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The construction and use of Suslin representations for sets of reals lies at the heart of
descriptive set theory. Indeed, virtually every paper in descriptive set theory in the Cabal
Seminar volumes deals with such representations in one way or another. Most of the papers
in the section to follow focus on the construction of optimally definable Suslin representations
via game-theoretic methods. In this introduction, we shall attempt to put those papers in
a broader historical and mathematical context. We shall also give a short synopsis of the
papers themselves, and describe some of the work done later to which they are related.

1 Some definitions and history

A tree on a set X is a subset of X<ω closed under initial segments. If T is a tree on X × Y ,
then we regard T as a set of pairs (s, t) of sequences with dom(s) = dom(t). If T is a tree,
we use [T ] for the set of infinite branches of T , and if T is on X × Y , we write

p[T ] = {x ∈ Xω | ∃y ∈ Y ω∀n < ω((x � n, y � n) ∈ T )}.

We call p[T ] the projection of T , and say that T is a Suslin representation of p[T ], or that
p[T ] is Y -Suslin via T . For s ∈ X<ω, let Ts = {u | (s, u) ∈ T}, and put Tx =

⋃
n Tx�n. Then

x ∈ p[T ] iff [Tx] 6= ∅ iff Tx is illfounded.
Any set A ⊆ Xω is trivially A-Suslin. For the most part, useful Suslin representations

come from trees on some X×Y such that Y is wellordered. Assuming (as we do) the Axiom
of Choice (AC), this is no restriction on Y , but we can parlay it into an important and useful
restriction by requiring in addition that T be definable in some way or other. A variant of
this approach is to require that T belong to a model of AD. If T is definable, and X and Y
are definably wellordered, and p[T ] is nonempty, then the leftmost branch (x, f) of T gives
us a definable element x of p[T ]. (Here “leftmost” can be determined by the lexicographic
order on X × Y .)

The simplest nontrivial X to consider are the countable ones. This is by far the most
well-studied case in the Cabal volumes. In this case, one may regard p[T ] as a subset of the
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Baire space ωω, that is, as a set of “logician’s reals”. Thus if A is a nonempty set of reals, κ
is an ordinal, and A is κ-Suslin via a definable tree, then A has a definable element.

Suslin representations were first discovered in 1917 by Suslin ([60]), who isolated the
class of ω-Suslin sets of reals, showed that it properly includes the Borel sets, and showed
that sets in this class have various regularity properties. (For example, they are all Baire
and Lebesgue measurable, and have the perfect set property.) Suslin also found a beautiful
characterization of the Borel sets of reals as those which are both ω-Suslin and have ω-
Suslin complements. (The ω-Suslin sets of reals are precisely the Σ1

1 sets of reals, almost by
definition.)

Definable Suslin representations yield definable elements, and in the “boldface” set-
ting of classical descriptive set theory, this comes out as a uniformization result. Here
we say that a function f uniformizes a relation R iff dom(f) = {x | ∃yR(x, y)}, and
∀x ∈ dom(f)R(x, f(x)). If R is a Σ1

1 relation, say R = p[T ] where T is a tree on (ω×ω)×ω,
then we can use leftmost branches to uniformize R: let f(x) = y, where (y, h) is the leftmost
branch of Tx. One can calculate that for any open set U , f−1(U) is in the σ-algebra generated
by the Σ1

1 sets, and is therefore Lebesgue and Baire measurable. This classical uniformiza-
tion result was proved by Jankov and Von Neumann around 1940 ([61]). The “lightface”,
effective refinement of a uniformization theorem is a basis theorem, where we say a pointclass
Λ is a basis for a pointclass Γ just in case every nonempty set of reals in Γ has a member
which is in Λ. Kleene ( [20]) proved the lightface version of the Jankov-Von Neumann result.
He observed that if A ⊆ ωω is lightface Σ1

1, then A = p[T ] for some recursive tree T , and
that the leftmost branch of T is recursive in the set W of all Godel numbers of wellfounded
trees on ω. Thus {x | x ≤T W} is a basis for Σ1

1.
In 1935-38, toward the end of the classical period, Novikoff and Kondo constructed de-

finable, ω1-Suslin representations for arbitrary Σ1
2 sets, and used them to show every Σ1

2

relation has a Σ1
2 uniformization. (See [23], [21].) The effective refinement of this landmark

theorem is due to Addison, who showed that the ω1-Suslin reprentations of nonempty light-
face Σ1

2 sets constructed by Novokoff and Kondo yield, via leftmost branches, lightface ∆1
2

elements for such sets.
Logicians often meet Suslin representations through the Shoenfield Absoluteness theorem.

Shoenfield ([46]) showed that a certain tree T on ω × ω1 which comes from the Novikoff-
Kondo construction is in L. Because wellfoundedness is absolute to transitive models of
ZF, he was able to conclude that the leftmost branch of T is in L, and thus, that every
nonempty Σ1

2 set of reals has an element in L. From this it follows easily that L is Σ1
2

correct. This method of using definable Suslin representations to obtain correctness and
absoluteness results for models of set theory is very important.

In addition to definability, there is a second very useful property a Suslin representation
might have. We call a tree T on X × Y homogeneous just in case there is a family 〈µs | s ∈
X<ω〉 such that
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(1) for all s, µs is a countably complete 2-valued measure (i.e. ultrafilter) on {u | (s, u) ∈
T},

(2) if s ⊆ t, and µs(A) = 1, then µt({u | u � dom(s) ∈ A}) = 1, and

(3) for any x ∈ p[T ] and any 〈Ai | i < ω〉 such that µx�i(Ai) = 1 for all i, there is a f ∈ Y ω

such that f � i ∈ Ai for all i.

We say T is κ-homogeneous if the measures µs can be taken to be κ-additive. If T is κ-
homogeneous, then we also call p[T ] a κ-homogeneously Suslin set. We write Homκ for the
pointclass of κ-homogeneous sets, and Hom∞ for the pointclass

⋂
κ Homκ.

The concept of homogeneity is implicit in Martin’s 1968 proof ([25]) of Π1
1 determinacy,

and was first explicitly isolated by Martin and Kechris. Martin showed that if κ is a mea-
surable cardinal, then every Π1

1 set of reals is κ homogeneous, via a Shoenfield tree on ω×κ.
He also showed that every homogeneously Suslin set of reals is determined. Martin’s proof
became the template for all later proofs of definable determinacy from large cardinal hy-
potheses. Indeed, the standard characterization of descriptive set theory, as the study of
the good behavior of definable sets of reals, would perhaps be more accurate if one replaced
“definable” by “∞-homogeneously Suslin”.

There are two natural weakenings of homogeneity. First, a tree T on X × (ω × Y ) is κ-
weakly homogeneous just in case it is κ- homogeneous when viewed as a tree on (X×ω)×Y .
Thus the weakly homogeneous subsets of Xω are just the existential real quantifications of
a homogeneous subsets of Xω × ωω, and Martin’s [25] shows in effect that whenever κ is
measurable, all Σ1

2 sets of reals are κ-weakly homogeneous. Second, a pair of trees S and T ,
on X × Y and X × Z respectively, are κ-absolute complements iff

V [G] |= p[S] = Xω \ p[T ]

whenever G is V -generic for a poset of cardinality < κ. The fundamental Martin-Solovay
construction, also from 1968 (see [28]), shows that every κ-weakly homogeneous tree has a
κ-absolute complement. The projection of a κ-absolutely complemented tree is said to be
κ-universally Baire. This concept was first explicitly isolated and studied by Feng, Magidor,
and Woodin in [5]. Any universally Baire set has the Baire property and is Lebesgue mea-
surable, but one cannot show in ZFC alone that such sets must be determined. (See [5].) On
the other hand, if there are arbitrarily large Woodin cardinals, then for any set of reals A, A
is κ-homogeneous for all κ iff A is κ-weakly homogeneous for all κ iff A is κ-universally Baire
for all κ. (This is work of Martin, Solovay, Steel, and Woodin; see [22, Theorem 3.3.13] for
one expostion, and [59] for another.)

Although our discussion of homogeneity has focussed on its use in situations where the
Axiom of Choice and the existence of large cardinals is assumed, the concept is also quite
important in contexts in which full AD is assumed. AD gives us not just measures, but
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homogeneity measures; indeed, assuming AD, a set of reals is homogeneously Suslin iff both
it and its complement are θ-Suslin. (This result of Martin from the 80’s can be found in [30].)
The analysis of homogeneity measures is a central theme in the work of Kunen, Martin, and
Jackson ([48], [10],[11]) which located the projective ordinals among the alephs. The reader
should see Jackson’s surveys [9] and [8] for more on homogeneity and the projective ordinals
in the AD context.

2 Construction methods

One could group the methods for producing useful Suslin representations as follows:

(1) the Martin-Solovay construction,

(2) trees to produce an elementary submodel, and

(3) scale constructions using comparison games.

We discuss these methods briefly:

2.1 The Martin-Solovay construction

The Martin-Solovay construction makes use of homogeneity. If T on X × Y is is κ- weakly
homogeneous via the system of measures ~µ, and |X| < κ, then the construction produces
a tree ms(T, ~µ) which is a κ-absolute complement for T . The construction of ms(T, ~µ) is
effective, and its basic properties can be proved to hold in ZF+DC. Martin and Solovay ([28])
applied it with T the Shoenfield tree for Σ1

2 and ~µ its weak homogeneity measures implicit
in Martin’s [25]. They showed thereby that if κ is measurable, then for any Σ1

3 formula ϕ,
there is a tree U such that p[U ] = {x ∈ ωω | ϕ(x)} is true in every generic extension of V by
a poset of size < κ.

The Martin-Solovay tree ms(T, ~µ) is definable from T and ~µ. Now suppose T be on ω×Y .
There is a simple variant of ms(T, ~µ) which is definable from T and the restrictions of the
measures in ~µ to

⋃
{L[T, x] | x ∈ ωω}. Let us call this variant ms∗(T, ~µ). If T is the Shoenfield

tree, so that T ∈ L, then one can define these restricted weak homogeneity measures, and
hence ms∗(T, ~µ) itself, from the sharp function on the reals. Martin and Solovay showed this
way that ∆1

4 is a basis for Π1
2, and Mansfield later improved their result by showing the class

of Π1
3 singletons is a basis for Π1

2. (See [24].) These results are not optimal, however. We do
not know whether one can get the optimal basis and uniformization results in the projective
hierarchy using the Martin-Solovay construction.

Under appropriate large cardinal hypotheses, the Martin-Solovay tree is itself homo-
geneous. (See [32] for a precise statement.) Thus under the appropriate large cardinal
hypotheses, one can show via the Martin-Solovay construction that the pointclass Hom∞ is
closed under complements and real quantification.
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2.2 The tree to produce an elementary submodel

If a set A of reals admits a definition with certain condensation and generic absoluteness
properties, then A is universally Baire. More precisely, let κ be a cardinal, and ϕ(v0, v1) a
formula in the language of set theory, and t any set. Let τ > κ, X ≺ Vτ be countable, and
let M be the transitive collapse of X, with κ̄ and t̄ the images of κ and t under collapse. We
say X is generically 〈ϕ,A〉-correct iff whenever g is M -generic for a poset of size < κ̄ is M ,
then for all reals y ∈M [g],

y ∈ A⇔M [g] |= ϕ[y, t̄].

If the set of generically 〈ϕ,A〉 correct X is club in Pω1(Vτ ), then A admits a κ-absolutely
complemented Suslin representation T . The construction of T is relatively straightforward:
if (y, f) ∈ [T ], then f will have built an X in our club of generically correct hulls, together
with a proof that M [g] |= ϕ[y, t̄], for some g generic over the collapse M of X. ( This
construction is due to Magidor? Woodin?. See [5] or [59].)

One can use either stationary tower forcing ( cf. the Tree Production Lemma,[22] or [59])
or iterations to make reals generic ([54, sec. 7]) to obtain, for various interesting 〈ϕ,A〉, a
club of generically 〈ϕ,A〉-correct X.

If one replaces Vτ by an appropriate direct limit of mice, then the tree to produce an
elementary submodel becomes definable, at a level corresponding to the definability of the
iteration strategies for the mice in question. See the concluding paragraphs of [57], and [54,
sec. 8]. One can use this to get optimal basis and uniformization results for various point-
classes, for example (Σ2

1)
L(R). It is difficult to obtain the optimal basis and uniformization

results for Π1
3 by these methods, but, building on work of Hugh Woodin, Itay Neeman has

succeeded in doing so. (This work is unpublished.)

2.3 Propagation of scales using comparison games

The simplest method for obtaining optimally definable Suslin representations makes direct
use of the determinacy of certain infinite games. It was discovered in 1971 by Moschovakis,
who used it to extend the Novikoff-Kondo-Addison theorems to the higher levels of the
projective hierarchy. (The original paper is [34]; see also [15] and [38, Chapter 6].) As part
of this work, Moschovakis introduced the basic notion of a scale, which we now describe.

Let T be a tree on ω × λ, and A = p[T ]. One can get a “small” subtree of T which
still projects to A by considering only ordinals < λ which appear in some leftmost branch.
The scale of T does this, then records the resulting subtree as a sequence of norms, i.e.
ordinal-valued functions, on A. More precisely, for x ∈ A and n < ω, put

ϕn(x) = |〈lx(0), ..., lx(n)〉|lex,

where for u ∈ λn+1, |u|lex is the ordinal rank of u in the lexicographic order on λn. Then

~ϕ = 〈ϕn | n < ω〉
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is the scale of T . It has the properties:

(a) Suppose that xi ∈ A for all i < ω, and xi → x as i → ∞, and for all n, ϕn(xi) is
eventually constant as n→∞, then

(i) (limit property) x ∈ A, and

(ii) (lower semi-continuity) for all n, ϕn(x) ≤ the eventual value of ϕn(xi) as i→∞.

(b) (refinement property) if x, y ∈ A and ϕn(x) < ϕn(y), then ϕm(x) < ϕm(y) for all
m > n.

A sequence of norms on A with property (a) is called a scale on A. Any scale on A can
be easily transformed into a scale on A with the refinement property. If ~ϕ is a scale on A,
then we define the tree of ~ϕ to be

T~ϕ = {(〈x(0), ..., x(n− 1)〉, 〈ϕ0(x), ..., ϕn−1(x)〉) | n < ω and x ∈ A}.

It is not hard to see that p[T~ϕ] = A. If ~ϕ has the refinement property, and ~ψ is the scale

of T~ϕ, then ~ψ is equivalent to ~ϕ, in the sense that for all n, x and y, ψn(x) ≤ ψn(y) iff
ϕn(x) ≤ ϕn(y). The reader should see [15, 6B] and [8, ?] for more on the relationship
between scales and Suslin representations.

There are least two benefits to considering the scale of a tree: first, it becomes eas-
ier to state and prove optimal definability results, and second, the construction of Suslin
representations using comparison games becomes clearer. Concerning definability, we have

Definition 2.1 Let Γ be a pointclass, and ~ϕ a scale on A, where A ∈ Γ; then we call ~ϕ a
Γ-scale on A just in case the relations

R(n, x, y) ⇔ x ∈ A ∧ (y 6∈ A ∨ ϕn(x) ≤ ϕn(y)),

and
S(n, x, y) ⇔ x ∈ A ∧ (y 6∈ A ∨ ϕn(x) < ϕ(y))

are each in Γ. We say Γ has the scale property just in case every set in Γ admits a Γ-scale,
and write Scale(Γ) in this case.

Moschovakis showed that if Γ is a pointclass which is closed under universal real quantifi-
cation, has other mild closure properties, and has the scale property, then every Γ relation
has a Γ uniformization, and the Γ singletons are a basis for Γ. ([15, 3A-1]). He also showed
that assuming ∆1

2n determinacy, both Π1
2n+1 and Σ1

2n+2 have the scale property. ([15, 3B,
3C].) From this, one gets the natural generalization of Novikoff-Kondo-Addison to the higher
levels of the projective hierachy.
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Moschovakis’ construction of scales goes by propagating them from a set A to a set B
obtained from A via certain logical operations. One starts with the fact that Σ0

1 has the scale
property, and uses these propagation theorems to obtain definable scales on more complicated
sets. The propagation works at the level of the individual norms in the scales.

For example, if ϕ is a norm of A, where A ⊆ X × Y ω, and

B(y) ⇔ ∃xA(x, y),

then we obtain the “inf” norm on B by setting

ψ(y) = inf{ϕ(x, y) | A(x, y)}.

If either X is an ordinal, or X = ωω, then inf norms can be used to transform a scale on A
into a scale on B. (See [15, 3B-2].) This transformation has a simple meaning in terms of
the tree of the scale; if X = ωω, it corresponds to regarding a tree on (Y × ω)× κ as a tree
on Y × (ω × κ).

Definable scales do not propagate under negation or universal quantification over ordinals.
(Otherwise, it would be possible to assign to each countable ordinal α a scale on the set of
wellorders of ω of order type α, in a definable way. This would then yield a definable function
picking a codes for the countable ordinals.) Moschovakis’ main advance in [34] was to show
that universal quantification over the reals propagates definable scales. Here it is definitely
important to work with scales, rather than their associated trees. As before, the propagation
takes place at the level of individual norms. Let ϕ be a norm on A, where A ⊆ R× Y , and
let

B(y) ⇔ ∀xA(x, y).

To each y ∈ B, we associate fy: R → OR, where

fy(x) = ϕ(x, y).

Our norm on B records an ordinal measure of the growth rate of fy. Namely, given f, g: R →
OR, we let G(f, g) be the game on ω: I plays out x0, II plays out x1, the players alternating
moves as usual. Player II wins iff f(x0) ≤ g(x1). (Thus a winning strategy for II witnesses
that g grows at least as fast as f , in an effective way.) Now put

f ≤∗ g ⇔ II has a winning strategy in G(f, g).

Granted full AD, one can show ≤∗ is a prewellorder of all the ordinal-valued functions on
R, and granted only determinacy for sets simply definable from ϕ, one can show that ≤∗

prewellorders the fy for y ∈ B. Our norm on B is then given by

ψ(y) = ordinal rank of fy in ≤∗� {fz | B(z)}.
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(See [15, 2C-1].) The norm ψ is generally called the “fake sup” norm obtained from ϕ; the
ordinal ψ(y) measures how difficult it is to verify A(x, y) at arbitrary x.

The fake-sup construction was first used in [1], to propagate the prewellordering property,
which involves only one norm. Granted enough determinacy, the construction can be used to
transform a scale on A into a scale on B, where B(y) ⇔ ∀xA(x, y). The key additional idea is
to record, for each basic neighborhoodNs, the ordinal rank of fy � Ns in≤∗� {fz � Ns | B(z)}.
See[15, 3C-1].

Using more sophisticated comparison games, one can combine the techniques for propa-
gating scales under universal and existential real quantification, as well as existential ordinal
quantification. This leads to the propagation of scales under various game quantifiers. We
shall discuss these results in more detail in the next section.

Although the fake-sup method of propagating scales was invented in order to obtain
optimally definable scales, one can show that under AD, the tree of the scale it produces is
very often homogeneous. ( The tree of any scale is the surjective image of R, so it is too
small to be homogeneous in V .) See [32], where it is also shown that the tree very often has
the “generic codes” property of [18].

3 Individual papers

We pass to an extended table of contents for the papers in the block to follow, together
with pointers to some related results and literature. We also include a number of proof
sketches. Some of these sketches will only make sense to readers with significant background
knowledge. We have included references to fuller explanations in the literature when possible.

Notes on the Theory of Scales ([15])

This is a survey paper, written in 1971. It is still an excellent starting point for anyone
seeking basic information regarding the construction and use of scales under determinacy
hypotheses. It is truly remarkable how much of the descriptive set theory that is founded
on large cardinals and determinacy emerged in the early years of the subject.

The paper begins in §2 – §4 with the inf and fake-sup constructions, and their corollaries
regarding the scale property and uniformization in the projective hierarchy.

Theorem 3.1 (Moschovakis 1970) Assume all ∆1
2n games are determined; then

(1) Π1
2n+1 and Σ1

2n+2 have the scale property, and hence

(2) every Π1
2n+1 (respectively Σ1

2n+2) relation on R can be uniformized by a Π1
2n+1 (respec-

tively Σ1
2n+2) function.
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In §6, the projective ordinals

δ1n = sup{α | α is the order type of a

∆1
n prewellorder of R}

are introduced. One can show that, assuming PD, any Π1
2n+1-norm on a complete Π1

2n+1 set
has length δ12n+1; see [38, 4C.14]. From the scale property for Π1

2n+1 one then gets that all
Π1

2n+1 sets are δ12n+1-Suslin, and thence that all Σ1
2n+2 sets are δ12n+1-Suslin. ( For n = 0,

this reduces to the classical Novikoff-Kondo result that all Σ1
2 sets are ω1-Suslin.) The size of

the projective ordinals, both in inner models of AD, and in the full universe V , is therefore
a very important topic. It is a classical result that δ11 = ω1, while the size of the larger
projective ordinals has been the subject of much later work, some of which will be collected
in a block of papers in a later volume in this series.

§7 proves the Kunen-Martin theorem:

Theorem 3.2 (Kunen, Martin) Every κ-Suslin wellfounded relation on R has rank < κ+.

This basic result has important corollaries concerning the sizes of the projective ordinals.
For example, because all Σ1

2n+2 sets are δ12n+1-Suslin, we have that δ12n+2 ≤ (δ12n+1)
+, and in

particular, δ12 ≤ ω2.
§8 investigates the way in which Suslin representations yield ∞-Borel representations.

It is shown that κ-Suslin sets are κ++-Borel (i.e. can be built up from open sets using
complementation and wellordered unions of length < κ++). Of course, if CH holds, then
every set of reals is a union of ω1 singletons; the true content of the result of §8 lies in the
fact that the κ++-Borel representation is definable from the κ-Suslin representation. §8 also
shows that, assuming PD, every ∆1

2n+1 set is δ12n+1-Borel. If n = 0, this is just Suslin’s
original theorem. In order to obtain a converse when n > 0, we must impose a definability
restriction on our δ12n+1-Borel representation, since again, it could be that every set of reals
is ω1 + 1-Borel. One way to do that is to assume full AD, and Martin showed that indeed,
assuming AD, every ∆1

2n+1 set is δ12n+1-Borel. So we have

Theorem 3.3 (Martin, Moschovakis) Assume AD; then the ∆1
2n+1 sets of reals are pre-

cisely the δ12n+1-Borel sets.

See [38, 7D.9]. This fully generalizes Suslin’s 1917 theorem to the higher levels of the
projective hierarchy.

§5 and §9 introduce inner models, obtained from Suslin representations, which have
certain degrees of correctness. In §5, it is shown that for n ≥ 2, there is a unique, minimal
Σ1

n-correct inner model M∗
n containing all the ordinals; the model is obtained by closing

under constructibility and an optimally definable Skolem function for Σ1
n. (Kechris and

Moschovakis call this model Mn, but “Mn” is now generally used to denote a different
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model; see below.) §9 considers the model L[T ], where T is the tree of a Π1
2n+1 scale on a

complete Π1
2n+1 set. These models have proved more important in later work than the M∗

n.
It is shown that if n = 0, then L[T ] = L; in particular, L[T ] is independent of the Π1

2n+1

scale and complete set chosen. Moschovakis conjectured that L[T ] is independent of these
choices if n > 0 as well, and more vaguely, that it is a “correct higher level analog of L”.

Becker’s paper [2] contains an excellent summary of what was known in 1977 about the
models of §5 and §9. The independence conjecture, which inspired a great deal of work,
became Victoria Delfino problem 3. Harrington and Kechris ([7]) made a significant advance
by showing that the reals of L[T ], where T is the tree of any Π1

2n+1 scale on a complete Π1
2n+1

set, are the largest countable Σ1
2n+2 set of reals, and hence independent of the choice of T .

Building on this work, Moschovakis made a step forward in the late 70’s with the introduction
of the model HΓ, for Γ a pointclass which resembles Π1

1 in a certain technical sense, and has
the scale property. (See [38, 8G.17 ff.].) Assuming ∆1

2n-determinacy, the pointclass Π1
2n+1 is

an example of such a Γ, but there are many more examples. The model HΓ is of the form
L[U ], where U is a universal ∃RΓ (in the codes) subset of the prewellordering ordinal of Γ,
and one can think of it as a fragment of HOD corresponding to Γ-definability. Using the
Harrington-Kechris work, Moschovakis showed that HΓ is independent of the universal set
and Γ-norm used to define U , that it includes L[T ], for tree T of a Γ scale on a complete Γ set,
and that R∩HΓ is the largest countable ∃RΓ set of reals. (See [38, 8G.17 ff.].) Moschovakis’
results require a bit more than Γ-determinacy.

The independence of L[T ] was finally proved by Becker and Kechris ([3]), who showed

Theorem 3.4 (Becker, Kechris 1984) Let Γ be a pointclass which resembles Π1
1 and has

the scale property, and suppose AD holds in L(Γ,R). Let T be the tree of any Γ-scale on a
complete Γ set; then L[T ] = HΓ.

The Becker-Kechris proof makes heavy use of a class of games introduced by Martin in order
to obtain an approximation to 3.4.

Not long after the last of the Cabal Seminar volumes appeared, our understanding of
the large cardinal side of the “equivalence” between large cardinals and determinacy caught
up with our understanding of the determinacy side. This equivalence is mediated by the
canonical inner models for large cardinal hypotheses, which are sometimes called extender
models. We can now identify each of the models of §5 and §9 as an extender model, and
thereby understand it much more deeply than we could using only pure descriptive set theory.
For example, most nontrivial facts in the first order theory of L[T ] (e.g., that the GCH, and
Jensen’s diamond and square principles, hold in L[T ]) seem to require its identification as
an extender model for proof. The identifications are as follows: Here and in the rest of the
paper, for 0 ≤ n ≤ ω, we let Mn be the minimal iterable proper class extender model with
n Woodin cardinals. If n ≥ 2 is even, then M∗

n is L[Mn−2|γ], where γ is least such that

γ = ω
L[Mn−2|γ]
1 and L[Mn−2|γ] is Σ1

n-correct. (For n > 2, we have that γ < ω
Mn−2

1 .) If n
is odd, then M∗

n is the minimal proper class extender model Q such that if S is an initial
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segment of Q projecting to ω, then Mn−2(S)] is an initial segment of Q. These identifications
are implicit in [55]. Finally, if n ≥ 3 is odd, and T is the tree of a Π1

n scale on a complete
Π1

n set, then there is an iterate Q of Mn−1 such that L[T ] = L[Q|δ1n]. This identification is

implicit in [57], where the parallel fact with the pointclass Πn replaced by Σ
L(R)
1 , and Mn−1

replaced by Mω, is proved. So we have

Theorem 3.5 (Steel 1994) Assume there are ω Woodin cardinals with a measurable above

them all, and let Γ = Π1
2n+1 or Γ = Σ

L(R)
1 ; then HΓ is an iterable extender model.

In a similar vein, the prewellordering and scale theorems of §2 - §4 can now be proved
using extender models. In the prewellordering case, the proof is due to Woodin, and in the
scale case, to Neeman; in neither case is the proof published, but see [55]. These proofs
require significantly more theory than the comparsion game approach, but in some ways
they give deeper insight into the meaning of the norms being constructed.

Finally, Suslin and ∞-Borel representations are related to Lebesgue measurability, the
Baire property, and the perfect set property in §10 and §11. Solovay’s breakthrough results
from 1966 on the regularity of Σ1

2 sets under large cardinal hypotheses ([47]) are thereby
extended to other pointclasses. A basic result on the existence of largest countable sets is
proved (in effect):

Theorem 3.6 (Kechris, Moschovakis) Suppose Γ is adequate, ω-parametrized, has the
scale property, and is closed under ∃R, and suppose all Γ games are determined; then there
is a largest countable Γ set of reals.

When it exists, the largest countable Γ set is called CΓ. The theorem is implicit in the
proof of Theorem 11B-2, which proves the existence of CΓ for Γ = Σ1

2n. Kechris’ paper
[13] contains further basic information in this area. The sets CΓ are quite important, partly
because many of them show up naturally as the set of reals in some canoncal inner model.
For example, Solovay showed that CΣ1

2
= R∩L ([15, 11B-1]), and we now know that for any

n, CΣ1
2n+2

= R ∩M2n. (See [55]. Note that M0 = L.) In general, under the hypotheses of

3.4, we have C∃RΓ = R ∩HΓ. (See [38, 8G.29].)
Kechris [13] shows that assuming Π1

2n+1- determinacy, there is a largest countable Π1
2n+1

set of reals CΠ1
2n+1

. This result is due to Guaspari, Kechris, and Sacks for n=0, in which case

CΠ1
2n+1

has an inner-model-theoretic meaning as the set of reals ∆1
2n+1-equivalent to the first

order theory of some level of M2n projecting to ω. It is open whether this characterization
of CΠ1

2n+1
holds also for n > 0.

Propagation of the Scale Property by Game Quantifiers ([39])
Scales on Σ1

1 Sets ([49])

11



Moschovakis unified his results on scale propagation under the real quantifiers into a single
theorem on the propagation of scales under the game quantifier on ω. Letting A ⊆ R × R,
we put

ayA(x, y) ⇔ ∃n0∀n1∃n2∀n3...A(x, 〈ni | i < ω〉),

where we interpret the right hand side as meaning its quantifier string has a Skolem function,
that is, that player I wins the game on ω with payoff Ax = {y | A(x, y). We write aA for
{x | ayA(x, y)}, and if Γ is a pointclass, we set aΓ = {aA | A ∈ Γ}. The following is often
called the third periodicity theorem. It dates from approximately 1973; see [35] or [38, 6E].

Theorem 3.7 (Moschovakis) Let Γ be an adequate, ω-parameterized pointclass closed un-
der quantification over ω, and suppose Γ(x)-determinacy holds for all reals x. Suppose Γ has
the scale property; then

(a) aΓ has the scale property, and

(b) if G is a game on ω with payoff set in Γ, and the player whose payoff is Γ has a winning
strategy in G, then that player has a aΓ winning strategy.

The proof involves a more sophisticated comparison game: given a norm ϕ on A, one
gets a norm on aA using comparison games in which the two players play out the games
with payoff Ax1 and Ax2 simultaneously, in different roles on the two boards, each trying to
win in his role as player I with lower ϕ-norm than the other. The first paper in the present
pair gives a thorough exposition of the proof of this theorem. (See also [38, Section?].)

It is easy to see that aΠ1
n = Σ1

n+1, and assuming Σ1
n-determinacy, that aΣ1

n = Π1
n+1.

Setting Σ1
0 = Σ0

1, this is true for n = 0 as well. Thus 3.7 subsumes 3.1. Part (b) of 3.7, on
the existence of canonical winning strategies, is very useful. In the special case of projective
sets, we get

Corollary 3.8 (Moschovakis) Assume ∆1
2n-determinacy, and let G be a game with Σ1

2n

payoff, and suppose the player with Σ1
2n payoff has a winning strategy; then he has a ∆1

2n+1

winning strategy.

Moschovakis’ proof used Σ1
2n-determinacy, but Martin later showed this follows from

∆1
2n-determinacy, so we have stated the theorem in its sharper form. Of course, we also

get ∆1
2n+2 strategies for games won by a player with Π1

2n+1 payoff from 3.8, but this already
follows easily from the basis theorem for Π1

2n+1. It is easy to see that these definability
bounds on winning strategies are optimal.

It is natural to ask what are the optimally definable scales and winning strategies for
the projective pointclasses which zig when they should have zagged, that is, for Σ1

2n+1 and

12



Π1
2n+2. The second paper in this pair gives part of the answer. Let α− Π1

1 be the αth level
of the difference hierarchy over Π1

1 (see [49]). and let

Λ0 =
⋃
k<ω

ωk − Π1
1.

Steel gives a simple proof in [49] that every Σ1
1 set admits a very good scale whose associated

prewellorders are each in Λ0, and in fact, each set in Λ0 admits a very good scale whose asso-
ciated prewellorders are all in Λ0. (We are not demanding that the sequence of prewellorders
be in Λ0.) Now let a(n) = a....a be the n-fold composition of the game quantifier on ω; then
the proof of third periodicity theorem easily gives

Theorem 3.9 (Steel 1980) Let n ≥ 1, and suppose all a(n−1)Λ0(x) games are determined,
for all reals x; then

(a) every a(n)Λ0 set admits a very good scale, all of whose norms are a(n)Λ0, and

(b) if G is a game with payoff in a(n−1)Λ0, then there is a winning strategy σ for G such
that for any k, σ � {p | lh(p) ≤ k} is in a(n)Λ0.

It is easy to see that for n ≥ 1,

(Σ1
n ∪ Π1

n) ⊆ a(n−1)
⋃
k<ω

ωk − Π1
1 ⊆ ∆1

n+1.

The best bounds on the definability of very good scales and winning strategies for Σ1
n sets

(n odd) and Π1
n sets (n even) are just those given by Theorem 3.9 and this inclusion. That

the bounds cannot be improved follows from Martin [26]; see below.
(We should note here that Busch [4] showed that every Σ1

1 set admits a scale all of whose
prewellorders are (ω+3)−Π1

1. However, the Busch scale is not very good, and transforming
it to a very good scale involves taking intersections, which drives us up to Λ0. The third
periodicity propagation technique requires, in effect, that the input scale be very good.)

The progress of inner model theory has shed some light on these results. Neeman [40]
gives an inner-model-theoretic proof that every Σ1

2n game won by the player with Σ1
2n payoff

has as ∆1
2n+1 winning strategy, as a byproduct of his proof of Σ1

2n determinacy from the
existence and iterability of M2n−1. Neeman’s work also gives an insight into the pointclasses
a(n)Λ0. For n ≥ 0, let T n

k be the theory in Mn of its first k indiscernibles. Thus the reals in
Mn are just those reals which are recursive in some T n

k . One can show that every an+1ωk−Π1
1

real is recursive in T n
k , and that T n

k itself is a(n+1)ω(k+1)−Π1
1. The proof is an induction on

n, with the base case n = 0 being due to Martin, as part of his proof of ωk−Π1
1-determinacy

from the existence of the sharp of M0 = L. ( Here is a proof sketch of the n > 0 case for
experts: To reduce a an+1ωk − Π1

1 real to T n
k , we ask questions about what is forced in
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collapse of the bottom Woodin of Mn about its first k indiscernibles. The answer we get will
reflect an+1ωk−Π1

1 truth because every real, and in particular a winning strategy witnessing
or refuting the outer a quantifier, is generic over an iterate of Mn for this collapse. To show
that T n

k itself is a(n+1)ω(k + 1) − Π1
1, we use a game in which the players play a putative

M ]
n’s, say P and Q respectively, and then the two are coiterated inside Mn−1(〈P,Q〉).)
It follows that M ]

n is Turing equivalent to the set of true a(n+1)Λ0 sentences. From this
we see that any game with a(n)Λ0 payoff has a winning strategy which is recursive in M ]

n.
(By 3.14(b) below, no better definability bound is possible.) In particular, every nonempty
Σ1

2n+1 set has a member recursive in M ]
2n, using the trivial game in which I must play a

member of the set and a witness to the Π1
2n matrix, and II does nothing. This gives us

an inner-model-theoretic proof of Martin and Solovay’s generalization of the Kleene Basis
Theorem for Σ1

1 ([14, 5.6]).

Inductive Scales on Inductive Sets ([36])
Scales on Coinductive Sets ([37])
The Extent of Scales in L(R) ([29])

It is natural to try to extend the civilizing influence of definable scales to more complicated
sets. The remaining papers in this block use the comparison game construction to do that,
while showing that, most of the time, the scales produced are definable in the simplest
possible logical form.

The papers in this group, which represent work done in late 1979, exploit the uniformities
in the comparison game method of propagating scales. Let us use ∃or, ∃R, and ∀R to stand
for existential quantification over the ordinals, over the reals, and universal quantification
over the reals, respectively. Because the propagation of scales under these operations is
uniform in the scales, one gets inductive scales on inductive sets; this is done in [36]. (A set

is inductive iff it is Σ
JκR (R)

1 , where κR is least κ such that Jκ(R) |= KP.) Since AD implies that
the pointclass of inductive sets is closed under real quantification and wellordered unions, it
seemed at first that one needed a radically new idea to go further. (One cannot hope to show
that the class of scaled sets is closed under complement!) The existence of definable scales for
coinductive sets became Victoria Delfino problem 2. However, it turned out that what was
missing was more in the nature of a subtle observation: the comparison game propagation
of scales under ∃or, ∃R, and ∀R acts at the level of individual norms–it corresponds, in each
case, to a continuous operation on the input scale. Moschovakis realized this, and realized
that it could be used to define scales on any set A definable in the form

A(x) ⇔ ∃x0∃α0∀x1∃x2∃α1∀x3...∀nR(〈x0|n, ..., xn|n〉, 〈α0, ..., αn〉),

where R is definable, the α’s are ordinals, and the x’s are reals. (This is done by simul-
taneously defining scales on each of the ω-many sets defined by the formula on the right
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with some initial segment of its quantifiers removed. The scale on any such set is obtained
from the scale on the set corresponding to removing one more quantifier by the continuous
operation corresponding to that quantifier.)

The expression displayed on the right hand side above gives what is called a closed game
representation of A: it asserts that player I wins the infinite game in which he plays the
even x’s and the α’s, while II plays the odd x’s, and the payoff indicated by the matrix is
closed in the product of the Baire topology on R and the discrete topology on the ordinals.
What [37] shows, in effect, is that granted sufficient determinacy, any set with a closed game
representation admits a definable scale. (The converse is trivial.) In the special case that
the game involves no ordinal moves, one gets

Theorem 3.10 (Moschovakis 1979) Suppose all games in JκR+1(R) are determined, and
let A be coinductive; then A admits a scale whose associated prewellorders are each in
JκR+1(R).

Martin and Steel showed in [29] that in fact, every Σ
L(R)
1 set admits a closed game rep-

resentation in L(R), which together with Moschovakis’ work and some simple definability
calculations implies

Theorem 3.11 (Martin, Steel 1979) Assume ADL(R); then the pointclass Σ
L(R)
1 has the

scale property.

Kechris and Solovay had observed earlier that, assuming AD, the relation “x, y ∈ R and
y is not ordinal definable from x” is ordinal definable, but admits no uniformization, and
hence no scale, which is ordinal definable from a real. (Let f be a uniformizing function, and
suppose f is ordinal definable from x; then f(x) is ordinal definable from x, a contradiction.)
If V = L(R), then this relation is Π1, while every set whatsoever is ordinal definable from
a real, so we have a Π1 set which admits no scale at all. A simple Wadge argument then
shows that assuming ADL(R), the sets admitting scales in L(R) are precisely the Σ

L(R)
1 sets.

Under suitable large cardinal assumptions, one can construct natural models of AD prop-
erly larger than L(R). These models, and L(R) itself, all satisfy a certain strengthening
of AD called AD+. The theory AD+ was isolated by Woodin, and part of his work is the
following far-reaching generalization of 3.11:

Theorem 3.12 (Woodin, mid 90’s) Assume AD+; then the pointclass Σ2
1 has the scale

property.

Note here that Σ
L(R)
1 = (Σ2

1)
L(R), so that Woodin’s theorem reduces to that of Martin and

Steel if our model of AD+ is L(R). No proof of 3.12 has been published as yet, but the
theory AD+ is described in [62, Section 9.1], where 3.12 and related results are stated as
Theorem 9.7. A proof that Σ2

1 has the scale property in those models of AD+ obtained from
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models with large cardinals via the standard means, i.e. the derived model construction, is
exposited in [59, §7].

The Largest Countable This, That, and the Other ([26])

Moschovakis [37] shows that the norms of the scale on a coinductive set it constructs
are each first order definable over JκR(R). It is natural to ask whether one can do better:
does every coinductive set admit a scale such that for some fixed n < ω, all the norms are

Σ
JκR (R)
n ? In [26], Martin proves an important reflection result which implies that the answer

is “no”. Let us write y ∈ ODα(x) to mean that y is ordinal definable from x over Jα(R).

Theorem 3.13 (Martin 1980) Assume inductive determinacy, and suppose x, y ∈ R and
y ∈ ODκR(x); then y ∈ ODα(x) for some α < κR.

(Though not literally stated in [26], this is a fairly direct consequence of Lemma 4.1.) Now
the relation “x, y ∈ R and ∀α < κR(y 6∈ ODα(x))” is coinductive, and by the Kechris-
Solovay argument, it cannot be uniformized by a function in JκR+1(R), and hence it admits
no scale whose sequence of associated prewellorders is in JκR(R). Thus one cannot improve
Moschovakis’ definability bound.

Martin’s reflection result is part of a characterization of CΓ, of the largest countable

Γ set of reals, for various pointclasses Γ. Letting IND = Σ
JκR
1 (R) be the pointclass of

(lightface) inductive sets, it is easy to see that assuming inductive determinacy, CIND =
{y | y ∈ ODκR(∅)}. (See [50, 2.11].) This characterizes the members of CIND in terms of
definability from ordinals, in a way which parallels Kechris’ characterization of CΣ1

2n
as {y | y

is ∆1
2n in a countable ordinal}. Martin found characterizations of CIND and CΣ1

2n
in terms

of definability wihout parameters:

Theorem 3.14 (Martin 1980) Assume all games in JκR+1(R) are determined; then for
any real y

(a) y ∈ CIND iff y is definable over JκR(R) from no parameters, and

(b) y ∈ CΣ1
2n

iff y is a(2n−1)
⋃

k<ω ωk − Π1
1.

The left-to-right directions make use of the existence of scales on coinductive sets in case (a),
and on Π1

2n sets in case (b), which are definable in the appropriate way: each norm being
definable over JκR(R) in case (a), each norm being a(2n−1)

⋃
k<ω ωk − Π1

1 in case (b). The
right-to-left directions are reflection arguments, and they show that the definability bounds
for scales used in the other direction are best possible.

Soon after Martin proved 3.14, Kechris and Woodin used his technique, among other
ideas, to prove a vaguely similar reflection result: if there is a non-determined game in
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JκR+1(R), then there is a non-determined game in JκR(R). It follows that the hypothesis
of Moschovakis’ scale existence result 3.10 can be reduced to JκR(R)-determinacy. See [17],
which is reprinted in Part II of this volume. Somewhat more general results along the same
lines were a key ingredient in the proof of

Theorem 3.15 (Kechris, Woodin 1980 date?) If there is a non-determined game in
L(R), then there is a non-determined game whose payoff is Suslin in L(R).

The structure of this proof has played an important role in later proofs of ADL(R) under
various hypotheses. See below.

Kechris-Woodin [17] also proves something along the lines of 3.14(b): ∆1
2n-determinacy

implies a2n−1
⋃

k<ω ωk−Π1
1-determinacy. (Martin had proved ∆1

2n-determinacy implies Σ1
2n-

determinacy earlier, by a different method. See [16].)
Once again, the progress of inner model theory has given us deeper insight into these

results of Martin and Kechris-Woodin. Itay Neeman found an inner-model-theoretic proof
of 3.14(b). Let Mn be the minimal iterable proper class extender model with n Woodin
cardinals, and T n

k be the theory in Mn of its first k indiscernibles. By [55], the reals in
CΣ1

2n
are precisely the reals in M2n, and hence are just those reals which are recursive in

some T 2n
k . But by [40], every a2n−1ωk − Π1

1 real is recursive in Tk, and that Tk itself is
a(2n−1)ω(k + 1) − Π1

1. (We sketched this proof above.) 3.14(b) now follows easily. Mitch
Rudominer found an inner-model-theoretic proof of 3.14(a); in this case, the role of M2n

is played by the minimal iterable extender model P having ω Woodin cardinals, which by
minimality are cofinal in the ordinals of P , and the role of T 2n

k is played by the Σ0 theory in
P of its first k Woodin cardinals. See [45].

It is worth noting that the set of reals in M2n+1 is also well known from descriptive set
theory; it is the set Q2n+1. See [14] for the many characterizations of this set. In general,
the reals of Mn, for any n, can be characterized in terms of ordinal definability as those reals
which are ∆1

n+2 in a countable ordinal.
Neeman and Woodin have proved the Kechris-Woodin theorem within the projective

hierarchy by the methods of inner model theory, and at the same time generalized it to
the odd levels as well. Woodin (unpublished) showed that for any n ≥ 1, Π1

n-determinacy
implies that for all reals x, Pn(x)] exists, and Neeman [40] showed that the existence of these
mice implies an−1

⋃
k<ω ωk − Π1

1-determinacy. For n = 1, these are results of Harrington [6]
Martin (unpublished) respectively. It is known from work of Kechris and Solovay ([16]) that
these “transfer results” for determinacy in the projective hierarchy cannot be improved.

No one has as yet proved that JκR(R)-determinacy implies JκR+1(R)-determinacy by
purely inner-model-theoretic methods.

Scales in L(R) ([50])
Scales in K(R)([51])
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Given that a set of reals admits a scale in L(R), it is natural to ask what is the least
level of the Levy hierarchy for L(R) at which such a scale appears. The papers in the last
group answered this question in some important cases. The paper [50], work of Steel from
1980, knits the arguments of those papers together into a complete answer.

It turns out that the (lexicographically) least 〈γ, n〉 such that A admits a Σ
Jγ(R)
n scale is

the lexicographically least 〈γ, n〉 such that A ∈ Σ
Jγ(R)
n and Σ

Jγ(R)
n has the scale property. [50]

characterizes those pointclasses Σ
Jγ(R)
n which have the scale property in terms of reflection

properties. The key concept is that of a Σ1-gap. Let us say M≺R
1 N iff M is an elementary

submodel of N with respect to Σ1 formulae about parameters from R ∪ {R}.

Definition 3.16 The interval [α, β] is a Σ1-gap iff

1. Jα(R) ≺R
1 Jβ(R),

2. ∀γ < α(Jγ(R) 6≺R
1 Jα(R)), and

3. Jβ(R) 6≺R
1 Jβ+1(R).

With the convention that [(δ21)L(R),∞] is also a Σ1 gap, we have that Σ1 gaps partition

OR. In order to determine whether Σ
Jγ(R)
n has the scale property, we consider the unique

Σ1 gap [α, β] to which γ belongs. [50] shows that, assuming enough determinacy,

(1) if α < γ < β then Σ
Jγ(R)
n does not have the scale property (Kechris, Solovay),

(2) if γ = α and n = 1, then Σ
Jγ(R)
n has the scale property,

(3) if γ = α, n > 1, and α is admissible, or if γ = β and [α, β] is a strong gap, then Σ
Jγ(R)
n

does not have the scale property (Martin),

(4) if γ = α, n > 1, and α is inadmissible, or if γ = β and [α, β] is a weak gap, and

ρn(Jβ(R)) = R, then Σ
Jγ(R)
n or its dual class has the scale property, according to the

“zig-zag” pattern.

The weak/strong distinction for gaps is motivated by Martin’s proof of 3.14; strong gaps
have a reflection property which is used in this argument.

The most important applications of this analysis occur in inductive proofs of ADL(R).
The first of these, which set the pattern, is the Kechris-Woodin proof of 3.15, that Suslin
determinacy implies determinacy in L(R). Their argument goes roughly as follows: let β be
least such that there is a non-determined game in Jβ+1(R). The failure of determinacy is a
Σ1 fact, so β ends a gap of the form [α, β]. Setting γ = β, and letting n be least such that
there is a non-determined Σn

Jβ(R) game, we have enough determinacy to prove (1)-(4) above.
(This comes from inspecting the proof of [50], and using an observation of Kechris.) The
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Kechris-Woodin result that JκR(R)-determinacy implies JκR+1(R)-determinacy generalizes
routinely so as to show that we cannot be in case (3). In all other cases, we have enough
determinacy to show that either Σn

Jβ(R) or Σn+1
Jβ(R) has the scale property. Thus the payoff

of our non-determined game is Suslin in L(R), a contradiction.
Kechris and Woodin used 3.15 to show that if V = L(R) and there are arbitrarily large

strong partition cardinals below Θ, then AD holds. With the proofs of determinacy from
Woodin cardinals in the mid-80’s ([30]), and the advances in techniques for constructing cor-
rect inner models with Woodin cardinals in the late 80’s and 1990 ([31], [33], [56]), it became
possible to use this pattern of argument to prove ADL(R) under many different hypotheses.
Woodin pioneered this core model induction method, in his 1990 proof that the Proper Forc-
ing Axiom together with the existence of an inaccessible cardinal implies ADL(R). In such
an argument, one proves not just determinacy, but the existence of correct mice “certifying”
the determinacy in question, by an induction. The scale analysis is used to get a definable
scale on a set coding truth at the next level of correctness, and then core model theory is
used to construct mice correct at that level. The method has been used a number of times
since 1990, by Woodin and others. (See [19], [63].) Indeed, if the large cardinal strength of
a theory T is not close to the surface, it is highly likely that any proof that T implies ADL(R)

will use the core model induction method. Only very recently has a paper describing and
using the method been published; see [58].

[51] extends the scale analysis of [50] to K(R). This is useful in constructing mice with
more than infinitely many Woodin cardinals by the core model induction method.

The Real Game Quantifier Propagates Scales ([27])
Long Games ([52])
The length-ω1 open game quantifier propagates scales ([53])

These papers push the comparison game construction of scales as far as it has been
pushed to date.

It is natural to ask whether there is a propagation theorem behind Moschovakis’ theorem
3.10. Martin obtains a positive answer in [27], showing that the game quantifier correspond-
ing to games of length ω on the reals propagates definable scales. In fact, he shows that the
game quantifier corresponding to games of any fixed countable length propagates definable
scales. (Note here that a game of length α on R can be simulated by a game of length ωα
on ω.) He also proves the other half of third periodicity, that there are definable winning
strategies for these games. Both theorems require the determinacy of the games in question
as a hypothesis.

Steel extends these results to the game quantifiers corresponding to clopen games of
length ω1 in [52], and then finally to the game quantifier corresponding to open games of
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length ω1 in [53]. These latter results represent the limit of what has been done in this
direction, so let us state them more precisely.

Let A ⊆ R × ω<ω1 . For x ∈ R, consider the game of length ω1 in which I and II play
natural numbers, alternating as usual, with I going first at limit ordinals. We fix some
natural way of representing runs of such games by p ∈ ωω1 , and then declare that p is a
winning run for I in GAx iff ∃α < ω1A(x, p � α). Thus GAx is open for I in the topology on
ωω1 whose basis consists of sets of the form {p ∈ ωω1 | q ⊂ p}, where q ∈ ω<ω1 . We then put

x ∈ aω1A⇔ I has a winning strategy in GAx .

In order to calculate definability, we code countable sequences q of natural numbers by reals
q∗ in some simple way. Putting A∗(x, y) ⇔ ∃q(y = q∗ ∧ A(x, q)), we then define, for any
pointclass Γ,

aω1 open− Γ = {aω1A | A∗ ∈ Γ}.

The main result of [53] is

Theorem 3.17 (Steel) Let Γ be an adequate pointclass with the scale property, and suppose
that all (boldface) length ω1 open-Γ games are determined; then

(a) aω1 open− Γ has the scale property, and

(b) if the player with open payoff has a winning strategy in a length ω1 open-Γ game, then
he has a aω1 open Γ winning strategy.

Thus the determinacy of length ω1 open-∆1
2 games implies that aω1 open −∆1

2 has the
scale property. It is not known how to construct definable scales on the complements of
aω1 open −∆1

2 sets, or show that if the closed player wins such a game, he has a definable
winning strategy, under any definable determinacy or large cardinal assumption. We should
note here that assuming the determinacy of the long games involved, the complements of
aω1 open −∆1

2 sets are just the aω1 closed −∆1
2 sets. in the natural meaning of this term.

All aω1 closed−∆1
2 sets are Σ2

1, and assuming CH, all Σ2
1 sets are aω1 closed−∆1

2. Woodin’s
Σ2

1 absoluteness theorem ([22, Theorem 3.2.1]) can be formulated without referring to CH
as follows: if there are arbitrarily large measurable Woodin cardinals, then aω1 closed−∆1

2

sentences are absolute between set-generic extensions of V .
[52, §3] uses a weaker form of this theorem to show that the determinacy of games ending

at the first Σ2 admissible relative to the play, with ∆1
2-in-the-codes payoff, implies that there

is an inner model of ADR containing all reals and ordinals. This was the first proof that
some form of definable determinacy implies that there is an inner model of ADR. In the
early 90’s, Woodin showed how to obtain such a model directly, under the optimal large
cardinal hypothesis. This work is unpublished, but is exposited in [59].
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[52, §4] also proves the determinacy of games ending at the first Σ1 admissible relative
to the play in the theory ZF + AD + DC+ “every set of reals admits a scale” + “ω1 is
P (R)-supercompact”. The latter had been proved to have a model containing all reals and
ordinals assuming ZFC+ “there is a supercompact cardinal” by Woodin (unpublished, but
see [59]), so [52, §4] completed the proof of a small fragment of clopen determinacy beyond
fixed countable length from large cardinals. Neeman ([42]) has since proved this fragment of
clopen determinacy directly, from essentially the optimal large cardinal hypotheses.

Although it is not known how to construct definable scales on aω1closed−∆1
2 sets under

any definable determinacy or large cardinal assumption, one can do so under the assumption
that there are sufficiently strong countable iterable structures. What one needs is essentially
a countable, ω1+1-iterable model ZF−+ “there is a measurable Woodin cardnal”. (A slightly
weaker theory suffices.) Woodin, and later independently Steel, showed that aω1closed−∆1

2

truth can be reduced to truth in any such model, by asking what is forced in the extender
algebra at its measurable Woodin cardinal. This yields a recursive function t such that if ϕ
is a aω1closed−∆1

2 formula, and x is a real, then

ϕ(x) ⇔M |= t(ϕ)[x],

where M is any iterable model as above such that x ∈ M . (Sadly, this work is still un-
published. The arguments of [54, §7] are a prototype lower down.) We can now use the
tree-to-produce-an-elementary-submodel method to get a definable scale. For let M0 be the
minimal extender model satisfying ZF−+ “there is a measurable Woodin cardinal”. M0 ex-
ists and is iterable by our assumption. Because it is minimal, M0 is pointwise definable, and
hence by [54, 4.10] it has a unique ω1 + 1 iteration strategy with the Dodd-Jensen property.
We can then define the direct limit M∞ of all countable iterates of M0 under the itera-
tion maps given by this strategy, as in [57]. Our Suslin representation T of the universal
aω1closed−∆1

2 set is definable from M∞, and hence definable. Roughly speaking, T builds
along each branch a putative aω1closed − ∆1

2 truth ϕ(x), a model N and an embedding of
N into M∞, and a proof that x is N -generic for the extender algebra at the bottom Woodin
cardinal of N , and that N [x] |= t(ϕ)[x].

It is much harder to construct definable winning strategies for aω1closed − ∆1
2 games

granted the existence of an iterable model of ZF−+ “there is a measurable Woodin cardnal”.
One must show that there are any strategies at all, in the first place! Itay Neeman ([44],
[43]) has made great progress on the questions of the existence and definability of winning
strategies in length ω1 open-Hom∞ games. He shows that these strategies can be obtained
by a logically simple transformation from iteration strategies for appropriate mice. In the
case of length ω1 closed-∆1

2, the appropriate mouse is essentially the minimal iterable mouse
with a measurable Woodin cardinal. Letting M0 be as above, Neeman’s work shows that any
length ω1 closed-∆1

2 game has a winning strategy which is easily definable from the unique
iteration strategy for M0, which by its uniqueness is itself definable.
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The problem of constructing iteration strategies for mice at the level of M0 and beyond
has been one of the fundamental open problems in pure set theory since the mid 1980’s.
Carthago delenda est!
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