N,G); then letting

iG : N → Ult(N [g], G)

be the canonical embedding, we have

iG(Hom
N [g]
<λ ) = Hom∗ .

Proof. If not, let C ∈ iG(Hom
N [g]
<λ ) \ Hom∗ be Wadge minimal, so that

Ult(N [g], G) |= Hom∗ = {A | A <w C,

and
Lγ0(R∗,Hom∗) ⊆ L(C,R)Ult(N [g],G).

Note (C])Ult(N [g],G) exists and is in iG(Hom
N [g]
<λ by claim 2; moreover every set Wadge re-

ducible to it in the sense of Ult(N [g], G) is in iG(Hom
N [g]
<λ ). It follows that

Ult(N [g], G) |= ∃B ∈ iG(Hom
N [g]
<λ (B is a ϕ-witness for A∗).

Noting that iG(AN [g]) = A∗, we see that there is a B ∈ Hom
N [g]
<λ such that B is a ϕ-witness

for AN [g]. By 6.3, B∗ is a ϕ-witness for A∗, and of course, B∗ ∈ Hom∗. This contradicts our
case hypothesis. �
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We can now complete the proof of 6.4 just as we did in case 1. We take a minimal-in-
L(R∗,Hom∗) ϕ-witness B for A∗, and show that that B has a sufficiently absolute definition
that it yields a HomN

<λ witness for A. Where we used in case 1 that iG(C) = C∗ for generic

embeddings induced by ⊆ Q<λ, we use here that iG(Hom
N [g]
<λ ) = Hom∗ for such embeddings.

As in case 1, this gives us the generic absoluteness of the definition of B needed in the tree
production lemma. For stationary tower correctness, we use

Claim 4. Let δ < λ be a successor Woodin of N , and K be Q<δ-generic over N ; then

iK(HomN
<λ) = Hom

N [K]
<λ ,

where iK is the generic embedding.

Proof. There is a ϕ-witness for AN [K] in L(R,Hom<λ)
N [K] by 6.6. If claim 4 fails, that just

as in the proof of claim 3, we get a ϕ-witness for A in HomN
<λ, which gives us a ϕ-witness

for A∗ in Hom∗, a contradiction. �

This completes the proof of 6.4. �

There is a corollary worth pointing out:

Corollary 6.8 Let L(R∗,Hom∗) be a derived model, and suppose there is a ϕ-witness for
A∗ in L(R∗,Hom∗); then there is a ϕ-witness for A∗ in Hom∗.

That is, in the derived model, every Σ2
1 fact has a Suslin-co-Suslin witness. The result is

an easy corollary of 6.4 and 6.3.

7 Scale(Σ2
1) in derived models

Woodin has shown

Theorem 7.1 (Woodin) Assume AD+; then

(1) The pointclass Σ2
1 has the Scale Property, and

(2) Every lightface Σ2
1 collection of sets of reals has a lightface ∆2

1 member.

In this section we shall prove part of this theorem, namely, we shall show that (1) and
(2) of 7.1 hold in any derived model. Woodin’s original proof of 7.1 used this fact, together
with his result that all models of AD+ are derived models in a certain sense. (See 6.2.)16

In fact what we show is

16Woodin later found a proof of 7.1 which avoids the derived model theorem.
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Lemma 7.2 (Woodin) Assume AD+, and suppose also that whenever A ⊆ R is Suslin and
co-Suslin, and there is a ϕ-witness for A, then there is a ϕ-witness B for A such that B is
Suslin and co-Suslin. Then for any Suslin-co-Suslin set A:

(1) The pointclass Σ2
1(A) has the Scale Property, and

(2) Every Σ2
1(A) collection of sets of reals has a ∆2

1(A) member.

Of course, it follows at once that if L(R∗,Hom∗) is a derived model, and A ∈ Hom∗, then
in L(R∗,Hom∗), Σ2

1(A) has the Scale Property, and every Σ2
1(A) collection of sets of reals has

a ∆2
1(A) member. These facts will be useful in the further theory of derived models which

we shall develop in later sections.
The proof of 7.2 which we shall give involves techniques unlike those we have been using,

and the reader without some experience with AD will no doubt find it impenetrable.
Our first lemma shows how coarse the definabilty requirement on a Σ2

1 scale is.

Lemma 7.3 (Woodin) Assume AD + DCR. The following are equivalent:

(1) Σ2
1 has the Scale Property,

(2) if U is a Σ2
1 set of reals, then for any x ∈ U there is a tree T on some ω× κ such that

(a) x ∈ p[T ] and p[T ] ⊆ U , and

(b) for some A ⊆ R, T is ordinal definable in L(A,R).17

Proof. To see (1) ⇒ (2), simply take T to be the tree of a Σ2
1 scale on U . Clearly, T works

simultaneously for all x ∈ U . Now assume (2). We define a scale {ψi} on U as follows: for
x ∈ U , let

ψ0(x) = 〈α, β, γ, ϕ〉,
where

α = |A|w, for A Wadge-minimal such that

∃T ∈ ODL(A,R)(x ∈ p[T ] ∧ p[T ] ⊆ U)

and 〈β, γ, ϕ〉 is the lexicographically minimal tuple such that for some (equivalently all) A
such that |A|w = α, ϕ defines over Lβ(A,R) from parameter γ a tree T on some ω × κ
such that x ∈ p[T ] ⊆ U . We identify the range of ψ0 with an ordinal by ordering tuples
lexicographically. It is then easy to check that ψ0 is a Σ2

1-norm. Let us write T x for the tree
T which arises in the definition of ψ0(x). For x ∈ U , set

lx = leftmost branch of (T x)x,

17No parameters other than ordinals are allowed. In particular, then definition cannot mention A.

38



and for i > 0 let
ψi(x) = 〈ψ0(x), lx � i〉.

Again, we use the lexicographic order to identify ran(ψi) with an ordinal. It is easy to see
that the ψi constitute a Σ2

1 scale on U . �

Remark 7.4 Let us write

Pα(R) = {A ⊆ R | |A|w < α}.

Woodin has shown that AD+ implies that for any Σ1 formula of the language of set theory
ϕ(v0, v1) and any A ⊆ R,

L(PR) |= ϕ[A,P (R)]⇒ ∃α, β < Θ(Lα(Pβ(R)) |= ϕ[A,Pβ(R)].

It follows at once that for any A ⊆ R,

A ∈ OD⇔ ∃B ⊆ R(A ∈ ODL(B,R)).

We have stated 7.3 in the somewhat more complicated way we have in order to avoid using
this equivalence, whose proof we do not know at the moment. In what follows, we shall
often write “OD in some L(B,R)” when it might seem more natural to simply write “OD”.
We usually do so because the former notion is clearly Σ2

1, and we want to avoid quoting
Woodin’s result that the two notions are equivalent.

We shall need to use homogeneity representations in the choiceless world of AD. The
following basic theorem of Martin characterizes the sets of reals which are homogeneously
Suslin via trees on some ω × κ. Although the proof involves some very pretty constructions
of measures from games, we shall omit it, since such techniques are rather far from the other
techniques we are using. See [8] for a proof.

Let Θ be the least ordinal which is not the surjective image of R.

Theorem 7.5 (Martin) Assume AD + DCR; then for any A ⊆ R, the following are equiv-
alent:

(1) A = p[T ], for some homogeneous tree T on some ω × κ, where κ < Θ;

(2) A is Suslin and co-Suslin.

Proof. Assuming (1), it is clear that A is Suslin. But the Martin-Solovay construction
requires only DCR. (One uses the Coding Lemma to code functions from κn to κ+ by reals,
and then DCR to show the appropriate ultrapowers are wellfounded.) Thus A is co-Suslin.

The author will fill in the rest later. �

Part of the reason homogeneity systems yield the ordinal definable trees required in 7.3
is Kunen’s theorem that all measures are ordinal definable.

39



Theorem 7.6 (Kunen) Assume AD+DCR, and let µ be a measure on some ordinal κ < Θ;
then µ is ordinal definable.

Proof. By the Coding Lemma, there is a surjective map x 7→ Cx from R onto P (κ). Let D
be the set of Turing degrees, and for d ∈ D, let

f(d) = least α such that α ∈
⋂
{Cx | ∃y ∈ d(x ≤T y) ∧ µ(Cx) = 1}.

Since µ is countably complete, f(d) exists for all d. Clearly, if C ⊆ κ, and f(d) = g(d) on a
Turing cone, then

µ(C) = 1⇔ for a cone of d, g(d) ∈ C.
This gives us a definition of µ from [f ]ν , where ν is Martin’s cone measure on D. But since
f maps into κ, [f ]ν “is” an ordinal. �

The proof of 7.2 which we shall give differs a bit from Woodin’s original one. It makes
use of certain observations concerning the continuous propagation of homogeneity represen-
tations which, so far as the author knows, are due to him. The first lemma in this direction
elaborates on a basic construction due to Martin.

Lemma 7.7 (Steel) Assume AD +DCR; then for any κ < Θ there is an ordinal definable
function F : meas(κ)→

⋃
β<Θ meas(β) such that

(a) for all µ ∈ meas(κ), dim(µ) = dim(F (µ)),

(b) for all µ, ν in meas(κ), µ projects to ν iff F (µ) projects to F (ν), and

(c) for all towers of measures 〈µn | n < ω〉 ∈ meas(κ)ω,

〈µn | n < ω〉 is wellfounded ⇔ 〈F (µn) | n < ω〉 is illfounded.

Proof. Let λ have the strong partition property λ → (λ)λ, and κ < λ < Θ. We get the
measures F (µ) we need from the strong partition property in a standard way.18 For any
X ⊆ λ and set W equipped with a wellorder <W of order type ≤ λ, let

[X]W = {f : W → X | ∀a, b(a <W b⇒ f(a) < f(b))}.

For any unbounded X ⊆ λ, let πX : λ→ X be the increasing enumeration of X, and set

X∗ = {sup({πX(ωξ + n) | n < ω}) | ξ < λ}.
18The construction to follow is due to Martin. The new observation here is just that Martin’s construction

does not require a tree for which µ̄ is a homogeneity system.
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The strong partition property gives us a measure σW on [λ]W : for A ⊆ [λ]W , we put

σ(A) = 1⇔ ∃C(C is club in λ and [C∗]W ⊆ A).

It is not hard to see that σW is a countably complete measure on [λ]W .19

For any n < ω, let

Wn = (
⋃
i≤n

κi,≤bk),

where ≤bk is the Brouwer-Kleene order: s ≤bk t iff t ⊆ s or ∃k ∈ dom(s) ∩ dom(t)(s � k =
t � k ∧ s(k) < t(k)). (So W0 consists of one point, and Wn is a suborder of Wn+1, for all
n.) Given a measure µ ∈ meas(κ) of dimension n > 0, with projections µi to measures of
dimension i for each i ≤ n, we define a measure F (µ) on iµ(λ)n by

A ∈ F (µ)⇔ for σWn a.e. f, 〈[f � κ1]µ1 , [f � κ2]µ2 , ..., [f � κn]µn〉 ∈ A.

If µ concentrates on κ0 = {∅}, so is principal, we let F (µ) = µ. Clearly F (µ) ∈ meas(iµ(λ)),
iµ(λ) < Θ, and dim(µ) = dim(F (µ)).

For (b) let µ project to ν, and suppose ν has dimension i, where i > 0. (If i = 0, (b)
is trivial.) Let A ∈ F (ν); then we can find a club C in λ such that for any f ∈ [C∗]Wi ,
〈[f � κ0]µ0 , ..., [f � κi]µi〉 ∈ A. But then for any f ∈ [C∗]Wn , f � κi ∈ [C∗]Wi , so C witnesses
that for F (µ) a.e. 〈α1, ..., αn〉, 〈α1, ..., αi〉 ∈ A. Since A was arbitrary, we have that F (µ)
projects to F (ν), as desired.

For (c), let 〈µn | n < ω〉 ∈ meas(κ)ω be a tower of measures. Notice that if n > 0, then
F (µn) concentrates on tuples 〈α1, ..., αn〉 such that whenever 1 ≤ i < n, then iµi,µi+1

(αi) >
αi+1. (This comes down to the fact that whenever f ∈ [λ]Wi+1 , then for all s ∈ κi+1,
f(s) < f(s � i), because s ≤bk s � i.) Thus

〈F (µn) | n < ω〉 is wellfounded ⇒ 〈µn | n < ω〉 is illfounded ,

since by meeting countably many measure one sets in the F (µ̄) tower, we produce an infinite
descending chain in Ult(V, µ̄).

For the converse, suppose µ̄ is illfounded. We can then find a tree T on κ such that
µn(T ∩ κn) = 1 for all n, but T is wellfounded. In order to see that 〈F (µn) | n < ω〉 is
countably complete, fix sets An ∈ F (µn), for each n ≥ 1. We seek a “fiber” for the An’s.
Let Cn be club in λ and such that

f ∈ [C∗n]Wn ⇒ 〈[f � κ1]µ1 , ..., [f � κn]µn〉 ∈ An.
19For example, given A ⊆ [λ]W , partition [λ]λ by letting F (X) = 0 iff g ∈ A where g ∈ [lim(X)∗]W is

such that ran(g) is an initial segment of lim(X)∗. Let H ∈ [λ]λ be homogeneous for this partition, and
C = lim(H). Then either [C∗]W ⊆ A or [C∗]W ∩ A = ∅. So either A or its complement gets measure one.
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Let
C =

⋂
n<ω

Cn,

and let f : T → C∗ preserve the Brouwer-Kleene order (which is a wellorder of order type ¡
κ+ when restricted to T ), and be such that if u, v ∈ T and u <bk v, then C∗ ∩ (f(u), f(v))
has order type at least κ+. This spacing in C∗ of the points in ran(f) guarantees that for any
n, we can find a g ∈ [C∗]Wn such that g � (T ∩Wn) = f . It follows that [g � κi]µi = [f � κi]µi
for i = 1, .., n, and therefore

〈[f � κ1]µ1 , ..., [f � κn]µn〉 ∈ An,

for all n. This is the desired fiber for the A’s. That finishes the proof of (c). �

The set of homogeneity systems over ωk with support Z is a closed set in the topological

space meas(Z)ω
k<ω

, where this space is given the Baire topology induced by any and all
enumerations of ωk

<ω
. For any set Y ⊆ meas(Z), let

Hk
Y = {µ̄ | µ̄ is a homogeneity system over ωk and

∀s ∈ ωk<ω(µs ∈ Y )

Hk
Y is again a closed set in the space meas(Z)ω

k<ω

. The topology of Hk
Y is generated by

finite partial homogeneity systems (from Y , of dimension k), that is, functions h : T → Y ,
where T is a finite tree on ωk, such that whenever s ∈ T , then 〈h(s � i) | i ≤ dom(s)〉 is a
(finite) tower of measures. Given such a finite partial homogeneity system h, the set

Nh = {µ̄ ∈ Hk
Y | h = µ̄ � T}

is clopen in Hk
Y , and the Nh’s generate its topology. Let

hkY = {h | h is a finite partial homogeneity system from Y of dimension k}.

For any π : hkY → hnZ we let π∗ be the function on Hk
Y given by

π∗(µ̄) =
⋃
{π(h) | h ∈ hkY ∧ h ⊆ µ̄}.

Let us call π good if
π∗ : Hk

Y → Hn
Z

is a total, continuous function. (This reduces to some elementary, concrete properties of π.)
We wish to capture formulae with real quantifiers by continuous transformations π∗ on

homogeneity systems. More precisely, let L∗ be the language with a unary predicate symbol
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Ȧ, together with one k-ary relation symbol Ṫ for each k-ary recursive relation T ⊆ (ωω)k.
For any formula ϕ(v0, ..., vn−1) of L∗, and any A ⊆ R, let

ϕA = {x̄ ∈ Rn | (R, T, A)T recursive |= ϕ[x̄],

where of course A interprets Ȧ and T interprets Ṫ .20 We then have

Lemma 7.8 (Steel) Assume AD + DCR. Let ϕ(v0, ..., vn−1) be a formula of L∗, and let
Y ⊆ meas(κ) for some κ < Θ be such that |Y | < Θ, and H1

Y 6= ∅. Then there is a β < Θ
and Z ⊆ meas(β) such that |Z| < Θ, together with a good

π : h1
Y → hnZ

such that
∀µ̄ ∈ H1

Y (ϕSµ̄ = Sπ∗(µ̄).

Moreover, if Y is ordinal definable, then so are Z,π, and π∗.

Proof. The proof is by induction on ϕ.
If ϕ = Ṫ (vi1 , ..., vik), then ϕA is recursive, hence homogeneous, and independent of A, so

we let π be the appropriate constant function. If ϕ = Ȧ(vi), then ϕA = {x̄ ∈ Rn | xi ∈ A},
and the desired π is a minor perturbation of π designed to accomodate the change of arity.21

This finishes the atomic case.
If ϕ = ¬ψ, we can use 7.7. For let π : h1

Y → hnZ witness the lemma for ψ, and let
F : Z → meas(β) be an OD tower-flipping function as in 7.7. For any h ∈ h1

Y , we let σ(h)
have the same domain as π(h), and

σ(h)(s) = F (π(h)(s)).

It is clear that σ works for ϕ.
If ϕ = ψ∧ρ, and π and σ witness the lemma for ϕ and ρ, then it is not hard to construct

a good τ with domain h1
Y such that

Ult(V, τ ∗(µ̄)) ∼= Ult(Ult(V, π∗(µ̄)), j(σ∗(µ̄)),

where j : V → Ult(V, π∗(µ̄)) is the canonical embedding.22 We leave the details to the reader,
since the case ϕ = ψ ∧ ρ can anyway be subsumed under the case ϕ = ∀vψ to follow.23

20The notation ϕ(v1, ..., vn−1) does not presume that all vi for i < n actually occur in ϕ. We should
therefore write (n, ϕ)A, but we will allow n to be understood from context.

21Our induction is really on pairs n, ϕ such that all free variables of ϕ are among v0, ..., vn−1.
22Since we have assumed AD, j will not be elementary. However, for any ν ∈ meas(γ), j(ν) ∈ meas(j(γ)),

as the reader can easily check, and this is enough to make sense of the iteration.
23This argument in the ∧ case works without AD, however, while the ∀ argument does not.
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Finally, let ϕ = ϕ(v1) = ∀v2ψ(v1, v2), where we have taken n = 1 for notational simplicty.
Let π : h1

Y → h2
Z witness the lemma for ψ. It will be enough to find a β < Θ and a good

σ : h2
Z → h1

meas(β) such that for all ν̄ ∈ H2
Z and x ∈ R,

σ∗(ν̄)x is wellfounded ⇔ ∀y(ν̄)(x,y) is wellfounded.

For then, it is easy to find a good τ such that τ ∗ = σ∗ ◦π∗, and τ witnesses the lemma for ϕ.
We get σ from the standard construction, due to Martin, which obtains homogeneity

from weak homogeneity, using partition cardinals. We need a little care, however, because
we are not given a homogeneous tree.

Fix F : Z → meas(γ) be a tower-flipping function as in 7.7. Given ν̄ ∈ H2
Z , we shall

define µ̄ = σ∗(ν̄). It will be clear from the construction that σ∗ is continuous. To begin
with, set

ν∗(s,t) = F (ν(s,t))

for all (s, t) ∈ dom(ν̄). Inspecting the construction of 7.7, we see that for any (x, y) ∈ R2,
ν̄∗(x,y) concentrates on descending chains in Ult(V, ν̄(x,y)). Our tower µ̄x will concentrate on
attempts to prove continuously that all ν̄∗x,y) are illfounded. The construction generalizes
that in 7.7.

Let 〈ui | i < ω〉 enumerate ω<ω so that ∀i∀k∃j ≤ i(ui � k = uj), and let ni = dom(ui).
Let

Wn = (
⋃
i≤n

(ωi × γi),≤bk),

let λ be a strong partition cardinal such that γ < λ < Θ, and for any ordered set W let σW
be the strong partition measure on [λ]W defined in 7.7. For f ∈ [λ]Wn and u ∈ ωk, where
k ≤ n, let

fu(t) = f(u, t)

for all t ∈ γk. Let
β = sup{iν(s,t)

(λ) | s, t ∈ ω<ω}.

For s ∈ ωk, where k > 0, we define a measure µs concentrating on [β]k by

µs(A) = 1⇔ for σWk
-a.e. f 〈[fu1 ]ν∗s�n1,u1

, ..., [fun ]ν∗s�nk,uk
〉 ∈ A.

Let µ0 be the principal measure on {∅}.
µ̄x concentrates on attempts to continuously illfound all ν̄∗(x,y) below the image of λ.

Thus if µ̄x is wellfounded, any fiber meeting the appropriate measure one sets witnesses
that ∀y(ν̄∗(x,y) is illfounded. Conversely, let x be such that all ν̄∗(x,y) are illfounded. Let

µx�n(An) = 1 for all n. Let C be club in λ, and contain all the clubs witnessing the An
contain projections of measure one sets with respect to σWn . Since all ν̄(x,y) are wellfounded,
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the tree T on ω × β of all attempts to build a (y, g) such that g is an infinite descending
chain in Ult(V, ν̄(x,y)) below the image of λ is wellfounded. Let

f : T → C∗

preserve ≤bk on T . Then f determines a fiber for the An’s, as in the proof of 7.7, and we
are done.

It is easy to check that the continuous homogeneity transformations we have defined are
ordinal definable. �

Proof of 7.2. We shall prove the result for Σ2
1, and leave it to the reader to provide the easy

generalization to Σ2
1(A), where A is Suslin and co-Suslin.

We begin by showing Σ2
1 has the Scale Property. For this, we shall show that (2) of 7.3

holds. So let U be Σ2
1; say

x ∈ U ⇔ ∃B ⊆ Rx ∈ ¬ϕB,

where ϕ = ϕ(v1) is an L∗ formula. Fix x ∈ U . By hypothesis, there is a Suslin, co-Suslin
B such that x ∈ ¬ϕB. By the theorems of Martin and Kunen, we can fix A ⊆ R such that
for some κ < ΘL(A,R), there is a homogeneity system µ̄ over ω, with support κ, such that
µ̄ ∈ L(A,R) and

x ∈ (¬ϕ)Sµ̄ ,

and
∀s ∈ ω<ω(µs ∈ ODL(A,R))

. We now work in L(A,R). Fix α0 < Θ such that

∀s(µs ∈ Lα0(A,R)),

and let
Y = meas(κ) ∩ Lα0(A,R).

Y and each of its elements are OD. Let

π : h1
Y → h1

Z

be the OD good function for ¬ϕ given by 7.8, where Z ⊆ meas(λ). Thus

∃µ̄ ∈ H1
Y (π∗(µ̄)x is illfounded ),

and for any z ∈ R and µ̄ ∈ H1
Y ,

π∗(µ̄)z is illfounded ⇒ z ∈ U.
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Let β = sup{iν(λ) | ν ∈ Z}, and let T be the tree on ω× (Y × β) which attempts to build a
triple (z, µ̄, g) such that µ̄ ∈ H1

Y and g is an infinite descending chain in Ult(V, π∗(µ̄)) below
the image of λ. It follows from the statements just displayed that x ∈ p[T ], and p[T ] ⊆ U .
Since Y has an OD wellorder of length < Θ, we may regard T as a tree ω × γ for some
γ < Θ. Thus T witnesses (2) of 7.3, as desired.

We now show that ∆2
1 is a basis for Σ2

1. It will be enough to show every non-empty
projective collection of sets of reals has a ∆2

1 member.24 Fix then ϕ(v1) an L∗ formula, and
put

S(B)⇔ 0 ∈ ϕB.

Then S is a typical projective collection of sets of reals. Assume S 6= ∅. It will be enough
to show

∃A,B ⊆ R(S(B) ∧B ∈ ODL(A,R)).

For the we can let A be Wadge-minimal as above, and let B be the first ODL(A,R) set in S
in some natural wellorder of ODL(A,R), and it is easy to see that B is ∆2

1.
But now let’s look at the proof of Scale(Σ2

1), in the case our real x = 0 and our formula
is ¬ϕ. Let T be the tree on ω× (Y ×β) produced there, and A ⊆ R such that T is ODL(A,R).
Then 0 ∈ p[T ], so we can set

(µ̄, g) = leftmost branch of T0 ,

using the ODL(A,R) wellorder of Y to help make sense of “leftmost”. Then µ̄ ∈ H1
Y , moreover

µ̄, and hence
B = Sµ̄,

are ODL(A,R). But g witnesses that π∗(µ̄)0 is illfounded, which in turn means that 0 6∈ (¬ϕ)Sµ̄ ,
that is, 0 ∈ ϕB, as desired. �

8 Derived models of ADR.

It is not too hard to see that if V is the minimal fully iterable canonical inner model with
ω Woodin cardinals (i.e., V = Mω), then the derived model at the unique limit of Woodin
cardinals has the form L(R∗).25 In this case, Hom∗ = (∆2

1)L(R∗). That is, if we start with
the weakest ground model which has a derived model, we get the weakest model of AD.
It is natural to ask whether stronger large cardinal properties in V yield stronger forms
of determinacy in its derived models. In fact, there seems to be a systematic, detailed
correspondence, much of which has yet to be mapped out. In this section, we consider one

24If S(B) ⇔ ∃AR(A,B), where R is projective, then a ∆2
1 set A ⊕ B such that R(A,B) yields a ∆2

1 set
B such that S(B).

25This observation is probably due to Woodin and the author.
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very natural strengthening of AD, namely ADR. We shall show that if λ is a limit of Woodin
cardinals and of cardinals which are < λ-strong, then the derived model at λ satisfies ADR.
This result is due to Hugh Woodin. As a corollary, one has that the consistency of ZFC
together with the existence of such a cardinal λ implies the consistency of ZF + ADR. The
author has recently proven the converse relative consistency theorem, and thus the existence
of such a λ is in fact equiconsistent with ADR.

ADR is a bit of a red herring here, as explained by the following unpublished results (from
the early 80’s?).

Theorem 8.1 (Martin, Woodin) Assume AD. If every set of reals is Suslin, then ADR
holds.

Theorem 8.2 (Woodin) If ADR holds, then all sets of reals are Suslin.

So in the presence of AD, ADR is equivalent to the assertion that every set of reals is Suslin.
A derived model L(R∗,Hom∗) will therefore satisfy ADR if and only if P (R∗)∩L(R∗,Hom∗) ⊆
Hom∗. Our main goal in this section is to prove

Theorem 8.3 (Woodin) Let λ be a limit of Woodin cardinals and of cardinals which are
< λ-strong, and let L(R∗,Hom∗) be a derived model at λ; then

• P (R∗) ∩ L(R∗,Hom∗) = Hom∗,so

• L(R∗,Hom∗) |= ADR

First, an well-known basic lemma:

Lemma 8.4 (Kechris,Solovay) Assume AD + DCR, and let A ⊆ R. For x, y ∈ R, put

R(x, y)⇔ ∀B ⊆ R(y 6∈ ODL(B,R)(A, x));

then

(a) R is a Π2
1(A) relation,

(b) ∀x∃yR(x, y),

(c) ¬(∃f : R→ R∃B ⊆ R∃x0 ∈ R(f ∈ ODL(B,R)(A, x0) ∧ ∀x ∈ RR(x, f(x))).

Proof. (a) is obvious. (b) holds because {y | ¬R(x, y)} is wellordered (all its members being
OD(A, x), hence countable. For (c), suppose f,B, x0 were a counterexample. Then f(x0) is
ODL(B,R)(A, x0), so ¬R(x0, f(x0)), a contradiction. �

So AD +DCR implies that for any A ⊆ R, there is a Π2
1(A) relation with no uniformization,

and hence no scale, which is ordinal definable from A and a real in some L(B,R). This leads
at once to
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Corollary 8.5 Let L(R∗,Hom∗) be a derived model; then the following are equivalent:

(1) P (R∗) ∩ L(R∗,Hom∗) = Hom∗,

(2) ∀A ∈ Hom∗, every Σ2
1(A)L(R∗,Hom∗) set of reals is in Hom∗.

Proof. (1)⇒ (2) is trivial. Now suppose toward a contradiction that (2) holds and (1) fails,
and let B ⊆ R∗ be in L(R∗,Hom∗) \Hom∗. Note that every set in Hom∗ is Wadge reducible
(in the sense of L(R∗,Hom∗)) to B, so that L(R∗,Hom∗) = L(B,R∗). Let us work now in
this universe. Since B ∈ L(R∗,Hom∗) we can fix A ∈ Hom∗ such that B ∈ OD(A,Hom∗).
But Hom∗ = Pα(R∗) for some α, so Hom∗ ∈ OD, and B ∈ OD(A). Letting R be the Π2

1(A)
relation of 8.4, we have by (2) that R ∈ Hom∗, so that R has a scale in Hom∗, and hence a
uniformizing function f ∈ Hom∗. But the f ∈ L(B,R∗), so f is ordinal definable in L(B,R∗)
from B and some x ∈ R∗, so f is ordinal definable in L(B,R∗) from A and some x ∈ R∗,
which contradicts property (c) of 8.4. �

Proof of 8.3. Let λ be a limit of Woodins, and of cardinals which are < λ-strong, and let
L(R∗,Hom∗) be a derived model at λ. By 8.5 and 8.1, it will suffice to show that whenever
A ∈ Hom∗, then every Σ2

1(A)L(R∗,Hom∗) set of reals is in Hom∗. We shall give the proof for
A = ∅; the proof in general is a simple relativization of the one we give. (One must replace
V by some intermediate extension having a λ-absolutely complemented tree projecting to
A.)

So let U ⊆ R∗ be Σ2
1 in L(R∗,Hom∗), say

U(x)⇔ ∃B ⊆ R∗(B ∈ L(R∗,Hom∗)) ∧ (HC∗,∈, B) |= ϕ[x]).

By 7.2, U has a Σ2
1 scale in L(R∗,Hom∗). Let T be the tree of such a scale. Since T is OD

in L(R∗,Hom∗), T ∈ V . We must find a λ-absolute complement for T in some V [g], for
g ∈ HC∗. But let κ < λ be η-strong for all η < λ, and let g ∈ HC∗ be Col(ω, |meas(κ)|)-
generic over V . We shall show that T has such an absolute complement in V [g]. The key to
this is 3.5.

It will be enough to find, for each η < λ, an η-absolute complement Sη for T in V [g], for
then a simple amalgamation ⊕ηSη is a λ-absolute complement for T . So fix η < λ. We may
as well assume η = Vη, and κ < η. Let γ be such that η < γ < λ, and

V [g] |=
Col(ω,η)

 Homγ = Hom<λ .

Let δ be the 5th Woodin cardinal above γ. Now we apply 3.5: going back to V , let

j : V →M ∧ crit(j) = κ ∧ Vδ ⊆M
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be such that in V [g] we have a tree S such that

V [g] |= S is a δ-absolute complement for j(T ).

We claim that S is the desired η-absolute complement for T in V [g].
Since p[T ] ⊆ p[j(T )], it is clear that p[S] ∩ p[T ] = ∅. Now let x ∈ R∗ be < η-generic

over V [g]. We can find a Col(ω, η)-generic h over V [g] such that x ∈ V [g][h]. We must see
x ∈ p[S] ∪ p[T ]. Suppose x 6∈ p[S]. Since x is < δ-generic over V [g], we have x ∈ p[j(T )].
Now let’s look at what this means.

Note x ∈M [g][h], where j(T ) has its meaning. Moreover, M [g][h] satisfies the statement
that

p[j(T )] ∩ R∗ = {x | ∃B ∈ L(R∗,Hom∗)(HC∗,∈, B) |= ϕ[x]},

where this statement is phrased as a statement about the collapse up to λ over M [g][h].
Thus for our particular x,

M [g][h] |= ∃B ∈ L(R∗,Hom∗)(HC∗,∈, B) |= ϕ[x],

where again this is a statement about the collapse up to λ. But now, applying 6.4 inside
M [g][h], we get a B such that

M [g][h] |= B ∈ Hom<λ ∧(HC,∈, B) |= ϕ[x].

Moving back to V [g][h], which agrees up to δ with M [g][h], we see B is δ-absolutely com-
plemented in V [g][h]. But there are enough Woodin cardinals between γ and δ that this
implies B is Homγ in V [g][h], and by our choice of γ, that B is Hom<λ in V [g][h]. But then,
using 6.3, we can push up the Σ2

1 fact that B is witnessing in V [g][h] to L(R∗,Hom∗), and
we conclude that U(x). That is, x ∈ p[T ], as desired. �
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