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Abstract

The standard comparison lemma of inner model theory is deficient, in that it does not
in general produce a comparison of all the relevant inputs. How two mice compare can
depend upon which iteration strategies are used to compare them. We shall outline here
a method for comparing iteration strategies that removes this defect.

0 Introduction

Inner model theory begins with Gödel’s 1937 work on L, but its true scope only came into view
in 1966-68, with the pioneering work of Jack Silver and Kenneth Kunen on L[U ], the canonical
minimal inner model with one measurable cardinal. Underlying the Kunen-Silver theory of
L[U ] is a method for comparing structures that resemble some level of L[U ], and a comparison
lemma stating that this method succeeds.

Kunen’s version of the comparison method has proved to be the right tool in more general
contexts. In the years since his paper [17], inner model theory has grown more or less con-
tinuously in several directions, and Kunen’s method of comparing via iterated ultrapowers has
been central to this growth. It now applies to models satisfying large cardinal hypotheses much
stronger than the existence of one measurable cardinal. At the same time, we have come to
realize that the large cardinal hypotheses themselves do not always provide the best way to
identify targets and measure progress. The logical complexity of the predicate “resembles a
level of M”, which is coupled to the extent to which the levels of M can be correct about truth
in the full universe, may be a better guide. Complexity and correctness are naturally measured
using concepts from descriptive set theory.

It is customary to call the structures that resemble some level of a canonical inner model
mice.1 Certain first order features of the levels are recorded in the notion of premouse, and
the remaining second order resemblance condition is called iterability. That is, a mouse is an
iterable premouse. In general, M is iterable iff there is an iteration strategy Σ for M . In the
most important case, M is countable, and Σ is coded by a Universally Baire (uB) set of reals.
Descriptive set theoretic complexity attaches to the pairs (M,Σ), rather than to M itself; it

1The term is due to Ronald Jensen.
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amounts to the Wadge order on the sets of reals that code such pairs. Similarly, we shall see
that the right general statement of the comparison lemma involves the comparison of mouse
pairs like (M,Σ), rather than simply the comparison of mice like M . That is, we must compare
not just the mice, but also the iteration strategies witnessing that they are mice.

Our goal in this paper is to state and motivate a comparison lemma for mouse pairs. The
lemma2 is stated as Theorem 6.2 below. It is proved in [35]. In §1 we review the work of Kunen
and Mitchell on comparison by linear iteration and discuss its limitations. In §2 we review some
basic definitions and results from [21] and [38] related to premice and iterability, and introduce
a few modifications to them that seem necessary for strategy comparison. In §3 we prove the
general comparison lemma of [21] on comparison by means of iteration trees, and discuss some
of its immediate corollaries. We shall see at this point that the heart of the comparison problem
concerns the comparison of countable mice in models of the Axiom of Determinacy (AD). We
shall be working in models of AD for much of the rest of the paper. In §5 we discuss various
regularity properties of iteration strategies. This leads us to a formal definition of pure extender
pairs, as pairs (M,Σ) such that M is a premouse, and Σ is an iteration strategy for M having
certain of these properties. In §6 we state the general comparison lemma for pure extender
pairs, and in §8 we outline its proof. §7 concerns the construction of such pairs in models of
AD. In §9 we state some theorems on the structure of HOD in models of AD that can be proved
using the strategy comparison process. §10 discusses some directions for future work.

The reader who has a passing familiarity with inner model theory at the level of [21] or [38]
should be able to follow most of the paper. [35], [33], and [36] are full, technical descriptions of
the proof of Theorem 6.2, and of some of its applications.

1 Comparison by linear iteration

There is a comparison lemma underlying Gödel’s work too. The premice are the models M
that satisfy V = L together with some rudimentary fragment of ZFC. The iterability condition
is wellfoundedness. Thus the mice are simply the premice that are isomorphic to transitive
structures. Henceforth we shall always assume that wellfounded, extensional structures have
been transitivized. With this convention, all of Gödel’s mice are Lα’s, and his comparison
lemma just states that for any two mice M and N , one is an initial segment of the L-hierarchy
of the other. This leads to

Theorem 1.1. (Gödel 1937, [10]) Assume ZF; then

(1) L |= ZFC + V = L,

(2) L |= GCH,

(3) L |= “R has a ∆1
2 wellorder”, and

2One might call it a theorem, but somehow “lemma” is more common. The Dodd-Jensen Lemma is a closely
related result with a similar non-theorem status.
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(4) every real in L is ∆1
2 in a countable ordinal.

Item (4) places an upper bound on the complexity of the reals in L; in particular, they are
all ordinal definable in an absolute way. Gödel’s upper bound is best possible:

Theorem 1.2. Assume ZF; then

(1) (Shoenfield [29])L is Σ1
2 correct,

(2) (Solovay [14]) R ∩ L = {x | x is ∆1
2 is a countable ordinal}.

In Kunen’s work, the premice are models (M,∈ U) such that M that satisfy “U is a normal
ultrafilter witnessing that crit(U) is measurable and V = L[U ]”, together with some fragment of
ZFC.3 We say that (M,∈, U) is an intial segment of (N,∈,W ), and write (M,∈, U)�(N,∈,W ),
iff o(M) ≤ o(N), W ∩M = U , and M = Lo(M)[W ].4

Given a premouse M0 = (M0,∈, U0), we let

Mα+1 = Ult(Mα, Uα),

iα,α+1 = canonical embedding from Mα to Mα+1,

Uα+1 = iα,α+1(Uα), and

Mλ = lim
α<λ
Mα

for λ a limit ordinal, where the direct limit is taken with respect to the iteration maps iα,β.
M0 is iterable iff all Mα are wellfounded. Iterability is Π1 in the language of set theory. As
applied to countable M0, it is Π1

2. Kunen’s comparison lemma is:

Theorem 1.3. (Kunen Comparison Lemma, [17, Theorem 5.8]) Let (M,∈, U) be an iterable
premouse and λ > crit(U)+,M be a regular cardinal. Let (N,∈,W ) be the λ-th iterate of (M,∈
, U); then (N,∈,W ) is an initial segment of (L[F ],∈, F ), where F is the club filter on λ.

Comparison leads to a complexity order on mice.

Definition 1.4. Let M and N be mice; then M ≤∗ N iff there is an elementary embedding
from M into an initial segment of an iterate of N . We call ≤∗ the mouse order.

The mouse order does not appear explicitly in Kunen’s work, but it is not too hard to use
his comparison lemma to show

Corollary 1.5. On mice of the form (M,∈, U), the mouse order is a prewellorder. Moreover
M <∗ N iff there is an elementary embedding from M into a proper initial segment of an
iterate of N .

3[17] requires that M |= ZFC, but does not require that U ∈ M . These differences are not relevant to the
discussion here.

4Here o(M) = OR ∩M .
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The fact that there is only one way to iterate a Kunen mouse figures heavily in the proof
of this corollary.

Iteration maps do not move reals, so we get at once that for x, y ∈ R,

x <L[U ] y iff ∃M(M is a mouse and M |= x <L[U ] y),

where <L[U ] is the order of construction. Since iterability is Π1
2, R ∩ L[U ] is a Σ1

3 set. It is
independent of U , as is <L[U ], which is a Σ1

3 wellorder of it.
This led to a better proof of:

Theorem 1.6. (Solovay, Silver [30], [31]) Let U be a normal ultrafilter witnessing that κ is
measurable; then

(1) L[U ] |= ZFC + “U ∩ L[U ] is a normal measure on κ + V = L[U ∩ L[U ]]”,

(2) L[U ] |= GCH,

(3) L[U ] |= “R has a ∆1
3 wellorder”, and

(4) every real in L[U ] is ∆1
3 in a countable ordinal.

The idea of studying L[U ] and part (1) of 1.6 are due to Solovay. The rest is due to Silver.
The proof of the theorem shows that R ∩ L[U ] is independent of U , so at least in this respect,
L[U ] is “canonical”. The iterability condition and comparison lemma behind (2)-(4) in Silver’s
work involve stretching premice whose measures are generated by indiscernibles. This is good
enough if we are working with mice at the level of one measurable cardinal and slightly beyond,
but it soon becomes impossibly complicated.5 Kunen found the right way forward, by bringing
in Gaifman’s method of iterated ultrapowers.

Kunen’s methods lead to a full canonicity theorem for L[U ]:

Theorem 1.7. (Kunen [17]) LetM = (M,∈, U) and N = (N,∈,W ) be mice such that o(M) =
o(N) = OR; then either M is an iterate of N , or M = N , or N is an iterate of M. In
particular, if crit(U) = crit(W ), then U = W .

Thus U is definable over L[U ] as the unique non-principal normal ultrafilter. It follows that
L[U ] |= V = HOD.

With L[U ] established as independent of U and unique up to iteration, it is natural to look
for ways to construct it beyond the naive one that involves starting with a normal measure
over V . It was shown very quickly that this can be done. Solovay and Kunen showed that
L[U ] exists if there are ideals with certain saturation properties ([34] and [17, 11.12,11.13]).
Martin, building on work of Solovay, showed that a small fragment of ∆1

2 determinacy implies

5In Silver’s work, the role ofM0 as a premouse is played by the type of the iteration points 〈crit(Un) | n < ω〉
inside the ω-th iterate Mω. That is, premice are not just approximations to levels of the model, they include
information about one way of iterating it, and the iterability condition states that continuing this particular
iteration leads to wellfounded models. This only works if there are not many ways to iterate the model.

4



that L[U ] exists. By 1976, Jensen had proved the Covering Lemma, and Dodd and Jensen had
developed core model theory at the level of one measurable cardinal. (Cf. [3], [5],[6],[7].) This
is a powerful and systematic tool for constructing L[U ] under a wide variety of hypotheses.

It is also natural to look at the first order theory of L[U ]. It satisfies GCH, but can we go
beyond that? Indeed we can; the methods for unlocking the first order theory of L apply also
to L[U ]. In unpublished work from the mid-1970s, Solovay extended Jensen’s fine structural
analysis of L to L[U ], making the most powerful of these methods applicable.

Most importantly for our story, the work of Kunen and Silver suggests that there are canon-
ical inner models beyond L[U ] for large cardinal hypotheses stronger than one measurable
cardinal. Kunen and Silver themselves extended their theory to models having many measur-
able cardinals. (See [17] and [31].) Moreover, even below L[U ] there are many mice, and in this
context, mice like L and L[U ] that contain all the ordinals have no special status. Thus even at
this early stage, an optimist might have envisioned a hierarchy of canonical inner models (mice),
understood in fine structural detail, wellordered by complexity (the mouse order) the way the
large cardinal hypotheses are ordered by consistency strength, and going as far as the large
cardinals do. This hierarchy would be the model-theoretic counterpart of the proof-theoretic
hierarchy of consistency strengths.

In 1974 and 1978, William Mitchell took an important step in this direction. His papers
[19] and [20] isolate what seem to be central features of the first order form of canonical inner
models, all the way up to inner models with superstrong cardinals. Mitchell’s notion of models
constructed from coherent sequences of extenders has figured in all further work in inner model
theory.67 Mitchell himself used it to construct inner models satisfying “there is a κ that is
κ + 2-strong”, a large cardinal hypothesis significantly beyond the existence of measurables,
and seemingly well on the way to the existence of superstrongs, and even supercompacts.8

Theorem 1.8 (Mitchell 1978). Suppose there is a cardinal κ such that κ is κ+ 3-strong; then
there is a model M constructed from a coherent sequence of extenders such that

(1) M |= ZFC + ∃κ( κ is κ+ 2-strong),

(2) M |= GCH + “R has a ∆1
3 wellorder”, and

(3) R ∩M is enumerated by a ∆1
3 real.

6See §2.1 for precise definitions. Extenders are a simplification, due to Jensen, of what Mitchell called
hypermeasures. Roughly speaking, an extender E over M is a system of M -ultrafilters 〈Ea | a ∈ [lh(E)]<ω〉
coding an elementary embedding iE : M → Ult(M,E). The ultrapower Ult(M,E) is the direct limit of all the
Ult(M,Ea) for a ∈ [lh(E)]<ω. lh(E) is the length or support of E, and crit(E) is the critical point of iE . When
we construct from E, we identify it with the predicate {(a, x) | x ∈ Ea}.

7Roughly, coherence means that α < β ⇒ lh(Eα) < lh(Eβ), and for all α, the initial segment of iEα
( ~E)

consisting of extenders with length ≤ lh(E) is ~E � α. In a phrase, the extenders are listed in order of increasing
strength, without leaving gaps.

8κ is β-strong iff there is an elementary j : V →M such that κ = crit(j) and Vβ ⊆M . Note that if β ≥ κ+2,
then we cannot have j = iD for some ultrafilter D on κ, because D ∈ Vκ+2 and D /∈ Ult(V,D).
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There is a comparison lemma behind this theorem. In [20], a premouse is a structure

M = (M,∈, ~E) such that M satisfies “ ~E is a coherent sequence of extenders and V = L[ ~E]”,

together with some reasonable fragment of ZFC. We call ~E theM-sequence. A linear iteration
of M is a sequence 〈〈Mα, Eα〉 | α < θ〉, equipped with iteration maps iα,β : Mα →Mβ, such
that for all α + 1 < θ

Eα is on the Mα-sequence,

and
Mα+1 = Ult(Mα, Eα).

At limit steps λ < θ we take direct limits:

Mλ = lim
α<λ
Mα,

where the limit is under the iteration maps. M is linearly iterable iff all models in all linear
iterations of M are wellfounded. For countable premice, linear iterability is a Π1

2 property.
Mitchell showed it is enough for comparison:

Theorem 1.9. (Comparison by linear iteration, Mitchell 1978) Let M and N be linearly
iterable premice, and suppose that neither has an initial segment satisfying “there is a κ such
that κ is κ + 3-strong”; then there are linear iterates P of M and Q of N such that P is an
initial segment of Q, or vice-versa.

Mitchell’s proof involves comparingM and N directly, rather than iterating them into some
standard structure fixed in advance, as Kunen did. The idea is to iterate away least exten-
der disagreements, and show, using a reflection argument, that eventually all disagreements
have been removed. That linear iteration eventually removes all disagreements relies on our
assumption that no initial segment of M or N has a cardinal κ that is κ+ 3-strong.

The mouse order on such “κ+3-small” mice is defined just as in 1.4: M≤∗ N iffM can be
elementarily embedded into an initial segment of a linear iterate of N . Theorem 1.9 shows that
≤∗ is pre-linear. Mitchell also showed that it is wellfounded.9 On countable κ + 3-small mice,
the mouse order is ∆1

3. This leads to the ∆1
3 wellorder of R in Theorem 1.8. That Mitchell’s

L[ ~E] satisfies GCH is a good deal more difficult to prove than it was in the case of L[U ], but
eventually comparison by linear iteration carries the day.

This was a big step forward, but as Theorem 1.8 shows, the models whose theory is fully
developed by Mitchell [20] did not go very far descriptive-set-theoretically. None of them is
Σ1

3 correct, and the set of all reals in any such model are enumerated by a single ∆1
3 real. All

of them satisfy “there is a ∆1
3 wellorder of the reals”, and therefore ∆1

2 determinacy fails to
hold in any of them. S. Baldwin and A. Dodd ( [1],[2], [4]) extended Mitchell’s work to inner
models satisfying “∃κ∀β(κ is β-strong)”, and slightly stronger large cardinal hypotheses. But
their comparison process involved only linear iterations, so again the set of reals in any of the
Baldwin-Dodd models can be enumerated by a single ∆1

3 real.

9This is a special case of the Dodd-Jensen Lemma, a stronger result discovered independently of Mitchell
by Dodd and Jensen. See Theorem 6.5.
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The weakness of linear iteration as a comparison method shows up as follows. Once we
reach premice satisfying large cardinal hypotheses just past those dealt with by Baldwin and
Dodd, it can happen that the least extender disagreement between Mα and Nα involves an
extender Eα on theMα sequence such that crit(Eα) < lh(Eβ) for some β < α. Applying Eα to
Mα can then bring back to life a disagreement that we removed by using Eβ. So comparison
by linear iteration can enter a loop.

The right thing to do in this situation is to set

Mα+1 = UltMβ, Eα),

where β is least such that crit(Eα) < lh(Eβ).10 This leads to nonlinear iterations with a tree
structure, and embeddings along each branch from the earlier to the later models on that
branch. That is, to iteration trees. In 1985-86 Martin and the author developed the theory of
iteration trees, and used it to prove a rudimentary comparison lemma for mice that contain all
the reals that are ∆1

3 in a countable ordinal. (See [18].) Iterability with respect to iteration trees
can be very complicated in descriptive set theoretic terms, so it is not limited as a guarantor
of comparability the way that linear iterability is.

But there remains another limitation. We have not given Mitchell’s definition of “premouse”
in detail, nor those of the other authors, because the hierarchies they use make fine structural
analysis something between difficult and impossible. The basic problem is the demand that
all extenders E on the coherent sequence must be total over L[ ~E]. This means the simple

condensation properties of the L hierarchy do not go over to L[ ~E]. For example, it is not true

that every real in L[ ~E] is constructed at a stage that is countable in L[ ~E], or that the Σω-hull of
one of its levels collapses to a countable level. The standard Lα[U ] hierarchy has these features
too, and one can work around them. Solovay did produce a fine structural analysis of the L[U ]
hierarchy, and Dodd and Jensen used it in their work on core model theory. Dodd produced a
manuscript of many hundreds of pages on the fine structure of his L[ ~E] models. But this old
fine structure is just too complicated to go much further.

In order to form iteration trees properly, we do need a fine structural analysis, because in
the situation described above, it could be that crit(Eα) < lh(Eβ) but Eα does not measure all
sets in Mβ. In that case, the right thing to do in a comparison process is to apply Eα to the
first initial segment P of Mβ that defines a subset of crit(Eα) not measured by Eα, taking
an ultrapower of P that preserves the definition of some such set. The fine structure of P
enters crucially at this point. Thus at the level of iteration trees, even the comparison of mice
satisfying ZFC can involve their fine structure.11

In 1988, Baldwin and Mitchell found the right solution, namely, we should allow partial
extenders on the coherent sequence. When we add a new extender E to the level Lα[ ~E] that

we have just reached, the measures in E are total over Lα[ ~E]. But we may later construct more

10See footnote 24. The expert reader will notice that in more modern indexing schemes, lh(Eβ) should be
replaced by ν(Eβ) or λ(Eβ).

11[18] uses iteration trees to prove a fine-structure-free, partial comparison lemma at the level of one Woodin
cardinal. It is of limited value in determining the properties of the mice being compared, however. For example,
it is open whether those mice satisfy the GCH.
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subsets of crit(E), and these will not be measured by E. [21] works out a general fine structure
theory for hierarchies of this kind. The key fact is that all levels in the hierarchy satisfy a local
version of the GCH known as soundness. In this respect they resemble the levels of L, and not
the levels in the standard stratifications of L[U ] or L[ ~E]. This makes their fine structure much
more transparent.

2 Fine structure and iteration trees

Let us give some formal definitions. Most of the material here can be found in [21], [38], and
[48]. We do need to vary and extend the standard definitions a little, in order to lay a foundation
for Theorem 6.2.

2.1 Extenders and ultrapowers

Our notation for extenders is standard.

Definition 2.1. Let M be transitive and rudimentarily closed; then E = 〈Ea | a ∈ [θ]<ω〉 is a
(κ, θ)-extender over M with spaces 〈µa | a ∈ [θ]<ω〉 if and only if

(1) Each Ea is an (M,κ)-complete ultrafilter over P ([µa]
|a|) ∩M , with µa being the least µ

such that [µ]|a| ∈ Ea.

(2) (Compatibility) For a ⊆ b and X ∈M , X ∈ Ea ⇐⇒ Xab ∈ Eb.

(3) (Uniformity) µ{κ} = κ.

(4) (Normality) If f ∈M and f(u) < max(u) for Ea a.e. u, then there is a β < max(a) such
that for Ea∪{β} a.e. u, fa,a∪{β}(u) = u{β},a∪{β}.

The unexplained notation here can be found in [38]. We shall often identify E with the
binary relation (a,X) ∈ E iff X ∈ Ea. We call θ the length of E, and write θ = lh(E). The
space of E is

sp(E) = sup{µa | a ∈ [lh(E)]<ω}.

The domain of E is the family of sets it measures, that is, dom(E) = {Y | ∃(a,X) ∈ E(Y =
X ∨ Y = [µa]

|a| −X)}. If M is a premouse of some kind, we also write M |η = dom(E), where
η is least such that ∀(a,X) ∈ E(X ∈M |η). In premice, η = sup({µ+,M

a | a ∈ [θ]<ω}).
Given an extender E over M , we form the Σ0 ultrapower

Ult0(M,E) = {[a, f ]ME | a ∈ [lh(E)]<ω and f ∈M},

as in [38]. Our M will always be rudimentarily closed and satisfy the Axiom of Choice, so we
have Los’ theorem for Σ0 formulae, and the canonical embedding

iME : M → Ult0(M,E)
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is cofinal and Σ0 elementary, and hence Σ1 elementary. By (1) and (3), crit(iE) = κ. We write
crit(E) or κE for κ. By normality, a = [a, id]ME , so lh(E) is included in the (always transitivized)
wellfounded part of Ult0(M,E). More generally,

[a, f ]ME = iME (f)(a).

If X ⊆ lh(E), then E � X = {(a, Y ) ∈ E | a ⊆ X}. E � X has the properties of an
extender, except possibly normality, so we can form Ult0(M,E � X), and there is a natural
factor embedding τ : Ult0(M,E � X)→ Ult0(M,E) given by

τ([a, f ]ME�X) = [a, f ]ME .

In the case that X = ν > κE is an ordinal, E � ν is an extender, and τ � ν is the identity. We
say ν is a generator of E iff ν is the critical point of τ , that is, ν 6= [a, f ]ME whenever f ∈ M
and a ⊆ ν. Let

ν(E) = sup({ν + 1 | ν is a generator of E }).

So ν(E) ≤ lh(E), and E is equivalent to E � ν(E), in that the two produce the same ultrapower.
let

λ(E) = λE = iME (κE).

Note that although E may be an extender over more than one M , sp(E), κE, lh(E), dom(E),
ν(E), and λ(E) depend only on E itself. If N is another transitive, rudimentarily closed set,
and P (µa)∩N = P (µa)∩M for all a ∈ [lh(E)]<ω, then E is also an extender over N ; moreover
iME agrees with iNE on dom(E). However, iME and iNE may disagree beyond that. We say E is
short iff ν(E) ≤ λ(E). It is easy to see that E is short if lh(E) ≤ sup(iME “(κ+,M

E ). If E is
short, then all its interesting measures concentrate on the critical point. When E is short, iME
is continuous at κ+,M , and if M is a premouse, then dom(E) = M |κ+,M

E . In this paper, we shall
deal almost exclusively with short extenders.

If we start with j : M → N with critical point κ, and an ordinal ν such that κ < ν ≤ o(N),
then for a ∈ [ν]<ω we let µa be the least µ such that a ⊆ j(µ), and for X ⊆ [µa]

|a| in M , we put

(a,X) ∈ Ej ⇐⇒ a ∈ j(X).

Ej is an extender over M , called the (κ, ν)-extender derived from j. We have the diagram

M N

Ult0(M,Ej)

j

ki

where i = iMEj , and
k(i(f)(a)) = j(f)(a).

9



k � ν is the identity. If E is an extender over M , then E is derived from iME .
The Jensen completion of a short extender E over some M is the (κE, i

M
E (κ+,M

E ) extender
derived from iME . E and its Jensen completion E∗ are equivalent, in that ν(E) = ν(E∗), and
E = E∗ � lh(E).

2.2 Pure extender premice

Inner model theory deals with canonical objects, but inner model theorists have presented them
in various ways. Clearly we could vary the Lα[U ] hierarchy trivially, say by only allowing U to
be used as a predicate at limit ordinals, and we would get the same model. On the other hand,
if the stages at which U is used to define new sets code some random set, we get a random
model, not a canonical one.

When constructing a model of the form L[ ~E] for ~E a sequence of extenders, we need a rule
that specifies at what stages the information in the next extender can be added. The rule itself
should not contribute random information. There are two principal such indexing schemes,
ms-indexing (as in [21]) and λ-indexing (as in [12]). The essential equivalence of these two
schemes has been carefully demonstrated by Fuchs in [8] and [9]. We shall use λ-indexing here.

The possibility of different indexing schemes may cast doubt on the claim that these models
are canonical. The comparison lemma is what answers such doubts in general. One only directly
compares premice of some fixed type, it is true. But as we shall see, one corollary of comparison
is that all reals in such mice are absolutely ordinal definable in some way. For example, if M
is the minimal iterable proper class premouse with one Woodin cardinal, in whatever sense of
premouse we have developed, then R ∩M will be the set of reals that are ∆1

3 in a countable
ordinal. This can be seen on very general, abstract grounds from the prewellordering of inner
model operators.12 More generally, so long as the witnesses to iterability for countable mice are
uB sets of reals, as they are anywhere we have a theory now, the reals of M will be an initial
segment of the reals that are (Σ2

1)uB in a countable ordinal. This is a reason to believe that any
two notions of mice that reach equally far must lead to intertranslatable hierarchies, at least
insofar as mice defining new reals are concerned.

It is of course possible for a premouse notion (indexing scheme) to be restrictive. In fact, at
present they all are. The restriction in the notion we are about to define is that all extenders
on the coherent sequence of M must be short. As a consequence, such M cannot satisfy “there
is a κ such that κ is κ+ supercompact”. They can get close to that; for example, they can have
subcompact cardinals.

The reader should see [48] for further details on the following definition. A potential pure
extender premouse is an acceptable J-structure

M = 〈J ~E
α ,∈, ~E, γ, F 〉

with various properties. o(M) = OR∩M = ωα. The language L0 of M has ∈, predicate symbols
Ė and Ḟ , and a constant symbol γ̇. We call L0 the language of (pure extender) premice.

12See [39].
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If M is a potential pure extender premouse, then ĖM is a sequence of extenders, and either
ḞM is empty (i.e. M is passive), or ḞM codes a new extender being added to our model by M .
The main requirements are

(1) (λ-indexing) If F = ḞM is nonempty (i.e., M is active), then M |= crit(F )+ exists, and
for µ = crit(F )+,M , o(M) = iMF (µ) = lh(F ). ḞM is just the graph of iMF � (M |µ).

(2) (Coherence) iMF (ĖM) � o(M) + 1 = (ĖM)_〈∅〉.

(3) (Initial segment condition, J-ISC) If G is a whole proper initial segment of F , then the
Jensen completion of G must appear in ĖM . If there is a largest whole proper initial
segment, then γ̇M is the index of its Jensen completion in ĖM . Otherwise, γ̇M = 0.

(4) (Weak ms-ISC) Whenever E is an extender on the M -sequence with critical point κ and
F is the Jensen completion of E{κ}, then F is on the sequence of M | lh(E).

(5) If N is a proper initial segment of M , then N is a potential premouse.

Here an initial segment G = F � η of F is whole iff η = λG.
Since potential premice are acceptable J-structures, the basic fine structural notions apply

to them. We recall some of them in the next section. We then define a premouse as a potential
premouse all of whose proper initial segments are sound.

Figure 1 illustrates a common situation, one that occurs at successor steps in an iteration
tree, for example.

M

Ult0(M,E)

E

κ+

κ

λ
λ+

N

Ult0(N,E)

iNE

iME

iE

Figure 1: E is on the coherent sequence of M , κ = crit(E), and λ = λ(E). P (κ)M = P (κ)N =
dom(E), so Ult0(M,E) and Ult0(N,E) make sense. The ultrapowers agree with M below
lh(E), and with each other below lh(E) + 1.
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2.3 Projecta and cores

Fine structure theory relies on a careful analysis of the condensation properties of mice; that is,
of the extent to which Skolem hulls of a mouse M collapse to initial segments of M . Jensen’s
theory of projecta, standard parameters, and cores is the foundation for this analysis. The fact
that we are allowing partial extenders on our coherent sequence leads to models whose levels are
all sound; roughly speaking, any level M is the Σk hull of its k-th projectum and k-th standard
parameter.13 This leads to a fine structure much closer to that of L; for example, every subset
of κ in M is constructed at a level of M -cardinality κ, so the GCH is immediate.

The comparison of iteration strategies is much easier to describe if we depart slightly from
the usual notions of cores and soundness. We call this mildly new fine structure the projectum-
free spaces fine structure, because one of its main features is that no projectum of a premouse
M is the critical point of an extender on the M -sequence. We call the corresponding premice
pfs premice.

This change to the standard fine structure is something between a necessity and a great
convenience when it comes to the construction of iteration strategies that are nice enough to
be compared with one another. Nevertheless, the new premice are intertranslatable with the
standard ones, and the main new ideas in the strategy comparison proof lie elsewhere, so we
shall go quickly. The reader can find a full account of the projectum-free spaces fine structure
in [35].

Some terminology from [11]: for any acceptable J-structure (N,B)14

ρ1(N,B) = least α s.t. ∃A ⊂ α(A ∈ Σ
(N,B)
1 ∧ A /∈ N),

p1(N,B) = first standard parameter of (N,B)

= lex-least descending sequence of ordinals r such that

∃A ⊆ ρ1(N,B)(A /∈ N ∧ A is Σ
(N,B)
1 definable from r.).

We allow ρ1(N,B) = o(N) and p1(N,B) = ∅.
Premice are acceptable J-structures, and the key to their fine structure is that if they are

sufficiently iterable, then their standard parameters are solid and universal.

Definition 2.2. Let M = (N,B) be an acceptable J-structure, and r ∈ [o(N)]<ω; then

Wα,r
M = cHullM1 (α ∪ r \ (α + 1)).

We call Wα,r
M the standard solidity witness for r at α. We say r is solid over M iff all its

standard solidity witnesses belong to M .15

13If κ = crit(U), then 0] is Σ1 definable over Lκ+1[U ] and not in Lκ+1[U ] = Lκ+1. So the first projectum of
Lκ+1[U ] is ω, and hence Lκ+1[U ] is not sound. Its core is essentially equivalent to 0].

14It is enough for us to consider the case that N is a potential premouse and B is amenable to N .
15HullM1 (X) = {a ∈M | {a} is ΣM1 in parameters from X}. “cHull” stands for the transitive collapse of the

hull in question.
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Definition 2.3. Let M = (N,B) be an acceptable J-structure, and r ∈ [o(N)]<ω. We say that
r is universal over M if for ρ = ρ1(M) and W = W ρ,r

M ,

(a) M |ρ+,M = W |ρ+,W , and

(b) for any A ⊆ ρ, A is boldface ΣM
1 iff A is boldface ΣW

1 .

It is easy to see that there is at most one parameter r ∈ [o(M)]<ω that is both solid and
universal over M .16

Now let M be a potential premouse. We set ρ0(M) = o(M), p0(M) = ∅, C0(M) = M , and
say that M is 0-sound. Moving on to level 1, let

ρ1 = ρ1(M),

p1 = p1(M),

C̄1 = cHullM1 (ρ1 ∪ {p1}),

and

C1 = cHullM1 (ρ1 ∪ {p1, ρ1}).

C1 is the 1-core of M . C̄1 is the hull that is taken in the usual theory; we call it the strong
1-core of M .

Let σ : C̄1 →M and π : C1 →M be the anticollapse maps, and p̄1 = σ−1(p1). We call π the
anticore map. We say that M is parameter solid if p1 is solid and universal over M and p̄1 is
solid and universal over C̄1. We say that M is projectum solid iff ρ1 is not measurable by the
M -sequence, and either

C1 = C̄1,

or

C1 = Ult0(C̄1, D)

where D is the order zero measure of C̄1 on ρ1, and

σ = π ◦ iD.

We say that M is 1-solid iff M is parameter solid and projectum solid. We say that M is
1-sound iff M is 1-solid and M = C1(M).

Let τ = π−1 ◦ σ, so that either τ is the identity, or τ = iD for D the order zero measure of
C̄1 on ρ1. Using the elementarity of τ , we see that τ(p̄1) = p1(C1), and hence p1(C1) is solid

16Suppose r and s were distinct such parameters, and let α be largest in r4s. Suppose α ∈ r; then for
ρ = ρ1(M), one can compute W ρ,s from Wα,r, so W ρ,s ∈M , contrary to the universality of s.
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and universal over C1.17 Since π(ρ1) = ρ1, ρ1 is not measurable by the C1-sequence. Thus if M
is 1-solid, then C1(M) is 1-sound.

If M is 1-sound, then its is coded by (M ||ρ1, A
1), where M ||ρ1 is the initial segment of M

of height ρ1 and

A1 = {〈ϕ, b〉 | ϕ is Σ1 ∧ b ∈M ||ρ1 ∧M |= ϕ[b, η1, ρ1, p1]},

where η1 is the ΣM
1 cofinality of ρ1.18 We then set

M1 = (M ||ρ1, A
1),

ρ2 = ρ1(M1),

p2 = p1(M1),

and go on to define the 2-core C2 and strong 2-core C̄2 of M . M is 2-solid if these behave well
in a fashion analogous to 1-solidity, with the additional requirement that if ρ2 ≤ η1, then η1 is
not measurable by the M -sequence.19 M is 2-sound iff M is 2-solid and M = C2(M).

If M is 2-sound, then we go on to define ρ3(M), p3(M), and the 3-cores C3 and C̄3. And so
on. In general, we have

Mk = (M ||ρk, Ak),
Ck(M) = decoding of Mk,

ρk+1 = ρ1(Mk), and

pk+1 = p1(Mk),

where Ak is the ΣMk−1

1 theory of parameters in ρk ∪ {ηk, ρk, pk}, for ηk the ΣMk−1

1 cofinality of
ρk.

20 We call Mk the k-th reduct of M .

Definition 2.4. A pfs premouse is a pair M = (M̂, k) such that M̂ is a potential pfs premouse,
and

(a) M̂ is k-sound,

(b) whenever P is an initial segment of M̂ such that o(P ) < o(M̂), then P is an ω-sound
potential pfs premouse.

We write k(M) = k, say that M̂ is the bare premouse associated to N , and identify M̂ with M
when context permits.

17If b is a solidity witness for p̄1, then τ(b) is a generalized solidity witness for p1. See [48].
18A1 has distinguished names for η1, ρ1, and p1. Since η1 ≤ ρ1, we don’t need this name to decode M , but

by including it, we guarantee that η1 is in the hull that collapses to C2.
19This additional requirement helps insure that iteration maps preserve ρ1.
20Again, Ak has distinguished names for ηk, ρk, pk, so they are automatically put into the hull that collapses

to Ck+1(M).
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The convention that each premouse has a distinguished degree of soundness is due to Itay
Neeman. It is useful for simplifying statements about premice, while retaining precision. In
this vein:

Definition 2.5. Let M be a pfs premouse and k = k(M); then

ρ−(M) = ρk(M),

ρ(M) = ρk+1(M),

and

C(M) = Ck+1(M).

We call ρ(M) and C(M) the projectum and core of M . We say that M is solid iff M is k+1-solid,
M is sound iff M is k + 1-sound. We let M ↓ n = (M̂, n), and M− = M ↓ k − 1.

Definition 2.6. Let M and N be pfs premice, π : M → N , and k = k(M) = k(N), and
σ = π �Mk.

(1) π is nearly elementary iff σ is Σ0 elementary and cardinal preserving as a map from Mk

to Nk, and π is the decoding of σ.21

(2) π is elementary iff in addition, σ is Σ1 elementary as a map from Mk to Nk.

(3) π is exact iff π(ηi(M)) = ηi(N) and π(ρi(M) = ρi(N) for all i ≤ k.22

The ultrapower and iteration maps we consider are all elementary and exact. Nearly ele-
mentary maps come up when we consider factor embeddings from one ultrapower to another
that uses a larger class of functions.

When the fine structure of M becomes relevant, the special case that k(M) = 0 is very
often representative of the general one. In this special case, a map π : M → N is elementary
iff it is Σ1 elementary, and nearly elementary iff it is Σ0 elementary and cardinal preserving.
Exactness follows from our convention that π(o(M)) = o(N).

We often identify M with M̂ . Abusing notation this way, if M is a premouse, then we set
o(M) = OR ∩M , so that o(M) = ωα for M = (JAα , ...). We write ô(M) for α itself. The index
of M is

l(M) = 〈ô(M), k(M)〉.
If 〈ν, l〉 ≤lex l(M), then M |〈ν, l〉 is the initial segment N of M with index l(N) = 〈ν, l〉. (So
ĖN = ĖM ∩N, and when ν < ô(M), ḞN = ĖM

ων .) If ν ≤ ô(M), then we write M |ν for M |〈ν, 0〉.
We write M ||ν for the structure that agrees with M |ν except possibly on the interpretation of
Ḟ , and satisfies ḞM ||ν = ∅. By convention, k(M ||ν) = 0.23

21Meaning that π ◦ h = g ◦ σ for h : Mk →M and g : Nk → N the natural surjections given by k-soundness.
22We adopt the convention that π(o(M)) = o(N) here and in what follows.
23Many authors, for example [48], reverse the meanings of M |ν and M ||ν. We find it more logical to let M ||ν

stand for cutting M twice, first to M |ν, and then again by throwing away the top extender.

15



Definition 2.7. If P and Q are pfs premice, then

(i) P �Q iff there are µ and l such that P = Q|〈µ, l〉.

(ii) P �Q iff P �Q and P 6= Q.

If P �Q we say that P is an initial segment of Q, and if P �Q we say it is a proper initial
segment.

If M = (M̂, k) is a premouse, then its extender sequence is ĖM = ĖM̂ together with a last

(or top) extender ḞM = Ḟ M̂ .

2.4 Iteration trees

Strategy comparison also leads us to consider iteration strategies defined on a slightly larger
class of iteration trees than is usual. We call these iteration trees plus trees.

Definition 2.8. Let M be a pfs premouse, and E be an extender on the M -sequence; then

(1) E+ is the extender with generators λE ∪ {λE} that represents i
Ult(M,E)
F ◦ iME , where F is

the order zero total measure on λE in Ult(M,E),

(2) λ̂(E+) = λE, and

(3) lh(E+) = lh(E).

Definition 2.9. G is of plus type iff G = E+, for some extender E that is on the sequence
of a pfs premouse M . In this case, we let G− = E. The extended M-sequence consists of all
extenders E such that either E or E− is on the M -sequence.

We wish to consider iteration trees that are allowed to use extenders of the form E+, where
E is on the coherent sequence of the current model. To unify notation, if E is an extender on
the sequence of some premouse, let us set λ̂(E) = λ(E) = λ̂(E+) and E− = E.

Definition 2.10. Let M be a pfs premouse; then a plus tree on M is a system T = 〈T, 〈Eα |
α + 1 < lh(T )〉〉 such that there are Mα and iα,β and D satisfying:

(1) M0 = M , and T is a tree order;

(2) if α + 1 < lh(T ), then Eα is on the extended M -sequence, and

(a) if ξ < α, then λ̂(Eξ) ≤ λ̂(Eα), and

(b) if ξ < α and Eξ is of plus type, then lh(Eξ) < λ̂(Eα);

(3) if α + 1 < lh(T ), then letting β be least such that either β = α, or crit(Eα) < λ̂(Eβ),

(a) T -pred(α + 1) = β,
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(b) Mα+1 = Ult(M∗
α+1, Eα), for M∗

α+1 the shortest initial segment N of Mβ such that
ρ(N) ≤ crit(Eα), if one exists, and M∗

α+1 = Mβ otherwise,

(c) α + 1 ∈ D iff M∗
α+1 6= Mβ

(d) ı̂β,α+1 = i∗α+1 : M∗
α+1 →Mα+1 is the canonical embedding, and

(e) if ξ ≤T β, then ı̂ξ,α+1 = ı̂β,α+1 ◦ ı̂ξ,β.

(4) if λ < lh(T ) is a limit ordinal, then D ∩ [0, λ)T is finite, and Mλ is the direct limit of the
Mα for α <T λ under the ı̂Tα,η; moreover λ /∈ D.

Here we have extended the standard notation slightly, in that dom(̂ıα,β) �Mα is possible.
This happens if D ∩ (α, β]T 6= ∅.

It may seem that clause (3) of 2.10 allows generators to move along branches of T . The
whole point of iteration trees is that we want to avoid that, so that comparisons making use of
them will terminate. The worry would be the case that β = ξ + 1, where Eξ = F+ for some F ,

so that λ̂(Eξ) = λF . But in this case, the only important generators of Eξ are in λF ∪ {λF}.
Clause (3) requires that generators below λF = λ̂(Eξ) are not moved. λF itself has no total
measures in Mβ, and hence in Mα. There are no partial extenders on the sequence of Mα with
critical point λF because the proper initial segments of Mα are projectum solid. Thus Eα is not
moving any important generators of Eξ. It is quite possible that crit(Eα) < λ(Eξ), however.

The ultrapower referred to in (3)(b) is formed as follows. Given P a pfs premouse, k =
k(P ), and E an extender over P with crit(E) < ρk(P ), then we can form the Σ0 ultrapower
N = Ult0(P k, E), then decode it to some Q. We say that Q = Ult(P,E).

If Q is wellfounded and the canonical embedding iPE is continuous at ρk(P ), then Q is a pfs
premouse, and iPE is elementary. No first order condition will guarantee wellfoundedness, but
the continuity of iPE does follow from a first order condition:

Definition 2.11. Let M be a pfs premouse and k = k(M); then M is projectum stable iff
k = 0, or the (Σ1)M

k−1
cofinality of ρk(M) is not the critical point of an M -total extender on

the M -sequence.

When the base model of a plus tree is projectum stable, then its models are all pfs premice,
and its branch embeddings are elementary and exact.

Lemma 2.12. Let M be a projectum stable pfs premouse, and let T be a plus tree on M ; then

(i) all MT
α are pfs premice,

(ii) all branch embeddings are elementary and exact,

(iii) whenever α + 1 ∈ DT , then M∗
α+1 is sound, and

(iv) if α+1 ∈ DT , α+1 ≤T β, and DT ∩(α+1, β]T = ∅, then M∗
α+1 = C(Mβ)− and iα+1,β◦i∗,Tα+1

is the anticore map.
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We have defined projectum stability in order to be able to state our comparison theorem
correctly, but it is the sort of fine structural complication that is best ignored on a first reading.
If k(M) = 0, then M is projectum stable, and if ρk(M)(M) = ω, then M is projectum stable.

Plus trees are not necessarily length increasing. We say the plus case occurs at α iff Eα is
of plus type.

Definition 2.13. Let T be a plus tree on M ; then

(a) T is normal (or length-increasing) iff whenever α < β < lh(T )−1, then lh(ETα ) < lh(ETβ ),

(b) T is λ-tight iff for all α + 1 < lh(T ), ETα is not of plus type, and

(c) T is λ-separated iff for all α + 1 < lh(T ), ETα is of plus type.

One can re-organize any plus tree T as a λ-tight tree U in a fairly straightforward way, but
this reduction is not useful until we have have shown that the iteration strategies we define
treat T and U the same way. That is a consequence of strategy comparison, so the reduction is
useless in the comparison proof itself. In fact, our initial results on the good behavior of iteration
strategies apply at the other extreme, to their restrictions to λ-separated trees. Notice that
λ-separated trees are normal, by (2)(b) of 2.10. Every extender E used in a λ-separated tree
has a largest generator, and this helps in the comparison proof.

The agreement between models in a normal plus tree is given by

Lemma 2.14. Let U be a normal plus tree, Mα =MU
α , and Eα = EUα ; then for α < β < lh(U),

(1) Mα|| lh(Eα)) = Mβ| lh(Eα),

(2) lh(Eα) is a cardinal of Mβ, so Mα| lh(Eα) 6= Mβ| lh(Eα), and

(3) if α + 1 ≤T β, then lh(Eα) ≤ ρ−(Mβ).

Part (3) is easy to prove by induction. It comes down to the fact that if Ult(M,E) exists,
then ρ−(Ult(M,E)) = sup iE“ρ−(M).

Figure 2 shows how the agreement of models in a normal iteration tree is propagated when
the tree is augmented by one new extender. (Figures like this were first drawn by Itay Neeman.)

The agreement of models in an arbitrary plus tree is a bit awkward to state. It is easy to see
that any plus tree T breaks up into disjoint maximal finite intervals in which the exit extenders
have strictly decreasing length. That is, lh(T ) can be partitioned into intervals [α, α+n], where
0 ≤ n < ω, such that

(i) for all β < α, lh(Eβ) < lh(Eα),

(ii) for all i < n, Eα+i is not of plus type, and λ̂(Eα+i) ≤ λ̂(Eα+i+1) < lh(Eα+i+1) < lh(Eα+i),
and

(iii) lh(Eα+n) < λ̂(Eα+n+1), or α + n+ 1 = lh(T ).
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0 β α α + 1

µ
λ(Eβ)

µ

F
lh(Eβ)

T

Figure 2: A normal tree T , extended normally by F . The vertical lines represent the models,
and the horizontal ones represent their levels of agreement. crit(F ) = µ, and β is least such
that µ < λ(ETβ ). The arrow at the bottom represents the ultrapower embedding generated by
F .

Of course n = 0 is possible. Part (iii) implies lh(Eα+n) < λ̂(Eβ) for all β > α + n. Part (ii) is
justified by clause (2)(b) in Definition 2.10. We call [α, α + n] a maximal delay interval, and
we say that α + n ends a delay interval.

It may seem pointless to allow decreasing lengths, because given a maximal delay interval
[α, α + n], we could have just skipped using Eα, ..., Eα+n−1, and taken Eα+n out of MT

α to
continue the iteration. Doing this everywhere would produce a normal iteration tree S with the
same last model as T , differing only in that the nontrivial delay intervals in T are eliminated.
We call S the normal companion of T .

So why bother with T , why not just use its normal companion? The answer is that we
shall be considering trees by some iteration strategy Σ. It may happen that T is by Σ, but
its normal companion is not. In the strategy-comparison proof, we have to live with the
possibility that this happens when Σ is a background-induced strategy, as in §7. One can show
that background-induced strategies are not pathological in this way, but the proof involves a
strategy comparison.

Nevertheless, the reader will lose little by restricting his attention to normal plus trees.

3 Iteration strategies and comparison

What qualifies a premouse as a mouse, comparable with others of its kind, is an iteration
strategy.

Let M be a premouse. G+(M, θ) is the game of length θ in which I and II cooperate to
produce a plus tree T on M . Given T � α+1 with last modelMT

α , player I chooses E from the
extended sequence of MT

α such that E meets the requirements (2) of Definition 2.10, and sets
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ETα = E. The rules for plus trees then determine T � α+ 2, and I wins if its last model MT
α+1

is illfounded. At limit steps λ II must pick a branch b that is cofinal in λ such that the direct
limit MT

b along b is wellfounded. If he does so, then MT
λ =MT

b and T � λ + 1 = T _b. If he
fails to do so, then I wins. If II manages to stay in the category of wellfounded models for θ
rounds, then he wins. See [38], where the corresponding game is called Gk(M, θ), for k = k(M).
A θ-iteration strategy for M is a winning strategy for II in G+(M, θ).

The following comparison lemma is essentially Theorem 3.11 of [38].

Theorem 3.1. Let P and Q be projectum stable premice of size ≤ θ, and suppose Σ and Ψ are
θ+ + 1-iteration strategies for P and Q respectively; then there are normal, λ-tight plus trees T
by Σ and U by Ψ of size θ, with last models R and S, such that either

(a) R� S, and P -to-R does not drop, or

(b) S �R, and Q-to-S does not drop.

Proof. (Sketch.) We build T and U inductively, by “iterating away the least disagreement” at
successor steps, and using our iteration strategies at limit steps. At step α we have Tα and Uα
with last models Pα and Qα respectively. We begin with P0 = P , Q0 = Q, and T0 = U0 being
the empty tree. At step α + 1, let

γ = least β such that Pα|β 6= Qα|β.

If there is no such β, the comparison is complete. Otherwise, let

Tα+1 = T _α 〈ĖPα
γ 〉, and

Uα+1 = U_α 〈ĖQα
γ 〉.

Here S_〈E〉 stands for the unique normal extension of S whose last extender used is E, with
the understanding that S_〈E〉 = S if E = ∅. At limit steps we let Tλ be

⋃
α<λ Tα, extended

by the branch Σ(
⋃
α<λ Tα) if this tree has limit length. Similarly on the U side.

We claim that the comparison is complete at some stage α < θ. For suppose not, and let
T = Tθ++1 and U = Uθ++1 be the normal trees of length θ+ + 1 that result. Let π : H → Vξ be
elementary, where ξ is large, everything relevant is in ran(π), H is transitive, and θ < crit(π) <
θ+. Let α = crit(π). We have π(〈P,Q〉) = 〈P,Q〉 and π(α) = θ+, and it is not hard to see that

π(T � α + 1) = T ,
π(U � α + 1) = U ,

and

π �MT
α = iTα,θ+ ,

π �MU
α = iUα,θ+ .
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Also,

P (α)M
T
α = P (α)M

T
θ+ = P (α)M

U
θ+ = P (α)M

U
α .

Thus π, iTα,θ+ , and iUα,θ+ all generate the same (α, θ+)-extender; call it G. Let E be the first
extender used in T along the branch [α, θ+]T , and F the first extender used in U along [α, θ+]U .

Because generators are not moved, E is an initial segment of G. That is, for x ⊆ crit(E) in
Mα and a ⊆ λE finite, and letting E = ETγ ,

x ∈ Ea ⇔ a ∈ iE(x)

⇔ a ∈ iγ+1,θ+ ◦ iE(x)

⇔ a ∈ iα,θ+(x)

⇔ x ∈ Ga.

Line 2 follows from line 1 because a ∈ [λE]<ω and crit(iTγ+1,θ+) ≥ λE.24 By the Jensen initial
segment condition, E is then the first whole initial segment of G that is not on the sequence of
the common lined up part N =MT

θ+|θ+ =MU
θ+|θ+. For the same reasons, F is the first whole

initial segment of G that is not on the N -sequence. Thus E = F . Since lh(E) = lh(F ), they
were used at the same stage in the comparison. But we were iterating away disagreements, so
E 6= F , contradiction.

This gives us T = Tα and U = Uα with last models R and S such that R � S or S � R. If
R � S, then R is sound, and therefore by 2.12(iv)(a) the branch P -to-R did not drop, so we
have conclusion (a). Similarly, if S �R we get conclusion (b). Thus we may assume R = S. It
is now enough to show that one of the two branches P -to-R and Q-to-S did not drop. Assume
otherwise, and let

C = C(R) = C(S)

be the core, and π the anticore map. By 2.12(iv)(a), C occurs on both branches, and π is the
iteration map of both the branch C-to-R of T , and the the branch C-to-S of U . But as in the
termination proof, this means the first extenders used in these two branches are the same, a
contradiction.

Notice that although the successful comparison only involves trees of size θ, we really did
need θ+ +1-iterability to show that it exists. In particular, to compare countable mice, we need
ω1 + 1-iterability.

Corollary 3.2. Let M and N be countably iterable premice such that ρ−(M) = ρ−(N) = ω;
then either M �N or N �M .

Proof. M and N are projectum stable, so 3.1 applies. Let T on M with last model R and U
on N with last model S be as in 3.1, and suppose without loss of generality that R � S and
M -to-R does not drop. Since ρ−(M) = ω, it is impossible to take an ultrapower of M without
dropping, so T is empty and M = R. It is enough to show that U is also empty. But otherwise,

24This is why it is important that the generators of an extender used in T are not moved by extenders used
later on the same branch.
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N -to-S must drop, and letting C = C(S), the last drop is to C, and the anticore map π : C → S
is the same as the branch embedding of U .25 We have

ρ−(M) = ω < crit(π) < ρ−(C) ≤ ρ−(S),

so if M̂ = Ŝ, then k(S) < k(M), contrary to M � S. Thus M̂ 6= Ŝ, which implies that
M ∈ S. But this means M � S|ωS1 . Since S|ωS1 = C|ωC1 , we get that M � C, so M �MU

γ for
γ = U -pred(α + 1), so the comparison was over before we reached S, contradiction.

Corollary 3.3. Let M and N be countably iterable premice such that ρ−(M) = ρ−(N) = ω
and o(M) = o(N); then M = N . Thus M is ordinal definable from o(M).

Corollary 3.4. Let M be a countably iterable premouse; and x ∈ P (ω) ∩M ; then x is ordinal
definable.

Proof. Let α be least such that x is definable over M |α; then ρk(M |α) = ω for some k, so M |α
is ordinal definable, so x is ordinal definable.

We have called Theorem 3.1 a comparison lemma, but it has a clear defect in that regard.
We have not compared all the data. How M and N compare could depend on which iteration
strategies for them are used in making the comparison.26 Because of this, 3.1 does not lead to
a mouse order on the mice to which it applies.

A full comparison process would compare all the data; not just the mice, but also their
iteration strategies. The field of the mouse order would then consist of pairs (M,Σ) such that
Σ is an iteration strategy for M . This is where we are headed, but first we need to record
some regularity properties of iteration strategies that make comparing them possible. These
properties are byproducts of the known proofs of iterabilty; moreover, assuming AD+, every
countable mouse has an iteration strategy with these properties. We shall then define a pure
extender pair as a pair (M,Σ) such that Σ is an iteration strategy for M having the regularity
properties we have isolated. Theorem 6.2 is a comparison lemma for pure extender pairs.

By Corollary 3.2, how sound mice projecting to ω compare is independent of their iteration
strategies, and there is a well defined mouse order on them, namely, M ≤∗ N iff M � N . In
fact, if M is a sound mouse projecting to ω, then there is exactly one iteration strategy Σ for
M27; moreover Σ has the properties that make (M,Σ) a pure extender pair. If M �N and Ψ
is an iteration strategy for N , then Σ is just the restriction of Ψ to iteration trees that drop to
an initial segment of M along every branch. So (M,Σ)� (N,Ψ) in a natural sense. Thus in the
case of mice projecting to ω, the comparison lemma for pure extender pairs has already been
proved. It follows from the uniqueness of their iteration strategies, and no iteration is needed
in order to compare them.

25In other words, π = iUα+1,β ◦ i
∗,U
α+1, where C =M∗,Uα+1 and S =MUβ .

26There are examples of this in [35].
27This follows from Theorem 4.11 of [38], and the fact that any iteration strategy for a pointwise definable

M has the Weak Dodd-Jensen property with respect to all enumerations of M .

22



4 Universally Baire iteration strategies

The reals belonging to mice are not just ordinal definable, they are ordinal definable in a
generically absolute way. This shows up in the way that the iteration strategies that witness
their ordinal definability are constructed. The direct proofs of iterability only produce branches
for countable iteration trees, even in the realm of linear iterations. Yet ω1 + 1-iterability is the
minimal useful kind of iterability; for example, it is the kind needed to compare countable
premice. All known proofs of ω1 + 1-iterability involve at some point producing an ω1-strategy
Σ, and showing that Σ is sufficiently absolutely definable that one can extend it to an ω1 + 1
strategy. Here is a simple proposition in this vein.

Proposition 4.1. Assume AD, and let Σ be an ω1-iteration strategy for a countable premouse
M ; then Σ can be extended to an ω1 + 1 strategy for M .

Proof. Let T be a normal tree of length ω1 on M that is played by Σ. It will suffice to
show T has a cofinal, wellfounded branch. But let j : V → N with crit(j) = ω1 witness the
measurability of ω1. The pair 〈T ,M〉 can be coded by a set of ordinals A, and Los’s Theorem
holds for ultrapowers of wellordered structures, so j : L[A]→ L[j(A)] is elementary. It follows
that j(T ) is an iteration tree on M , T = j(T ) � ω1, and ω1 < lh(j(T )). But this implies that
[0, ω1)j(T ) is a cofinal, wellfounded branch of T .

In 4.1 the absolute definability of Σ is manifested in its membership in a model of AD. In
some contexts, absolute definability has to be more finely calibrated, and a model of some frag-
ment of AD that contains Σ constructed along with Σ. This leads into the core model induction
method, our most all-purpose method for constructing mice and their iteration strategies.28 In
this paper, we shall avoid such difficulties by simply working in models of AD, and considering
the comparison and mouse existence problems there. In fact, we shall usually work in the the-
ory ZF + AD+.29 In that context it is natural to focus on countable premice, and ω1-iteration
strategies for them. That is what we shall do.

Proposition 4.1 and its refinements stand at a key junction in inner model theory. They
constitute one of the main reasons inner model theory and descriptive set theory have become
so entangled in the years since we discovered iteration trees.

Corollary 3.4 and the proposition imply

Corollary 4.2. Assume AD, and let M be an ω1-iterable premouse; then every real in M is Σ2
1

in a countable ordinal.

The converse of Corollary 4.2 holds in L(R), that is, every ordinal definable real belongs
to a mouse. (In L(R), a real is OD iff it is Σ2

1 in a countable ordinal.) In fact, we can say
something about how the large cardinal properties of the mice match up with the levels of
ordinal definability they capture.

28See [27].
29AD+ is a technical strengthening of AD that was isolated by Woodin. If A is uB and there are infinitely

many Woodin cardinals with a measurable above them all, then L(A,R) |= AD+ + V = L(P (R)). See [40].
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Definition 4.3. Let n ≤ ω; then M ]
n is the minimal countably iterable, sound, active premouse

satisfying “there are n Woodin cardinals”. Mn is the result of iterating the last extender of Mn

through the ordinals.

Thus Mn is the canonical minimal proper class extender model with n Woodins, and M ]
n is

its sharp. M0 = L. The basic theory of these and somewhat larger extender models with many
Woodin cardinals was developed by Martin, Mitchell, and Steel in [18] and [21]. See also [38].
The optimal correctness results for these models were established by Woodin, using genericity
iterations and the extender algebra. This led to the following mouse capturing theorem for
L(R).

Theorem 4.4 (Martin, Mitchell, Steel, Woodin 1985-1990). Suppose there are ω Woodin car-
dinal, plus a measurable cardinal above them all; then

(1) for any n < ω,

(a) R ∩Mn = {x | x is ∆1
n+2 in a countable ordinal}, and

(b) Mn |= “R has a ∆1
n+2 wellorder.

(2) (a) R ∩Mω = {x ∈ R | x is ODL(R)}, and

(b) Mω |= “R has an ODL(R) wellorder”.

The upper bounds on the definability of the reals in mice in this theorem are refinements of
Corollary 3.4 obtained by putting an upper bound on the complexity of the relevant iteration
strateges. For example, let x ∈ R ∩Mω, and let N �Mω be such that x is definable over n
but x /∈ N . Because N projects to ω, its iteration strategy Σ is unique. Because N �Mω,
Σ∩HC ∈ L(R), so N is ω1-iterable in L(R). But ω1 is measurable in L(R), so N is ω1+1-iterable
in L(R). Applying Corollary 3.4 inside L(R), we see that x is ODL(R).

The reader should see [44] and [38, §7,§8] for a detailed account of the proof of Theorem
4.4.

What about pointclasses beyond L(R)? Does AD, or better AD+, imply that every real that
is Σ2

1 in a countable ordinal belongs to a mouse? If by “mouse” we mean simply the structures
we defined in §2, this is quite unlikely, because it is very likely that there is a minimal long
extender mouse, that is, a structure (M,F ) such that M is a short extender premouse of the
sort we defined in §2, F is a long extender, and (M,F ) has an ω1 iteration strategy in some
model of AD+. The first order theory of (M,F ) will be ∆2

1 in that model of AD+, but every
short extender mouse projecting to ω will be a proper initial segment of M .

There is as yet no general theory of mice with long extenders, but there is a theory for this
minimal one, and somewhat stronger mice. See [22] or [47] for more detail.

Definition 4.5. (ZF + AD+) Let Γ ⊆ P (R).

(a) Γ − NLE is the assertion that there is no ω1-iteration strategy Σ for a premouse (in the
sense of [22]) with a long extender on its sequence such that Code(Σ) ∈ Γ.
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(b) For x, y ∈ R, x is (Σ2
1)Γ in y and α iff there ia a formula ϕ such that x is the unique z

such that for some A ⊆ HC such that Code(A) ∈ Γ, (HC,∈, A) |= ϕ[z, y, α].

(c) Γ-mouse capturing (Γ−MC) is the statement: whenever x is (Σ2
1)Γ in y and a countable

ordinal, then there is a mouse M over y such that x ∈ M , and M has an ω1-iteration
strategy with code in Γ.

We write NLE for P (R)− NLE.

The appropriate converse to Corollary 4.2 is then the following small variation on the well-
known Mouse Set Conjecture.30

Mouse Set Conjecture: (MSC) Assume ZF+AD+, and let Γ be a strongly closed pointclass31;
then Γ− NLE implies Γ−MC.

The main open problems in inner model theory have to do with the existence of iteration
strategies. MSC and its counterpart HPC for strategy mice are good candidates for the most
important of them. HPC follows from MSC; we shall state it precisely in §9. It seems quite
unlikely that one could obtain inner models with superstrong cardinals from strong hypotheses
that do not directly imply the existence of large cardinals without proving HPC along the way.
Even granted consistency strength that is close to the surface, say the assumption that there
are supercompacts, it is plausible that the construction of iteration strategies for mice with
superstrongs will involve a proof of HPC, and perhaps also MSC.

MSC was identified as an important target in the late 1990s or early 2000s. Our comparison
lemma for iteration strategies has some consequences that are relevant to it. The simplest is

Theorem 4.6. ([36, 3.6]) Assume ZF+AD+, and that there is an ω1-iterable premouse with a
long extender on its sequence; then MSC holds.

This is pretty good evidence that MSC is true.
Mouse capturing localizes, in that if Γ1 and Γ2 are strongly closed and Γ1 ⊆ Γ2, then Γ2−MC

implies Γ1−MC. For this and other reasons, it is natural to try to prove MSC by induction on
the Wadge hierarchy. This has been done for Γ contained in the minimal model of ADR + “θ is
regular”, and somewhat beyond.32

Although the large cardinal pattern in M sometimes matches nicely its correctness and the
definabilty of its iteration strategies, this is not generally true. If MSC is to be proved by an
induction on the Wadge hierarchy, then the descriptive set theory associated to levels at which
new iteration strategies appear is more important than the first order properties of the mice.
One important consequence of our strategy comparison theorem is that these levels correspond
precisely to the Suslin cardinals in our model of AD+. This is shown in [36] and [?]..

30See [41, 0.1.2].
31That is, closed under complements, real quantification, and Wadge reducibility.
32See [23], [24], and [25].

25



5 Regularity properties of iteration strategies

For most of the rest of this paper, we shall be working in a model of ZF + AD+ and consid-
ering iteration strategies for countable premice. In this section we introduce three regularity
properties of such iteration strategies: normalizing well, strong hull condensation, and internal
lift consistency. Strategies with these properties can be compared with one another, and as a
consequence are well behaved in many other ways.

Strategy comparison applies to iteration strategies that act on stacks of plus trees. Let us
introduce the relevant terminology.

If λ is a limit ordinal, then G+(M,λ, θ) is the game in which the players play λ rounds, the
α-th round being a play of G+(N, θ), where N is an initial segment, chosen by I, of the direct
limit along the branch produced by the prior rounds. I moves at successor stages, by playing
an extender or starting a new round if he wishes.33 If the current round lasts θ moves, then
there are no further rounds, and the game is over.34

II picks branches at limit stages, and his obligation is just to insure all models are well-
founded, including the direct limit of the base models in the final stack of length λ. We say
that s is an M-stack of length α whose component plus trees have length < θ iff s is a position
in G+(M,λ, θ) that represents α completed rounds and is not yet a loss for II. A (λ, θ)-iteration
strategy for M is a winning strategy for II in G+(M,λ, θ), and M is (λ, θ)-iterable iff there is
such a strategy. See [38]. Clearly G+(M, 1, θ) = G+(M, θ).35

Definition 5.1. Let M be a premouse; then M is countably iterable iff every countable ele-
mentary submodel of M is (ω1, ω1 + 1)-iterable.

Countable iterability is what one needs to prove that M is well-behaved in a fine structural
sense; for example, that its standard parameter is solid and universal.

5.1 Tail strategies

Iterates of an iterable structure are iterable, via a tail strategy.

Definition 5.2. Let Ω be a winning strategy for II inG+(M,λ, θ), let s be anM -stack according
to Ω with lh(s) < λ, and let N = M∞(s)|〈ν, k〉 for some ν, k; then Ωs,N is the strategy for
G+(N, λ− lh(s), θ) given by:

Ωs,N(t) = Ω(s_〈N〉_t),
for all N -stacks t. We set Ωs = Ωs,M∞(s). For N �M , we let ΩN = Ω〈∅〉,N .

We are assuming here that the position s_〈N〉 includes the information that N is the base
model for a new round. There are other tails of Ω one might consider.

33For notational reasons, we allow I to move immediately from round α to round α+ 1, without playing any
extenders.

34Thus if M is countable, a position in G+(M,ω1, ω1) is a member of HC, and a strategy for it is a subset
of HC.

35Up to minor details in how they are presented.
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Our definitions so far allow the tails of an iteration strategy to be inconsistent with the
strategy itself; for example, one could have a strategy Ω for G+(M,λ, θ) such that Ω 6= ΩM .
One could have more subtle inconsistencies, for example, N �M and some normal T by both
ΩM and ΩN such that ΩM(T ) 6= ΩN(T ). The iteration strategies that we shall construct in §7
do not have such internal inconsistencies, and one basic task is to spell that out precisely and
prove it. For example,

Definition 5.3. Let Ω be a winning strategy for II in G+(M,λ, θ); then Ω is positional iff
whenever s and t are M -stacks by Ω of length < λ, and N �M∞(s) and N �M∞(t), then
Ωs,N = Ωt,N .

The background induced iteration strategies of §7 are positional. This is not at all clear
from their construction, but it is a consequence of strategy comparison, proved in [33].

5.2 Pullback strategies

Given an elementary π : M → N and a plus tree T on M , we can lift T to a copied tree πT
on N with the same tree order as T . The construction produces elementary copy maps

πα : Mα → Nα,

where Mα = MT
α and Nα = MπT

α . Let Eα = ETα and Fα = EπT
α . For any extender G, let

ε(G) = lh(G) if G has plus type, and ε(G) = λG otherwise. We show by induction that the
copy maps commute with the branch embeddings of T and πT , and agree with one another,
in that

(1) if β ≤ α, then πα � ε(Eβ) = πβ � ε(Eβ) and Nα|ε(Fβ) = Nβ|ε(Fβ), and

(2) if β ≤T α, then πα ◦ ı̂Tβ,α = ı̂Uβ,α ◦ πβ.

Set π0 = π. The successor step is as follows: let E = Eα, β = T -pred(α + 1), and

F = πα(E),

P =M∗,T
α+1,

Q = πβ(P ).

Here if E = G+, where G is on the Mα sequence, then πα(E) = πα(G)+.36 The agreement
between πα and πβ implies that β is least such that crit(F ) < λ̂(Fβ), and λ̂(Fξ) ≤ λ̂(F ) for all

ξ < α, with lh(Fξ) < λ̂(F ) if Fξ has plus type. We set Fα = F , and for k = k(P ), let

πα+1 : Ultk(P,E)→ Ultk(Q,F )

36If G = ḞMα then πα(G) = ḞNα .
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be the completion of the map

πα+1([a, f ]P
k

E ) = [πα(a), πβ(f)]Q
k

F ,

for a ∈ [ε(E)]<ω. One can show that πT is still a plus tree, that πα+1 is well defined and
elementary, and that the induction hypotheses (1) and (2) still hold.37

Since the copy maps commute with the branch embeddings, at limit steps λ we have a
unique elementary πλ : Mλ → Nλ that commutes with the branch embeddings of T and πT
along [0, λ)T . It is easy to check (1) and (2).

If πT ever reaches an illfounded model, we stop the construction.
We can copy stacks of plus trees by successively copying the individual plus trees in the

stack. For example, if s = 〈T ,U〉, then πs = 〈πT , σU〉, where σ is the last copy map in the πT
system.

Definition 5.4. If Ω is an iteration strategy for N , and π : M → N is elementary, then Ωπ is
the pullback strategy for M , given by

Ωπ(s) = Ω(πs),

for all s such that πs ∈ dom(Ω).

If Ω is a (λ, θ)-iteration strategy for N , then Ωπ is a (λ, θ) iteration strategy for M . Thus
every elementary submodel of a mouse is also a mouse.

5.3 Internal lift consistency

If Q�N , then iteration trees on Q can be lifted to trees on N . More generally, given

π : M → Q�N

such that π is nearly elementary as a map from M to Q, and a plus tree T on M , we can lift
T to a plus tree U = πT + on N in a natural way. U will have the same tree order as T , so
long as it is defined. Let Mα and Nα be the α-th models of T and U , and Eα and Fα the α-th
extenders. We shall have a nearly elementary

πα : Mα → Qα �Nα.

Here π0 = π and Q0 = Q. We have agreement and commutativity conditions like those above.
Drops in T of more than one degree will cause corresponding drops in U . Drops of one degree
may not. U may drop where T does not.

37See [35]. The fine structural parts take more work than one might expect. It is possible, and sometimes
necessary, to copy under maps π that are only nearly elementary. In that case πT may not literally be a plus
tree, because it may sometimes take a k-ultrapower when it could have taken a k + 1-ultrapower.
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The successor step is the following. We are given Eα on Mα; set Fα = πα(Eα). Let
β = T -pred(α + 1); then one can show that β = U -pred(α + 1) according to the rules of plus
trees for U . Let

Mα+1 = Ult(M∗
α+1, Eα),

and
Nα+1 = Ult(N∗α+1, Fα),

where M∗
α+1 and N∗α+1 are determined by rules of plus trees. Let

S = πβ(M∗
α+1),

where if M∗
α+1 = Mβ ↓ n then S = Qβ ↓ n. Clearly πβ � M∗

α+1 is nearly elementary as a map
into S, so crit(Fα) is a cardinal of S and crit(Fα) < ρ−(S). It follows that

S �N∗α+1.

Let i∗ : N∗α+1 → Nα+1 be the canonical embedding, and

Qα+1 = i∗(S),

with Qα+1 = Nα+1 ↓ n if S = N∗α+1 ↓ n. We obtain πα+1 by a variant of the Shift Lemma: let
R = M∗

α+1 and k = k(R) = k(S). We obtain σ : Ult0(Rk, Eα)→ Qk
α+1 by setting

σ([a, f ]R
k

Eα) = [πα(a), πβ(f)]
N∗α+1

Fα
,

where the equivalence class on the right is formed using functions appropriate to Ult(N∗α+1, Fα).
One can show that σ is Σ0 elementary and cardinal preserving map from Mk

α+1 to Qk
α+1. We

let πα+1 be its completion.
The rest is the same as in the copying construction. The difference here is that Qα+1 is an

ultrapower of S formed using functions from N∗α+1, not just those from S. As a consequence,
πα+1 may be only nearly elementary, even if π0 is elementary.

We can make sense of πs+ for s an M -stack by repeatedly lifting the plus trees in s, as
before.

Definition 5.5. Let Ω be a (λ, θ)-iteration strategy for a pfs premouse M . We say Ω is
internally lift consistent iff whenever s is a stack by Ω and N �M∞(s), then for any N -stack
t, letting π be the identity, t is by Ωs,N iff πt+ is by Ωs.

5.4 Strong Hull Condensation

This is probably the most important regularity property for iteration strategies. It asserts that
if U is by Σ, and there is a tree embedding from T to U , then T is by Σ.

Strong Hull Condensation is inspired by the Hull Condensation property of [23]. There one
is given map σ : lh(T ) → lh(U) and and embeddings τα : MT

α → MU
σ(α) for α < lh(T ). σ
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preserves tree order and tree predecessor. The τα’s have the agreement one would get from a
copying construction, and they commute with the branch embeddings of T and U . Moreover,
τα(ETα ) = EUσ(α). A simple example is the way T = πW sits inside U = π(W), in the case

π : H → V is elementary and π � (M ∪ {M}) = id .
A tree embedding from T into U is a tuple with most of the properties of σ, ~τ , ψ above.38

The pair (σ, ~τ) is resolved into two pairs: the pair (v, ~s), which embeds the models of T into
models of U in a minimal way, and the pair (u,~t), which connects the exit extenders of T
to exit extenders in U . The requirement that σ preserves tree predecessors is relaxed to the
requirement that if β = T -pred(γ + 1), then U -pred(u(γ) + 1) ∈ [v(β), u(β)]U . We shall also
allow the tα’s to be partial, in a controlled way. Recall here the partial branch embeddings ı̂Uα,β.
Recall also that ε(E) = lh(E) if E has plus type, and ε(E) = λ(E) otherwise.

Definition 5.6. Let T and U be plus trees on a premouse M , with lh(T ) > 1. A tree embedding
of T into U is a system

〈u, v, 〈sβ | β < lh(T )〉, 〈tβ | β + 1 < lh(T )〉〉

such that

(a) u : {α | α + 1 < lh(T )} → {α | α + 1 < lh(U)}, and α < β → u(α) < u(β).

(b) v : lh(T ) → lh(U), v preserves tree order and is continuous at limit ordinals, v(0) = 0,
and v(α + 1) = u(α) + 1.

(c) sβ :MT
β →MU

v(β) is elementary, and s0 = id ; moreover for α <T β,

sβ ◦ ı̂Tα,β = ı̂Uv(α),v(β) ◦ sα.

In particular, the two sides have the same domain.

(d) For α + 1 < lh(T ), v(α) ≤U u(α), and

tα = ı̂Uv(α),u(α) ◦ sα.

Moreover, if ETα is of plus type, then

EUu(α) = tα(ETα ),

and if ETα is not of plus type, then

EUu(α) ∈ {tα(ETα ), tα(ETα )+}.

(e) For α < β < lh(T ),
sβ � ε(ETα ) = tα � ε(ETα ).

38The notion was isolated independently by Farmer Schlutzenberg. See [28]. Schlutzenberg’s term is infla-
tionary map.

30



(f) If β = T -pred(α+1), then U -pred(u(α)+1) ∈ [v(β), u(β)]U , and setting β∗ = U -pred(u(α)+
1), P =M∗,T

α+1, and Q =M∗,U
u(α)+1

sα+1([a, f ]PETα ) = [tα(a), ı̂Uv(β),β∗ ◦ sβ(f)]Q
EU
u(α)

.

The map sα+1 in clause (f) is essentially the copy map associated to (tα, ı̂
U
v(β),β∗ ◦ sβ, ETα ).

(It is not literally that if EUα is of plus type but ETα is not.) One can show that there is
always enough agreement between tα and ı̂Uv(β),β∗ ◦ sβ that copying is possible, and produces an
elementary map.

The appropriate diagram to go with (f) of Definition 5.6 (for the non-dropping case is)

MT
α+1 MU

v(α+1)

MU
u(β)

MU
β∗

MT
β MU

v(β)

MT
α MU

u(α)

sα+1

ETα
tβ

ρ

sβ

EU
u(α)

tα

Definition 5.7. For plus trees T and U ,

(a) Φ: T → U iff Φ is a tree embedding of T into U ,

(b) T is a pseudo-hull of U iff there is a tree embedding of T into U .

Definition 5.8. Let Σ be a complete (λ, θ) iteration strategy for a pfs premouse M ; then Σ
has strong hull condensation iff whenever s is a stack of plus trees by Σ and N �M∞(s), and
U is a plus tree on N by Σs,N , and Φ: T → U is a tree embedding, then

(a) T is by Σs,N , and

(b) if α < lh(T ) and v(α) ≤U β and π = ı̂v(α),β ◦ sΦ
α , then for any Q�dom(π), Σs_〈T �α+1〉,Q =

(Σs_〈U〉,π(Q))
π.

Because less is required of a tree embedding than is required of a hull embedding in [23],
the property is stronger than the property called Hull Condensation in [23]. Hence its name.

Clause (b) of 5.8 implies a very useful property of iteration strategies, pullback consistency.
Roughly, a strategy is pullback consistent iff it pulls back to itself under its own iteration maps.

Definition 5.9. Let Ω be a complete (λ, θ) iteration strategy for a premouse M . We say that
Ω is pullback consistent iff whenever s_〈P, T 〉 is an M -stack by Ω, α <T β, K �MT

α , and
L = ı̂Tα,β(K), then

Ωs_〈P,T �α+1〉,K = (Ωs_〈P,T �β+1〉,L)ı̂
T
α,β .
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The definition applies even if there are drops along the branch of T from α to β, so long
as K is in the domain of the partial iteration map ı̂ = ı̂Tα,β. Indeed K = dom(̂ı) is possible, in
which case L =MT

β .
We have stated pullback consistency for pullbacks within a single normal tree T , but this

implies we can pull back consistently from one normal tree in a stack into any previous one,
step by step. This is simply because Ωi◦j = (Ωi)j.

Lemma 5.10. Let Σ be a (λ, θ) iteration strategy for M that has strong hull condensation; then
Σ is pullback consistent.

Proof. (Sketch.) For example, let U be a plus tree on M , N =MU
β , and i = iU0,β. Let T be the

empty tree on M . There is a trivial tree embedding Φ of T into U : vΦ(0) = 0 and sΦ
0 = id.

Applying 5.8(b), we get that Σ = (ΣU�β+1,N)i, as desired. The general case just involves more
notation.

5.5 Normalizing well

Given an M -stack s = 〈T ,U〉 with last model N such that T and U are normal, shuffling the
extenders of U into T in a minimal way produces a normal tree W = W (T ,U) with last model
R, and a nearly elementary map π : N → R. We call W (T ,U) the embedding normalization of
〈T ,U〉. The idea is simple, but there are many technical details, so we refer the reader to [35]
for a formal definition.39

It proves useful to consider a slightly less minimal shuffling V (T ,U) that we call the quasi-
normalization of 〈T ,U〉. V (T ,U) is a plus tree, but it may not be length-increasing. If T
is λ-separated and U is normal, then W (T ,U) = V (T ,U). If they are merely normal, then
W (T ,U) is the normal companion of V (T ,U), but they may be different. We refer the reader
to [35] for a full definition.

Definition 5.11. Let Σ be a (λ, θ)-iteration strategy for a pfs premouse M , where λ > 1. We
say that Σ quasi-normalizes well iff whenever s is an M -stack by Σ, and 〈T ,U〉 is a maximal
2-stack by Σs such that U is normal, then

(a) V (T ,U) is by Σs, and

(b) letting V = V (T ,U) and π : MU
∞ →MV

∞ be the map generated by quasi-normalization,
we have that Σs_〈T ,U〉 = (Σs_V)π.

In clause (b), the map π may be only nearly elementary, but that is sufficient to pull back
an iteration strategy.

Definition 5.12. Let Σ be a (λ, θ)-iteration strategy for M , where λ > 1; then Σ normalizes
well iff

39Much of the general theory of normalization was developed independently by Schlutzenberg. See [28]. See
also [13] and [32].
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(a) Σ quasi-normalizes well, and

(b) whenever s is an M -stack by Σ, and T is a plus tree by Σs, and U is the normal companion
of T , then U is by Σs.

Clearly, if Σ normalizes or quasi-normalizes well, then so do all its tail strategies. One can
make sense of W (s) and V (s) for arbitrary stacks s, and show that a strategy that (quasi-)
normalizes well for stacks of length 2 must (quasi-) normalize well for all finite stacks.40

6 A comparison lemma for pure extender pairs

We collect some of these regularity properties in a definition.

Definition 6.1. (P,Σ) is a pure extender pair with scope Hδ iff

(1) P is a pfs premouse, and P ∈ Hδ,

(2) Σ is a (ω, δ) iteration strategy for P , and

(3) Σ quasi-normalizes well, has strong hull condensation, and is internally lift consistent.

(P,Σ) is projectum stable iff P is projectum stable.

We are only interested in the case that Σ is absolutely definable. In the most important
context, P is countable, Σ has scope Hω1 , and its absolute definability is witnessed by mem-
bership in a model of AD+. One can show that in any case, Σ is determined by its action on
countable, λ-separated plus trees.([35].)

It would be more natural to require that an iteration strategy with scope Hδ be a (δ, δ)-
strategy, but then our comparison proof for pure extender pairs would need to go into quasi-
normalizing infinite stacks. There seems to be no obstacle to doing this.

If (M,Σ) is a pure extender pair, and s is a stack by Σ with last model N , then we call
(N,Σs) an iterate of (M,Σ). If the branch M -to-N of s does not drop, we call it a non-dropping
iterate. In that case, we have an iteration map is : M → N .

Theorem 6.2 (Comparison for pure extender pairs). Assume AD+, and let (P,Σ) and (Q,Ψ)
be projectum stable pure extender pairs with scope HC; then they have a common iterate (R,Ω)
such that on at least one of the two sides, the iteration does not drop.

The comparison process in the proof produces single λ-separated trees T and U leading
from P and Q to R. However, it does not proceed by iterating away least disagreements. It
is not even clear what that would mean in the case that the current tail strategies have a
disagreement. Instead, we go back toward the original Kunen method of fixing a standard

40The routine proof is in [35]. There are deeper results about W (s) when s is infinite that are due to
Schlutzenberg. See [28]. Benjamin Siskind proved in [32] that embedding normalization is associative.
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structure in advance, although now we start with an array of candidates for (R,Ω), not just
one. §8 has a brief outline of the proof.41

Working in the category of mouse pairs enables us to state a general Dodd-Jensen lemma.
Let us say π : (P,Σ)→ (Q,Ψ) is elementary iff π is elementary from P to Q, and Σ = Ψπ.

Lemma 6.3. If (Q,Ψ) is a pure extender pair with scope Hδ and π : (P,Σ) → (Q,Ψ) is ele-
mentary, then (P,Σ) is a pure extender pair with scope Hδ.

Proof. (Sketch.) One must show that strong hull condensation, normalizing well, and internal
lift consistency pass from Ψ to its π-pullback Σ. This involves a lot of diagram-chasing, all of
it routine.

The iteration maps associated to a pure extender pair are elementary in the category of
mouse pairs. For example

Lemma 6.4. Let (P,Σ) be a projectum stable pure extender pair, and (R,Ω) a non-dropping
iterate of (P,Σ) with iteration map i : P → R; then i is elementary as a map from (P,Σ) to
(R,Ω).

This is just a re-statement of pullback consistency.

Theorem 6.5 (Dodd-Jensen lemma). Let (P,Σ) be a projectum stable pure extender pair, and
(Q,Ψ) be an iterate of (P,Σ) via the stack s. Suppose π : (P,Σ)→ (Q,Ψ) is elementary; then
s does not drop, and for all ordinals η ∈ P , is(η) ≤ π(η).

The proof is just the usual Dodd-Jensen proof; the point is just that the language of mouse
pairs enables us to formulate the theorem in its proper generality. There is no need to restrict
to mice with unique iteration strategies, as is usually done.

Similarly, we can define the mouse order in its proper generality, without restricting to mice
with unique iteration strategies.

Definition 6.6. If (P,Σ) and (Q,Ψ) are projectum stable pure extender pairs with scope Hδ,
then (P,Σ) ≤∗ (Q,Ψ) iff (P,Σ) can be elementarily embedded into an iterate of (Q,Ψ).

Theorems 6.2 and 6.5 yield

Corollary 6.7. Assume AD+; then ≤∗ is a prewellorder on the projectum stable pure extender
pairs with scope HC. Moreover, (P,Σ) <∗ (Q,Ψ) iff (P,Σ) can be elementarily embedded into
a dropping iterate of (Q,Ψ).

We have made quasi-normalizing well part of the definition of pure extender pair because
this is what one gets directly from the construction in §7, and it suffices for strategy comparison.
Using comparison arguments, one can show

Theorem 6.8. ([33]) Assume AD+, and let (P,Σ) be a projectum stable pure extender pair
with scope HC; then Σ normalizes well and is positional.

41It is possible to compare pairs that are not projectum stable. See [35].
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7 Background-induced iteration strategies

We construct a mouse M by adding extenders to its coherent sequence, one by one. If we
add E, then M | lh(E) must be a premouse, and this imposes a fairly severe restriction on E.
Nevertheless, no first-order requirement like premousehood can guarantee that we are building
a standard structure, one that can be compared with others of its kind. We need to be building
an iterable premouse. Moreover, it is not enough that M | lh(E) be iterable, for we need the full
M to be iterable, and when we add E, we don’t know what M will be.

The standard way to solve these difficulties is to demand a background certificate E∗ for E.
What exactly one demands of E∗ depends on the context. In this paper we shall ask that E∗

be a nice extender over V such that E � λE ⊆ E∗. In contexts where one is trying to construct
mice without assuming there are large cardinals at all, much more care is needed at this point,
and the iterability proofs become more difficult.

In any of its forms, the background certificate demand conflicts with the demand that our
mice be sound. The standard way to solve that difficulty is to “core down” at every step,
replacing the current approximation to M by its core. There are highly nontrivial comparison
arguments involved in showing that this core exists, and agrees sufficiently with M that the
process of adding certified extenders and coring down converges to anything. These arguments
rely on the iterability of M .

The existence of full background extender certificates means that we can lift iteration trees
on M to iteration trees on V , and thus use an iteration strategy Σ∗ for V to induce an iteration
strategy Σ for M . This of course does not solve the iterability problem for M , it just reduces it
to the problem for V . But some such reduction, ideally using weaker background certificates,
seems inevitable in any construction of iteration strategies for premice. M cannot see the
iteration trees with respect to which it must be iterable, but V can see their lifts. Moreover,
those lifts can be taken to be simple (for example, use only nice extenders) in ways that the
trees on M being lifted are not.

Of course, one cannot prove that there are any nontrivial mice without making assumptions
that go beyond ZF. Determinacy assumptions are particularly useful in this regard. Under
AD+, every Suslin-co-Suslin set is Wadge reducible to an iteration strategy for a countable
coarse premouse. This is a result of Hugh Woodin from the late 1980s. We shall use these
coarse premice as background universes in which to construct the fine ones.

Definition 7.1. Let E be an extender over V ; then E is nice iff

(a) E is strictly short, that is, lh(E) < λ(E),

(b) for some ν, lh(E) is the least strongly inaccessible η such that ν < η,

(c) Vlh(E) ⊆ Ult(V,E).

Definition 7.2. A sequence ~F = 〈Fα | α < µ〉 is coarsely coherent iff each Fα is a nice extender
over V , and

(1) if G is a nice initial segment of Fα, then G = Fβ for some β < α,
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(2) if β < α, then lh(Fβ) ≤ lh(Fα), and

(3) i : V → Ult(V, Fα) is the canonical embedding, and ~E = i(~F ), then 〈Eξ | lh(Eξ) ≤
lh(Fα)〉 = 〈Fξ | ξ < α〉.

An ~F -tree is an iteration tree T such that for all α, ETα ∈ iT0,α(~F ).

Definition 7.3. We say that ((M, ~F, δ),Σ) is a coarse extender pair iff

(a) M is countable and transitive, and M |= ZFC + “δ is Woodin via ~F”, and

(b) Σ is an (ω1, ω1)-iteration strategy acting on ~F -trees that normalizes well and has strong
hull condensation.

Definition 7.4. Let ((M, ~F, δ),Σ) be a coarse extender pair, and A ⊂ R; then ((M, ~F, δ),Σ)
captures A iff there is a τ ∈M such that

(a) τ is a Col(ω, δ)-term for a set of reals, and

(b) whenever i : M → N is an iteration map by Σ and g is Col(ω, i(δ))-generic over N , then
i(τ)g = A ∩N [g].

Notice here that (M, ~F, δ, τ,Σ) determines A, because for every real x there is a genericity
iteration leading to N and g as in (d) such that x ∈ N [g].

The following is a direct consequence of Woodin’s work in the late 1980s on large cardinals
in HOD under determinacy hypotheses. See [16] and [42].

Theorem 7.5. Assume AD; then for any Suslin and co-Suslin set A, there is a coarse extender
pair ((M, ~F, δ),Σ) that captures A.

The reason that the iteration strategy Σ produced in [42] normalizes well and has strong

hull condensation is that there is some set T of ordinals such that V M
δ = V

L[T,M ]
δ , and Σ

chooses unique wellfounded branches when thought of as a strategy for ~F -trees with base
model L[T,M ].42 Normalizing well and strong hull condensation are properties of the way Σ
acts on trees on the countable model M that follow easily from the fact that it chooses unique
wellfounded branches for trees on the uncountable model L[T,M ].

Now let (N ,Σ) be a coarse extender pair, with N = (N, ~F, δ). In N , we do a maximal full

background extender construction, where the background extenders are taken from ~F . This
produces a sequence

C = 〈(Mν,k,Ων,k) | 〈ν, k〉 ≤lex 〈δ, 0〉〉
such that for each ν, k, Mν,k is a pfs premouse of soundness degree k and Ων,k is the (ω1, ω1)-

iteration strategy induced by converting stacks s on Mν,k to stacks lift(Mν,k, s,C) of ~F -trees on
N , and defining

s is by Ων,k(T ) iff lift(Mν,k, s,C) is by Σ.

42T codes Suslin representations for A and its complement, thereby generating a term that captures A. There
is some work beyond [42] involved in producing a coarsely coherent ~F .
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We start with M0,0 equal to the passive premouse with universe Vω. Given Mν,k, we show using
the existence of Ων,k that Mν,k is solid. Here the pfs fine structure complicates the standard
comparison arguments, but not fatally.43 We then core down, setting

Mν,k+1 = C(Mν,k),

and letting Ων,k+1 be the strategy induced by lifting to N . Extenders get added to the sequence
of our evolving model as follows: at any limit ordinal ν we have produced a passive premouse
M<ν from the previous stages. Suppose there is an F such that

(i) (M<ν , F ) is a pfs premouse of degree 0, and

[(ii) for some F ∗ in ~F , F � λF ⊆ F ∗.

One can show using iterability that there is at most one such F .44 We then set

Mν,0 = (M<ν , F ).

We can use the existence of F ∗ to define lift(Mν,0, s,C), and thereby Ων,0.45 If there are no such
F and F ∗, then we set Mν,0 = (M<ν , ∅).

lift(Mν,k, s,C) is defined for all Mν,k-stacks s in V , not just those in N . Since Σ is an
(ω1, ω1)-strategy in V , so is Ων,k. Moreover,

Lemma 7.6. Let Ψ be the restriction of Ων,k to finite stacks; then (Mν,k,Ψ) is a pure extender
pair.

It is the proof of this lemma that makes the complications of pfs fine structure, plus trees,
and quasi-normalization necessary. The connection between Σ and its induced strategy Ων,k is
not sufficiently tight that one can prove directly that Ων,k inherits the property of normalizing
well. One gets only that it quasi-normalizes well. Moreover, even the proof that Ων,k quasi-
normalizes well would fall apart if we took cores in the standard way.

8 The comparison proof

Here is a very brief sketch of the comparison process behind Theorem 6.2. Our goal is just to
indicate where the regularity properties of pure extender pairs enter.

Definition 8.1. Let (M,Σ) and (N,Ω) be pure extender; then

43One complication is that Mν,k will sometimes fail to be projectum stable. This is why we did not make
projectum stability part of the definition of pfs premouse.

44This is the Bicephalus Lemma.
45It is important here to prove that F+ � (λF + 1) ⊆ F ∗, so that we can lift plus trees. The proof is

a comparison argument like the proof of [21, Theorem 10.1]. It is not good enough to simply make F+ �
(λF + 1) ⊆ F ∗ an additional requirement for adding F , because then the premice we are constructing might not
have enough extenders on their sequences to be useful.
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(a) (M,Σ) iterates past (N,Ω) iff there is a λ-separated tree T by Σ on M whose last pair is
(N,Ω).

(b) (M,Σ) iterates to (N,Ω) iff there is a normal T as in (a) such that the branch M -to-N
of T does not drop.

(c) (M,Σ) iterates strictly past (N,Ω) iff it iterates past (N,Ω), but not to (N,Ω).

The main lemma is

Lemma 8.2. Assume AD+, let (P,Σ) be a pure extender pair, and let (N ,Ψ) be a coarse
extender pair such that P ∈ HCN and (N ,Ψ) captures Code(Σ). Let C be the maximal full
background construction of N ; then there is a level (M,Ω) of C such that

(a) (P,Σ) iterates to (M,Ω), and

(b) (P,Σ) iterates strictly past all levels of C that are strictly earlier than (M,Ω).

This is enough to compare two pure extender pairs (P,Σ) and (Q,Λ). We simply find a
coarse extender pair (N ,Ψ) that captures both of them, let C be its construction, and then
look for the least level (M,Ω) of C that one of the two pairs iterates to it. If that pair is (P,Σ),
then (P,Σ) ≤∗ (Q,Λ). Otherwise (Q,Λ) <∗ (P,Σ).

Let us sketch the proof of Lemma 8.2. Suppose (M,Ω) is a level of C such that (P,Σ) iterates
strictly past all earlier levels. The main new thing is to show that no strategy disagreements
show up when we compare (P,Σ) with (M,Ω).46 Suppose we have produced a λ-separated tree
T on P with last model Q, and that Q|α = M |α, and that U is a normal tree on R = Q|α = M |α
played by both ΣT ,Q|α and Ω. Let U have limit length, and let b = ΩR(U). We must see
b = ΣT ,R(U). .

The internal lift consistency of Σ lets us reduce to the case that R = Q, so let us assume
that. We now look we look at the embedding normalization W (T ,U) of 〈T ,U〉, which also has
limit length. Since T is λ-separated, W (T ,U) = V (T ,U). For any cofinal branch c of U , let
Wc = W (T ,U_c), and let λ = lh(W (T ,U). One can show

(1) For any cofinal branch c of U , Wc � λ = W (T ,U); moreover, c is determined by [0, λ]Wc .

(2) Since Σ normalizes well, Σ(〈T ,U〉) = c iff Wc � λ+ 1 is by Σ.

(3) Letting i∗b : N → Nb come from lifting iUb to N , we have thatWb is a pseudo-hull of i∗b(T ).
This is the key step in the proof.

(4) i∗b(Σ) ⊆ Σ because Code(Σ) was captured by N , so i∗b(T ) is by Σ.

(5) Since Σ has strong hull condensation, Wb is by Σ.

(6) By (2), Σ(〈T ,U〉) = b.
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Figure 3: Proof of Lemma 8.2. Wb is a psuedo-hull of i∗b(T ).

Figure 3 is a diagram of the situation.
To finish the proof of Lemma 8.2, we must show that (P,Σ) does not iterate past (Mδ,0,Ωδ,0).

This is a consequence of the fact that δ is Woodin in N .

9 Strategy mice and HOD

The study of HOD in models of AD has a long history.47 HOD was studied by purely descriptive
set theoretic methods in the late 1970s and 1980s, and partial results on basic questions such
as whether HOD |= GCH were obtained then. It was known then that inner model theory, if
only one could develop it in sufficient generality, would be relevant to characterizing the reals
in HOD. Theorem 4.4 bears that out, as do the instances of MSC for models of AD beyond
L(R) that have been proved since then.

Just how relevant inner model theory is to the study of HOD in models of AD became clear
in 1994, when the author showed that if there are ω Woodin cardinals with a measurable above

46No extenders on the M -sequence are part of a least disagreement by the proof of Theorem 3.1. This is
basically folklore; see for example [26, Theorem 2.5].

47See [43] for a survey of some of this history.
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them all, then HODL(R) up to θL(R) is a pure extender mouse.48 Shortly afterward, this result
was improved by Hugh Woodin, who reduced its hypothesis to ADL(R), and identified the full
HODL(R) as a model of the form L[M,Σ], where M is a pure extender premouse, and Σ is a
partial iteration strategy for M . HODL(R) is thus a new type of mouse, sometimes called a
strategy mouse, sometimes called a hod mouse. See [46] for an account of this work.

Since the mid-1990s, there has been a great deal of work devoted to extending these results
to models of determinacy beyond L(R). Woodin analyzed HOD in models of AD+ below the
minimal model of ADR fine structurally, and Sargsyan extended the analysis further, first to
determinacy models below ADR + “θ is regular”, and more recently, to models of still stronger
forms of determinacy.49 Part of the motivation for this work is that it seems to be essential
in the core model induction: in general, the next iteration strategy seems to be a strategy
for a hod mouse, not for a pure extender mouse. This idea comes from work of Woodin and
Ketchersid around 2000.50

This work has been limited by very complicated notions of strategy premouse, made neces-
sary by the lack of a general method for comparing iteration strategies. The comparison process
behind Theorem 6.2 fills that gap, at least in the short extender realm, and makes possible a
much simpler and more natural premouse notion. The resulting premice are called least branch
premice (lpm’s), and the pairs (M,Σ) are called least branch hod pairs (lbr hod pairs).

A least branch premouse M is like a pure extender premouse, but it has an additional
predicate Σ̇M that is used to describe an iteration strategy for M . The lpm rules require that
the least missing piece of strategy information be addded at essentially every stage.51 A least
branch hod pair (M,Σ) consists of a countable lpmM together with an (ω, ω1)-iteration strategy
Σ for M that is internally lift consistent, normalizes well, and has strong hull condensation. In
addition we demand that Σ̇M ⊆ Σ, and more generally, that whenever N is a Σ-iterate of M
via the stack s, then

Σ̇N ⊆ Σs,N .

This property of (M,Σ) is called pushforward consistency.
Least branch hod pairs can be used to analyze HOD fine structurally, provided there are

enough of them.

Definition 9.1 (AD+). (a) Hod Pair Capturing (HPC) is the assertion: for every Suslin-
co-Suslin set A, there is a least branch hod pair (P,Σ) such that A is definable from
parameters over (HC,∈,Σ).

(b) L[E] capturing (LEC) is the assertion: for every Suslin-co-Suslin set A, there is a pure
extender pair (P,Σ) such that A is definable from parameters over (HC,∈,Σ).

48See [45]. In a determinacy context, θ denotes the least ordinal that is not the surjective image of the reals.
49(See [23], [24]), and [25]. The determinacy principles dealt with here are all weaker than a Woodin limit of

Woodin cardinals.
50See [15] and [27].
51Adding the strategy this way was originally suggested by Woodin. There are some fine-structural problems

with the precise method for inserting strategy information he proposed. One method for strategy insertion that
is correct in detail is due to Schlutzenberg and Trang. Cf. [35].
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An equivalent (under AD+) formulation would be that the sets of reals coding strategies of
the type in question, under some natural map of the reals onto HC, are Wadge cofinal in the
Suslin-co-Suslin sets of reals. The restriction to Suslin-co-Suslin sets A is necessary, for AD+

implies that if (P,Σ) is a pair of one of the two types, then the codeset of Σ is Suslin and
co-Suslin. This is the main result of [36], where it is also shown that the Suslin representation
constructed is of optimal logical complexity.

Remark. HPC is a cousin of Sargsyan’s Generation of Full Pointclasses. See [23] and [24], §6.1.

Assuming AD+, LEC is equivalent to MSC, as shown in [41, 16.6]. [35] shows that under
AD+, LEC implies HPC. We do not know whether HPC implies LEC.

Granted ADR and HPC, we have enough hod pairs to analyze HOD.

Theorem 9.2 ([36]). Assume ADR and HPC; then Vθ ∩ HOD is the universe of a least branch
premouse, and thus HOD |= GCH.

If we assume AD++ “there is an (ω1, ω1) iteration strategy for a pure extender premouse
with a long extender on its sequence”; then LEC and hence HPC hold in all initial segments of
the Wadge hierarchy below the Wadge-least such strategy. This leads to

Theorem 9.3 ([36]). Assume AD++ “there is an (ω1, ω1) iteration strategy for a pure extender
premouse with a long extender on its sequence”.

(1) For any Γ ⊆ P (R) such that L(Γ,R) |= ADR+NLE, HODL(Γ,R) is a least branch premouse.

(2) There is a Γ ⊆ P (R) such that L(Γ,R) |= ADR + NLE and HODL(Γ,R) |= “there is a
subcompact cardinal”.

Of course, one would like to remove the mouse existence hypothesis of 9.3, and prove its
conclusion under AD+ alone. Finding a way to do this is one manifestation of the long standing
iterability problem of inner model theory. Although we do not yet know how to do this, the
theorem does make it highly likely that in models of ADR that have not reached an iteration
strategy for a pure extender premouse with a long extender, HOD is a least branch premouse. It
also makes it very likely that there are such HOD’s with subcompact cardinals. Subcompactness
is one of the strongest large cardinal properties that can be represented with short extenders.52

10 Some conjectures

The natural conjecture is that LEC and HPC hold in all models of AD+ that have not reached
an iteration strategy for a premouse with a long extender. Because our capturing mice have
only short extenders on their sequences, LEC and HPC cannot hold in larger models of AD+.

Conjecture 10.0.1. Assume AD+ and NLE; then LEC.

52Theorem 9.3 is the first strong evidence that the HOD of a determinacy model can satisfy that there are
cardinals that are strong past a Woodin cardinal.
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Conjecture 10.0.2. Assume AD+ and NLE; then HPC.

As we remarked above, 10.0.1 implies 10.0.2. It is not clear how far we are from a proof
of these conjectures. There are intermediate levels that could be important. Our progress is
closely related to

Conjecture 10.0.3. If there is a strongly compact cardinal, then there is an inner model of
ZFC + “ there is a subcompact cardinal”.

Kunen’s landmark paper [17] obtained the first nontrivial results in this direction, by con-
structing models with many measurable cardinals. We can obtain stronger conclusions now
using the core model induction method, the strongest present being those of [25].53 Progress
along this line involves an inductive construction of lbr hod pairs, so that one is simultaneously
proving approximations to HPC.

One might make the hypothesis of 10.0.3 PFA, or “�κ fails at a singular strong limit κ”,
or any of many other strong propositions. It seems unlikely that we will be able to prove such
nontrivial consistency strength lower bounds without proving Conjecture 10.0.2. Typically,
Conjecture 10.0.3 is stated as an equiconsistency, with “supercompact” replacing “subcompact”.
This form is likely true, but reaching supercompacts involves a general comparison lemma for
mice with long extenders. At present we have only a very weak approximation to Theorem 3.1
in this realm (see [22]), and no strategy comparison theorem at all for the mice it covers.

Proofs of the conjectures above would be major steps forward. They may not be close at
hand. But let us conclude with a conjecture that is well and truly beyond the reach of current
inner model theory.

Conjecture 10.0.4. Assume ZF + AD + V = L(P (R)); then HOD |= GCH.

In a sense this conjecture originates with the work of the Cabal in descriptive set theory in
the late 1970s and early 1980s. Since then, we have seen that it belongs to inner model theory,
and likely involves a general notion of mouse pair, a comparison lemma for these pairs, and a
proof that their codesets are Wadge cofinal in the Suslin-co-Suslin sets of reals.54 A ZFC version
of 10.0.4 is: Assume ZFC+“ there are arbitrarily large Woodin cardinals”, and let Γ be a proper
Wadge initial segment of the Universally Baire sets; then HODL(Γ,R) |= GCH. The conclusion
here is (Π2

1)uB, and hence set generically absolute granted arbitrarily large Woodin cardinals.55

This makes it very likely that the ZFC version is either provable in ZFC, or refutable in ZFC
augmented by some large cardinal hypothesis beyond the reach of current inner model theory.

What we know from descriptive set theory, and from inner model theory where we have it,
suggests that Conjecture 10.0.4 is true, and that its proof involves a general theory of mouse
pairs. The mice must be capable of having long extenders, and probably supercompact cardinals

53[25] show that if there is a strongly compact cardinal, then there is a strategy mouse with an extender
overlapping a Woodin cardinal.

54One might make the hypothesis AD+ rather than AD without destroying the intent. We are guessing that
its proof would show that AD implies AD+.

55This is a result of Woodin. See [40].

42



and beyond. Although 10.0.1, 10.0.2, 10.0.3, and their approximations at still lower levels are
much better targets at present, Conjecture 10.0.4 points to a longer term future. The intricately
structured world of inner model theory extends well beyond the part that we have discovered
so far.
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