AD^+ , Derived Models, and Σ_1 -Reflection

John Steel, Nam Trang

Let AD^+ be the theory $AD + DC_{\mathbb{R}} +$ "Every set of reals is ∞ -Borel" + "Ordinal Determinacy". For any $\Gamma \subseteq P(\mathbb{R})$, let $M_{\Gamma} = \bigcup \{m \mid m \text{ is transitive and } \exists E, F \subseteq \mathbb{R} \times \mathbb{R} \ (E, F \in \Gamma \text{ and } (\mathbb{R}/E, F) \cong (m, \in))\}$. We'll prove the following theorems:

Theorem 1. (Woodin) Assume $ZF + AD + V = L(P(\mathbb{R}))$. Then the following are equivalent:

- 1. AD^{+}
- 2. Letting $S = \{B \subseteq \mathbb{R} \mid B \text{ is Suslin co-Suslin}\}, M_S \prec_{\Sigma_1} V$.

Let us call the statement in (2) above " Σ_1 -reflection" to Suslin co-Suslin.

Theorem 2. (Woodin) Assume $ZF + AD^+ + V = L(P(\mathbb{R}))$, then

- 1. Σ_1^2 has the scale property.
- 2. $M_{\Delta_1^2} \prec_{\Sigma_1} V$.

Proof. The theorem follows immediately from Theorem 1 and lemma 7.2 in [3], whose proof is essentially due to Woodin. \Box

In the course of proving Theorem 1, we shall prove part of the determinacy-to-largecardinals direction of the Derived Model Theorem. Let λ be a limit of Woodin cardinals, and G be V-generic over $Col(\omega, < \lambda)$. We set

$$\mathbb{R}_G^* = \cup_{\alpha < \lambda} \mathbb{R}^{V[G|\alpha]},$$

 $Hom_G^* = \{p[T] \cap \mathbb{R}_G^* \mid \exists \alpha < \lambda (T \in V[G|\alpha], V[G|\alpha] \models T \text{ is } \lambda\text{-absolutely complemented})\},$ $\mathcal{A}_G = \{A \subset \mathbb{R}_G^* \mid A \in V(\mathbb{R}_G^*) \text{ and } L(A, \mathbb{R}_G^*) \models AD^+\}, \text{whereV}(\mathbb{R}_G^*) = \text{HOD}_{V \cup \mathbb{R}_G^* \cup \{\mathbb{R}_G^*\}}^{V[G]}.$

Theorem 3. (Woodin) Assume $ZF + AD^+ + V = L(P(\mathbb{R}))$. Suppose also that if $AD_{\mathbb{R}}$ holds, then Θ is singular. Then there is a set X in some generic extension of V such that setting M = L[X], then

- 1. for some λ , $M \vDash ZFC + \lambda$ is a limit of Woodins;
- 2. for some M-generic G over $Col(\omega, < \lambda)$:
 - $V = L(\mathcal{A}_G, \mathbb{R}_G^*)$, and

- $Hom_G^* = \{B \subseteq \mathbb{R}_G^* \mid B \text{ is Suslin co-Suslin in } V\}.$
- The model $L(\mathcal{A}_G, \mathbb{R}_G^*)$ as in 2 of the previous theorem is called the "new" Remark 4. derived model to distinguish it from the "old" derived model which is $L(Hom_G^*, \mathbb{R}_G^*)$.
 - [5] shows that if $V \models AD^+ +$ "there is a largest Suslin cardinal", then we have the same conclusions as those of Theorem 3. What we handle here is the case that $AD_{\mathbb{R}}+$ " Θ is singular" holds in V.
 - Characterization of derived models is one of the main themes in this paper. We want to answer the question: Is every model of AD^+ a derived model? Theorem 3 and the previous remark answer this question positively for the "no largest Suslin cardinal $+\Theta$ singular" and the "largest Suslin cardinal" cases. Woodin has shown that if $V \vDash AD_{\mathbb{R}} + \Theta$ is regular, then V is elementarily embeddable into a derived model of HOD. A proof of this fact can be found in [4]. It's not known whether V is actually a derived model in this case.

The proof of Theorem 3 is implicit in that of the direction $(1) \Rightarrow (2)$ of theorem 1. Before giving the proof of theorem 1, we'll state a couple of corollaries of the above theorems, and a key definition.

Corollary 5. Let $M \models ZFC + \lambda$ is a limit of Woodins, and let D be a derived model of M below λ ; then D satisfies: Σ_1 -reflection (to Suslin co-Suslin), Σ_1^2 has the scale property, and every non-empty Σ_1 set $\mathcal{A} \subseteq P(\mathbb{R})$ has a Δ_1^2 member.

Proof. Woodin has shown that $D \models AD^+$ (see [3] for a proof). Applying theorems 1 and 2 gives us the conclusions.

Corollary 6. Assume AD^+ . Then $Ult(V,\mu)$ is well-founded where μ is the Martin measure on Turing degrees.

Proof. If not, then by Theorem 1, there is $\alpha, \beta < \Theta$ such that $L_{\alpha}(\mathcal{P}_{\beta}(\mathbb{R})) \models "Ult(V, \mu)$ is ill-founded." Since $DC_{\mathbb{R}}$ holds and there is a surjection from \mathbb{R} onto $L_{\alpha}(\mathcal{P}_{\beta}(\mathbb{R})), L_{\alpha}(\mathcal{P}_{\beta}(R)) \models$ DC and this is a contradiction.

Definition 7. $(ZF + AD + DC_{\mathbb{R}})$ Suppose X is a set. The **Solovay sequence** defined relative to X is the sequence $\langle \Theta_{\alpha}^{X} : \alpha \leq \Upsilon_{X} \rangle$ where

- (1) Θ_0^X is the supremum of the ordinals ξ such that there is a surjection $\phi: \mathbb{R} \to \xi$ such that ϕ is OD from X.
- (2) $\Theta_{\alpha}^{X} = \sup\{\Theta_{\beta}^{X} \mid \beta < \alpha\}$ if $\alpha > 0$ is limit. (3) If $\Theta_{\alpha}^{X} < \Theta$ then $\Theta_{\alpha+1}^{X}$ is the supremum of the ordinals ξ such that there is a surjection $\phi: \mathbb{R} \to \xi$ such that ϕ is OD(X,A) where A is a set of reals of Wadge rank Θ^X_{α} .

Remark 8. Suppose AD^+ holds. Let $\Theta^X_{\alpha} < \Theta$ be a member of the Solovay sequence and A be a set of reals with Wadge rank Θ_{α}^{X} . Let $\kappa = \sup\{\delta_{n}^{1}(A) \mid n < \omega\}$. Clearly $\kappa < \Theta_{\alpha+1}^{X}$. It's an AD^{+} theorem that any B with Wadge rank Θ_{α}^{X} has an ∞ -Borel code $C_{B} \subseteq \kappa$. Let $\xi < \Theta_{\alpha+1}^X$. We can define an OD_X surjection $\pi : P(\kappa) \to \xi$ as follows. Given $C \subseteq \kappa$, if C codes a tuple (C_B, x, y) where $x, y \in \mathbb{R}$, C_B is an $\infty - Borel$ code for a set B of Wadge rank Θ_{α}^{X} , and if there is a pre-wellordering of the reals of order type ξ that is $OD_{X}(B, x)$, then we let $\pi(C) = \pi_{B}(y)$ where $\pi_{B} : \mathbb{R} \to \xi$ is the surjection associated with the least such pre-wellordering; otherwise, $\pi(C) = 0$. So in fact, under AD^{+} , $\Theta_{\alpha+1}^{X}$ is the supremum of ordinals ξ such that there is an OD_{X} surjection from $P(\kappa)$ onto ξ .

Remark 9. It's worth pointing out that the Solovay sequence defined in Definition 7 is "globally defined" i.e. defined in V. On the other hand, one can define the notion of "locally defined" Solovay sequences, i.e. Solovay sequences defined in some $L(A, \mathbb{R})$, for $A \subseteq \mathbb{R}$. If $\Theta_{\alpha+1} < \Theta^{L(A,\mathbb{R})}$ then $\Theta_{\alpha+1}$ is a member of the "locally defined" Solovay sequence in $L(A,\mathbb{R})$. $\Theta_{\alpha+1}$ cannot be a limit of Suslin cardinals in $L(A,\mathbb{R})$ as otherwise, any $OD^V(A)$ relation would have an $OD^V(A)$ uniformization. Thus $\Theta_{\alpha+1} = (\Theta_{\gamma+1})^{L(A,\mathbb{R})}$, for some γ . Another key point is the following. Suppose $A \subseteq \Theta_{\alpha+1}$ is $OD^V(B)$ for some $B \subseteq \mathbb{R}$ such that $w(B) < \Theta_{\alpha+1}$. Let $\mathcal{C} = \langle C_\beta \mid \beta < \Theta_{\alpha+1} \rangle$, where \mathcal{C} is an $OD^V(D)$ sequence such that each C_β is a pre-wellordering of \mathbb{R} of length β , where $w(D) = \Theta_\alpha$. Then $\Theta_{\alpha+1}$ is regular in $L(\mathbb{R})[A,\mathcal{C}]$. This is important because it makes the Woodins' techniques for constructing measures under AD described in [1] relevant. We state here a theorem which will be used heavily.

Theorem 10. (Woodin, see Theorem 5.6 of [1]) Assume ZF + DC + AD. Suppose X and Y are sets and let

$$\Theta_{X,Y} = \sup \{ \alpha \mid \text{ there is an } \mathrm{OD}_{X,Y} \text{ surjection } \pi : \mathbb{R} \to \alpha \}.$$

Then

$$HOD_X \models ZFC + \Theta_{X,Y}$$
 is a Woodin cardinal.

Proof of Theorem 1:

We deal with the easy direction $(2) \Rightarrow (1)$ first. Suppose there is a set of reals in V that has no ∞ -Borel codes. One can show that A has an ∞ -Borel code if and only if A has an ∞ -Borel code which is coded by a set of reals projective in A. So our supposition is Σ_1^2 . By (2), there is a Suslin co-Suslin set B that has no ∞ -Borel codes; but this is absurd since any tree T such that p[T] = B is an ∞ -Borel code of B.

For Ordinal Determinacy, again suppose there is a set B in V such that Ordinal Determinacy fails for B. The ordinal game associated to B and pre-wellordering \leq of \mathbb{R} has a winning strategy if and only if it has a winning strategy projective in \leq , by the Coding Lemma. So our supposition is Σ_1^2 . By (2), there is a Suslin co-Suslin set B such that Ordinal Determinacy fails for B. This contradicts a theorem of Moschovakis and Woodin which states that Ordinal Determinacy holds for any Suslin co-Suslin set.

Finally, to see $DC_{\mathbb{R}}$ holds. Suppose not. Again, by our hypothesis, there is a Suslin co-Suslin relation $E \subseteq \mathbb{R} \times \mathbb{R}$ witnessing the failure of $DC_{\mathbb{R}}$. However, we can uniformize E using the scale associated with a tree T such that p[T]=E. This gives us an infinite E-chain, which is a contradiction. This completes the proof of $(2) \Rightarrow (1)$.

Remark 11. Our proof used that Σ_1^2 reflects to Suslin co-Suslin, rather than the full Σ_1 reflection in (2). Derived models satisfy Σ_1^2 -reflection, hence they satisfy AD^+ ; see [6] and [3].

The rest of the paper is dedicated to the proof of $(1) \Rightarrow (2)$. First, assume there is a largest Suslin cardinal. This is the easier case.

Lemma 12. If Θ is regular and $V = L(P(\mathbb{R})) \models \phi[x]$ where $x \in \mathbb{R}$ and ϕ is Σ_1 , then there is a transitive M such that M is a surjective image of \mathbb{R} and $(M, \in) \models \phi[x]$.

Proof. By reflection, $L_{\alpha}(P(\mathbb{R})) \models \phi[x]$ for some ordinal α . We'll form a Skolem hull H of $L_{\alpha}(P(\mathbb{R}))$. First, fix a surjection $h: \alpha \times P(\mathbb{R}) \to L_{\alpha}(P(\mathbb{R}))$. Let $H_0 = \mathbb{R}$. Suppose we already have H_n and a surjection $\pi_n : \mathbb{R} \to H_n$. To build H_{n+1} , for any $a \in H_n$ and any formula φ such that $L_{\alpha}(P(\mathbb{R})) \models \exists y \varphi[y, a]$, pick the least β such that there is an $A \subseteq \mathbb{R}$ such that $L_{\alpha}(P(\mathbb{R})) \models \varphi[h(\beta, A), a]$. Then let γ be the least such that there is an $A \subseteq \mathbb{R}$ such that $w(A) = \gamma$ and $L_{\alpha}(P(\mathbb{R})) \models \varphi[h(\beta, A), a]$. Denote the (β, γ) above (β_a, γ_a) . Now, let $H_{n+1} = H_n \cup \{h(\beta_a, A) \mid a \in H_n, w(A) = \gamma_a\}$. By regularity of Θ and the fact that $\pi_n : \mathbb{R} \to H_n$ is surjective, $\sup\{\gamma_a \mid a \in H_n\} < \Theta$. Hence, there is a surjection $\pi_{n+1} : \mathbb{R} \to H_{n+1}$. Finally, let $H = \cup_n H_n$. Hence $H \prec L_{\alpha}(P(\mathbb{R}))$ by construction. Since Θ is regular, $\mathbb{R} \subseteq H$, and $H \models V = L(P(\mathbb{R}))$, it is easy to see that H collapses to some $L_{\delta}(P_{\gamma}(\mathbb{R}))$ for some $\delta, \gamma < \Theta$. Since $L_{\delta}(P_{\gamma}(\mathbb{R})) \models \phi[x]$, $L_{\delta}(P_{\gamma}(\mathbb{R}))$ is the desired M.

Lemma 13. Suppose there is a largest Suslin cardinal, then Θ is regular.

Proof. Let κ be the largest Suslin cardinal and T be a tree on $\omega^2 \times \kappa$ such that p[T] is a universal Γ -set (where Γ is the boldface pointclass of κ -Suslin sets of reals).

For each $A \subseteq \mathbb{R}$, we have $L(T, A, \mathbb{R}) \models DC$ because $V \models DC_{\mathbb{R}}$. Let T_A be the image of T under the Martin measure ultrapower map where the ultrapower is computed with respect to functions in $L(T, A, \mathbb{R})$. Because $L(T, A, \mathbb{R}) \models DC$, $Ult(L(T, A, \mathbb{R}), \mu_T)$ is wellfounded. By relativizing the proof that $P(\mathbb{R}) \subseteq L(T^*, \mathbb{R})$ to the universe $L(T, A, \mathbb{R})$ (see [5]), we get that $A \in L(T_A, \mathbb{R})$. Notice that T_A only depends on w(A) but not A itself. So we in fact have an enumeration $\langle T_\alpha \mid \alpha < \Theta \rangle$ where for each $\alpha < \Theta$, $T_\alpha = T_A$ for any A with Wadge rank α . Now let $\gamma = \sup\{\sup\{\sup T_\alpha \mid \alpha < \Theta\} \text{ and } C \subseteq \Theta \times \gamma \text{ is such that } (\alpha, \beta) \in C \Leftrightarrow \beta \in T_\alpha$. Then $T_A \in L[C]$ for any $A \subseteq \mathbb{R}$. So $P(\mathbb{R}) \subseteq L(C, \mathbb{R})$. So $V = L(C, \mathbb{R})$. The following claim supplies an important step toward proving Θ is regular.

Claim 14. Θ is regular if and only if Collection holds, where Collection is the following statement: " $(\forall x \in \mathbb{R})(\exists A \subseteq \mathbb{R}) (x, A) \in U \to (\exists B \subseteq \mathbb{R})(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) (x, B_{x,y}) \in U$, where $B_{x,y} = \{z \mid \langle x, y, z \rangle \in B\}$."

Proof. (\Leftarrow) Suppose Θ is singular. Let $f: \mathbb{R} \to \Theta$ be cofinal. So $(\forall x \in \mathbb{R})(\exists A \subseteq \mathbb{R})$ (A is a pre-wellordering of \mathbb{R} of length f(x)). By Collection, $(\exists B \subseteq \mathbb{R})(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})$ ($B_{x,y}$ is a pre-wellordering of length f(x)). Define $g: \mathbb{R} \to \Theta$ as follows: for any $x \in \mathbb{R}$, if $x = (x_0, x_1, x_2)$ and B_{x_0, x_1} is a pre-wellordering of \mathbb{R} of order type $f(x_0)$, then let g(x) = 0 rank of x_0 in the pre-wellordering B_{x_0, x_0} ; otherwise, let g(x) = 0. Clearly, g(x) = 0 is onto. This is a contradiction.

(⇒) Suppose Θ is regular. Let U be as in the hypothesis of Collection. For $x \in \mathbb{R}$, let f(x) be the least ξ such that there is $A \subseteq \mathbb{R}$ with Wadge rank ξ and $(x, A) \in U$. Since Θ is regular, f is bounded in Θ . Fix an $\alpha < \Theta$ such that $\alpha \ge \sup(rng(f))$. Let $B = \{(x, y, B_{x,y}) \mid x, y \in \mathbb{R}, y \text{ Wadge reduces } B_{x,y} \text{ to } A\}$. Clearly, B satisfies the conclusion of Collection.

By claim 14, it suffices to prove that $L(C, \mathbb{R}) \models Collection$. So let U be as in the hypothesis of Collection. Let $B = \{(x, y, B_{x,y}) \mid B_{x,y} \text{ is the least } OD_C(y) \text{ set such that } (x, B_{x,y}) \in U\}$. This B clearly works because every set of reals in $V = L(C, \mathbb{R})$ is $OD_C(y)$ for some real y.

The proof of Lemma 13 also implies that DC holds, hence the Martin measure ultrapower is well-founded. This fact is used to show that there is an M in a generic extension of V such that V is a derived model of M. See [5] for a proof of this. The conclusion 2 of Theorem 1 then follows from Lemma 12 above and Lemma 7 of [6].

Now, we're on to the "no largest Suslin cardinal" case. So we have $AD_{\mathbb{R}}$. First, assume Θ is regular. By Lemma 12, $M_{P(\mathbb{R})} \prec_{\Sigma_1} V$. Since all sets of reals are Suslin co-Suslin, we're done.

From now on, we may assume that Θ is singular. We have that every set of reals is Suslin co-Suslin. Our strategy is to Prikry-force a universe M such that V is a derived model of M. This guarantees that Σ_1^2 -reflection holds in V, but with a little more argument, we'll be able to show Σ_1 -reflection holds in V. Most of what we are doing here, then, is proving Theorem 3 in the case $AD_{\mathbb{R}} + \Theta$ is singular.

Case 1: $cof(\Theta) = \omega$.

Let $\langle \Theta_{\alpha} \mid \alpha < \Upsilon \rangle$ be the Solovay sequence of V. Notice that $\operatorname{cof}(\Upsilon) = \omega$. Hence, there is a sequence $\langle \alpha_i \mid i < \omega \rangle$ cofinal in Υ . We can and do take the sequence $\langle \alpha_i \mid i < \omega \rangle$ to be definable from a set of reals and from no ordinal parameters. The hypothesis implies that every set of reals is Suslin, so given an $\alpha < \Upsilon$, let κ be the largest Suslin cardinal below $\Theta_{\alpha+1}$. Set $HOD_{P(\kappa)} = \{A \mid \forall C \in TC(A \cup \{A\}) \text{ C is OD from some B } \in P(\kappa)\}$, then the following hold:

- (1.1) $\Theta_{\alpha+1}$ is the supremum of the ordinals ξ for which there is a surjection $\phi: P(\kappa) \to \xi$ such that ϕ is OD.
 - $(1.2) \Theta_{\alpha+1} = \Theta^{HOD_{P(\kappa)}}.$
 - (1.3) $HOD_{P(\kappa)} = HOD_X$, where $X = \{B \subseteq \mathbb{R} \mid w(B) < \Theta_{\alpha+1}\}.$
- (1.1) follows from Remark 8. Both (1.2) and (1.3) are immediate consequences of (1.1). By (1.3), every bounded subset of $\Theta_{\alpha+1}$ belongs to $HOD_{P(\kappa)}$. Now, for each $i < \omega$, let κ_i be the largest Suslin cardinal below Θ_{α_i+1} and μ_i be the supercompact (nonprincipal, fine, and normal) measure on $P_{\omega_1}(P(\kappa_i))$. Notice here that by $AD_{\mathbb{R}}$, Solovay's super-compactness measure on $P_{\omega_1}(\mathbb{R})$ exists and is unique. Since $P(\kappa_i)$ is the surjective image of \mathbb{R} , μ_i exists and is unique. Because it is unique, μ_i is OD. Also, let X_i be the set of all $\sigma \in P_{\omega_1}(P(\kappa_i))$ such that
 - (2.1) $HOD_{\sigma \cup \{\sigma\}} \vDash AD^+$
 - (2.2) $\mathrm{HOD}_{\sigma \cup \{\sigma\}} \nvDash AD_{\mathbb{R}}$
 - (2.3) the transitive collapse of σ is $P(\kappa_i^{\sigma}) \cap \text{HOD}_{\sigma \cup \{\sigma\}}$ where κ_i^{σ} is the largest Suslin

cardinal in $HOD_{\sigma \cup \{\sigma\}}$.

Lemma 15. $\mu_i(X_i) = 1$

Proof. Let

$$\prod_{\sigma} HOD_{\sigma \cup \{\sigma\}}/\mu_i = M,$$

where the ultraproduct is formed in the universe $HOD_{P(\kappa_i)}$. The reason we do this is that we do not have DC in V, and thus the ultraproduct formed in V might be illfounded. On the other hand, $HOD_{P(\kappa_i)} \models DC$, so M is well-founded, and we take it to be transitive. Let σ^{∞} be the element of M represented by the identity function. By Los, for all formulas ϕ ,

$$M \vDash \phi[\sigma^{\infty}] \Leftrightarrow \mu_i(\{\sigma \in P_{\omega_1}(P(\kappa_i)) \mid HOD_{\sigma \cup \{\sigma\}} \vDash \phi[\sigma]\}) = 1.$$

We should remark here that even though we don't have AC, Los theorem still goes through because of normality (closure under diagonal intersections) of μ_i . The following claim will complete the proof of the lemma.

Claim 16. The following hold:

- 1. The transitive collapse of σ^{∞} is $P(\kappa_i)$.
- 2. $\mathbb{R} \cap M = \mathbb{R}$.
- 3. $P(\mathbb{R}) \cap M = \{B \mid w(B) < \Theta_{\alpha_i+1}\} = P(\mathbb{R}) \cap HOD_{P(\kappa_i)}$.

Proof. (1) and (2) are easy consequences of normality, so we leave them to the reader. To prove (3), suppose first that $w(B) < \Theta_{\alpha_i+1}$. So $B \in HOD_{P(\kappa_i)}$. Let $f(\sigma) = B \cap \sigma$ for $\sigma \in P_{\omega_1}(P(\kappa_i))$. Then $f \in HOD_{P(\kappa_i)}$ and $[f]_{\mu_i} = B$. On the other hand, $M \subseteq HOD_{P(\kappa_i)}$ as the ultraproduct is formed in $HOD_{P(\kappa_i)}$.

Let

$$T_0 = \{ \langle \sigma_0, ..., \sigma_n \rangle \mid \sigma_i \in P_{\omega_1}(P(\kappa_i)) \text{ for all i} \}.$$

Let T be the set of all $s = \langle \sigma_0, ..., \sigma_n \rangle \in T_0$ such that for all $i \leq n$

- $(3.1) P(\mathbb{R})^{HOD_{\{s\}}} = P(\mathbb{R})^{HOD},$
- $(3.2) \ \sigma_i \in X_i,$
- (3.3) $\sigma_k \subset \sigma_i$ and $\sigma_k \in HOD_{\sigma_i \cup {\sigma_i}}$ for all $k \leq i$,
- (3.4) σ_k is countable in $HOD_{\sigma_i \cup {\sigma_i}}$ for all k < i,
- $(3.5) \theta^{\sigma_i}$ is Woodin in $HOD_{\{s|(i+1)\}}$ and $P(\theta^{\sigma_i}) \cap HOD_{\{s|(i+1)\}} = P(\theta^{\sigma_i}) \cap HOD_{\{s\}}$, where $\theta^{\sigma_i} = \Theta^{HOD_{\sigma_i \cup \{\sigma_i\}}}$. Note here that θ^{σ_i} is a successor in the Solovay sequence of $HOD_{\sigma_i \cup \{\sigma_i\}}$

Remark 17. For any $s = \langle \sigma_0, ..., \sigma_n \rangle \in T_0$, $HOD_{\{s\}} = HOD_s$. From now on, we'll write HOD_s for $HOD_{\{s\}}$

Lemma 18. Let $t = \langle \sigma_0, ..., \sigma_n \rangle$ be such that (3.1)-(3.4) hold. Let $\sigma = \sigma_n$, and set $H = HOD_t$. Then

$$H = HOD_H^{HOD_{\sigma \cup \{\sigma\}}}.$$

Proof. Here HOD_H consists of all sets HOD from members of H. Notice here that $H \subseteq HOD_{\sigma \cup \{\sigma\}}$; hence the right hand side of the equation makes sense and $H \subseteq HOD_H^{HOD_{\sigma \cup \{\sigma\}}}$. The \supseteq direction follows from the fact that σ is OD from t.

Lemma 19. Let $s \in T$ and dom(s) = i; then $\forall_{\mu_i}^* \sigma \ (s + \langle \sigma \rangle \in T)$.

Proof. Fix $s \in T$ with dom(s) = i. It is easy to see that $\forall_{\mu_i}^* \sigma, s + \langle \sigma \rangle$ satisfies (3.1)-(3.4), so we address (3.5). We want to show $\forall_{\mu_i}^* \sigma, HOD_{s+\langle \sigma \rangle} \models \theta^{\sigma}$ is Woodin. Let $H = HOD_{s+\langle \sigma \rangle}$. Let us work now in $HOD_{\sigma \cup \{\sigma\}}$, where AD^+ holds and $AD_{\mathbb{R}}$ fails. This implies that $\Theta = \Theta_Y$ for some Y. Also, Θ is regular and DC holds. We have then from Theorem 5.6 of [1] that

$$HOD_H \models \Theta$$
 is Woodin.

By the previous theorem, $H = HOD_H$, hence we're done.

Let $s = \langle \sigma_0, ..., \sigma_{i-1} \rangle$. Without loss of generality, it is enough to see that $(\forall_{\mu_i}^* \sigma) P(\theta^{\sigma_{i-1}}) \cap HOD_s = P(\theta^{\sigma_{i-1}}) \cap HOD_{s+\langle \sigma \rangle}$. It is clearly enough to show $(\forall_{\mu_i}^* \sigma) P(\theta^{\sigma_{i-1}}) \cap HOD_s \supseteq P(\theta^{\sigma_{i-1}}) \cap HOD_{s+\langle \sigma \rangle}$. Suppose not. We have $(\forall_{\mu_i}^* \sigma) (\exists A_{\sigma} \subseteq \theta^{\sigma_{i-1}}) (A_{\sigma} \in HOD_{s+\langle \sigma \rangle} \setminus HOD_s)$. Here we take A_{σ} to be the least such set. Since $\theta^{\sigma_{i-1}}$ is a fixed countable ordinal, we have $(\exists A \subseteq \theta^{\sigma_{i-1}})(\forall_{\mu_i}^* \sigma) \quad (A = A_{\sigma})$. But this A is in fact HOD_s since the supercompactness measures are OD. Contradiction.

Lemma 20. Let $s \in T$ with dom(s) = i. Let $\sigma = s(dom(s) - 1)$. Then there is a partial order \mathbb{P} such that

- 1. $HOD_s \models \mathbb{P}$ is a θ^{σ} -c.c. complete boolean algebra of cardinality θ^{σ} , and
- 2. for any $A \subseteq \kappa^{\sigma}$ such that $A \in HOD_{\sigma \cup \{\sigma\}}$, there is a filter G_A on \mathbb{P} such that
 - G_A is HOD_s -generic over \mathbb{P} , and
 - $HOD_{\{s,A\}} = HOD_s[G_A]$.

Proof. Let $H = HOD_s$. Working in $HOD_{\sigma \cup \{\sigma\}}$, where $H = HOD_H$ by Lemma 18, let \mathbb{P} be the Vopenka algebra for adding subsets of κ^{σ} to HOD_H . So \mathbb{P} is isomorphic to (\mathcal{O}, \subseteq) , where \mathcal{O} is the collection of all OD_H subsets of $P(\kappa^{\sigma})$. Then (1) and (2) are standard properties of the Vopenka algebra, where the filter G_A in (2) is the filter generated by A.

Now we're ready to define our Prikry forcing \mathbb{P} . Conditions in \mathbb{P} are pairs (s,F) such that $s \in T$ and $F: T \to V$, $F(\emptyset) \in \mu_0$, and for all $\langle \sigma_0, ..., \sigma_n \rangle \in T$, $F(\langle \sigma_0, ..., \sigma_n \rangle) \in \mu_{n+1}$. The ordering is defined by

$$(s_0, F_0) \leq (s_1, F_1) \Leftrightarrow s_1 \subseteq s_0, (\forall s \in T)(F_0(t) \subseteq F_1(t)), (\forall i \in dom(s_0) - dom(s_1))(s_0(i) \in F_1(s_0|i)).$$

Lemma 21. Suppose $Z \subset V^{\mathbb{P}}$ is countable, ϕ is a formula, and $(s_0, F_0) \in \mathbb{P}$. Then there is a condition $(s_0, G) \in \mathbb{P}$ deciding $\phi[\tau]$ for all $\tau \in Z$.

Proof. Since the usual proof requires DC, which we don't have, we'll give here a DC-free proof. Fix $\tau \in Z$. We'll show that there is an (s_0, G) deciding $\phi[\tau]$ such that G is OD from s_0 , F, and τ . Let us say that $u \in T$ is **positive** if and only if $(\exists G)$ $((u, G) \Vdash \phi[\tau])$, **negative** if and only if $(\exists G)$ $((u, G) \Vdash -\phi[\tau])$, and **ambiguous** if and only if it is neither positive nor negative. Notice that u cannot be both positive and negative.

For notational convenience, for $u \in T$ with dom(u) = n+1, we write $\forall_u^* \sigma P(\sigma)$ to mean $\{\sigma \mid P(\sigma)\} \in \mu_{n+1}$. Now define $G = G_{\tau}$ by: for $v \in T$, $G(v) = \{\sigma \mid v + \langle \sigma \rangle \text{ is positive}\} \cap F_0(v)$ if $(\forall_v^* \sigma) \ (v + \langle \sigma \rangle \text{ is positive})$; $G(v) = \{\sigma \mid v + \langle \sigma \rangle \text{ is negative}\} \cap F_0(v)$ if $(\forall_v^* \sigma) \ (v + \langle \sigma \rangle \text{ is ambiguous}\} \cap F_0(v)$ if $(\forall_v^* \sigma) \ (v + \langle \sigma \rangle \text{ is ambiguous})$. Clearly G is OD from s_0, τ, F_0 and $(s_0, G) \leq (s_0, F_0)$. If remains to see that (s_0, G) decides $\phi[\tau]$.

Claim 22. Let $u \in T$ with dom(u) = n+1. Then

- 1. u is positive $\Rightarrow \forall_u^* \sigma \ (u + \langle \sigma \rangle \ is positive);$
- 2. u is negative $\Rightarrow \forall_{u}^{*} \sigma \ (u + \langle \sigma \rangle \ is negative)$
- 3. u is ambiguous $\Rightarrow \forall_u^* \sigma \ (u + \langle \sigma \rangle \ is \ ambiguous)$

Proof. If u is positive, then there is an H such that $(u, H) \Vdash \phi[\tau]$. But then whenever $\sigma \in H(u)$, $(u + \langle \sigma \rangle, H) \Vdash \phi[\tau]$. Since $H(u) \in \mu_{n+1}$, we're done. The proof is the same for u being negative.

Suppose u is ambiguous and the conclusion of (3) is false. Without loss of generality, we may assume $\forall_u^* \sigma$ $(u + \langle \sigma \rangle)$ is positive). Let $G = G_\tau$ be as above. Then $(u, G) \Vdash \phi[\tau]$ since if $(v, H) \preceq (u, G)$, then v is positive by and easy induction using part (1), and thus $(v, H) \nvDash -\phi[\tau]$. Hence u is in fact positive. Contradiction.

Claim 23. No $u \in T$ is ambiguous.

Proof. Suppose u is ambiguous. Let $G = G_{\tau}$ be as in the previous claim. Let $(v, H) \leq (u, G)$ and (v, H) decide $\phi[\tau]$. Then v is not ambiguous. On the other hand, by induction using Claim 18 part (3), v is ambiguous. Contradiction.

By the previous claim, we may assume without loss of generality that s_0 is positive. But then $(s_0, G_\tau) \Vdash \phi[\tau]$, for otherwise, we have $(v, H) \preceq (s_0, G_\tau)$ forcing $-\phi[\tau]$. This implies that v is negative. However, an induction using Claim 18 part (1) shows that v is positive.

Finally, let
$$H(v) = \bigcap_{\tau \in Z} G_{\tau}(v)$$
. We get that (s_0, H) decides $\phi[\tau]$ for all $\tau \in Z$.

Let $G \subset \mathbb{P}$ is V-generic and $s_G = \bigcup \{s \mid (s, F) \in G\}$. Now we use Lemma 21 to prove the following:

Lemma 24. For all $i < \omega$, $P(\theta_i) \cap HOD^V_{s_G|(i+1)} = P(\theta_i) \cap HOD^{(V[G],V)}_{\{s_G\}}$, where $\theta_i = \Theta^{HOD^V_{s_G(i)} \cup \{s_G(i)\}}$.

Proof. The \subseteq direction is evident because we use V as a predicate in the definition of $HOD_{\{s_G\}}^{(V[G],V)}$. Suppose the converse direction fails for some i. Then there is a formula $\varphi(x_0, x_1, x_2)$, an ordinal ξ , an n > i, an F such that $(s_G|n, F) \in G$, and

$$(s_G|n, F) \Vdash \{\beta < \theta_i \mid (V[G], V) \vDash \varphi[\beta, \xi, s_G]\} \notin HOD_{\{s_G|(i+1)\}}^V$$
.

By Lemma 21, given any $(s_G|n, F)$ as above, there is $(s_G|n, F^*) \preceq (s_G|n, F)$ such that for all $\beta < \theta_i$, either $(s_G|n, F^*) \Vdash (V[G], V) \vDash \varphi[\beta, \xi, s_G]$, or $(s_G|n, F^*) \Vdash (V[G], V) \vDash -\varphi[\beta, \xi, s_G]$. Hence we can find such a $(s_G|n, F^*)$ in G. So $\{\beta < \theta_i \mid (s_G|n, F^*) \Vdash (V[G], V) \vDash \varphi[\beta, \xi, s_G]\} = \{\beta < \theta_i \mid \exists F^* \ (s_G|n, F^*) \Vdash (V[G], V) \vDash \varphi[\beta, \xi, s_G]\} \in HOD^V_{\{s_G|n\}}$. But $s_G|n \in T$ and n > i, so by (3.5) $\{\beta < \theta_i \mid (s_G|n, F^*) \Vdash (V[G], V) \vDash \varphi[\beta, \xi, s_G]\} \in HOD^V_{\{s_G|(i+1)\}}$. This is a contradiction.

Fix a $G \subset \mathbb{P}$ such that G is V-generic. Let

$$N = HOD_{\{s_G\}}^{(V[G],V)}.$$

It's easy to see that ω_1^V is a limit of Woodin cardinals in N, $N \vDash ZFC$. Here is the key lemma.

Lemma 25. V is a derived model of N.

Proof. To simplify the notation, let $N_i = HOD_{s_G|(i+1)}^V$ and $\theta_i = \Theta^{HOD_{s_G(i)}^V \cup \{s_G(i)\}}$ for each i < n. Then θ_i is Woodin in N_i and $P(\theta_i) \cap N_i = P(\theta_i) \cap N_j = P(\theta_i) \cap N$ for all $j \ge i$. As mentioned above, $\omega_1^V = \sup\{\theta_i \mid i < \omega\}$.

Now, let K be a $Col(\omega, < \omega_1^V)$ -generic over N such that $\mathbb{R}_K^* = \mathbb{R}^V$. To see that there is such a K, it suffices to show that any $x \in \mathbb{R}^V$ is generic over N for some poset $\mathbb{P} \in N | sup_i(\theta_i)$. Fix such an x and pick i such that $x \in s_G(i)$. By Lemma 20, x is \mathbb{P} -generic over N_i , where \mathbb{P} is the Vopenka algebra of $HOD_{s_G(i) \cup \{s_G(i)\}}$ for adding a subset of $\kappa^{s_G(i)}$ to $HOD_{s_G(i+1)} = N_i$. But $P(\theta_i)^{N_i} = P(\theta_i)^N$, so x is \mathbb{P} -generic over N.

To finish the proof, we need to see that $P(\mathbb{R})^V = Hom_K^*$. It suffices to show that $P(\mathbb{R})^V \subseteq Hom_K^*$. Because then if $P(\mathbb{R})^V \subsetneq Hom_K^*$, we get a sharp for V in a generic extension of V. This is impossible.

So let $B \in P(\mathbb{R})^V$. B is Suslin co-Suslin. By Martin's theorem, B and $\mathbb{R} \setminus B$ are homogeneously Suslin as witnessed by homogeneous trees on $\omega \times \kappa$ for some $\kappa < \Theta$. So we can find a countable sequence of ordinals f such that $\sup(\operatorname{range}(f)) < \Theta$ from which we can define a pair of trees (T,U) over V such that $\operatorname{p}[T] = B = \mathbb{R} \setminus \operatorname{p}[U]$. The sequence f comes from the measures of the homogeneity systems from which T and U are defined. Pick k large enough so that $\operatorname{ran}(f) \subseteq s_G(k)$. Also $s_G(k) \cap Ord \in N$. $s_G(k)$ is made countable in $N(\mathbb{R}^V)$ and some real coding $\operatorname{ran}(f)$ is added. Hence, for some $i < \omega$ and $g \in V$ generic over N_i for the collapse of an ordinal $< \theta_i$, we have $f \in N_i[g]$. So, for any $j \geq i$, $N_j[g]$ can decode f to get the pair (T,U). Moreover, $\operatorname{p}[T]^{N_j[g]} = B \cap \mathbb{R}^{N_j[g]} = \mathbb{R}^{N_j[g]} - \operatorname{p}[U]^{N_j[g]}$. Hence, $B \in Hom_K^*$ as desired.

Now let ϕ be a Σ_1 formula such that $V \vDash \phi[\mathbb{R}]$. We want to show that there are $\alpha, \beta < \Theta$ such that $L_{\alpha}(P_{\beta}(\mathbb{R})) \vDash \phi[\mathbb{R}]$.

Lemma 26. There is an $A \in (Hom_{<\omega_1^V})^N$ such that $L(A, \mathbb{R}^N) \vDash \phi[\mathbb{R}^N]$.

Proof. Let γ be the least such that $L_{\gamma}(P(\mathbb{R})) \models \phi[\mathbb{R}]$ and $\langle \alpha_i \mid i < \omega \rangle$ is definable $L_{\gamma}(P(\mathbb{R}))$ from a set of reals and no ordinal parameters. Since V is the derived model of N at ω_1^V , the (\mathbb{Q} version of) stationary tower forcing gives an elementary embedding $j: N \to (M, E)$ such that

(10.1) crt(j) =
$$\omega_1^N$$
 and $j(\omega_1^N) = \omega_1^V$;

(10.2)
$$\mathbb{R}^{(M,E)} = \mathbb{R}^V$$
;

$$(10.3) \ P(\mathbb{R})^{V} = (Hom_{<\omega_{1}^{V}}^{N})^{*} \subseteq j((Hom_{<\omega_{1}^{V}})^{N})$$

(10.4) $j(A) = A^*$ for each $A \in (Hom_{<\omega_1^V})^N$, where $A^* = p[T] \cap \mathbb{R}^V$ for T a homogeneous tree in N such that $p[T] \cap \mathbb{R}^N = A$;

(10.5) γ is in the well-founded part of (M,E).

If $(P(\mathbb{R}))^V \neq j((Hom_{<\omega_1^V})^N)$, then there is an $A \in j((Hom_{<\omega_1^V})^N) \setminus (P(\mathbb{R}))^V$. Since ϕ is Σ_1 and by (10.2), $(M, E) \models L(A, \mathbb{R}^{(M, E)}) \models \phi[\mathbb{R}^{(M, E)}]$. By elementarity, there is an $A \in (Hom_{<\omega_1^V})^N$ such that $L(A, \mathbb{R}^N) \models \phi[\mathbb{R}^N]$. Hence, we may assume $(P(\mathbb{R}))^V = j((Hom_{<\omega_1^V})^N)$. Since $\langle \alpha_i \mid i < \omega \rangle$ is definable in $L_{\gamma}(P(\mathbb{R}))$, from some $B \in P(\mathbb{R})^V = (Hom_{<\omega_1^V}^N)^*$, let $\beta < \omega_1^V$ such that there is a $D \in N[K|\beta]$ such that $B = D^*$. Replacing N by $N[K|\beta]$ if necessary where K is as in the previous lemma, we can assume $\langle \alpha_i \mid i < \omega \rangle$ is in the range of j, say $j(\langle \alpha_i^* \mid i < \omega \rangle) = \langle \alpha_i \mid i < \omega \rangle$. Since N is a model of choice, we can choose (using $\langle \alpha_i^* \mid i < \omega \rangle$) a sequence $\langle A_i \mid i < \omega \rangle \in N$ cofinal in $(Hom_{<\omega_1^V})^N$. Let $A \in (Hom_{<\omega_1^V})^N$ code the A_i 's, say $A = \{\langle i, x(0), x(1) ... \rangle \mid x = \langle x(0), x(1) ... \rangle \in A_i\}$. Then A is in $Hom_{<\omega_1^V}^N$ but not Wadge reducible to any A_i . Contradiction.

Lemma 26 and the elementarity of the map j defined there finish the proof of the theorem in the case $cof(\Theta) = \omega$.

Case 2: $cof(\Theta) > \omega$

By a result of Solovay, DC holds in this case (see [2]). Let μ be a measure on $\{\alpha \mid cof(\alpha) = \omega\}$ induced by the measure on $cof(\Theta) < \Theta$ which in turn is induced by the Martin measure on Turing degrees.

For each $\alpha < \Upsilon$ such that $cof(\alpha) = \omega$, let $I_{\alpha} = \{A \subset \Theta_{\alpha} \mid sup(A) < \Theta_{\alpha}\}$. Therefore,

(11.1)
$$HOD_{I_{\alpha}} \vDash AD^{+} + AD_{\mathbb{R}}$$

$$(11.2) \Theta^{HOD_{I_{\alpha}}} = \Theta_{\alpha}^{V}$$

(11.3) for each $X \in HOD_{I_{\alpha}}$, $\Theta^{HOD_{I_{\alpha}}}$ is a limit of Woodin cardinals in $HOD_{\{X\}}$.

We'll use a slightly different Prikry forcing to add an inner model N like before. The only difference in this case is that we want ω_1^V to be a limit of limits of Woodin cardinals in N.

For each $\alpha < \Upsilon$ such that $cof(\alpha) = \omega$, let μ_{α} be the supercompact measure on $P_{\omega_1}(I_{\alpha})$ induced by the Solovay measure on $P_{\omega_1}(\mathbb{R})$.

Lemma 27. For each $\alpha < \Upsilon$ such that $cof(\alpha) = \omega$, there are μ_{α} -measure 1 many σ such that

$$(12.1)\ HOD_{\sigma\ \cup \{\sigma\}} \vDash AD_{\mathbb{R}}$$

(12.2) The transitive collapse of σ is the set $\{A \subset \Theta \mid sup(A) < \Theta\}$ as computed in $HOD_{\sigma \cup \{\sigma\}}$

Proof. Notice that because of DC, the ultraproduct $\prod_{\sigma} HOD_{\sigma \cup \{\sigma\}}/\mu_{\alpha}$ is wellfounded. So identifying it with its transitive collapse, we get $I_{\alpha} \subset \prod_{\sigma} HOD_{\sigma \cup \{\sigma\}}/\mu_{\alpha} \subset HOD_{I_{\alpha}}$. Also $\Theta_{\alpha} = \Theta^{HOD_{I_{\alpha}}} = \Theta^{\prod_{\sigma} HOD_{\sigma \cup \{\sigma\}}/\mu_{\alpha}}$. This proves the claim.

Now like before, let T_0 be the set of all finite sequences $\langle \sigma_i \mid i \leq n \rangle$ such that for all $i \leq n$, there is an $\alpha < \Upsilon$ such that

$$(13.1) \ cof(\alpha) = \omega$$

(13.2)
$$\Theta_{\alpha} = \sup\{\gamma \mid \gamma \in \sigma_i\}$$

$$(13.3)$$
 $\sigma_i \in P_{\omega_1}(I_{\alpha})$

$$(13.4) \ HOD_{\sigma_i \cup \{\sigma_i\}} \vDash AD_{\mathbb{R}}$$

(13.5) The transitive collapse of σ_i is $\{A \subset \Theta \mid sup(A) < \Theta\}$ as computed in $HOD_{\sigma_i \cup \{\sigma_i\}}$

For each $\langle \sigma_i \mid i \leq n \rangle \in T_0$, let $\alpha_{\sigma_i} = \sup\{\gamma \mid \gamma \in \sigma_i\}$. Now let T be the set of all $s = \langle \sigma_i \mid i \leq n \rangle \in T_0$ such that for all $i \leq n$,

$$(14.1) \ P(\mathbb{R})^{HOD_{\{s\}}} = P(\mathbb{R})^{HOD}$$

$$(14.2) \ \alpha_{\sigma_i} < \alpha_{\sigma_{i+1}}$$

(14.3) $\sigma_k \subset \sigma_i$, $\sigma_k \in HOD_{\sigma_i \cup \{\sigma_{i+1}\}}$ for all $k \leq i$, and σ_k is countable in $HOD_{\sigma_i \cup \{\sigma_i\}}$ for all k < i,

$$(14.4) \ P(\theta^{\sigma_i}) \cap HOD_{\{s|(i+1)\}} = P(\theta^{\sigma_i}) \cap HOD_{\{s\}}, \text{ where } \theta^{\sigma_i} = \Theta^{HOD_{\sigma_i \cup \{\sigma_i\}}}.$$

From the definition of T and a similar proof to that of Lemma 19, if $s \in T$ then for μ -almost all $\alpha < \Upsilon$, for μ_{α} -almost all $\sigma \in P_{\omega_1}(I_{\alpha})$, $s + \langle \sigma \rangle \in T$. Now we're ready to define the Prikry forcing \mathbb{P} . Conditions in \mathbb{P} are pairs (s,F) such that $s \in T$ and $F:T \to V$ such that for all $t \in T$, $t + \langle \sigma \rangle \in T$ for all $\sigma \in F(t)$ and for μ -almost all $\alpha < \Upsilon$, for μ_{α} -almost all $\sigma \in P_{\omega_1}(I_{\alpha})$, $\sigma \in F(t)$. The ordering on \mathbb{P} is defined by:

$$(s_1, F_1) \leq (s_0, F_0) \Leftrightarrow s_0 \subset s_1, \forall i \in dom(s_1) - dom(s_0), s_1(i) \in F_0(s_1|i), \text{ and } F_1 \subset F_0 \text{ pointwise.}$$

Lemma 28. Suppose $Z \subset V^{\mathbb{P}}$ is countable, ϕ is a formula, and $(s_0, F_0) \in \mathbb{P}$. Then there is a condition $(s_0, F_1) \in \mathbb{P}$ that decides $\phi[\tau]$ for every $\tau \in Z$.

Proof. Same as that of Lemma 21.

Let $G \subset \mathbb{P}$ be V-generic and let $s_G = \{s \mid \exists F(s, F) \in G\} = \langle \sigma_i \mid i < \omega \rangle$.

Lemma 29. (a) For all $i < \omega$, $P(\theta^{\sigma_i}) \cap HOD^{V}_{S_G|(i+1)} = P(\theta^{\sigma_i}) \cap HOD^{(V[G],V)}_{\{s_G\}}$, where $\theta^{\sigma_i} = P(\theta^{\sigma_i}) \cap HOD^{(V[G],V)}_{\{s_G\}}$ $\Theta^{HOD_{\sigma_i \cup \{\sigma_i\}}^V}$

- (b) For all $i < \omega$, for all A bounded subset of θ^{σ_i} and $A \in HOD_{\sigma_i \cup \{\sigma_i\}}$, there is a partial order \mathbb{P} such that $|\mathbb{P}| < \theta^{\sigma_i}$ and \mathbb{P} is θ^{σ_i} -c.c. as computed in $HOD_{s_G|(i+1)}^V$, and $HOD_{\{s_G|(i+1),A\}}^V = HOD_{s_G|(i+1)}[G_A]$ for some $HOD_{s_G|(i+1)}^V$ -generic filter $G_A \subset \mathbb{P}$ in V. (c) θ^{σ_i} is a limit of Woodin cardinals in $HOD_{\{s_G\}}^{(V[G],V)}$

Proof. (a),(b) have the same proofs as those of Lemma 24 and 20. It remains to prove (c). By (a), it suffices to prove

$$HOD_{s_G|(i+1)}^V \vDash \theta^{\sigma_i}$$
 is Woodin.

We know $HOD_{\sigma_i \cup \{\sigma_i\}}^V \models AD_{\mathbb{R}}$, and in $HOD_{\sigma_i \cup \{\sigma_i\}}^V$, $HOD_{s_G|(i+1)} = HOD_{HOD_{s_G|(i+1)}}$, so by Theorem 5.6 of [1], θ^{σ_i} is a limit of Woodin cardinals in $HOD_{s_G|(i+1)}^V$. Hence we're done. \square

Now, fix some $G \subset \mathbb{P}$ such that G is V-generic, and let

$$N = HOD_{\{s_G\}}^{(V[G],V)}.$$

As before, for any $x \in \mathbb{R}^V$, $N[x] \models ZFC$, and V is the derived model of N[x]. By part (c) of the previous lemma, ω_1^V is a limit of limits of Woodin cardinals in N[x]. Before stating the next lemma, we need the following:

Definition 30. Suppose δ is a limit of Woodin cardinals, then $Hom_{<\delta}$ is weakly sealed if the following hold.

- (1) Suppose $\kappa < \delta$ is a Woodin cardinal and $G \subset \mathbb{Q}_{<\kappa}$ is V-generic. Let $j: V \to M \subset$ V[G] be the associated generic embedding. Then $j(Hom_{<\delta}) = (Hom_{<\delta})^{V[G]}$.
 - (2) Suppose that $G \subset \mathbb{P}$ is V-generic and $\mathbb{P} \in V_{\delta}$. Then (1) holds in V[G].

Lemma 31. One of the following must hold.

- (a) There is an $x \in \mathbb{R}^V$ and $A \in (Hom_{<\omega_1^V})^{N[x]}$ such that $L(A, \mathbb{R}^{N[x]}) \models \phi[\mathbb{R}^{N[x]}]$.
- (b) $Hom^N_{<\omega_1^V}$ is weakly sealed in N.

Proof. Let γ be large enough that $L_{\gamma}(P(\mathbb{R}^{V})) \models \phi[\mathbb{R}^{V}]$. For any $x \in \mathbb{R}^{V}$, there is a generic elementary embedding $j_x: N[x] \to (M_x, E_x)$ induced by a $\mathbb{Q}^{N[x]}_{<\omega_1^V}$ -generic such that

(15.1)
$$crt(j_x) = \omega_1^{N[x]}$$
 and $j_x(\omega_1^{N[x]}) = \omega_1^V$,

$$(15.2) \mathbb{R}^{(M_x, E_x)} = \mathbb{R}^V,$$

$$(15.3) (P(\mathbb{R})^V \subseteq j_x(Hom_{<\omega_1^V}^{N[x]}),$$

$$(15.4) \ \forall A \in Hom^{N[x]}_{<\omega_1^Y}, j_x(A) = A^*,$$

(15.5) for all successor Woodin cardinals $\kappa < \omega_1^V$ in N[x], there is an N[x]-generic $H \subset \mathbb{Q}_{<\kappa}^{N[x]}$ inducing a generic elementary embedding $j_H : N[x] \to Ult(N[x], E_H)$, and an elementary embedding $k_H : Ult(N[x], E_H) \to (M_x, E_x)$ such that $j_x = k_H \circ j_H$.

(15.6) γ is in the well-founded part of (M_x, E_x) .

If overspill occurs, i.e. if there is some $x \in \mathbb{R}^V$ such that $P(\mathbb{R})^V \neq j_x(Hom_{<\omega_1^V}^{N[x]})$ then (a) holds by the same argument as in Lemma 26. So suppose $P(\mathbb{R})^V = j_x(Hom_{<\omega_1^V}^{N[x]})$ for all $x \in \mathbb{R}^V$. Then $j_H(Hom_{<\omega_1^V}^{N[x]}) = Hom_{<\omega_1^V}^{N[x][H]}$ for all H in (15.5) because $k_H(Hom_{<\omega_1^V}^{N[x][H]}) \supseteq P(\mathbb{R})^V$ and $j_H(Hom_{<\omega_1^V}^{N[x]}) \supseteq Hom_{<\omega_1^V}^{N[x][H]}$. By varying j_x and (M_x, E_x) to ensure the filters H contain any specified condition, we get (b).

If (a) holds in the previous lemma, we're done with the proof of case 2. So suppose (b) holds.

Lemma 32.
$$Hom^N_{<\omega_i^V} = L(Hom^N_{<\omega_i^V}) \cap P(\mathbb{R}^N)$$

Proof. We first show:

(16.1) If $\mathbb{P} \in V_{\omega_1^V}^N$ and $G \subset \mathbb{P}$ is N-generic then in N[G], there is an elementary embedding $j_G : L(Hom_{<\omega_1^V}^N) \to (L(Hom_{<\omega_1^V}))^{N[G]}$ such that $j_G(Hom_{<\omega_1^V}^N) = (Hom_{<\omega_1^V})^{N[G]}$.

To show (16.1), fix $\mathbb{P} \in V_{\omega_1^V}^N$ and an N-generic $G \subset \mathbb{P}$. Fix an increasing sequence $\langle \delta_i \mid i < \omega \rangle$ of Woodin cardinals in N bounded below ω_1^V and let $\kappa = \sup\{\delta_i \mid i < \omega\} > |\mathbb{P}|^N$. Let $\delta_\omega < \omega_1^V$ be a Woodin cardinal in N larger than κ .

Let σ be the symmetric reals for a $Col(\omega, < \kappa)$ -generic over N. Let $G_{\omega} \subset \mathbb{Q}_{<\delta_{\omega}}$ be N-generic such that for all i, $G_i = G_{\omega} \cap \mathbb{Q}_{<\delta_i}$ is N-generic and $\sigma = \bigcup \{\mathbb{R}^{N[G_i]} \mid i < \omega\}$.

Let, for each $i \leq \omega$, $j_i: N \to M_i \subset N[G_i]$ be the generic elementary embedding given by G_i . Let $j_{i_1,i_2}: M_{i_1} \to M_{i_2}$ be the induced embeddings for pairs $i_1 < i_2$ and M^* be the corresponding direct limit with associated embedding $j^*: N \to M^*$. M^* can be embedded into M_{ω} hence is well-founded. Also, since $Hom_{<\omega_1^V}^N$ is weakly-sealed, $j_i(Hom_{<\omega_1^V}^N) = Hom_{<\omega_1^V}^{N[G_i]}$, hence $j^*(Hom_{<\omega_1^V}^N) = Hom_{\omega_1^V}^{N(\sigma)}$. Using this, we'll show (16.1).

Using the notation of (16.1), let N[G](τ) be a symmetric extension of N[G] for $Col(\omega, < \kappa)$ such that $N(\sigma) = N[G](\tau)$. Now, j^* induces an elementary embedding $j_{\sigma} : L(Hom_{<\omega_1^V}^N) \to L(Hom_{<\omega_1^V}^N)^{N(\sigma)}$ such that $j_{\sigma}(Hom_{<\omega_1^V}^N) = Hom_{<\omega_1^V}^{N(\sigma)}$. Similarly, there is an elementary embedding $j_{\tau} : (L(Hom_{<\omega_1^V})^{N[G]} \to (L(Hom_{<\omega_1^V}))^{N[G](\tau)}$ such that $j_{\tau}(Hom_{<\omega_1^V}^{N[G]}) = Hom_{<\omega_1^V}^{N[G](\tau)}$. But $N[G](\tau) = N(\sigma)$ so this induces an elementary embedding $j_{G} : L(Hom_{<\omega_1^V}^N) \to (L(Hom_{<\omega_1^V}))^{N[G]}$ such that $j_{G}(Hom_{<\omega_1^V}^N) = Hom_{<\omega_1^V}^{N[G]}$. This proves (16.1)

Now to see that (16.1) implies the lemma, we need to use Woodin's tree production

lemma. Suppose for contradiction that $Hom_{<\omega_1^V}^N \neq L(Hom_{<\omega_1^V}^N) \cap P(\mathbb{R}^N)$. Let α be least such that $Hom_{<\omega_1^V}^N \neq L_{\alpha}(Hom_{<\omega_1^V}^N) \cap P(\mathbb{R}^N)$. Then there is an $A \in L_{\alpha}(Hom_{<\omega_1^V}^N) \cap P(\mathbb{R}^N) \setminus Hom_{<\omega_1^V}^N$ such that N can define A by a formula ϕ with parameters a pair of trees (T,S) representing a $Hom_{<\omega_1^V}^N$ set. It is then easy to check the hypotheses of the tree production lemma hold true for N and ϕ , i.e.

- (a) (Generic Absoluteness) Let $\delta < \omega_1^V$ be Woodin in N, G be $< \delta$ -generic over N, and H be $< \delta^+$ -generic over N[G]. For all $x \in \mathbb{R} \cap N[G]$, $N[G] \models \phi[x, T, S] \Leftrightarrow N[G][H] \models \phi[x, T, S]$.
- (b) (Stationary Tower Correctness) Let $\delta < \omega_1^V$ be Woodin in N, G be $\mathbb{Q}_{<\delta}$ -generic over N, and $j: N \to M \subseteq N[G]$ be the induced embedding. Then for all $x \in \mathbb{R} \cap N[G]$, $N[G] \models \phi[x, T, S] \Leftrightarrow M \models \phi[x, j(T), j(S)]$

The tree production lemma then implies that $A \in Hom_{<\omega^{Y}}^{N}$. This is a contradiction. \square

This implies that $L(Hom^N_{<\omega_1^V})$ is a counterexample to the theorem in the sense that $L(Hom^N_{<\omega_1^V}) \vDash AD^+ + \phi[\mathbb{R}^N]$ but no $A \in (P(\mathbb{R}))^{L(Hom^N_{<\omega_1^V})}$ satisfies that $L(A,\mathbb{R}^N) \vDash \phi[\mathbb{R}^N]$. By induction on Θ of AD^+ models and the fact that $\Theta^{L(Hom^N_{<\omega_1^V})} < \Theta^V$, we have a contradiction. So (b) of Lemma 31 can't hold; hence, (a) is the only possibility. (Theorem 1)

References

- [1] Peter Koellner and Hugh Woodin. Large Cardinals from Determinacy. In Matthew Foreman and Akihiro Kanamori, editors, *Handbook of Set Theory*, chapter 23, pages 1951–2120. Springer, 2010.
- [2] Robert M. Solovay. The Independence of DC from AD. In A.S. Kechris and Y.N. Moschovakis, editors, *Cabal Seminar* 76–77, pages 171–183. Springer, 1978.
- [3] John R. Steel. The Derived Model Theorem. Unpublished notes, 2008.
- [4] John R. Steel. Notes on V as a Derived Model of HOD. Unpublished handwritten notes, 2008.
- [5] John R. Steel. An optimal consistency strength lower bound for $AD_{\mathbb{R}}$. Unpublished notes, 2008.
- [6] Yizheng Zhu. The Derived Model Theorem II. Unpublished notes, May 2010.