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1
Relative Definability and Degree
Structures

In this chapter, we describe our notation and make some preliminary ob-
servations. We do not intend this chapter to be a rigorous treatment of the
fundamentals of recursion theory; see instead Enderton (2001) or Shoen-
field (2001) for the basic concepts and Soare (1987) for more advanced
topics. Rather, we use this chapter as a catalog of facts that we will use as
we go along.

1.1 Recursive Sets and Turing functionals
We use ω to denote the set of natural numbers 0, 1, 2, . . . and 2ω to denote
the set of subsets of ω. When convenient, we will view an element of 2ω

as a Boolean valued function so that A(n) = 0 is equivalent to n 6∈ A and
A(n) = 1 is equivalent to n ∈ A.

An n-ary relation R on ω is recursive if and only if there is a program
P such that, for each n ∈ ω, if P is started in its initial state with input n,
then eventually P returns the value R(n). A subset W of ω is recursively
enumerable if and only if it is the projection of a recursive relation. That is,
for some recursive R, y ∈ W ⇐⇒ (∃x1, . . . , xn)[(y, x1, . . . , xn) ∈ R].

Similarly, if A is a set, then B is recursive in A, B ≤T A, if and only
if there is a program P which can query A such that, for each n ∈ ω, if
P is started in its initial state with input n, then eventually P returns the
value B(n). A and B are Turing equivalent, A ≡T B, if and only if each is
recursive in the other.

Definition 1.1.1 The Turing degrees are the ≡T -equivalence classes,
which are ordered by evaluating ≥T on representatives. We let D de-
note this partially ordered set.
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6 Relative Definability and Degree Structures

If A and B are subsets of ω, we let A ⊕ B denote their recursive join:

A ⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B}.

If a and b are the degrees of A and B, then we let a ∨ b denote the Turing
degree of A ⊕ B. Note that a ∨ b is the least upper bound of the pair {a, b}

in D.

Definition 1.1.2 A subset I of D is an ideal if and only if I is closed under
≤T (x ∈ I and y ≤T x implies y ∈ I) and closed under ∨ (x ∈ I and
y ∈ I implies x ∨ y ∈ I).

Definition 1.1.3 1. A Turing functional 8 is a set of sequences (x, y, σ )
such that x is a natural number, y is either 0 or 1, and σ is a finite binary
sequence. Further, for all x , for all y1 and y2, and for all compatible
σ1 and σ2, if (x, y1, σ1) ∈ 8 and (x, y2, σ2) ∈ 8, then y1 = y2 and
σ1 = σ2.

2. 8 is use-monotone if the following conditions hold.

(a) For all (x1, y1, σ1) and (x2, y2, σ2) in 8, if σ1 is a proper initial
segment of σ2, then x1 is less than x2.

(b) For all x1 and x2, y2 and σ2, if x2 > x1 and (x2, y2, σ2) ∈ 8, then
there are y1 and σ1 such that σ1 ⊆ σ2 and (x1, y1, σ1) ∈ 8.

3. We write 8(x, σ ) = y to indicate that there is a τ such that τ is
an initial segment of σ , possibly equal to σ , and (x, y, τ ) ∈ 8. If
X ⊆ ω, we write 8(x, X) = y to indicate that there is an ` such that
8(x, X � `) = y, and write 8(X) for the function evaluated in this
way.

Note that in Definition 1.1.3, we did not require that 8 be definable.
Consequently, if 8 is a Turing functional and X ⊆ ω, then 8(X) is recur-
sive only in the join of 8 and X . The program to compute 8(X) from X
would be for input n to search in 8 for a triple of the form (n, y, σ ) such
that σ ⊂ X and output the value y for the first such triple found.

Definition 1.1.4 A recursive functional is a Turing functional 8 such that
8 is recursively enumerable.

Note, for subsets A and B of ω, B is recursive in A if and only if there
is a recursive functional 8 such that 8(A) = B.
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1.2 Preliminary Observations
Let σ0 denote the null sequence. If B is a recursive set, then the functional
8 = {(x, B(x), σ0) : x ∈ ω} is recursive. Further, for every A,8(A) = B.
Consequently, the recursive sets form a Turing degree and that degree is
below every other degree. We let 0 denote the Turing degree of the recur-
sive sets, the least element of D.

Theorem 1.2.1 1. For each x in D, there are at most countably many y
in D such that x ≥T y. (D is locally countable.)

2. D has cardinality the continuum.

Proof: The first claim follows from the observation that there are only
countably many recursive functionals. The second claim follows similarly
from the observation that 2ω has size the continuum and D is is the quo-
tient of 2ω by an equivalence relation in which each equivalence class is
countable.

Definition 1.2.2 1. For A and B contained in ω, define A⊕ B as follows.

A ⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B}

A ⊕ B is called the recursive join of A and B.
2. If a and b are the Turing degrees of A and B, respectively, then a + b

is the Turing degree of A ⊕ B.

Theorem 1.2.3 For Turing degrees a and b, a +b is the least upper bound
in D of the pair {a, b}.

Proof: Let X , A, and B be representatives of x , a, and b, respectively.
Suppose that A and B are recursive relative to X . It follows that A ⊕ B

is recursive in X , and so x ≥T a +b. Conversely, if x ≥T a +b then A⊕ B
is recursive in X , and so both of A and B are recursive in X . Then, x ≥T a
and x ≥T b, as required.

1.3 The Arithmetic Hierarchy
Let N be the structure with universe ω, the natural numbers, with binary
operations addition, +, and multiplication, ×, the binary order relation, >,
and distinguished elements 0 and 1. We define the set of first order terms
and formulas in this language as usual, for example as in (Enderton, 2001).
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Definition 1.3.1 1. The bounded formulas are the subset of the formulas
in the first order language of N obtained by closing the atomic formu-
las under Boolean operations and bounded quantification, ∀x < t or
∃x < t , where t is an arithmetic term which does not mention x . Here,
(∀x < t)ϕ is the formula ∀x(x < t → ϕ), and (∃x < t)ϕ is the
formula ∃x(x < t → ϕ).

2. We define the collections of formulas 60
n and 50

n by recursion.
(a) 60

0 and 50
0 are both equal to the class of bounded formulas.

(b) A formula is 60
n+1 if and only if it is of the form ∃x1 . . . ∃xnθ ,

where θ ∈ 50
n .

(c) A formula is 50
n+1 if and only if it is of the form ∀x1 . . . ∀xnθ ,

where θ ∈ 60
n .

Definition 1.3.2 1. For R a relation on ω, we say that R is 60
n or 50

n if
and only if R is definable in N by a formula of the corresponding type.

2. R is 10
n if and only if it is both 60

n and 50
n .

3. R is arithmetically definable if there is an n such that R is 60
n .

The first few levels of the arithmetic hierarchy appear naturally as re-
cursion theoretic classes. For any sets R and W , R is 10

1 if and only if it is
recursive, and W is 60

1 if and only if it is recursively enumerable.

1.3.1 Arithmetic definability relative to a real parameter
Suppose that R is a subset of ω, and consider the extension of N obtained
by adding a predicate for R. The first order language appropriate for this
structure is the language for N with an additional unary predicate symbol
R. When t is a term, R(t) is an additional atomic formula, and we generate
the language for the expanded structure as above. Of course, we are not
limited on adding only one predicate, we could add arbitrarily many of
them.

Theorem 1.3.3 Let ϕ be a bounded sentence. There is a number b, com-
puted uniformly from ϕ, such that if R1 and R2 are subsets of ω which
have exactly the same elements less than b, then (N, R1) |= ϕ if and only
if (N, R2) |= ϕ.

Proof: We prove Theorem 1.3.3 by induction on the definition of satisfac-
tion for ϕ.
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If ϕ is an atomic sentence, then ϕ is one of an equality t1 = t2 between
terms, an instance of order t1 > t2 between terms, or an assertion that
some term satisfies the predicate R(t). In the first two cases, the satisfaction
of ϕ does not depend on the interpretation of R and we may let b equal
0 to verify the claim. Consider the third case. Since ϕ is a sentence, the
term mentioned in ϕ is a closed expression in the constants 0 and 1 and
the function symbols + and ×. The value v of this term is recursively
determined, and does not depend on the interpretation of R. Let b equal
v + 1. If R1 and R2 agree on all of the numbers less than b, then v ∈ R1 if
and only if v ∈ R2. Consequently, (N, R1) |= ϕ if and only if (N, R2) |= ϕ.

If ϕ is a Boolean combination of simpler formulas ϕ1 and ϕ2, then we
may take the supremum b of the bounds b1 and b2 computed for the sub-
formulas of ϕ and argue that if R1 and R2 agree on the numbers less than
b, then (N, R1) |= ϕ if and only if (N, R2) |= ϕ.

Finally, suppose that ϕ is of the form (∃x < t)ϕ0. We repeat the ar-
gument from above. Since ϕ is a sentence, there cannot be any variables
in t . Consequently, t is a closed term, the interpretation m of t is recur-
sively determined from t . Then (∃x < t)ϕ0 is equivalent to the disjunction
of ϕ0(0), ϕ0(1), . . . , ϕ0(m − 1). For each of these disjuncts ϕ0( j), we can
compute a number b j as required by the theorem. Then let b be the supre-
mum of b0, . . . , bm−1. If R1 and R2 agree on all numbers less than b, then
for each j less than m, (N, R1) |= ϕ0( j) if and only if (N, R2) |= ϕ0( j).
Consequently, (N, R1) |= ϕ if and only if (N, R2) |= ϕ.
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2
Generic Sets

2.1 Forcing
Some general comments about forcing.

2.2 Forcing in Set Theory
Definition 2.2.1 Let T be the fragment of ZFC which includes only the
instances of replacement and comprehension in which the defining formula
is 61.

Our choice of T is not critical. We will only need to know that T is
strong enough to formulate definitions for and prove the basic facts about
the natural numbers, the reals, and the power set of the reals, and that T is
consistent. Any sufficiently strong recursively axiomatized fragment of set
theory would be acceptable.

2.3 Adding Cohen Reals
Let Pω1 be the partial order to add ω1-many Cohen (1966) reals to V .
A condition in Pω1 is a finite map with domain contained in ω1 × ω and
range contained in {0, 1}. Conditions are ordered by inclusion, the stronger
condition being defined at more points.

Suppose that G is Pω1-generic over V . We will identify G with the func-
tion from ω1 × ω into {0, 1} given by its union. We can equivalently view
G as an ω1-sequence of reals (Gα : α < ω1) by setting Gα(n) equal to
G(α, n).

Suppose that X ∈ 2ω is an element of V [G].

• There is a set GX such that GX is Pω1 generic over V [X ] and
V [X ][GX ] = V [G].

•

11



12 Generic Sets

2.4 Forcing in Arithmetic
In recursion theory, forcing is typically used to construct exotic subsets of
ω. It is also typical that their exotic properties are arithmetically definable.

For example, Kleene and Post (1954) constructed a pair of sets with
incomparable Turing degree, Friedberg (1957) inverted the Turing jump
on the Turing degrees above 0′, and Spector (1956) constructed a set with
minimal Turing degree. Even though this observation came after the fact,
the proofs of these theorems turn on the analysis of the forcing relation
for the appropriate partial orders. In the first two cases the partial order is
2<ω, and in the third case the partial order is that of recursive perfect trees
ordered by inclusion.

Two hallmarks of recursion theoretic forcing are visible in these ex-
amples. First, it is possible to build sets which are generic with respect
to one set of criteria and fail to be generic with respect to another, usu-
ally more complex, criterion. For example, in the proof of the Friedberg
Jump Inversion Theorem, one builds a set G which is sufficiently generic
so that atomic facts about G ′ are decided by forcing, but not so generic that
the Turing degree of G ′ is incomparable with the given set above 0′ upon
which one wishes to invert the jump. Second, it is possible to use forcing
and not be interested in the generic filter, but rather in a set derived from it.
For example, Spector’s (1956) minimal degree is the unique path through
the set of perfect trees in the generic filter.

2.4.1 The forcing relation for arithmetic formulas
We consider the special case in which P is a partial order on a subset of
ω. In this context, we refer to elements of P as conditions and use >P to
denote the ordering between conditions. The contents of this section are
well-known. However, since much of the machinery in the sections and
chapters which follow depends on the fine analysis of forcing, we will fix
a particular presentation and associated system of notation.

Definition 2.4.1 We define the strong forcing relation ∗ between ele-
ments p of P and arithmetic sentences ϕ(m, P,G). In this context, we
syntactically identify a sequence of natural numbers m with the sequence
of symbols which refer to it. That is to say that we will write m1+m2 = m3
to refer to the sentence asserting that the sum of the term referring to m1
with the term referring to m2 is equal to the term referring to m3. Similarly,
we identify the partial order P with symbol to refer to it, and we introduce
a unary symbol G, which will refer to a generic filter G.
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1. If ϕ(m, P,G) is an atomic sentence which does not mention G,
such as m ∈ P , m1 >P m2, m1 + m2 = m3, and so forth, then
p ∗ ϕ(m, P,G) if and only if ϕ is true in the standard model of
arithmetic with an additional predicate symbol referring to P .

2. p ∗ q ∈ G if and only q ≥P p.
3. p ∗ ϕ(m, P,G) & ψ(m, P,G) if and only if p ∗ ϕ(m, P,G) and

p ∗ ψ(m, P,G).
4. p ∗ (∃x)ψ(x,m, P,G) if and only for some k ∈ ω, p ∗ ψ(k,m, P,G).
5. p ∗

¬θ(m, P,G) if and only if, for all q, if p ≥P q, then it is not the
case that q ∗ θ(m, P,G).

The definition of the strong forcing relation is by recursion on the com-
plexity of ϕ. In other words, when we specify whether p ∗ ϕ(m, P,G),
we may assume that we have specified the forcing relation between any
condition in P and any instance of a subformula of ϕ(m, P,G). That the
recursion has this form is especially obvious in the clause defining forcing
for a negation.

Theorem 2.4.2 1. For any p ∈ P and any sentence ϕ(m, P,G), if
p ∗ ϕ(m, P,G), then it is not the case that p ∗

¬ϕ(m, P,G).
2. For any p ∈ P and any sentence ϕ(m, P,G), if p ∗ ϕ(m, P,G) and

p ≥P q, then q ∗ ϕ(m, P,G).

Proof: The first claim follows directly from the fifth clause in the definition
of ∗.

The second claim is proven by induction on the definition of ∗.

Theorem 2.4.3 For each sentence ϕ(m, P,G) as above, the set of p in P
such that p ∗ ϕ(m, P,G) is arithmetically definable relative to P.

Proof: In Definition 2.4.1, we specified the relation ∗ for all arithmetic
sentences using a recursion of length ω in which each step of the recursion
is arithmetic relative to P . Fixing ϕ(m, P,G), there is a finite step in this
recursion during which we specified for all p whether p ∗ ϕ(m, P,G).
Thus, the set of p such that p ∗ ϕ(m, P,G) is arithmetically definable
relative to P .

Definition 2.4.4 If p is a condition in P and ϕ(m, P,G) is a sentence,
then p strongly decides ϕ(m, P,G) if and only if either p ∗ ϕ(m, P,G)
or p ∗

¬ϕ(m, P,G).



14 Generic Sets

Definition 2.4.5 A condition p in P forces an arithmetic sentence ϕ(m, P,G),
written p  ϕ(m, P,G), if and only if p ∗

¬¬ϕ(m, P,G).

2.4.2 Generic filters
Definition 2.4.6 Suppose that D is a subset of the partially order set P .
1. D is open if and only if for all p and q in P , if p ≥P q and p ∈ D,

then q ∈ D.
2. D is dense if and only if for all p ∈ P there is a d ∈ D such that

p ≥P d.

Definition 2.4.7 Suppose that G is a subset of the partially order set P .
1. G is a filter on P if and only if the following conditions hold.

(a) G 6= ∅.
(b) For all p and q, if p ≥P q and q ∈ G, then p ∈ G.
(c) For all p and q, if p ∈ G and q ∈ G, then there is an r ∈ G such

that p ≥P r and q ≥P r .
2. If D is a collection of dense open subsets of P , then G is a D-generic

filter on P if and only if G is a filter on P and for all D ∈ D,
G ∩ D 6= ∅.

When the partial order P is understood, we will simply say that G is
generic for D.

Theorem 2.4.8 Suppose that P is partial ordering on ω, p ∈ P, and
D = (Dn : n ∈ ω) is a countable collection of dense open subsets of
P. Then there is a G ⊆ P such that p ∈ G and G is a D-generic filter on
P.

Proof: We define a sequence of conditions (pn : n ∈ ω) by recursion on
n. Let p0 = p. Let pn+1 be the least natural number such that pn ≥P pn+1
and pn+1 ∈ Dn . There is such a pn+1 since Dn is a dense subset of P .
Now, let G be defined by the following equation.

G = {q : (∃n)[q ≥P pn]}

By definition, G is closed upwards in P . If q1 and q2 belong to G, then
there are n1 and n2 such that q1 ≥P pn1 and q2 ≥P pn2 . For m the supre-
mum of n1 and n2, pm is a common extension of q1 and q2 which belongs
to G. Consequently, G is a filter on P . It is D-generic since for each n,
pn+1 ∈ G ∩ Dn .
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Definition 2.4.9 G is an arithmetically in P generic filter on P if and only
if G is a filter on P and for every D, if D is a dense open subset of P and
D is arithmetically definable relative to P , then G ∩ D 6= ∅.

When P is an arithmetic partial order, we will abbreviate by saying that
that G is arithmetically P-generic.

Theorem 2.4.10 Suppose that G is arithmetically P-generic. For each
arithmetic sentence ϕ(m, P,G), there is a p ∈ G such that either
p ∗ ϕ(m, P,G) or p ∗

¬ϕ(m, P,G).

Proof: By Theorem 2.4.3, for each sentence ϕ(m, P,G), the collection of
p ∈ P such that p strongly decides ϕ(m, P,G) is open and arithmetically
definable relative to P . It is also dense, since either there is an extension
of p which strongly forces ϕ(m, P,G), or p strongly forces ¬ϕ(m, P,G).
By assumption, at least one such p must belong to G.

Theorem 2.4.11 Suppose that ϕ(m, P,G) is a sentence, G is a filter on P,
and for each subformula ϕ0(x,m, P,G) of ϕ(m, P,G) and for each k from
ω there is a condition p ∈ G such that p strongly decides ϕ0(k,m, P,G).
Then, the following conditions are equivalent.
1. There is a p ∈ G, p  ϕ(m, P,G).
2. ϕ(m, P,G)

Proof: We first note that if p ∈ G and p  ϕ(m, P,G), q in G and q
strongly decides ϕ(m, P,G), then q ∗ ϕ(m, P,G). Otherwise, p and q
would have a common extension r in G which as an extension of p would
strongly force ¬¬ϕ(m, P,G) and as an extension of q would strongly
force ¬ϕ(m, P,G). The existence of such an r would contradict Theo-
rem 2.4.2. Thus, we may replace the first condition above by the one which
asserts that there is a p ∈ G, p ∗ ϕ(m, P,G).

We prove the equivalence between the two conditions by induction on
the complexity of instances of subformulas of ϕ(m, P,G).
Atomic sentences. Suppose that ϕ(m, P,G) is an atomic sentence. If it
does not refer to G, then strongly forcing ϕ(m, P,G) is defined to be iden-
tical with ϕ(m, P,G)’s being true, and the claim holds on trivial grounds.
Now, consider the atomic sentence m ∈ G.

Suppose that p ∈ G and p ∗ (m ∈ G), that is m ≥P p. Since G is a
filter, m is an element of G, as required.
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For the converse, suppose that m ∈ G. Then, m itself is a condition in
G which strongly forces the sentence m ∈ G.

Conjunction. Suppose that ϕ(m, P,G) is the conjunction ofψ1(m, P,G)
and ψ2(m, P,G).

Suppose that p ∈ G and p ∗ ϕ(m, P,G). Then, p ∗ ψ1(m, P,G)
and p ∗ ψ2(m, P,G). By induction, both ψ1(m, P,G) and ψ2(m, P,G)
are satisfied. Of course, this implies that their conjunction is satisfied, as
required.

Conversely, suppose that the conjunction ofψ1(m, P,G) andψ2(m, P,G)
is satisfied. Then each conjunct is satisfied. By induction, there are p1 and
p2 in G such that for each i , pi strongly forces ψi (m, P,G). Since G
is a filter, let p be an element of G which extends both p1 and p2. By
Theorem 2.4.2, ∗ is a monotone relation. Thus, for each i either 1 or 2,
p strongly forces ψi (m, P,G). Consequently, p is an element of G such
that p ∗ ϕ(m, P,G), as required.

Existential quantification. Suppose that ϕ(m, P,G) is the existential
sentence (∃x)ψ(x,m, P,G).

Suppose that p ∈ G and p ∗ ϕ(m, P,G). Then there is a k in ω such
that p ∗ ψ(k,m, P,G). By induction, G satisfies ψ(k,m, P,G), and
therefore G satisfies (∃x)ψ(x,m, P,G), as required.

Conversely, suppose that G satisfies (∃x)ψ(x,m, P,G). Fix k such
that G satisfies ψ(k,m, P,G). By induction, there is a p ∈ G such that
p ∗ ψ(k,m, P,G). Then, for this p, p ∗ (∃x)ψ(x,m, P,G), as re-
quired.

Negation. Suppose that ϕ(m, P,G) is the negation ¬ψ(m, P,G).
Suppose that p ∈ G and p ∗

¬ψ(m, P,G). Then, there is no ex-
tension q of p such that q ∗ ψ(m, P,G). Since G is a filter, for every
r ∈ G there is a q in G such that q is a common extension of p and r .
Consequently, no element of G can strongly force ψ(m, P,G). By induc-
tion, G does not satisfy ψ(m, P,G), and hence G satisfies ¬ψ(m, P,G),
as required.

Conversely, suppose that G satisfies ¬ψ(m, P,G). Then G does not
satisfy ψ(m, P,G), and so there is no p in G such that p ∗ ψ(m, P,G).
By assumption, there is a p in G such that p strongly decides ψ(m, P,G),
and this p must strongly force ¬ψ(m, P,G), as required.

Theorem 2.4.12 For p ∈ P and ϕ(m, P,G) an arithmetic sentence, the
following are equivalent.
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1. p  ϕ(m, P,G)
2. For every arithmetically P-generic filter G, if p ∈ G then ϕ(m, P,G)

is true.

Proof: Suppose that p  ϕ(m, P,G), G is an arithmetically P-generic
filter, and p ∈ G. Then p ∗

¬¬ϕ(m, P,G), and by Theorem 2.4.11,
¬¬ϕ(m, P,G) is true. But then ϕ(m, P,G) is also true, as required.

Conversely, if p 6 ϕ(m, P,G), then there is a q extending p in P such
that q ∗

¬ϕ(m, P,G). By Theorem 2.4.8, let G be arithmetically P-
generic such that q is an element of G. By Theorems 2.4.10 and 2.4.11, the
arithmetic statements true of P and G are exactly those which are strongly
forced by conditions in G. But then G satisfies ¬ϕ(m, P,G), and is the
required generic filter doing so.

2.5 Cohen forcing
In some cases, the forcing relation can be analyzed more efficiently than
by directly unraveling Definition 2.4.1.

Let 2<ω denote the set of finite binary sequences ordered by extension.
To fit into the above paradigm of forcing with an ordering on a set of natural
numbers, we could think of a natural number as representing the sequence
of digits in its binary expansion and order the numbers by extension on
the sequences that they represent. Thus, 3 represents the sequence (11), 6
represents (110), and 3 >P 6. However, in this section, we will suppress
the recursive coding of 2<ω and refer directly to the sequences rather than
to their numeric codes. By the relevant discussion in (Enderton, 2001) this
ordering on ω is defined by a 10

1 formula1 Consequently, we can omit the
symbol for the partial order from the forcing language in the following.

2.5.1 Analyzing the forcing relation for Cohen forcing
Theorem 2.5.1 If ϕ(m,G) is a bounded sentence, then the set of p ∈ 2<ω

such that p ∗ ϕ(m,G) is 10
1.

Proof: Let p be a Cohen condition and let ϕ(m,G) be a bounded sentence.
To be precise, let ϕ(m,G) be a sentence inductively constructed from
atomic formulas by applications of conjunction, negation, and bounded
existential quantification. (We choose these logical operations since they
are the ones for which we have explicitly defined the forcing relation.)

1.
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By Theorem 1.3.3, there is a number b such that b is uniformly com-
putable from ϕ(m,G) and such that for all G, the values of G at numbers
less than or equal to b recursively determine whether (N,G) |= ϕ(m,G).
Let b be fixed for the remainder of this proof.

We proceed by induction on the complexity of ϕ to prove the theorem.
If ϕ(m,G) is an atomic sentence then the definition of the strong forc-
ing relation is clearly recursive. Similarly, if ϕ(m,G) is a conjunction of
sentences and we can recursively decide the forcing relation for the two
conjuncts, then we can recursively decide the forcing relation for ϕ(m,G).

Now, we consider the two nontrivial cases in the induction. First, sup-
pose that ϕ(m,G) is (∃x < t)ψ(x,m,G); or equivalently suppose that
ϕ(m,G) is (∃x)(x < t & ψ(m,G)), where t is a term with no free vari-
ables. Then, p strongly forces ϕ(m,G) if and only if there is a k such that
p strongly forces (k < t & ψ(k,m,G)). In turn, this is equivalent to p’s
strongly forcing k < t and also ψ(k,m,G). p strongly forces k < t if and
only if k is actually less than the value of t . So there are only finitely many
possible values for k, and we can use recursion to settle whether p strongly
forces ψ(k,m,G) for one of these values.

Finally, suppose that ϕ(m,G) is ¬ψ(m,G). Then, p strongly forces
ϕ(m,G) if and only if there is no condition q extending p such that q
strongly forces ψ(m,G). Now we have a sequence of equivalences. There
is a q extending p which strongly forces ψ(m,G) if and only if there is a
q extending p which forces ψ(m,G), if and only if there is a q extending
p and an arithmetically generic G containing q which satisfies ψ(m,G).
But since ψ(m,G) is bounded whether G satisfies ψ(m,G) depends re-
cursively on just the values of G below b. Consequently, p strongly forces
ϕ(m,G) if and only if there is no extension of p of length greater than or
equal to b which ensures that ψ(m,G) is true, and this last condition is
uniformly recursive in p and ϕ(m,G).

Theorem 2.5.2 For n ≥ 1, the strong forcing relation for 2<ω has the
following complexity.
1. The set

{(p, ϕ(m,G)) : ϕ(m,G) is a 60
n sentence and p ∗ ϕ(m,G)}

is 60
n .

2. The set

{(p, ϕ(m, 2<ω,G)) : ϕ(m,G) is a 50
n sentence and p ∗ ϕ(m,G)}
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is 50
n . Note, since we defined the strong forcing relation only for the

existential quantifier, when we say that p ∗
∀xψ , we mean that

p ∗
¬∃x¬ψ .

Proof: We prove Theorem 2.5.2 by induction on n.
First, we consider the case when n is equal to 1. Suppose that ϕ(m,G)

is a 60
1 sentence ∃xψ(x,m,G) in which ψ is a bounded formula. Then

p ∗ ϕ if and only if there is a sequence k such that p ∗ ψ(k,m,G).
By Theorem 2.5.1, strongly forcing a bounded sentence is a 10

1 property,
p ∗ ϕ if and only if there is a sequence k with a 60

1 property relative
to p and ϕ(x,m,G). Thus, the forcing relation for 60

1 sentences is itself
60

1 . Now consider the case when ϕ is a 50
1 sentence ∀xψ(x,m,G). Then,

by definition, p ∗
∀xψ(x,m,G) if and only if p ∗

¬∃x¬ψ(x,m,G),
if and only if for all q <2<ω p and all k, q 6∗

¬ψ(k,m,G). Whether q
strongly forces ¬ψ(k,m,G) is a 10

1 property of q and ¬ψ(k,m,G), and
so the later condition is a 50

1 property of p and ϕ.
Now, assume that Theorem 2.5.2 holds for n.
Suppose that ϕ(m,G) is of the form (∃x)ψ(x,m,G), where x is a finite

sequence of variables and ψ(x,m,G) is a 50
n formula in those variables.

Then p ∗ (∃x)ψ(m,G) if and only if there is a sequence of natural num-
bers k such that p ∗ ψ(k,m,G). By induction, p ∗ ψ(k,m,G) is a
50

n property of p and ψ(k,m,G). Consequently, p ∗ (∃x)ψ(m,G) if
and only if there is a sequence k with a 50

n property relative to p and
ψ(k,m,G). Thus, whether p ∗ (∃x)ψ(x,m,G) is a 60

n+1 property of p
and ϕ(x,m,G).

Now, suppose that ϕ(m,G) is of the form ¬(∃x)¬ψ(x,m,G), where
x is a finite sequence of variables and ψ(x,m,G) is a 60

n formula in
those variables. Then, p ∗

¬(∃x)¬ψ(x,m,G) if and only if for every
q extending p in P and for every k from ω, it is not the case that
q ∗

¬ψ(k,m,G). This condition on q holds if and only if there is
an r extending q such that r ∗ ψ(k,m,G). By induction, the condition
r ∗ ψ(k,m,G) is 60

n . Thus, p ∗ ϕ(m,G) if and only if for every q
extending p in P and every k from ω, there is an r extending q such that r
has a property that is60

n relative to q and ψ(k,m,G). Thus, p ∗ ϕ(m,G)
if and only if a 50

n+1 condition holds of p and ϕ(m,G), as required.
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2.5.2 The universal role of Cohen forcing
Theorem 2.5.3 Suppose that P is a countable partial order which is pre-
sented recursively in Z. There is a function λp.π(p, Z) which is recursive
in Z, maps 2<ω to P, preserves order, and has the property that if D is
a dense subset of P, then π−1(D), the pointwise inverse image of D, is a
dense subset of 2<ω.

Proof: First, consider the case when P is ω<ω ordered by extension. This
is a recursive partial order, so we may omit mentioning Z for the moment.
We define a function pω mapping 2<ω to ω<ω.

Given p ∈ 2<ω, define pω(p) ∈ ω<ω and an auxiliary sequence
h ∈ ω<ω by a finite recursion. We obtain h from the numbers on which
p changes value and obtain pω as the sequence of lengths of intervals on
which p is constant.

Let h(0) = 0. If there is a number ` > h(n) such that p(h(n)) 6= p(`),
then let h(n+1) be the least such number and let pω(n) = h(n+1)−h(n).
Otherwise, end the recursion and let h and pω be as has already been de-
termined. In particular, if h(1) is not defined, then pω(p) is the empty
element of ω<ω.

Now, define D0 to be the set of p ∈ 2<ω such that for `+1 the length of
p, p(`) 6= p(`−1). That is p ∈ D0 if and only if last value of p is different
from the second-to-last value. For p ∈ D0, let n + 1 be the cardinality of
the set of m’s such that either m = 0 or m + 1 is in the domain of p and
p(m) 6= p(m + 1). Then, pω(p) is defined on [0, n].

Clearly, D0 is dense in 2<ω. Further, for any p ∈ D0 and any q∗ extend-
ing pω(p) in ω<ω, there is a q extending p such that pω(q) = q∗. Such a
q is obtained by recursion, using the values of q∗ to determine the lengths
of the intervals on which q is constant valued. So, if D∗ is a dense subset
of ω<ω, then p−1

ω (D∗) = {p : pω(p) ∈ D∗
} is a dense subset of 2<ω.

Now, we consider the general case, suppose that P is a partial order and
P is recursively presented relative to Z . We may assume that the presenta-
tion of P has all of ω as its domain.

We will define a function p : ω<ω → P by taking the limit of the
following finite recursion. Given p∗

∈ ω<ω define λn.p(n, p∗) by recur-
sion; the domain of this function will be a finite initial segment of ω and
its range will be a decreasing sequence in P .

Let p(0, p∗) be a fixed element of P . Suppose n0 is given so that
p(n0, p∗) is defined and p(n0 + 1, p∗) is not yet defined. If there is a
number m such that m is greater than n0 and p∗(m) is defined and less
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than p(n0, p∗) in the ordering of P , then let m0 be the least such number,
for each number n in [n0 + 1,m0] define p(n, p∗) to be equal to p∗(m0),
and go to the next step in the recursion. If there is no such m, then let
p(p∗) = p(n, p∗) and end the recursion without defining p(m, p∗) for
any m greater than n0.

Any p∗
∈ ω<ω determines a condition p(p∗) ∈ P . Further, if

q ∈ P and p(p∗) >P q in P , then there is a q∗ in ω<ω such that
p∗>ω<ωq∗ and p(q∗) = q. We obtain q∗ by appending the number q to
the sequence p∗. We may conclude, if DP is a dense subset of P , then
p−1(DP) = {p∗

: p(p∗) ∈ DP
} is a dense subset of ω<ω.

Thus, if we let π : 2<ω → P be the composition of pω from 2<ω to
ω<ω with p from ω<ω to P , then the theorem is proven.

Corollary 2.5.4 Suppose that P is a countable partial order which is pre-
sented recursively in Z. Let λp.π(p, Z) be the Z-recursive function of
Theorem 2.5.3 mapping 2ω to P. If D = (Dn : n ∈ ω) is a collection
of dense open subsets of P, then π−1(D), the set of pointwise inverse im-
ages of the Dn’s, is a collection of dense open subsets of 2<ω. Further, if
G is a π−1(D) generic filter on 2<ω, then the upward closure of the range
of π on G is a D generic filter on P.

Proof: Let D = (Dn : n ∈ ω) be a collection of dense open subsets of P .
It is immediate from Theorem 2.5.3 that for each n, π−1(Dn) is a dense
subset of 2<ω.

Let G be a π−1(D) generic filter on 2<ω. Then π(G) the pointwise
image of G under π has nontrivial intersection with each element of D.
Let G∗ be the upward closure of π(G) in P . Since G∗ is closed upwards
and meets every element of D, it is sufficient to show that for each pair p∗

and q∗ of G∗, there is an r∗
∈ G∗ such that p∗

≥P r∗ and q∗
≥P r∗. Fix

p∗ and q∗ from G∗. Let p and q be elements of G such that p∗
≥P π(p)

and q∗
≥P π(q). Since G is a filter, fix r so that p ≥2<ω r and q ≥2<ω r .

Then, since π preserves order, π(r) is a common extension of p∗ and q∗.
Since π(G) ⊆ G∗, π(r) ∈ G∗, and the theorem is proven.

2.5.3 Adding Cohen reals
Definition 2.5.5 Let Pω,ω be the partial order consisting of binary valued
functions with domain a finite subset of ω × ω.

Pω,ω is the partial order to add countably many Cohen generic reals
with finite support. If G is a sufficiently generic filter on Pω,ω, then we can
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derive a sequence of reals from G, by letting Ci (n) = j if and only if there
is a p ∈ G such that p((i, n)) = j .

Theorem 2.5.6 Let B be a subset of ω. Let C be a set of reals derived
from a filter on Pω,ω (as above) which is generic with regard to all the
dense subsets of Pω,ω that are arithmetic in B. For any A0 and A1 which
are recursive in B and any Ci and Ci1, . . . ,Cin belonging to C, A0 ⊕ Ci
is recursive in A1 ⊕ j≤n Ci j if and only if A0 is recursive in A1 and there is
a j such that 1 ≤ j ≤ n and Ci is equal to Ci j .

Proof: If A0 is recursive in A1 and there is an j between 1 and n such that
Ci is equal to Ci j , then it is clear that A0 ⊕ Ci is recursive in A1 ⊕ j≤n Ci j .

For the converse, suppose that A0 ⊕ Ci is recursive in A1 ⊕ j≤n Ci j .
First, suppose that Ci is not among the Ci1, . . . ,Cin . Let p be a condi-

tion in Pω,ω and let 2 be a recursive functional. Let m be the least number
such that (i,m) is not in the domain of p. Suppose that q a condition ex-
tending p which forces a value y for 2(m, A1 ⊕ j≤n Ci j ) and is defined
at every number which is queried during the course of the computation of
this value. Then the computation refers only to the values of A1 and of
the Ci1, . . . ,Cin . Let q∗ be the possibly weaker condition obtained by re-
moving all points from the domain of q which are not in the domain of p
and are not of the form (i j , x), for some j ≤ n. The condition q∗ forces
the same atomic statements to hold of the Ci1, . . . ,Cin that were forced
by q. Thus, q∗ forces 2(m, A1 ⊕ j≤n Ci j ) = y. Now we can extend q∗

to q∗
∪ {((i,m), 1 − y)} and force 2(m, A1 ⊕ j≤n Ci j ) = y 6= Ci (m).

Thus, there is a dense set of conditions q∗ such that for some m ∈ ω either
there is no extension of q∗ which forces 2(A1 ⊕ j≤n Ci j ) to be defined at
m or q∗ forces 2(m, A1 ⊕ j≤n Ci j ) 6= Ci (m) and fixes a computation in
2 which establishes the inequality. Hence, it is forced by the empty condi-
tion that2(A1 ⊕ j≤n Ci j ) 6= Ci . Since Pω,ω is a recursive partially ordered
set and the Ci j ’s are arithmetically definable from a arithmetically generic
filter on Pω,ω-generic, any statement which is arithmetic relative to B and
C and which is forced by the null condition will be true of B and C . Thus,
assuming that Ci is not among the Ci1, . . . ,Cin contradicts the hypothesis
that Ci is recursive in A1 ⊕ j≤n Ci j .

Now, we consider A0. Suppose that p is a condition in Pω,ω, that 2 is
a recursive functional, and that p forces 2(A1 ⊕ j≤n Ci j ) = A0. Then, for
each x and y, the following conditions are equivalent.
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1. There is a q extending p in Pω,ω such that q forces2(x, A1⊕ j≤nCi j ) = y
by a computation that mentions only values of Ci j ’s that are included
in the domain of q.

2. A0(x) = y.

A counterexample to the implication from (1) to (2) would be a counterex-
ample to p’s forcing 2(A1 ⊕ j≤n Ci j ) = A0. Similarly, because p has
forced the above equality, if A0(x) = y then there is a condition q which
extends p and specifies enough of Ci1, . . . ,Cin to fix the computation set-
ting2(x, A1 ⊕ j≤n Ci j ) = y. Thus, the values of A0 can be computed from
A1 just be searching for conditions q as above.

Consequently, if A0 is not recursive in A1, then for each 2, the null
condition forces2(A1 ⊕ j≤n Ci j ) 6= A0. As above, these statements which
are arithmetic relative to B and C , hence true of these sets. This verifies
Theorem 2.5.6.

2.5.4 Adding reals with limited Cohen genericity
Definition 2.5.7 A filter G on 2<ω is n-generic if and only if for every
60

n-sentence ϕ, there is a p ∈ G such that p strongly decides ϕ. Similarly,
G is n-generic relative to X if and only if for every 60

n(X)-sentence ϕ(X),
there is a p ∈ G such that p strongly decides ϕ(X).

Theorem 2.5.8 There is a recursive functional G such that for all n ∈ ω
and all X, G(n, X (n)) is n-generic relative to X.

Proof: By Theorem 2.5.2 , the strong forcing relations for 60
n and50

n sen-
tences are 60

n and 50
n , respectively. Similarly, the strong forcing relations

for 60
n(X) and 50

n(X) sentences are 60
n(X) and 50

n(X), respectively, and
therefore recursive in X (n), uniformly in X . Let (ϕm(X) : m ∈ ω) be
a recursive enumeration of the sentences which are 60

n(X); for each m,
let Dm(X) be the dense open set of conditions p, such that p strongly
decides ϕm ; and let D(X) = (Dm(X) : m ∈ ω). As in the proof of The-
orem 2.4.8, we construct a sequence of conditions from 2<ω so that for
each m, pm ∈ Dm(X) and pm ≥2<ω pm+1. We let G(n, X (n)) be the fil-
ter {q : ∃m(q ≥2<ω pm)}. We observed that D(X) is uniformly recursive
in X (n). Further, G(n, X (n)) is also uniformly recursive in X (n), since for
each q, the sentence q ∈ G is decided by one of the pm’s in a way which
is recursively determined relative to X (n).
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Finally, since the argument given above was uniformly recursive in
n and X (n), we have actually specified a recursive function G on pairs
(n, X (n)), as required.

In Theorem 2.5.8, we could just as easily build a filter on any other
recursive partial ordering of ω and ensure that it is generic for any 10

n+1
countable sequence of dense subsets of that partial order.

Theorem 2.5.9 Let B be a subset of ω. Let C be a set of reals derived
from a filter G on Pω,ω as in Theorem 2.5.6 and such that every 60

1(B)-
sentence about G is decided by a condition in G. For any A0 and A1 which
are recursive in B and any Ci and Ci1, . . . ,Cin belonging to C , A0 ⊕ Ci
is recursive in A1 ⊕ j≤n Ci j if and only if A0 is recursive in A1 and there is
an j between 1 and n such that Ci is equal to Ci j .

Proof: In Theorem 2.5.6, we proved the same claim under the assumption
that G meets every dense subset of Pω,ω which is arithmetic relative to
B. However, if one inspects the proof of Theorem 2.5.6, one sees that for
every dense set D which appears in the proof there is a 60

1(B) formula
ϕ(G, B) such that D is the set of conditions which decide ϕ(G, B).

Definition 2.5.10 1. A subset T of 2<ω is a tree if and only if for all
q ∈ T and all q0, if q0 is an initial segment of q, then q0 ∈ T .

2. Such a tree T is perfect if and only if for all p ∈ T , there are incom-
patible q1 and q2 in T such that p ≥2<ω q1 and p ≥2<ω q2.

Theorem 2.5.11 Suppose that G is n + 1-generic. Then there is a perfect
binary tree T such that T is recursive in G and for any two distinct infinite
paths G1 and G2 in T , G1 is n-generic relative to G2.

Proof: Let P be the partial order of finite subtrees of 2<ω. For q ∈ T , say
that q is a terminal node in T if there is no proper extension of q in T .
Order P by end extension: if T1 and T2 belong to P , then T1>P T2 if and
only if T1 ⊆ T2 and for all q2 ∈ T2 \ T1 there is a terminal node q1 of T1
such that q1 is an initial segment of q2.

By Corollary 2.5.4, let π be a recursive order-preserving function from
2<ω to P such that for each dense D ⊆ P , π−1(D) is a dense subset of
2<ω.
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Suppose that G∗ is an (n + 1)-generic filter on 2<ω. Let G be the filter
on P generated from π(G∗):

G = {T : ∃p ∈ G∗(T ≥P π(p))}.

Let TG be the tree determined by the union of G. We will show that TG has
the following properties.
1. TG is recursive in G∗.
2. TG is a perfect tree.
3. For every infinite path G1 in TG , G1 is n-generic.
4. For every pair G1 and G2 of distinct paths in TG , G2 is n-generic

relative to G1.
We compute TG from G∗ as follows. Suppose that p ∈ 2<ω. Let q be

the least element of G∗ such that every terminal node in π(q) has length
greater than the length of p. Since the set of such trees is recursive and
open dense in P , the set of q’s such that π(q) is such a tree is a recursive
and open dense subset of 2<ω, and there will be such a q in G∗. Then
p ∈ TG if and only if p ∈ π(q).

Similarly, TG is a perfect tree since for each n and each p, the set of
trees T such that either p 6∈ T or p has incompatible extensions in T is a
recursive dense open subset of P .

The argument for the third claim is a special case of the argument for
the fourth. We leave it for the reader to extract it from the one we give
below.

Now, we consider the fourth claim. Let ψ(G1,G2) be a 60
n statement

about G2 relative to G1.
Consider the partial order P2,ω = 2<ω × 2<ω, used to add two Cohen

generic subsets of ω. A condition in P2,ω is a pair (p1, p2) in which p1 and
p2 are each elements of 2<ω. A filter G on P2,ω is equivalent to a pair of
filters (G1,G2), each on 2<ω.

For G2 to be n-generic relative to G1, for every60
n-sentenceψ(G1,G2),

there must be a condition p ∈ 2<ω which is an initial segment of G2 an
which strongly decides ψ(G1,G2). Working back to an equivalent state-
ment about conditions in P2,ω, there must be a pair (p1, p2) in G such
that

p1 2<ω “p2 strongly decides ψ(G1,G2)”.

Let D2
ψ denote the set of such pairs (p1, p2). By Theorem 2.5.2, p2’s

strongly deciding ψ(G1,G2) is defined by a disjunction of 60
n(G1) and
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50
n(G1) statements. Consequently, by invoking Theorem 2.5.2 again, D2

ψ

is a 10
n+1 set.

For ψ a 60
n sentence about G1 and G2, let Dψ be the collection of con-

ditions T in P such that for any two distinct terminal nodes p1 and p2 of
T , (p1, p2) ∈ D2

ψ . Since D2
ψ is open and dense in P2,ω and since every

element of P has only finitely many pairs of terminal nodes, if T0 ∈ P ,
then there is a T , obtained by extending the terminal nodes of T0 to meet
D2
ψ pairwise, such that T0>P T and T ∈ Dψ . Consequently, Dψ is a dense

open subset of P . By the previous paragraph, Dψ is10
n+1-definable. Since

G∗ is (n + 1)-generic and π−1(Dψ) is 10
n+1, there must be a condition

p in G∗ which strongly decides whether G∗
∩ π−1(Dψ) is empty. Since

π−1(Dψ) is dense, no condition can strongly force this intersection to be
empty. Consequently, p must strongly force the statement that G∗

∩ Dψ is
not empty. But then, since G∗ is n + 1-generic, this statement is true; con-
sequently, G ∩ Dψ is not empty. We may conclude that there is a T ∈ Dψ

which is a subtree of TG .
Now, let p1 and p2 be initial segments of G1 and G2, respectively, such

that (p1, p2) ∈ D2
ψ . As G1 is n-generic and p1 strongly forces that p2

strongly decides ψ(G1,G2), p2 does strongly decide ψ(G1,G2).
Since ψ was arbitrary, for each 60

n sentence about G2 relative to G1
there is an initial segment of G2 which strongly decides ψ relative to G1.
Thus, G2 is n-generic relative to G1, as required.

Theorem 2.5.12 For all n ∈ ω and all G ∈ 2ω, if G is n-generic relative
to Z, then (Z ⊕ G)(n) ≡T Z (n) ⊕ G.

Proof: Let Z be a subset of ω, and suppose that G is n-generic relative to
Z . It is sufficient to exhibit an algorithm which is recursive relative to Z (n)

and G and which determines, for a given60
n-sentence ψ , whether ψ is true

of Z ⊕ G. Our proof that there is such an algorithm goes back to Friedberg
(1957).

Let ψ(Z ⊕ G) be a 60
n-sentence. Since G is n-generic relative to Z ,

there is an m such that G � m, the element of 2<ω determined by the first
m values of G, strongly decides ψ . The set of conditions which strongly
decide ψ is 10

n+1(Z) and so is recursive in Z (n). Consequently, the func-
tion mappingψ to the least m as above is recursive in Z (n)⊕G. In addition,
the function which takes G � m to the Boolean value which it decides for
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ψ is recursive in Z (n). Since G is n-generic relative to Z , ψ(Z ⊕ G) is true
if and only if G � m strongly forces ψ(Z ⊕ G).

In short, we can compute whether ψ(Z ⊕ G) is true by using Z (n)

to recognize the shortest initial segment of G which strongly decides
ψ(Z ⊕ G), and then noting that ψ(Z ⊕ G) is true if and only if this
condition forces ψ(Z ⊕ G).
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3
Countable Representations

We have two goals in this chapter. First, we will show that structure of
the hereditarily countable sets can be faithfully interpreted in D. We will
then draw some preliminary conclusions concerning the global properties
of D. In particular, we will prove the Nerode and Shore theorem that every
automorphism of D is fixed on a cone of degrees.

3.1 Coding Theorem
Our first step is to interpret quantifiers over countable relations in the first
order language of D. The following result of Slaman and Woodin (1986)
provides the mechanism by which elements of D can act as codes for
countable relations on D.

Definition 3.1.1 A countable n-place relationR on D is a countable subset
of the n-fold Cartesian product of D with itself. In other words, R is a
countable subset of the set of length n sequences of elements of D.

Theorem 3.1.2 (The Coding Theorem) For every n there is a first order
formula ϕ(x1, . . . , xn, y1, . . . , ym) such that for every countable n-place
relation R on D there is a sequence of degrees p = (p1, . . . , pm) such
that for all sequences of degrees d = (d1, . . . , dn),

d ∈ R ⇐⇒ D |= ϕ(d, p).

Definition 3.1.3 A set of degrees A is an antichain if any two elements of
A are incomparable.

We present the proof of the Coding Theorem in a sequence of lemmas.
We first show that every countable antichain is uniformly coded in D. Then
we reduce the problem of coding a general countable relation to that of
coding a countable antichain.

We make use of the following lemma of Dekker and Myhill.

29
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Lemma 3.1.4 (Dekker and Myhill (1958)) Suppose that X is a subset of
ω. There is a Y ⊆ ω with the same Turing degree as X, such that Y is
recursive in each of its infinite subsets.

Proof: Given X , let Y be the set of integers which represent sequences
σ ∈ 2<ω such that X extends σ . Y is recursive in X , as X can compute
the set of its own initial segments. X is recursive in any infinite subset
of Y , as any atomic question about X can be answered by examining any
sufficiently long initial segment of X .

3.1.1 Coding Antichains
Definition 3.1.5 Let A = (Ai : i ∈ ω) be a sequence of subsets of ω such
that for every element A of A, A is recursive in all of its infinite subsets
and such that the Turing degrees of the elements of A form an antichain.
We define the partial ordering P as follows.
Conditions. A condition p is a triple (p1, p2, F(p)). Here p1 and p2 are

finite binary sequences of equal length and F(p) is a finite initial seg-
ment of A. The set of conditions is denoted by P .

Order. For p and q in P , we say that q is stronger than p if q1 extends p1,
q2 extends p2 and F(q) extends F(p). In addition, if k is less than the
length of F(p) and A is the kth element of F(p) then the following
condition holds. If a is an element of A and (k, a) is less or equal to
the common length of q1 and q2 but greater than the common length
of p1 and p2, then q1 and q2 have the same value at (k, a).

Definition 3.1.6 Suppose that p = (p1, p2, F(p)) is a condition in P .
1. Say that m is a coding location for p if m is greater than the common

length of p1 and p2, m is equal to (k, a) for some k less than the length
of F(p), and a an element of Ak .

2. Suppose that F(p) has length greater than k. The set of coding loca-
tions for p of the form (k, a) is recursive in Ak . We will refer to this
set as the set of coding locations in the kth column.

We can read Definition 3.1.5 as saying that in order for q to extend p,
q1 and q2 must agree at all of the coding locations for p.

Lemma 3.1.7 Let A = (Ai : i ∈ ω) be a sequence of reals whose de-
grees form a countable antichain in D and let B be an upper bound on the
elements of A. There are reals G1 and G2 with the following properties.
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1. For every Ai in A, there is a C such that C is recursive in G1 ⊕ Ai and
recursive in G2 ⊕ Ai , but C is not recursive in Ai .

2. For every Y below B, either
(a) for every Z, if Z is recursive in G1 ⊕ Y and recursive in G2 ⊕ Y ,

then Z is recursive in Y
(b) or there is an Ai in A such that Y ≥T Ai .

Proof: By Lemma 3.1.4, we may assume that each Ai is recursive in all of
its infinite subsets. Let P be the notion of forcing described above for A.
Let G be arithmetically P-generic and let G1 and G2 be the pair of reals
obtained by taking the limits of the first two coordinates of the elements
of G. We will show that both statements 1 and 2 are forced by the empty
condition and therefore true of these G1 and G2.

Definition 3.1.8 For k ∈ ω, let D(k) be the set of conditions p such that
F(p) has length greater than k.

Clearly, D(k) is arithmetic and dense in P . Suppose that pk is an ele-
ment of D(k)

⋂
G. Define C(k) as follows.

C(k) =

{
m :

The mth coding location for pk in the
kth column is an element of G1.

}
Since every extension of pk is required to make its first two coordinates
agree at all coding locations for pk , C(k) is recursive in both G1 ⊕ Ak and
G2 ⊕ Ak . It remains to show that C(k) is not recursive in Ak . Let e be an
index for a Turing reduction.

Definition 3.1.9 Let E(e, k) be the set of conditions p such that for some
n less than the length of p1, either {e}(n, Ak) ↑, or {e}(n, Ak) ↓ and its
value is unequal to the value of p1 at the nth coding location in p1’s kth
column.

If there is an n greater than the length of p1 such that {e}(n, Ak) ↓,
we can define q extending p to disagree with {e}(n, Ak) at the nth coding
location in the i th column. Thus, E(e, k) is dense in P . In addition, any
condition in E(e, k) has fixed an argument at which {e}(Ak) and C(k)
disagree. Thus, we have verified statement 1 of Lemma 3.1.7.
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It remains to show that if Y is a real below B then



(
∃(Ak ∈ A)[Y ≥T Ak] or

{Z : Y ⊕ G1 ≥T Z} ∩ {Z : Y ⊕ G2 ≥T Z} = {Z : Y ≥T Z}.

)
Let Y be fixed below B. Suppose that e1 and e2 are indices for Turing

reductions.

Definition 3.1.10 Define M(Y, e1, e2) as follows.

M0(Y, e1, e2) ={
p : (∃n)

(
{e1}(n, p1 ⊕ Y )↓, {e2}(n, p2 ⊕ Y )↓,
and {e1}(n, p1 ⊕ Y ) 6= {e2}(n, p2 ⊕ Y )

)}
M1(Y, e1, e2) = {p : (∀q > p)[q 6∈ M0(Y, e1, e2)]}

M(Y, e1, e2) = M0(Y, e1, e2) ∪ M1(Y, e1, e2)

M(Y, e1, e2) is a dense subset of P . Any condition p in M0(Y, e1, e2)
forces that (e1, e2) is not a pair of indices showing that a single set is re-
cursive in both G1 ⊕ Y and G2 ⊕ Y .

Consider a condition p in M1(Y, e1, e2). We show that either there is an
extension of p which forces the possible common values of {e1}(G1 ⊕ Y )
and {e2}(G2 ⊕ Y ) to be non-total or recursive in Y , or else there is an
element of F(p) that is recursive in Y .

There are two cases to consider.

Case 1. There is a q extending p such that for every n, there is an m such
that the following equation holds.

q  (∀z) ({e1}(n,G1 ⊕ Y ) = z → z = m)

If q is a condition as in Case 1, q forces that if {e1}(G1 ⊕ Y ) is total
then it is recursive in Y . Below q, Y can compute {e1}(G1 ⊕ Y ) at n by
finding any extension r1 of q1 such that {e1}(n, r1 ⊕ Y ) ↓ with use no
greater than the length of r1. For any such sequence r1, there is a condition
r extending q and having r1 as its first coordinate. One can obtain such
a r by extending q2 to agree with r1 on all numbers in the domain of r1
but not in the domain of q2. The value of {e1}(G1 ⊕ Y ) at n must be the
same as {e1}(n, r1 ⊕ Y ) since any two extensions of q assigning a value
to {e1}(n,G1 ⊕ Y ) necessarily assign the same value. Thus, in case 1,
{e1}(G1 ⊕ Y ) is recursive relative to Y .
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Case 2. For any q extending p in P , there are r and r ′ extending q and
an integer n such that r and r ′ force different values for {e1}(n,G1 ⊕ Y ).

Suppose that r and r ′ force different values for {e1}(n,G1 ⊕ Y ).
We begin either by finding two conditions forcing different values for
{e1}(n,G1 ⊕ Y ) such that their first coordinates have exactly one point of
disagreement or by finding one condition r extending p such that r forces
{e1}(n,G1 ⊕ Y ) to be undefined.

We may assume that both r and r ′ force that the use of {e1}(n,G1 ⊕ Y )
is less than the minimum of their two lengths. We start with an x such that
r1 and r ′

1 disagree at x . Obtain r ′′

1 by changing r1 at the one point x to agree
with r ′

1 and then extending to decide the value of {e1}(n,G1 ⊕ Y ), if pos-
sible. If it is impossible to extend r ′

1 to make {e1}(n,G1 ⊕ Y ) defined, then
we can find a condition r extending p with first coordinate r ′

1; this condi-
tion forces {e1}(n,G1 ⊕ Y ) to be undefined and we are done. Otherwise,
extend the domain of r1 and r ′

1 to agree with r ′′

1 on all of the new points
in their domains. Either r ′′

1 and r1 disagree at exactly one point and force
incompatible values for {e1}(n,G1 ⊕ Y ) or r ′′

1 and r ′

1 force incompatible
values and have less points of disagreement than exist between r1 and r ′

1.
By induction, there is a pair with exactly one point of disagreement forc-
ing incompatible values for {e1}(n,G1 ⊕ Y ) or there is a condition forcing
{e1}(n,G1 ⊕ Y ) to be undefined.

Assume that r1 and r ′

1 disagree exactly at the one point (k, a) and force
different values for {e1}(n,G1 ⊕ Y ). Additionally, we may assume that
the computations involved have use no greater than the length of the first
coordinate of their associated conditions. (This property is dense.)

For the sake of a contradiction, suppose a does not belong to the kth
element of F(p). If q is a stronger condition than p then q1(m) is not
required to agree with q2(m). In this case, we find a condition extending p
and forcing that {e1}(n,G1 ⊕ Y ) disagree with {e2}(n,G2 ⊕ Y ) as follows.
First, find an extension r̂ of r deciding the value of {e2}(n,G2 ⊕ Y ) and
forcing the use of the computation to be less than the length of its second
coordinate. Either r̂ forces a disagreement between {e1}(n,G1 ⊕ Y ) and
{e2}(n,G2 ⊕ Y ) or the condition resulting from r̂ by changing the value
of r̂1 at (k, a) forces this disagreement. Either case contradicts the original
assumption that p forces the two functions to be equal.

Thus, for any two conditions which extend p, force different values for
{e1}(G1 ⊕ Y ) at some argument, and have first coordinates which disagree
at exactly one point, that point of disagreement is a coding location for p.
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Namely, if the first coordinates disagree at (k, a), then a must be an ele-
ment of the kth element of F(p). By the condition of Case 2, no single
condition above p can decide all the values of {e1}(G1 ⊕ Y ). By the argu-
ment given above, Y can compute an infinite set of points (k, a) such that
each is unique point of difference in the first coordinates of a pair of con-
ditions forcing contradictory values for {e1}(G1 ⊕ Y ). As F(p) is finite,
infinitely many of these points must involve the same k. Consequently,
there is an infinite subset of that Ak which is recursive in Y . The elements
of A were chosen to be recursive in any of their infinite subsets. Thus, Y
can compute some element of F(p).

The two cases exhaust all of the possibilities, and in either case state-
ment 2 follows.

3.1.2 Coding Relations
The next step is to reduce defining an arbitrary countable set of Turing
degrees to defining an antichain. The following lemma is a standard appli-
cation of Cohen forcing. See Theorem 2.5.6.

Lemma 3.1.11 Suppose that S is a countable set of Turing degrees and
b is an upper bound on the elements of S. Let B be an element of b and
suppose that C is a countable set of reals that are mutually Cohen generic
with regard to meeting every dense set that is arithmetic in B. If ψ is a
bijection between S and the set degree(C) of degrees of elements of C,
then S and ψ are definable in parameters in D.

Proof: LetA be the set of degrees of the form x ∨ψ(x)where x is a degree
in S. Theorem 2.5.6 implies that both degree(C) and A are antichains.
Lemma 3.1.7 states that each of these sets can be defined in D uniformly
using finitely many parameters.

This implies the definability of S and ψ by the following equations.

x ∈ S ⇐⇒

(
x < b and (∃c ∈ degree(C))(∃z ∈ A)

(
x ∨ c = z

))
ψ(x) = c ⇐⇒

(
x ∈ S and c ∈ degree(C) and (x ∨ c) ∈ A

)

We can now finish the proof of the Coding Theorem 3.1.2 and show that
any countable relationR on D is definable from parameters in D.
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Proof: Suppose that R is a countable subset of Dn . For each m smaller
than n, letR(m) be defined by

R(m) =

{
a : (∃(v1, . . . , vn) ∈ R)

(
vm = a

)}
.

Let b be a uniform upper bound on all of theR(m); let B be an element
of b. Let C be the Turing degrees of a set of reals that are mutually Cohen
generic with regard to meeting all of the dense sets in the Cohen partial
order arithmetically definable in B, so that C has the same cardinality as
the disjoint union of the R(m). Write C as a disjoint union of sets C(m),
each of which has the same cardinality asR(m).

Fix bijections ψm : R(m) → C(m).
By the preceding Lemmas 3.1.7 and 3.1.11, each ψm , R(m) and C(m)

is definable from parameters in D. Define S by

S = {g1 ∨ g2 . . . ∨ gn : (ψ−1
1 (g1), ψ

−1
2 (g2), . . . , ψ

−1
n (gn)) ∈ R}.

By Theorem 2.5.6 , each element g1 ∨ . . . ∨ gn of S uniquely determines
the sequence (g1, . . . , gn) which joins to it. S is definable from parameters
in D by Lemma 3.1.11. NowR can be defined by

R =

{
(a1, . . . , an) :

(∀m ≤ n)
(

am ∈ R(m)
)

and
ψ1(a1) ∨ . . . ∨ ψn(an) ∈ S

}
Finally, the bounded quantifier “∀m ≤ n” can be replaced by an n-fold
conjunction to produce a formula in the language of D.

We can use the Coding Theorem to give a short calculation of the Turing
degree of the first order theory of D.

Theorem 3.1.12 (Simpson (1977)) There is a recursive interpretation of
the second order theory of arithmetic in the first order theory of D.

Proof: The usual second order characterization of a standard model of
arithmetic involves specifying a countable set N , a distinguished element
“0”, and a unary “successor” function s, such that N = (N , 0, s) satisfies
finitely many first order properties (P−) together with second order induc-
tion. A countable model N can be represented by finitely many countable
relations on D. In D, we can define a class of isomorphic copies of the
standard model by considering the collection of countable models of P−

(coded as structures on the Turing degrees) for which every countable sub-
set has a least element. The quantifier over countable sets can be expressed
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in D through the codes. Finally, the second order quantifiers over N are
also interpreted by first order quantifiers over codes for subsets of N .

Consequently, the first order theory of D and the second order theory
of arithmetic are recursively isomorphic.

We can also apply the Coding Theorem to obtain some information
about the substructures of D.

Definition 3.1.13 Say that a partial order D∗ is a substructure of D if D∗

consists of a subset of the Turing degrees ordered by Turing reducibility.
D∗ is an elementary substructure if D∗ is a substructure of D and for every
sequence p from D∗ and every first order formula ϕ,

D |= ϕ( p) ⇐⇒ D∗
|= ϕ( p).

Definition 3.1.14 A substructure D∗ is cofinal in D if for every x in D
there is a y in D∗ such that x ≤T y.

Theorem 3.1.15 (Slaman and Woodin (1986)) Suppose that D∗ is a co-
final elementary substructure of D. Then D∗

= D.

Proof: We must show that every element of D is an element of D∗.
Let x be a degree. Since D∗ is cofinal in D, there is a degree a in D∗

such that x ≤T a. By the Coding Theorem, let c be a finite sequence of
degrees which codes a standard model of arithmetic N = (N , 0, s); let
f be a function from N onto the degrees below a which is coded by d.
The statement that there is a sequence c which codes a standard model of
arithmetic and there is a sequence d which codes a counting of the degrees
below a is a first order statement in D about a. Since the same statement
is true about a in D∗, we may choose c and d so that they belong to D∗.

We chose a so that x is recursive in a. Therefore, in D there is an integer
n such that x is the value of f at the nth element of N. Since every natural
number is definable in N, x is definable from a, c and d. Since D∗ is an
elementary substructure of D, x must be an element of D∗.

3.2 Coding parameter
In Section 3.1, we began with a countable relationR and produced parame-
ters p such thatR was first order definable in D relative to the parameters
p.
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In this section, we will analyze more closely the dependence of the
coding parameters on the presentation of R. We will then use the more
effective results to infer some preliminary limitations on the possible auto-
morphisms of D.

Definition 3.2.1 Suppose thatR is a countable relation on D. A presenta-
tion R ofR is a relation on a countable subset of 2ω such that:
1. For all (x1, . . . , xn) ∈ R, there is a sequence (X1, . . . , Xn) ∈ R such

that for all j ≤ n, x j is the Turing degree of X j .
2. For all (X1, . . . , Xn) ∈ R, the sequence (x1, . . . , xn), formed by tak-

ing the sequence of Turing degrees in (X1, . . . , Xn) is inR.

As usual, we may regard a real as a countable sequence of reals and
hence as determining a presentation of a countable relation on D.

Theorem 3.2.2 (Effective Coding Theorem) Suppose that there is a pre-
sentation of the countable relation R which is recursive in the set R, and
let r be the Turing degree of R. There are parameters p which code R in
D such that the elements of p are below r ′.

Proof: We divided the proof of the Coding Theorem into two distinct
pieces. We reduced the coding of R to the coding a finite collection of
countable antichains and we showed that any countable antichain is defin-
able from finitely many parameters.

In reducing the general coding problem to the one of coding antichains,
we introduced a family of Cohen generic reals relative to an upper bound
on R. For our present purposes, we use r as the upper bound on R. We
needed to know that these Cohen generic reals where independent over
the ideal below r . That is we needed to know that if a0 and a1 are degrees
below r and c0, . . . , cn is a sequence of degrees of mutually Cohen generic
reals then a0 ∨ c0 ≤T a1 ∨ c1 ∨ . . .∨ cn if and only if a0 ≤T a1 and there is
an i in [1, n] such that c0 = ci . This independence property is guaranteed
for any set of reals which are mutually 1-generic relative to R. In particular,
we could have used the countable collection of reals obtained by taking the
columns of a real C which is 1-generic relative to R. We can build such a
C recursively in R′ by making the finite conditions on C decide all 60

1(R)
statements about C . This C has the additional property that (R ⊕ C)′ is
equal to R′.

Now consider the problem of going from the presentation of an an-
tichain to a sequence of codes for it. In Definition 3.1.5, we defined a notion
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of forcing P to produce two generic reals G0 and G1. We argued that any
two sufficiently generic reals would do as parameters to define the given
antichain. First, note that in our application P is recursive in R ⊕ C since
the antichains involved in coding R are presented recursively in R ⊕ C .
We will construct a filter recursively in (R ⊕ C)′, hence recursively in R′.

Upon inspection of the proof, M(Y, e0, e2) was the only nontrivial
dense subset of P which appeared in it. In the present setting, Y is recur-
sive in R ⊕C , and M(Y, e0, e2) is the collection of conditions which either
force a disagreement between convergent values of {e0}(Y ⊕ G0) and
{e2}(Y ⊕ G1) or force that there is no such convergent disagreement. More
abstractly, M(Y, e0, e2) is the set of conditions which decide whether the
generic filter G meets a subset of P which is 60

1(R ⊕ C). In particular, we
need not determine whether the recursive function which is to compute Y
from R ⊕ C is defined everywhere. Thus, given any condition p in P , it is
possible to find an extension q of p in M(Y, e0, e2) uniformly recursively
in R′.

In the case that q forces a disagreement between convergent values of
{e0}(Y ⊕ G0) and {e2}(Y ⊕ G1), no further attention is needed for the pair
(e0, e2). Otherwise, there were two possibilities. In the first case, there is a
condition with decides all the convergent values of e1. In the second, either
there is a condition extending p forcing {e1}(n,G1 ⊕Y ) to be undefined or
there are infinitely many points (k, a) such that each is unique point of dif-
ference in the first coordinates of a pair of conditions forcing contradictory
values for {e1}(G1 ⊕ Y ).

Note, R′ cannot recursively determine whether there is an n and there is
a condition q extending p forcing {e1}(n,G1⊕Y ) to be undefined. It would
take R′′ to determine this. To make our construction effective, we ensure
that either we find such and n and q or we produce infinitely many points
(k, a) such that each is unique point of difference in the first coordinates of
a pair of conditions forcing contradictory values for {e1}(G1 ⊕ Y ). In the
proof of Lemma 3.1.7, we started with a condition p and either produced
n and q forcing divergence or produced a unique point of difference (k, a)
appearing in an extension of p. Further, the argument was recursive in R′.
Thus, if we return to the pair e1 and e2 infinitely often, then either we will
find a condition forcing divergence or we will find infinitely many unique
points of difference. Either is sufficient to conclude that the sets produced
satisfy the theorem.
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We proceed by a finite injury construction, organized in stages. At stage
s, we are given a condition p[s] produced at the end of the previous stage.

We take the following steps. Let p[s − 1] be the condition produced at
the end of the previous stage. Here p[0] can be the empty condition.

• First, let t be the least number such that the t th 60
1(R ⊕ C) subset S

of P has not been considered since the most recent stage that t was in-
jured (if any). Either there is an extension q of p[s] in S (a 60

1(R ⊕C)
property of p) or p[s] forces G

⋂
S to be empty. Uniformly recur-

sively in R′, we find such a condition, call it q[0].
• Next, we proceed by recursion on t < s to consider the first s pairs
(e1, e2).
∗ If q[t] already forces a disagreement between convergent values

of {e0}(Y ⊕ G0) and {e2}(Y ⊕ G1) or for an n identified during an
earlier stage forces that {e1}(n,G1 ⊕ Y ) is undefined and t has not
been injured since that stage, then no further action is required and
we let q[t + 1] = q[t].

∗ Otherwise, consider the condition r [t] = (q[t]1, q[t]2, Ft), where
Ft is the finite set {A1, . . . , At−1} consisting of the first t many
element of the antichain to be coded. As above, we find a unique
point of difference (k, a) appearing in an extension of r [t] and
we let qt+1 = qt , or we find an n and a q extending r [t] forcing
{e1}(n,G1 ⊕ Y ) to be undefined and we let q[t + 1] be this q. In
the latter case, we end the recursion on t , say that every number
larger than t is injured during this stage, and go to the next step.

• Let q = (q1, q2, F) be the condition produced by the subrecursion.
Define p[s] to be the condition (q1, q2, Fs)

We argue by induction on t that we meet the first t requirements for our
construction and that there are at most finitely many stages during which t
is injured. Assume that t is injured only finitely often and that s be the last
injury stage. First, note that all later conditions extend (p[s]1, p[s]2, Ft),
so our G does code a generic real into the meet of the joins of the t th ele-
ment of the antichain with G1 and G2. Next, note that we ensure that our
construction meets the t th60

1(R ⊕C) subset of P no later than stage s + t .
This establishes that we meet the basic genericity requirements. Third,
we directly ensure for the t th pair (e1, e2) either there is an n such that
{e0}(n, Y ⊕G0)¬{e2}(n, Y ⊕G1), or there is an n such that {e0}(n, Y ⊕G0)
is not defined, or there are infinitely many unique points of difference
above some element of M1(Y, e1, e2) and so Y can compute an element
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of the antichain being coded.
Finally, the only injury produced by t to higher numbers occurs if we

find an n and a condition forcing that {e0}(n, Y ⊕ G0) is not defined. This
happens at most once in the construction. Thus, t + 1 is injured at most
finitely often, at the stages when t is injured and possibly once more.

The theorem follows.

By the Effective Coding Theorem, we know that for any presentation
R of a countable relation R, there are codes for R which are close to R.
In the next lemma, we give a more specialized calculation to show that for
every degree x and representative X of x , there are parameters which code
a X and are close to x . The idea of localizing a code for X to within a
small neighborhood of x has been widely exploited, especially by Nerode
and Shore (1980b).

Theorem 3.2.3 For any degree x and representative X of x, there are pa-
rameters p such that
1. p codes an isomorphic copy of N with a unary predicate for X;
2. the elements of p are recursive in x ∨ 0′.

Proof: Let x be fixed and let X be a representative of x .
We first fix a coding of the natural numbers, which we will use for every

x . Let c be the degree of C , a 1-generic real below 0′. View C as a countable
sequence of mutually 1-generic reals C0,C1, . . . . Let ({Ci : i ∈ N}, 0, s)
be an isomorphic copy of the standard model of arithmetic. Denote this
model by NC . NC is presented recursively in C and so is coded by para-
meters which are recursive in C ′, i.e. by parameters which are recursive in
0′. Let C denote the degrees represented in {Ci : i ∈ N }.

Now, we address the coding of X as a predicate on NC . Following the
proof of the Coding Theorem, we fix c as our uniform upper bound on
the elements of C. Then, we take the degrees of a set of reals which are
recursive in 0′ and mutually Cohen 1-generic relative to C to produce an
antichain A. As with NC , we can use the same antichain A for every x .
Further, the sets whose degrees belong to A can be taken to be the columns
of a set A below 0′ which is 1-generic relative to C . Fix A and let a be the
degree of A. As above, A is coded by parameters below 0′. Further, the
elements of A are independent over the degrees below c.

In order to code X according to the template of the Coding Theorem, we
must produce parameters to define the set A+CX , defined by the following
equation.
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A + CX = {ai ∨ cki : ki is the i th element of X}

Then X is represented as a unary predicate on NC by

ci ∈ X ⇐⇒ (∃a ∈ A)[a ∨ ci ∈ A + CX ].

Thus, the problem of coding X into the degrees below x ∨ 0′ is reduced
to problem of coding the antichain A + CX by means of parameters below
x∨0′. Following the proof of the Coding Theorem, we need only find a suf-
ficiently generic filter G for the forcing P (introduced in Definition 3.1.5)
recursively in X ⊕ 0′. Recall that P is designed to produce two reals G0
and G1 of degree g0 and g1. Then, we use the degrees g0 and g1 of G0 and
G1 to define A + CX as the collection of degrees below a ∨ c which are
minimal elements of the set

{y : y <T a ∨ c and (y ∨ g0) ∧ (y ∨ g1) 6= (y)}.

We follow exactly the construction in the proof of Theorem 3.2.2 and
make the following observation. At each step of the construction, we con-
sidered a condition p = (p1, p2, F(p)). The technically involved part of
the proof focused on pairs of reductions {e1}(Y ⊕ G1) and {e2}(Y ⊕ G2).
This part of the proof did not mention extension to F(p) and hence does
not refer to X in the current setting. It can be completely analyzed recur-
sively in 0′. The only references to X appear when we extend F(p). These
can be resolved using X itself, without reference to X ′. Hence, we can
build the required parameters in X ⊕ 0′.

Thus, a representative of the degree x is coded by parameters which are
near to x . The next lemma proves a weak converse.

Theorem 3.2.4 (Decoding Theorem) Suppose that p is a sequence of de-
grees which lie below y and p codes the relation R (in the sense of the
Coding Theorem 3.1.2). Letting Y be a representative of y, R has a pre-
sentation which is 60

5(Y ).

Proof: The natural presentation of the Turing partial ordering on the reals
which are recursive in Y is arithmetically presentable relative to Y . Rep-
resentatives of the parameters p define R in terms of the Turing partial
order and quantifiers over the degrees recursive in y. Hence, R has a pre-
sentation which is arithmetic in Y . The calculation that this presentation is
below Y (5) is a routine counting of quantifiers.
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Suppose thatR is an n-place relation. We will show that the relation R
defined by

R(X0, . . . , Xn−1) ⇐⇒ R(degree(X0), . . . , degree(Xn−1))

is recursive in Y (5). The set Total(Y ), consisting of indices for Turing func-
tionals which are total relative to Y is 50

2(Y ) and hence recursive in Y (5).
Thus, it will be sufficient to show that the relation R0, defined on Total(Y )
by

R0(e0, . . . , en−1) ⇐⇒ R(degree({e0}(Y )), . . . , degree({en−1}(Y ))),

is 60
5(Y ).

From this point on in the proof, we will work only with indices which
are elements of Total(Y ). The Turing order between indices is given by
e0 ≤T e1 if and only if {e0}(Y ) is recursive in {e1}(Y ). Syntactically,
e0 ≤T e1 if and only if there is an e, such that for all n, there is a w
such that the evaluation of {e} on n relative to {e0}(Y ) and the evaluation
of {e1}(n, Y ) take less than w many steps (as computations relative to Y )
and the computations return the same values. Thus, the relation e0 ≤T e1
is 60

3(Y ) on Total(Y ).
The next step is to incorporate the uniformity of the join as a function

on the reals. Note that an index relative to Y for {e0}(Y ) ⊕ {e1}(Y ) can
be found uniformly from e0 and e1. So we can view Total(Y ) as coming
equipped with the binary function ∨. Set e0 ∨ e1 ≥T e2 if and only if
{e0}(Y )⊕ {e1}(Y ) ≥T {e2}(Y ). We shall say that a statement is atomic if it
is phrased as a comparison by ≤T of two terms generated by ∨. An atomic
statement on Total(Y ) is equivalent to one that is 60

3(Y ).
In the degrees, we use parameters g0, g1 and b to define an antichain A

as follows. We identify A as the collection of points that are the minimal x
such that x satisfies the property

x ≤T b and (∃z)[g0 ∨ x ≥T z and g1 ∨ x ≥T z and x 6≥T z].

Formally, the statement that a satisfies the property is the conjunction of an
atomic statement with existential quantifier followed by a Boolean combi-
nation of atomic statements. Thus, when viewed on Total(Y ), this property
of a is 60

4(Y ). To say that a is a minimal solution to the property is to
say that a satisfies the property and for all z, if z satisfies the property
and z ≤T a then a ≤T z. On Total(Y ), the latter condition is a universal
quantifier followed by formula with the form of a60

4(Y ) condition implies
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a Boolean combination of atomic conditions. Thus, the latter condition is
50

4. Thus, on Total(Y ), a ∈ A is a 10
5(Y ) condition on a.

For each i less than n, let R(i) be the projection of R onto its i th
coordinate. When p codes R, p includes an upper bound b on the field
of R and parameters to define 2n + 1 antichains C(0), . . . ,C(n − 1),
A(0), . . . ,A(n−1) and S. Further, the definitionsψi (x) = c ⇐⇒ x∨c ∈ A
must define bijections betweenR(i) and C(i). Finally, (x0, . . . , xn−1) ∈ R
if and only if (ψ0(x0), . . . , ψn−1(xn−1)) ∈ S.

Relative to Y , we can evaluate whetherψi (x) is equal to c as follows. By
definition, ψi (x) = c if and only if x ≤T b and c ∈ C(i) and x ∨c ∈ A(i).
This condition is a Boolean combination of formulas that are at worst
10

5(Y ) and hence ψ(x) = c is 10
5(Y ). Then, (x0, . . . , xn−1) ∈ R if and

only if there is a sequence (c0, . . . , cn−1) such that for all i less than n,
ψi (xi ) = ci and (c0, . . . , cn−1) ∈ S. So (x0, . . . , xn−1) ∈ R is60

5(Y ).

Corollary 3.2.5 Suppose that p is a sequence of degrees below y, and p
codes an isomorphic copy of N together with a unary predicate U. Then,
for any representative Y of y, U is 60

5(Y ).

Proof: Fix Y to be a representative of y.
A model of arithmetic (N,U ) comes with a successor function s. Then,

for any n the statement n ∈ U is equivalent to an existential positive state-
ment’s being satisfied in (N,U ). Thus, n ∈ U can be expressed by an
existential quantifier over numbers followed by a formula which is 60

5(Y ).
Thus, U is 60

5(Y ).

By changing the details in the representation of structures, we could
sharpen the bound we obtain in the Decoding Theorem and in its corollary.
In some contexts, sharper bounds are important in making as direct a con-
nection between the set of reals which are coded by parameters below x
and the degree of x . For example, Shore (1981) used an ingenious coding
scheme to give a syntactically simple method to recognize a class of spe-
cial codes for isomorphic copies of N in D(≤T 0′). Thus, he was able to
interpret the first order theory of N in the first order theory of D(≤T 0′).

For the most part, our proofs are not sensitive to the exact bound ob-
tained in the Decoding Theorem. We only need to know that there is some
arithmetic bound relative to x on the complexity of the relations coded
below x .
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3.3 Applications to Aut(D)
We can combine the Coding and Decoding Theorems and draw some pre-
liminary conclusions limiting the possible behavior of an automorphism of
D.

Theorem 3.3.1 (Nerode and Shore (1980a)) Suppose that π : D
∼
→D.

For every degree x, if x is greater than π−1(0′) then π(x) is arithmetic in
x.

Proof: Let x be fixed so that x is above π−1(0′). Then, π(x) is above
0′. By Theorem 3.2.3, there are parameters p below π(x) which code a
model of arithmetic and a unary predicate for a representative Y of π(x).
The preimage π−1( p) of these parameters code the same structure and are
below x . By the Decoding Theorem 3.2.4, the structure coded by π−1( p)
has a presentation which is arithmetic in x . Thus, π(x) has a representative
which is arithmetic in x and so π(x) is arithmetic in x .

Corollary 3.3.2 (Nerode and Shore (1980a)) Suppose that π is an auto-
morphism of D and π restricts to an automorphism of the arithmetic de-
grees. Then for every x, π(x) is arithmetic in x.

Proof: In the case that π restricts to an automorphism of the arithmetic
degrees, π−1(0′) is an arithmetic degree. Then, Theorem 3.3.1 implies that
for all x in the cone above an arithmetic degree π−1(0′), π(x) is arithmetic
in x . Now, π(x) is below π(x ∨ π−1(0′)); π(x ∨ π−1(0′)) is arithmetic in
x ∨ π−1(0′); since π−1(0′) is arithmetic, x ∨ π−1(0′) is arithmetic in x ;
consequently, π(x) is arithmetic in x .

We will eventually prove that every automorphism of D is the identity
above 0′′. (See Theorem 6.2.4.) Consequently, every automorphism of D
satisfies the conclusion of Corollary 3.3.2.

Theorem 3.3.3 (Nerode and Shore (1980a)) Suppose π : D
∼
→D is

an automorphism of D and x ≥T π−1(0′)(5) ∨ π−1(π(0′)(5)). Then,
π(x) = x.

Consequently, π is the identity on a cone.

Proof: In the first part of the proof, we will only use the fact that x is above
π−1(0′)(5). Let y1 and y2 be fixed so that y1 ∨ y2 = x ; π(y1) and π(y2) are
greater than 0′; and y(5)1 and y(5)2 are recursive in x . For example, we could
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obtain such reals by writing x as the join of two degrees that are 5-generic
relative to π−1(0′). Detailed arguments like this are given in Chapter 5.

Both π(y1) and π(y2) are greater than 0′. By Theorem 3.2.3, representa-
tives for π(y1) and π(y2) are coded in the degrees below π(y1) and π(y2),
respectively. Since the ideals determined by y1 and y2 are isomorphic to
those determined by π(y1) and π(y2), representatives for π(y1) and π(y2)
are coded in the degrees below y1 and y2, respectively. By Corollary 3.2.5,
the corollary to the Decoding Theorem, π(y1) ≤T y(5)1 and π(y2) ≤T y(5)2 .
Since both y(5)1 and y(5)2 are below x , π(y1) and π(y2) are both below x .
Now, x is equal to the join of y1 and y2, so π(x) is equal to the join of
π(y1) and π(y2). In particular, π(x) is below any upper bound on the pair
π(y1) and π(y2). Hence, π(x) is below x .

Since x is above π−1(π(0′)(5)), π(x) is above π(0′)(5). The above ar-
gument applied to π(x) in place of x and the automorphism π−1 in place
of π shows that π−1(π(x)) is below π(x). That is, x is below π(x).

Combining the two inequalities, π(x) = x .

Remark 3.3.4 Suppose that π : D
∼
→D. We have just shown that π is

equal to the identity on a cone, say on the cone above a. If I is an ideal in
D which includes a, then every element x of I is below an element x ∨ a
of I such that x ∨ a is above a. Then π(x) is below π(x ∨ a) which is
equal to x ∨a. Thus, π maps I into I. The same argument shows that π−1

maps I into I. Thus, the restriction of π to I is an automorphism of I.

The second application of the effective coding and decoding lemmas is
due to Odifreddi and Shore.

Theorem 3.3.5 (Odifreddi and Shore (1991)) Suppose that π is an auto-
morphism of D and that I is an ideal in D which includes 0′ such that π
restricts to an automorphism of I. For any real I , if there is a presentation
of I which is recursive in I then the restriction of π to I has a presentation
which is arithmetic in I .

Proof: Let I be fixed so that the sequence X = (X i : i ∈ N) is a presen-
tation of I which is recursive in I . Let N∗

= (N∗, 0, s) be an isomorphic
copy of the standard model of arithmetic so that N∗ is a set of Turing de-
grees and N∗ has a presentation which is arithmetic in I . Let (N∗, ψ, I) be
the expansion of N∗ in whichψ is the bijection between N and I mapping i
to the degree of X i . Since X is recursive in I , (N∗, ψ, I) has a presentation



46 Countable Representations

which is arithmetic in I . By the Effective Coding Theorem 3.2.2, let p be a
sequence of parameters which codes (N∗, ψ, I) in D and is arithmetically
presented relative to I .

We observe that the action of π on I is determined by its value on p.
Both p and π( p) code models of arithmetic and bijections between those
models and the ideals I and π(I). By assumption, π(I) is equal to I.
Thus, both p and π( p) code models of arithmetic with bijections between
those models and I. In other words, p and π( p) both code enumerations
of I. Since π is an automorphism, for each n the nth element enumer-
ated by p must be mapped to the nth element enumerated by π( p). This
determines the values of π on all of I.

In the previous paragraph, we observed that the action of π is deter-
mined by the value of π on p. Moreover, we gave a description of the
point-wise evaluation of π on I directly in terms of the models coded by p
and π( p). By Corollary 3.2.5 this description is arithmetic in p and π( p).
Now, 0′ is an element of I and π restricts to an automorphism of I, so
π−1(0′) also an element of I . By Theorem 3.3.1, π( p) is arithmetic in
p ∨ π−1(0′). Since p is arithmetic in I and every element of I, including
π−1(0′), has a representative which is recursive in I , π( p) is arithmetic
in I . Since both p and π( p) are arithmetic in I , the description of π is
arithmetic in I , as desired.

Remark 3.3.6 Just as π(x) is close to x , the restriction of π to I is close
to I.
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Persistent Automorphisms

In this chapter, we will introduce the notion of a persistent automorphism
of a countable ideal in D. We will show that many of the properties we ob-
served in Chapter 3 to hold of automorphism of D also hold of persistent
automorphisms. Ultimately, our goal in this chapter and the next one is to
show that any persistent countable automorphism extends to an automor-
phism of D.

4.1 Fundamental properties
Definition 4.1.1 An automorphism ρ of a countable ideal I is persistent if
for every degree x there is a countable ideal I1 such that
1. x ∈ I1 and I ⊆ I1;
2. there is an automorphism ρ1 of I1 such that the restriction of ρ1 to I

is equal to ρ.

Note, there is no restriction in requiring that I1 be countable. Given an
uncountable I1 and ρ1, we could obtain a countable one by applying the
Lowenheim-Skolem Theorem.

Theorem 4.1.2 Suppose that π : D
∼
→D. For any ideal I, if π restricts to

an automorphism π � I of I then π � I is persistent.

Proof: Let I be an ideal in D such that π restricts to an automorphism of
I. Let b be an upper bound on I. By Remark 3.3.4, there is a degree, call
it a, such that for any degree y ≥T a, π restricts to an automorphism of
the principal ideal (y).

To show that π � I is persistent, suppose that x is given. Let I1 be the
principal ideal (x ∨ a ∨ b). Then, π restricts to an automorphism π � I1 of
I. Of course, π � I1 extends π � I.

47
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Thus, if D is not rigid, then there is a nontrivial persistent automor-
phism of some countable ideal. As we stated above, we will prove that the
converse is also true.

Definition 4.1.3 An ideal I is a jump ideal if I is closed under application
of the Turing jump.

Theorem 4.1.4 Suppose that ρ : I ∼
→I, that J is a jump ideal contained

in I and that ρ(0′)∨ ρ−1(0′) ∈ J . Then ρ � J is an automorphism of J .

Proof: Our argument is similar to the one used in Chapter 3 to show that
if π : D

∼
→D then for every x , π(x) is close to x .

We must verify that J is closed under application of ρ and of ρ−1. In
fact, by symmetry, it is enough to show that J is closed under ρ. Let x be
an element of J . By Theorem 3.2.3, a representative X∗ of ρ(x) is coded
by parameters below ρ(x) ∨ 0′. Then, X∗ is coded by parameters below
ρ−1(ρ(x)∨ 0′). That is, X∗ is coded by parameters below x ∨ ρ−1(0′). By
the Decoding Lemma 3.2.4, the degree of X∗, namely ρ(x), is arithmetic
in x ∨ ρ−1(0′). Since ρ−1(0′) ∈ J and J is a jump ideal, this implies that
ρ(x) is an element of J .

A nontechnical reading of Theorem 4.1.4 would say that any automor-
phism of an ideal in D acts locally.

Corollary 4.1.5 Suppose that I is an ideal such that 0′ is an element of I
and suppose that ρ is a persistent automorphism of I. For any countable
jump ideal J extending I, ρ extends to an automorphism of J .

Proof: Let J be a jump ideal such that I is contained in J . Let x be an
upper bound on the elements of J . By the persistence of ρ, let I1 be an
ideal which includes x and extends I and let ρ1 be an automorphism of I1
which agrees with ρ on I.

Since x is an upper bound on the elements of J , J is contained in I1.
By Theorem 4.1.4, ρ1 restricts to an automorphism of J . Then ρ1 � J is
the desired extension of ρ to J .

Corollary 4.1.6 If π : D
∼
→D and J is a jump ideal such that both π(0′)

and π−1(0′) are elements of J then π � J is a persistent automorphism
of J .
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Proof: By Theorem 4.1.4, the restriction of π to J is an automorphism of
J . By 4.1.2, π � J is persistent.

The Odifreddi-Shore Theorem 3.3.5 states that if π : D
∼
→D and π

restricts to an automorphism of an ideal I such that 0′
∈ I then π � I

is arithmetically presented relative to any presentation of I. In the next
lemma, we establish a similar upper bound on the possible complexity of a
persistent automorphism of an ideal I in terms of an arbitrary presentation
of I.

Theorem 4.1.7 Suppose that I is an ideal in D such that 0′ is an ele-
ment of I. Suppose that there is a presentation of I which is recursive
in I . Finally, suppose that J is a jump ideal which includes I and ρ is
an automorphism of J that restricts to an automorphism of I. Then, the
restriction ρ � I of ρ to I has a presentation which is arithmetic in I .

Proof: Let (X i : i ∈ N) be a presentation of I which is recursive in I . As
in the proof of Theorem 3.3.5, there are parameters p which are arithmetic
in I and code the structure (N∗, ψ, I), where N∗ is a model of arithmetic
and ψ is the bijection between N∗ and I which maps the i th integer in N∗

to X i .
Let J (I ) be the smallest jump ideal which includes the degree of I .

Namely, J (I ) is just the collection of degrees of sets which are arithmetic
in I . SinceJ is a jump ideal,J (I ) is contained inJ . Further, since ρ maps
I automorphically to itself and 0′ is an element of I, ρ(0′) and ρ−1(0′) are
both contained in J (I ). By Theorem 4.1.4, ρ restricts to an automorphism
of J (I ). In particular, since we took p to be arithmetic in I , both p and
ρ( p) are elements of J (I ). Thus, they are both arithmetically presented
relative to I .

The action of ρ on I can be read off from the value of ρ on p. Both p
and ρ( p) code enumerations of I. For ρ to be an automorphism, the i th
element of I in the sense of p must be mapped to the i th element of I in
the sense of ρ( p). Thus, ρ is arithmetically presented in any upper bound
on p and ρ( p). Therefore, ρ is arithmetically presented relative to I , as
desired.

Corollary 4.1.8 Suppose that I is an ideal in D, 0′ is an element of I and
ρ is a persistent automorphism of I. Then, for any real I which computes
a presentation of I, ρ has a presentation which is arithmetic in I .
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Proof: Let I be a real such that there is a presentation of I which is recur-
sive in I . Let J (I ) be the jump ideal generated by I . Since ρ is persistent,
we may apply Corollary 4.1.5 to conclude that there is an extension ρ∗ of
ρ to an automorphism of J (I ). Then, Theorem 4.1.7 implies that the re-
striction of ρ∗ to I is arithmetically presented relative to I . In other words,
ρ is arithmetically presented relative to I , as desired.

Corollary 4.1.9 Suppose that I is an ideal and 0′ is an element of I. There
are at most countably many persistent automorphisms of I.

Proof: Let I be a real such that there is a presentation of I which is recur-
sive in I . By Theorem 4.1.7, any persistent automorphism of I is arithmeti-
cally presented relative to I . Since there are only countably many arith-
metic definitions relative to I there are at most countably many relations
which are arithmetically presented relative to I . Consequently, there are at
most countably many persistent automorphisms of I.

Theorem 4.1.10 Suppose that I is an ideal and 0′ is an element of I.
Suppose that ρ is a persistent automorphism of I. For any jump ideal J
which extends I, ρ extends to a persistent automorphism of J .

Proof: Let J be a jump ideal which extends I. For the sake of a contradic-
tion, suppose that there is no persistent automorphism of J which extends
ρ. Let J be a real such that there is a presentation of J which is recursive
in J . Since there is no persistent extension of ρ to J , for every arithmetic
definition ϕe(J ) relative to J , there is a degree xe such that ϕe(J ) fails to
define an automorphism of J which extends ρ and can itself be extended
to an automorphism of some ideal including xe. Let x be an upper bound
on all of the xe. There is no automorphism of J which is arithmetically
presented relative to J and can be extended to an automorphism of some
ideal which includes x .

Since ρ is persistent, let I1 be an ideal such that x ∈ I1 and I ⊆ I1
and let ρ1 be an automorphism of I1 which extends ρ. Since 0′ is in I
and ρ1 maps I automorphically to itself, both ρ1(0′) and (ρ1)

−1(0′) are
elements of I and hence of J . Now, we can apply Theorem 4.1.4, auto-
morphisms act locally. The restriction of ρ1 to J is an automorphism of
J . But then ρ1 � J is arithmetically presented relative to J , by Theo-
rem 4.1.7. This contradicts the conclusion of the previous paragraph, that
no automorphism of J which is arithmetically presented relative to J can
be extended to an automorphism of an ideal which has x as an element.
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4.2 Absoluteness
So far, we have shown that persistent automorphisms are locally presented
and that persistent automorphisms have persistent extensions. Thus, given
a persistent automorphism ρ : I ∼

→I, a countable jump ideal J extending
I, and a presentation J of J , we can find an extension of ρ to J which is
arithmetic in J .

Now we reexamine Definition 4.1.1, in which we defined a count-
able function ρ : I ∼

→I to be persistent if for every countable degree x
there is an ideal I1 such that x ∈ I1 and there is a countable function
ρ∗

: I1
∼
→I1 such that ρ∗ extends ρ. If we equate countable sets with the

reals which present them, this formulation presents the persistence of ρ as
a 51

2-property of ρ. In the next theorem, we apply the above remarks to
eliminate a real quantifier.

Theorem 4.2.1 The property I is a representation of a countable ideal I,
0′

∈ I, and R is a presentation of a persistent automorphism ρ of I is a
51

1-property.

Proof: Let I and R be fixed. First, note that the properties 0′
∈ I and R is

a presentation of an automorphism ρ of I is an arithmetic property of R
and I . Suppose that this property does hold of R.

By Theorem 4.1.10, if ρ is persistent then for any jump ideal J which
contains I, ρ can be extended to a persistent automorphism of J . Thus, if
ρ is persistent, then for any real J which computes a presentation of a jump
ideal extending I there is an automorphism of J which is arithmetically
presented relative to J and extends ρ, see Theorem 4.1.7.

The property {e}(J ) is a presentation of a jump ideal which extends I
is an arithmetic property of e, J and R. Similarly, the property for every
e, if {e}(J ) is a presentation of a jump ideal J which extends I then there
are f and n such that { f }(J (n)) is a presentation of an automorphism of
J which extends ρ is an arithmetic property relative to J (ω). Hence, this
property is a 11

1 property of J and R. Consequently, if R is a presentation
of a persistent automorphism, then R is a presentation of an automorphism
ρ of an ideal I and for every e and J , if {e}(J ) is a presentation of a
jump ideal J which extends I then there are integers f and n such that
{ f }(J (n)) is a presentation of an automorphism of J which extends ρ.
The latter condition is a conjunction of an arithmetic statement with one
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expressed by a universal quantifier over reals, followed by a 11
1-formula.

Thus, the latter condition is 51
1.

Conversely, if the latter condition holds then R is a presentation of a
persistent automorphism. R is a presentation of an automorphism of an
ideal I by fiat. If x is a degree, we may take J (x) to be the jump ideal
generated by x and I and extend ρ to J (x). This gives an extension of ρ
to an ideal which includes x , verifying the persistence of ρ.

Corollary 4.2.2 The properties R is a presentation of a persistent automor-
phism of I and 0′

∈ I and There is a countable map ρ : I ∼
→I such that

0′
∈ I, ρ is persistent and not equal to the identity are absolute between

well-founded models of ZFC.

Proof: By Theorem 4.2.1, the first property is equivalent to a 51
1-

condition. The second is equivalent to a 61
2-statement. The Shoenfield

(1961) Absoluteness Theorem states that all such statements are absolute
between well-founded models of ZFC.

In the preceding corollary, we deduced that the notion of persistence
is absolute between well-founded models of ZFC by showing that when
viewed as a property of its presentations, the persistence of an automor-
phism of a countable ideal is equivalent to a 51

1-property. Instead of re-
ferring to the presentations of countable sets, the same ingredients can be
combined to refer directly to the countable functions and ideals in terms of
modelsM of fragments of set theory and absoluteness between them.

In Definition 2.2.1, we let T be the fragment of ZFC in which we in-
clude only the instances of replacement and comprehension in which the
defining formula is 61.

In any model M of T , we can define NM, the standard model of arith-
metic in the sense ofM; the power set of NM; and DM, the Turing degrees
in M. Similarly, M has its own notion of a set’s being countable and of
an automorphism’s being persistent.

Definition 4.2.3 Suppose thatM = (M,∈M) is a model of T .
1. M is an ω-model if NM is isomorphic to the standard model of arith-

metic.
2. M is well-founded if the binary relation ∈

M is well-founded. That is
to say that there is no infinite sequence (mi : i ∈ N) of elements ofM
such that for all i , mi+1 ∈

M mi .
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Theorem 4.2.4 Suppose that M is an ω-model of T . Let I be an element
ofM such that

M |= I is a countable ideal in D such that 0′
∈ I.

Then, every persistent automorphism of I is also an element ofM.

Proof: Since I is countable in the sense of M there is a real I in M
such that some presentation of I is recursive in I . By Theorem 4.1.7, any
persistent automorphism has a presentation which is arithmetic in I .

Since M is a model of T , any arithmetic definition applied to a real in
M has an interpretation in M. Moreover, since M is an ω-model arith-
metic definitions are correctly interpreted inM. Thus, every set which has
an arithmetic presentation relative to an element of M has a presentation
inM. The process of converting a presentation of a set into the set itself is
a 61-recursion on the elements of the presentation. SinceM is a model of
T (especially of 61-replacement), it is closed under this operation.

Thus, every persistent automorphism of I has a presentation in M and
so is an element ofM.

Corollary 4.2.5 Suppose thatM is an ω-model of T and that ρ and I are
elements of M such that 0′

∈ I, ρ : I ∼
→I, and I is countable in M.

Then,

ρ is persistent =⇒ M |= ρ is persistent.

Proof: Suppose that ρ is a persistent automorphism of I.
Suppose that x is an element of DM. Let J (x) be the least jump ideal

which includes x and contains I. Because I is countable in M and x is
in M, J (x) is a countable element of M. By Theorem 4.1.10, for any
jump ideal J such that I ⊆ J there is a persistent automorphism of J
which extends ρ. In particular, let ρ∗ be a persistent automorphism ofJ (x)
which extends ρ. Since ρ∗ is a persistent automorphism of an ideal which
is countable in M, we can apply Theorem 4.2.4 to conclude that ρ∗ is an
element of M. Thus, in M there is an extension of ρ to an automorphism
of an ideal which includes x .

Since x was arbitrary, for any x in DM there are an ideal J (x) which
includes both I and x, and a map ρ∗

: J (x) ∼
→J (x) which extends ρ such

that ρ∗
∈ M, J (x) ∈ M, and both sets are countable in M. Thus, M

satisfies the statement that ρ is persistent.
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Remark 4.2.6 Corollary 4.2.5 can be used to recast the proof that ρ is a
persistent automorphism of an ideal which includes 0′ is a 51

1 property
of any presentation of ρ. Namely, a real R is a presentation of a persis-
tent automorphism of an ideal I which includes 0′ if and only if R is a
presentation of an automorphism ρ of an ideal which includes 0′ and for
every countable presentation of an ω-model M of T such that R ∈ M,
M |= ρ is persistent. The quantifier over ω-models is a quantifier over
reals which code models M with bijections between N and NM; the con-
dition thatM be a model of the persistence of ρ is first order overM and
thus arithmetic in its code; consequently, this characterization of persis-
tence is 51

1.

4.3 Generic persistence
We now extend the notion of persistence to uncountable ideals. In what
follows, V is the universe of sets and G is a V -generic filter for some
partial order in V .

Definition 4.3.1 Suppose that I is an ideal in D and ρ is an automorphism
of I. We say that ρ is generically persistent if there is a generic extension
V [G] of V in which I is countable and ρ is persistent.

In the definition of the generic persistence of ρ : I ∼
→I, we only require

that ρ be persistent in some generic extension of V in which I is countable.
We show in the next theorem that if ρ is generically persistent, then it is
persistent in every generic extension of V in which I is countable.

Theorem 4.3.2 Suppose that ρ : I ∼
→I is generically persistent. If V [G]

is a generic extension of V in which I is countable then ρ is persistent in
V [G].

Proof: Since ρ is generically persistent, there is a generic extension of V in
which ρ is persistent. Let P be a forcing partial order in V such that there
is a condition p in P which forces I to be countable and ρ to be persistent.
Suppose, for the sake of a contradiction, that P1 is a partial order in V ,
p1 is a condition in P1 and p1 forces I to be countable and ρ not to be
persistent.

Let λ be the supremum of the cardinalities of the power sets of the
partial orders P and P1. Let Coll(λ, ω) be the Levy-collapse of λ to ω.
That is, let Coll(λ, ω) be the set of functions whose domain is a finite
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subset of ω and whose range is contained in λ, ordered under inclusion.
The union of a generic filter for Coll(λ, ω) is a function from ω onto λ.
Let H be Coll(λ, ω)-generic over V . The collection of sets from V which
are dense subsets of P is a countable set in V [H ]. The same holds for the
collection of sets from V which are dense subsets of P1. Thus, in V [H ],
there is a set G∗ which is P-generic over V and includes p and there is a
set G∗

1 which is P1-generic over V and includes p1.
Let R be a countable presentation of ρ in V [G∗

]. By Corollary 4.2.2,
the statement R is a presentation of a persistent automorphism is absolute
between V [G∗

] and V [H ]. Thus, V [H ] satisfies the same statement. Thus,
V [H ] satisfies the statement that ρ is persistent. Now, V [G∗

1] is an inner
model of ZFC. Thus, it is an ω-model of the theory T discussed in Sec-
tion 4.2. By Corollary 4.2.5 V [G∗

1] must also satisfy the statement that ρ
is persistent.

On the other hand, G∗

1 is P1-generic over V and includes the condition
p1. Hence, every statement forced by p1 is true in V [G∗

1]. Consequently,
ρ is not persistent in V [G∗

1]. This is the desired contradiction.

4.4 Applications to Aut(D)
We can now begin establishing the connection between persistent count-
able automorphisms and global automorphisms of D.

Theorem 4.4.1 Suppose that π : D
∼
→D. Then, π is generically persistent.

Proof: Suppose, for the sake of a contradiction, that π is not generically
persistent.

Let λ be a cardinal such that Vλ, the collection of sets of rank less than
λ, is a model of T . Let H be a countable elementary substructure of Vλ
such that π is an element of H. Let M be the transitive collapse of H and
let τ : H ∼

→M be the collapsing isomorphism. Let πM be the image of π
and DM be the image of D under τ . By induction on N, for any integer n,
τ(n) is equal to n. Consequently, τ(N) is equal to N and for any subset X
of N, if X ∈ H, then τ(X) is equal to X . Thus, DM is an ideal in D and
πM is the restriction of π to DM.

Let P be the partial order in M which generically adds a counting of
DM to M. Since M is a countable structure, let G be a fixed set which
is P-generic overM. First,M[G] is an ω-model of T . Secondly, by The-
orem 4.3.2, the fact that π is not generically persistent in V implies that
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generically adding a counting of D to V , or to Vλ, results in a model in
which π is not persistent. SinceM is elementarily equivalent to Vλ,M[G]

must be a model of πM is not persistent.
However, πM is the restriction of a global automorphism of D. By The-

orem 4.1.2, πM is a persistent automorphism of DM. M[G] is a generic
extension of a well-founded model of T and thus is a well-founded model
of T . By Theorem 4.2.4, the persistence of πM in V is reflected by its per-
sistence in M[G]. Consequently, M[G] is a model of πM is persistent.
This contradiction proves the theorem.

The next theorem is our first result showing that every automorphism of
the Turing degrees is definable. Looking ahead to Theorem 6.3.1, we will
eventually strengthen this result to show that every automorphism of D is
induced by a function on reals which is arithmetically definable.

Theorem 4.4.2 Suppose that V [G] is a generic extension of V . Suppose
that π is an element of V [G] which maps the Turing degrees in V auto-
morphically to itself (that is, π : DV ∼

→DV ). If π is generically persistent
in V [G], then π is an element of L(RV ). That is, π is constructible from
the set of reals in V .

Proof: Let H be a counting of DV which is generic over V [G] for the
partial order Coll(DV , ω), the partial order of finite maps from ω to DV .
Since π is generically persistent in V [G], π is persistent in V [G][H ]. We
know that every persistent isomorphism of DV belongs to any model of T
which includes a counting of DV . Thus, π is an element of L(RV )[H ].

It is a standard feature of forcing that the intersection of all sufficiently
generic extensions of L(RV ) is equal to L(RV ). Thus, we may conclude
that π is an element of L(RV ).

Here is the proof in more detail. First note that Coll(DV , ω) is an
element of L(RV ). Since π is an element of L(RV )[H ] for every H
which is Coll(DV , ω)-generic over V [G], there is a term t , in the lan-
guage for forcing with Coll(DV , ω) over L(RV ), such that it is forced
in V [G] that for any H∗ which is Coll(DV , ω)-generic over V [G], t de-
notes π in L(RV )[H∗

]. This implies that all of the values of t are forced
by the empty condition to equal those of π . But the forcing relation,
Coll(DV ,ω) t (x) = y, is definable in L(RV ). As we have already seen,
π(x) = y if and only if Coll(DV ,ω) t (x) = y. Thus, π is definable in
L(RV ) and therefore is an element of L(RV ).
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Theorem 4.4.2 has some remarkable consequences.

Theorem 4.4.3 Suppose that 0′ is an element of I and ρ : I ∼
→I is per-

sistent. Then ρ can be extended to a global automorphism π : D
∼
→D.

Proof: Let V [G] be a generic extension of V in which I is countable. By
the absoluteness of persistence (Corollary 4.2.2), ρ is persistent in V [G].
By Theorem 4.1.10, for any countable jump ideal J extending I, we can
extend the persistent automorphism ρ to a persistent automorphism of J .
Since DV is countable in V [G], let π : DV ∼

→DV be an element of V [G]

which in V [G] is a persistent extension of ρ. Since persistence implies
generic persistence, π is generically persistent in V [G]. By Theorem 4.4.2,
π is an element of L(RV ) and therefore is an element of V .

Therefore, π is the desired extension of ρ to a global automorphism.

Corollary 4.4.4 The statement There is a non-trivial automorphism of the
Turing degrees is equivalent to a 61

2 statement. It is therefore absolute
between well-founded models of ZFC.

Proof: By Theorem 4.4.3, any if there is a non-trivial persistent automor-
phism of a countable ideal I for which 0′

∈ I then there is a non-trivial
automorphism of D. Conversely, Theorem 4.1.4 implies that any automor-
phism of D can be restricted to an automorphism of any sufficiently large
jump ideal. Thus, if there is a non-trivial automorphism of D then it has a
non-trivial restriction to some jump ideal; by Theorem 4.1.2 this restriction
would be a non-trivial persistent automorphism of a countable ideal which
includes 0′.

Thus, there is a non-trivial automorphism of the Turing degrees if and
only if there is a non-trivial persistent automorphism of a countable ideal
I for which 0′

∈ I. By Corollary 4.2.2, the latter condition is 61
2 .

Theorem 4.4.5 Let π be an automorphism of D. Suppose that V [G] is a
generic extension of V . Then, there is an extension of π in V [G] to an
automorphism of DV [G], the Turing degrees in V [G].

Proof: Since π is an automorphism of D, π is generically persistent. Let
V [G][H ] be the generic extension of V [G] obtained by generically in-
troducing a counting of DV [G]. Any two-fold iteration of forcing can be
regarded as a single application of forcing; hence, V [G][H ] is a generic
extension of V in which DV is countable. So, π is persistent in V [G][H ].
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By Theorem 4.1.10, in V [G][H ], there is a persistent extension π1 of π
to the ideal DV [G]. By Theorem 4.4.2, π1 is an element of L(RV [G]) and
therefore an element of V [G].



5
Representing Automorphisms of
D

5.1 Continuous representations on generic
sequences

Suppose that π is an automorphism of D which belongs to V or even to
a generic extension of V . In Theorem 4.4.2, we showed that π must be
an element of L(R). Thus, π can be defined by transfinite recursion, from
the set of reals and a real parameter. In this chapter, we establish sharper
definability bounds on π .

Definition 5.1.1 Given two functions τ : D → D and t : R → R, we say
that t represents τ if and only if for every degree x and every real X in x ,
the Turing degree of t (X) is equal to τ(x).

In this chapter, we will show that every automorphism of D is repre-
sented by a function on R which can be defined arithmetically in a real
parameter. We will conclude that any automorphism of D is determined by
its action on a finite set of degrees. That is, D has a finite automorphism
base.

In the previous chapter, we concentrated on generic extensions of V
obtained by adding countings of sets which are uncountable in V . Theo-
rem 4.4.5 states that if π is an automorphism of the Turing degrees in V
and V [G] is a generic extension of V , then there is an automorphism of
the Turing degrees in V [G] which extends π . In this section, we will apply
Theorem 4.4.5 to a generic extension obtained by adding ω1-many Cohen
reals to V . We will analyze the behavior of an automorphism of D in terms
of the action of its extensions on the degrees of the generic reals.

When we add a generic set to V, we use forcing in V to approximate
the properties that set will have in the generic extension. By definition, the

59
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forcing relation is continuous in the order topology on the forcing partial
order. That continuous behavior is evident in the next theorem.

As in Section 2.3, let P1 be the partial order (isomorphic to 2<ω) to add
a Cohen (1966) real to V and let Pω1 be the partial order to add ω1-many
of them.

Theorem 5.1.2 Suppose that π : D
∼
→D. There is a countable family D

of dense open subsets of P1 such that π is represented by a continuous
function f on the set D-generic reals.

Proof: By Theorem 4.4.5, there is an extension of π in V [G] mapping
the Turing degrees DV [G] automorphically to itself. By Theorems 4.4.1
and 4.4.2, any extension of π to an automorphism of DV [G] is generically
persistent in DV [G] and therefore an element of L(RV [G]). Thus, any such
extension of π is absolutely definable from a real X in V [G], an ordinal
γ , and the reals RV [G] of V [G]. Let τX be a term in the forcing language,
let γ be an ordinal, let ϕ be a first order formula in the language of set
theory, and let p0 be a condition in Pω1 such that p0 forces the following
two statements to hold.

1. τX ∈ 2ω.
2. The predicate τπ∗ on Lγ [RV [G]

] defined by

v ∈ τπ∗ ⇐⇒ Lγ [RV [G]
] |= ϕ(v, τX ) (5.1)

is an automorphism of DV [G] which extends π .

We can incorporate the description of p0 in the term τX . Hence, we may
assume that p0 is the null condition.

Let π∗ be the denotation of τπ∗ in V [G], and let X be the denotation of
τX .

Consider the situation from the vantage point of V [X ]. By the homo-
geneity of Cohen forcing, V [G] can be factored as V [X ][GX ], in which GX
is Pω1-generic over V [X ]. (See Section 2.3.) The definition of π∗ depends
only on X , γ , the formula ϕ, and the set RV [G], which is equal to RV [X ][GX ].

When we force with Pω1 over V [X ], X is an element of the ground
model. So, in the term for π∗, we can replace τX with a constant for X . Let
τπ∗,X be the term in the forcing language for Pω1 over V [X ] to designate
the subset of Lγ [RV [X ][GX ]

] defined by {v ∈ Lγ [RV [X ][GX ]
] : Lγ [RV [X ][GX ]

] |= ϕ(v, X)}.
Then, in V [X ]

Pω1
τπ∗,X : DV [G] ∼

→DV [G].



Continuous representations on generic sequences 61

By Theorem 3.3.1 on page 44, for any Turing degree y, π∗(y) is an ele-
ment of the jump ideal generated by (π∗)−1(0′) and y. Since π∗ is an ex-
tension of π and π is defined on all of DV , (π∗)−1(0′) is equal to π−1(0′)
and we shall denote it as such. We also fix a representative of π−1(0′) and
let 5−1(∅′) refer to that real.

Now suppose that G is a a real which is Cohen generic over V [X ]. Let
g be the Turing degree of G. Specializing the above remark to g, π∗(g) is
an element of the jump ideal generated by π−1(0′) and g. Say that π∗(g) is
represented by {e}((G⊕5−1(∅′))(k)). Once again, we can factor V [X ][GX ]

as V [X ][G][GXG] in which G is obtained by Cohen forcing P1 to add
one Cohen real to V [X ] and GXG is Pω1-generic over V [X ][G]. So there
must be a condition in P1 × Pω1 which forces that π∗(g) is represented
by {e}((G ⊕ 5−1(∅′))(k)). By the absoluteness of {e}((G ⊕ 5−1(∅′))(k))
and the invariance of the interpretation of the term τπ∗ , forcing this fact
cannot depend upon the value of this condition on Pω1 . Further, we can
absorb the finite condition in P1 into the description of the recursive func-
tion {e}. Consequently, we can assume that the empty condition forces that
π∗(g) is represented by {e}((G ⊕ 5−1(∅′))(k)). Since G is P1-generic,
(G ⊕ 5−1(∅′))(k) is Turing equivalent to G ⊕ 5−1(∅′)(k), so we may re-
place {e}((G ⊕5−1(∅′))(k)) with {e}(G ⊕5−1(∅′)(k)).

Thus, V [G] satisfies a weak version of our desired result. The automor-
phism π∗ is continuously represented on The set of reals in V [G] which
are P1-generic over V [X ] by the function G 7→ {e}(G ⊕5−1(∅′)(k)). Our
final step is to transfer the representation of π∗ in the generic extension to
a representation of π in the ground model.

Definition 5.1.3 Given G ⊆ ω, let Geven be the set {n : 2n ∈ G} and let
Godd be the set {n : 2n + 1 ∈ G}.

In Definition 5.1.3, we are decomposing G into its even and odd parts.
In Definition 1.2.2, we wrote the join of two reals as the union of its even
and odd parts, with each part coding one of the reals to be joined. So, we
have the identity G = Geven ⊕ Godd, which is notationally convenient.

Definition 5.1.4 For reals X and G, define the real C(X,G) as follows.

C(X,G)(n) =


Geven(n − m), if Godd(n) = 0 and there are m

elements of Godd less than n;
X (m), if Godd(n) = 1 and n is the mth

element of Godd.
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Let m1,m2,m3, . . . be an enumeration of the elements of Godd in
increasing order. For all n which are strictly less than m1, C(X,G)(n)
is equal to Geven(n); at m1, C(X,G)(m1) is equal to X (1); for all n in
the interval [m1 + 1,m2), C(X,G)(n) is equal to Geven(n − 1); at m2,
C(X,G)(m2) is equal to X (2); for larger values of n, C(X,G) is de-
fined similarly. Thus, we use Godd to partition N into intervals; we obtain
C(X,G) by inserting the values of X on the end-points of the intervals
and the values of Geven on the interior points of the intervals.

Similarly, if we are given finite binary sequences s, and p we can inter-
pret the definition above using s and p in place of X and G until reaching
the point at which we require a value at an argument that is greater than
the length of its associated finite sequence. We will use C(s, p) to rep-
resent the finite sequence which results. Similarly, C(X, p) and C(s,G)
represent the finite sequences obtained until a value of p or s is required at
a number greater than its length.

We make an immediate observation about C(X,G).

Lemma 5.1.5 C(X,G) is recursive in X ⊕ G. Additionally, if there are
infinitely many m such that Godd(m) is equal to 1, then X ⊕ G is recursive
in C(X,G)⊕ G.

Proof: First, by virtue of its definition, C(X,G) is recursive in X ⊕ G.
Second, if we assume that there are infinitely many m such that Godd(m) is
equal to 1 then we can recover X from C(X,G) and G: Godd recursively
determines the partition of N into infinitely many intervals; the values of X
are embedded in those of C(X,G) on the end-points of those intervals.

Definition 5.1.6 Say that a condition q is an odd-null-extension of another
condition p if for all m, if qodd(m) = 1 then m is in the domain of podd.

Lemma 5.1.7 Suppose that s ∈ P1, p ∈ P1, and the number of arguments
on which podd is nonzero is less than or equal to the length of s. For each
dense open subset D of P1, there is an odd-null-extension q of p such that
C(s, q) ∈ D.

Proof: Consider p as the join of two conditions peven and podd. If q is an
odd-null-extension of p, then evaluating the term C(s, p) can only query
s at numbers less than or equal to the number of arguments on which podd
is nonzero. Consequently, this evaluation will not terminate by querying s
at a point not in its domain. Since the values of C(s, q) are determined by
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reference to s only at those arguments on which qodd is nonzero and q is
an odd-null-extension of p, C(s, q) is the extension of C(s, p) obtained by
appending additional values of qeven.

Now, we meet D by making an odd-null-extension of p. Let Fodd
be the function from ω to 2 which is equal to podd on the domain of
podd and equal to 0, elsewhere. The evaluation of C(s, peven ⊕ Fodd)
terminates at the first query to peven which is not in its domain. Fix
r ∈ P1 so that C(s, peven ⊕ Fodd)

_r belongs to D. Let ` be the length
of C(s, peven ⊕ Fodd)

_r . Then, C(s, peven
_r ⊕ Fodd � `) is equal to

C(s, peven ⊕ Fodd)
_r and belongs to D, as required.

Theorem 5.1.8 Suppose that D is countable collection of dense open sub-
sets of P1. Then, there is a countable collection of dense open subsets of P1,
D∗ such that for any D∗-generic G and any real Y , C(Y,G) is D-generic

Proof: Suppose that p ∈ P1 and D ⊆ P1 determines a dense open subset
of 2ω. It is sufficient to show that there is a q extending p such that for
every G, if G extends q, then for every Y , there is an r ∈ D such that
C(Y,G) extends r .

Let k be the number of arguments at which podd is non-zero. Given any
finite sequence s for length k, we can find an odd-null-extension q of p
such that C(s, q) ∈ D.

Since there are only finitely many binary sequences of length k, by a
sequence of odd-null-extensions, we can find a q extending p so that for
all s of length k, C(s, q) ∈ D. But then, for all Y and all G extending p,
C(Y,G) extends an element of D, as required.

Corollary 5.1.9 For all Y and G, if G is generic over V [X ], then so is
C(Y,G).

Definition 5.1.10 For Y ∈ 2ω, let (Y ) denote the set {Z : Z ≤T Y }.

Let Y be given with Turing degree y, and let G1 and G2 be mutually
Cohen generic over V [X ⊕ Y ]. We can write the ideal generated by Y as
the meet of joins of generic ideals.

(C(Y,G1)⊕ G1) ∩ (C(Y,G2)⊕ G2) = (Y ⊕ G1) ∩ (Y ⊕ G2)(5.2)
= (Y ) (5.3)

Equation 5.2 follows from Lemma 5.1.5, and Equation 5.3 follows from
Equation 5.2 and Theorem 2.5.6. The equality expressed in Equation 5.2
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also applies to the degrees of these sets. Consequently, it is preserved by
π∗. Using the continuous representation of π∗ on the set of reals which are
Cohen generic over V [X ], we have the following equality.

{Z : the degree of Z belongs to
(
π∗(y)

)
} =(

{e}(C(Y,G1)⊕5−1(∅′)(k))⊕ {e}(G1 ⊕5−1(∅′)(k))
)

⋂(
{e}(C(Y,G2)⊕5−1(∅′)(k))⊕ {e}(G2 ⊕5−1(∅′)(k))

)
(5.4)

Consider the case when, in addition, Y is generic over V [X ]. Equa-
tion 5.4 becomes(

{e}(Y ⊕5−1(∅′)(k))
)

=(
{e}(C(Y,G1)⊕5−1(∅′)(k))⊕ {e}(G1 ⊕5−1(∅′)(k))

)
⋂(

{e}(C(Y,G2)⊕5−1(∅′)(k))⊕ {e}(G2 ⊕5−1(∅′)(k))
)

(5.5)

Equation 5.5 expresses a relationship between Y , G1 and G2 which is arith-
metic relative to 5−1(∅′). Thus, Equation 5.5 is true of any triple which is
arithmetically generic relative to 5−1(∅′).

Now, consider the case when Y is merely arithmetically generic rela-
tive to 5−1(∅′), and G1 and G2 are mutually generic over V [X ⊕ Y ]. As
indicated in the previous paragraph, since the triple Y , G1, and G2 is arith-
metically generic relative to5−1(∅′), it satisfies Equation 5.5. On the other
hand, since G1 and G2 are mutually generic over V [X ⊕ Y ], Equation 5.4
applies. So the right hand side of Equation 5.5 represents (π∗(y)). Conse-
quently, if Y is arithmetically generic relative to5−1(∅′), then the value of
π∗ on the degree of Y is represented by {e}(Y ⊕5−1(∅′)(k)). Since π∗ is an
extension of π , if Y ∈ V is arithmetically generic relative to5−1(∅′), then
the value of π on the degree of Y is represented by {e}(Y ⊕5−1(∅′)(k)).

Now, we let D be the set of dense open subsets of P1 which are arith-
metically definable relative to5−1(∅′). The function Y 7→ {e}(Y⊕5−1(∅′)(k))
is a continuous function defined on this set, and Theorem 5.1.2 is
verified.

Remark 5.1.11 We can refine the proof of Theorem 5.1.2. By counting
the quantifiers in Equation 5.5, there is a countable family of dense open
sets D which is arithmetically definable relative to 5−1(∅′)(k) such that π
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is represented on the set of D-generic reals by a function which is recur-
sive in 5−1(∅′)(k). Now, we can represent π on 2ω as follows. Given Y in
2ω, find reals G1 and G2 arithmetically in Y and 5−1(∅′)(k) so that Equa-
tion 5.5 applies and so that π is continuously represented on the degrees
of G1, G2, C(Y,G1), and C(Y,G2) by the 5−1(∅′)(k)-recursive function.
Then, π ’s value on the degree of Y is represented by any generator of the
ideal specified by the right hand side of Equation 5.5. It is an arithmeti-
cally defined operation to find the generator with the least index relative
to Y and 5−1(∅′)(k). Thus, π is represented by a function on 2ω which is
arithmetically definable relative to 5−1(∅′)(k).

Jockusch and Shore (1984) have shown that any automorphism of D
preserves the ideal of degrees of arithmetic sets. Consequently, 5−1(∅′)(k)

is an arithmetic set, and so π is represented by a function on 2ω which is
arithmetically definable. In the next chapter, we will give another proof of
this conclusion, with some sharp bounds on the arithmetic complexity of
the definition.
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6
Arithmetically representing
automorphisms of D

6.1 Generic parameters
6.1.1 The image of a generic degree
Theorem 6.1.1 Suppose that π : D

∼
→D and that D∗ is a countable collec-

tion of dense open subsets of P1. There is a countable collection of dense
open subsets of P1, D such that for all D-generic reals G there is a G∗

such that G∗ is D∗-generic and the degree of G∗ is less than or equal to
π(degree(G))

Proof: We work as follows. First, we chose D0 as in the previous chapter
so that we have a continuous representation of π on the collection of D0-
generic reals. In Lemma 6.1.2, we show that for any sufficiently generic
real G, π(degree(G)) computes a function which has no a priori bound on
its rate of growth. Then we will define a real G∗ by comparing the values of
several of these functions. Hence, for any sufficiently generic G, G∗ will
be defined at every argument and will be recursive in any representative
of π(degree(G)). We will then show that for any dense open set D∗ and
any finite condition p, there is an extension q of p such that for any G
extending q, G∗ meets D∗. At the end of the analysis, we will calculate the
genericity needed on G to ensure that G∗ is D-generic.

By Theorem 5.1.2, fix a countable family of dense open sets D0, a re-
cursive function {e}, and a real P such that

∀G[if G is D0-generic, then π(degree(G)) = degree({e}(G ⊕ P))].

Lemma 6.1.2 There is a recursive function {e∗
} such that for all Cohen

conditions p, there is an m ∈ N and q extending p such that, for all k

67
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less than m, q decides {e∗
}(k, {e}(G ⊕ P)) and q does not force an upper

bound on {e∗
}(m, {e}(G ⊕ P)).

Proof: We view G as a pair G1 and G2 of mutually generic reals. We define
H1 and H2 by the equations H1 = C(G1,G2) and H2 = C(G1,G2), where
G1 is the complement of G1 in N. (See Definition 5.1.4 and the pages after
page 61 for the definition and properties of C.) By Lemma 5.1.5, H1 and
H2 are recursive in G. By Theorem 5.1.8, there is a countable family of
dense open sets D1 such that such that if G is D1-generic, then G1, H1 and
H2 are D0-generic. We shall assume henceforth that G is D0 ∪ D1-generic.

H1 and H2 are defined by inserting the values of G1 and G1, respec-
tively, into G2even at points designated by G2odd. For each n, let mn be the
nth number at which H1 and H2 take different values. Then, for each n,
n ∈ G1 if and only if mn ∈ H1. Consequently, G1 is recursive in H1 ⊕ H2.

The fact that H1 ⊕ H2 ≥T G1 is degree theoretic, and therefore it is
preserved by π .

π(degree(H1)) ∨ π(degree(H2)) ≥T π(degree(G1)) (6.1)

Since each of H1, H2, and G1 belong to C , we can write Equation 6.1 in
terms of representatives as follows.

{e}(H1, P)⊕ {e}(H2, P) ≥T {e}(G1, P) (6.2)

But then there is a recursive function {e1} and a finite condition p on G
such that p forces

{e1}({e}(H1, P)⊕ {e}(H2, P)) = {e}(G1, P).

By absorbing p into the recursive function, we may assume that p is the
null condition. Consequently, there is a countable family of dense open
sets D3 such that if G is D3-generic, then

{e1}({e}(H1, P)⊕ {e}(H2, P)) = {e}(G1, P). (6.3)

Let {e∗
}(G⊕P) be the function that maps x to the supremum of the lengths

of the computations of {e1}({e}(H1, P) ⊕ {e}(H2, P)) on arguments less
than or equal to x .

For the sake of Lemma 6.1.2, we can now forget how it was constructed
and work with the fact that that Equation 6.3 is forced. We check that
the function x 7→ {e∗

}(x,G ⊕ P) has the required properties. Let p be
a condition on G. We view conditions q extending p on G as pairs of
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conditions q1 and q2 on G1 and G2, respectively. It is safe to assume that
the length of p1 is equal to the number of nonzero values of p2odd.

By using null-odd-extensions q2 of p2, we can decide arbitrarily much
of {e}(H1, P)⊕{e}(H2, P) without extending p1. By the definitions of H1
as C(G1,G2) and H2 as C(G1,G2), q2 will force that the values of H1
and H2 are extended by copying G2even and not by embedding values of
G1. On the other hand, since {e}(G1 ⊕ P) depends in a nontrivial way on
G1, there must be values of {e1}({e}(H1, P) ⊕ {e}(H2, P)) which cannot
be decided without extending p1.

Let m be the smallest number such that it is not possible to extend
p2 without extending p1 and force an upper bound on the length of
the computation of {e1}(m, {e}(H1, P) ⊕ {e}(H2, P)). Let q2 extend p2
so that for each k less than m, q2 decides the exact computations used
to evaluate {e1}({e}(H1, P) ⊕ {e}(H2, P)) at k. Then, for each k less
than m the condition on G given by p1 and q2 decides the value of
{e∗

}(k,G, P). However, since we can extend q2 to decide arbitrarily much
of {e}(H1, P) ⊕ {e}(H2, P)) without extending p1, q2 does not force any
upper bound on {e∗

}(m,G, P). This verifies Lemma 6.1.2.

We define G∗ as required by Theorem 6.1.1. View G as a join of four
reals G1, G2, G3, and G4. For each of these Gi , let fi = {e∗

}(Gi , P) be
a function with the properties guaranteed by Lemma 6.1.2. Without loss
of generality, we may assume that each fi is strictly increasing. Define the
following sequence by recursion on i : m0 = 0, m2i+1 = f1(m2i ), and
m2i+2 = f2(m2i+1). Then define G∗ by cases,

G∗(i) =

{
0, if f3(mi ) ≥ f4(mi );
1, otherwise.

Now we verify that G∗ satisfies the conclusion of Theorem 6.1.1. It is
enough to show the following. For any p ∈ P1, a condition on G, and any
D∗, a a dense open subset of P1, there is a q extending p such that for
every G extending q , if G∗ is defined from G as above, then G∗ meets D∗.

We view the condition p on G as a collection of four conditions pi on
Gi , represented in a way so that it is possible to extend them independently.

By the property ensured by Lemma 6.1.2, for i equal to 1 and 2, extend
pi to qi so that there is an ni such that qi decides the values of fi on all
arguments less than ni , but qi does not force any upper bound on the value
of fi on ni . Let j be least such that q1 and q2 do not decide the value
of m j+1. Our argument is symmetric, so we may assume that j is even.
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Hence, q1 does not decide the value of f1(m j ). Since the value of each fi
is decided at each argument less than ni , m j must be greater than or equal
to n1. Since the fi ’s are strictly increasing and since q1 does not force any
upper bound on the value of f1 at n1, q1 does not force any upper bound
on the value of f1 at m j .

Now, for i equal to 3 and 4, extend pi to qi so that the value of fi is
decided on each number less than or equal to m j . Let p∗ be the initial
segment of G∗ which is computed from the values of the fi ’s determined
by the qi ’s.

Since D∗ is a dense open set, let choose q∗ extending p∗ so that
q∗

∈ D∗. We now describe how to extend the qi ’s to ensure that G∗

extends q∗.
For i equal to 3 and 4, extend qi to ri so that there is an ni such that qi

decides the values of fi on all arguments less than ni , but qi does not force
any upper bound on the value of fi on ni .

We have created the following situation. G∗ is decided on each argu-
ment less than or equal to j . No bound is forced on the value of m j+1,
which will depend on the value of f1 at m j . For each i not equal to 1,
we have identified an ni such that the value of fi is determined at each
argument less than ni , but no upper bound is forced on the value of fi on
ni .

We take the following steps to determine another value of G∗ and re-
construct the above situation, with the roles of f1 and f2 reversed.
1. Extend q1 to r1 to decide a value for f1 at m j which is greater than or

equal to the maximum of n2, n3 and n4.
2. Extend q3 and q4 to r3 and r4 to decide values for f3 and f4 at all

arguments less than or equal to f1(m j ) = m j+1. Further, ensure
that f3(m j + 1) is greater than or equal to f4(m j+1) if and only if
q∗( j + 1) = 0. (Since no upper bound is forced for either f3 or f4 at
m j+1, we can decide a value for one of them and then decide a larger
value for the other.)

3. For i equal to 1, 3, or 4, extend ri to si so that there is a new ni such
that si decides the values of fi on all arguments less than ni , but si
does not force any upper bound on the value of fi on ni .

In the course of these three steps, we extended our conditions to decide
the value of m j+1 > n2, where no bound is forced on f2(n2) ≤ m j+2. We
ensured that G∗( j +1) is equal to q∗( j +1). Finally, for each i not equal to
2, we have identified an ni such that the value of fi is determined at each
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argument less than ni , but no upper bound is forced on the value of fi on
ni . As promised, our situation after these three steps is the same as it was
before them, with the roles of f1 and f2 reversed.

By a finite recursion, we can extend p to q to ensure that if G extends
q, then G∗ extends q∗.

It only remains to tally the dense open sets which appeared in this analy-
sis. They are D0, to ensure that {e}(G ⊕ P) represents π on G; D1, to en-
sure the same representation for G1, G2, G3, and G4; and the collection of
dense open sets D needed to ensure that for each D∗ in D∗, of G meets D
then G∗ meets D∗. The correspondence from D∗ to D is the one obtained
from the analysis of going from q∗ in D∗ to q in D.

6.1.2 Evaluating relative to a generic degree
We now obtain a continuous representation of π on the join of an arbitrary
degree with a generic one.

Theorem 6.1.3 There is a family of dense open sets D and a continuous
function F(G, X) such that for all D-generic G, if 5(G) is a representa-
tive of π(degree(G)), then

(∀X)[degree(F(G, X)⊕5(G)) = π(degree(X ⊕ G))]

Proof: By Theorem 5.1.2 on page 60, fix e ∈ N, P ∈ 2ω, and a family of
dense open sets D0 such that for all D0-generic G, π(degree(G)) is equal
to the degree of {e}(G, P). Define F(G, X) as follows.

F(G, X) = {e}(C(X,G), P)

See Definition 5.1.4 on page 61 for a description of C.
By Theorem 5.1.8, there is a family of dense open sets D1 such that

for all D1-generic G and for all X , C(X,G) ∈ C . Consequently, if G is
D1-generic, then F(G, X) is a representative of π(degree(C(X,G))). By
Lemma 5.1.5, there is a family of dense open sets D2 such that if G is D2-
generic, then X ⊕G ≡T C(X,G)⊕G. Let D3 be the union of D0, D1, and
D2. If G is D3-generic, then π(degree(X⊕G) = π(degree(C(X,G))∨G).
The latter is represented by F(G, X)⊕5(G), as required.

The next theorem provides a sharper version of the previous one: the
continuous representation can be done injectively.

Theorem 6.1.4 There is a family of dense open sets D and a continuous
function F(G, X) such that the following conditions hold.
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1. The function X 7→ F(G, X) is injective.
2. For any D-generic G, if 5(G) is a representative of π(degree(G)),

then

(∀X)[degree(F(G, X)⊕5(G)) = π(degree(X ⊕ G))]

Proof: Given a set G, we now regard G as the join of two sets G1 and G2.
By Theorem 6.1.3, let D0 be a countable family of dense open sets and let
F0 be a continuous function such that for all D0-generic reals H ,

(∀X)[degree(F0(H, X)⊕5(H)) = π(degree(X ⊕ H))]

Let D1 be a countable family of dense open sets such that if G is D1-
generic, then G1 is D0-generic. Let D be the countable family of dense
open sets which extends D0 ∪ D1 and includes all of the arithmetically
definable dense open sets.

Assume that G is D-generic.
Now, we work with G2. Let T be a perfect binary tree such that T is

recursive in G2 and such that for any two infinite distinct paths in T , their
joins with G1 have incomparable Turing degree. See Theorem 2.5.11. For
each X ∈ 2ω, let T (X) denote the path in T determined by X under the
canonical isomorphism between 2<ω and T .

We define F(G, X) in Equation 6.4.

F(G, X) = F0(G1,C(T (X),G1)) (6.4)

When G is D-generic, we have the following sequence of equalities.

degree(F(G, X)) ∨ π(degree(G)) =

= degree(F0(G, X)) ∨ π(degree(G)) =

= degree(F0(G1,C(T (X),G1))) ∨ [π(degree(G1)) ∨ π(degree(G))]
= [degree(F0(G1,C(T (X),G1))) ∨ π(degree(G1))] ∨ π(degree(G))
= π(degree(C(T (X),G1)⊕ G1)) ∨ π(degree(G))
= π(degree(T (X)⊕ G1)) ∨ π(degree(G))
= π(degree(T (X)⊕ G))
= π(degree(X ⊕ G))

Thus, for each X , degree(F(G, X) ⊕ 5(G)) = π(degree(X ⊕ G)) as
required. To verify the required injectivity, suppose that X and Y are
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distinct. Then, T (X) ⊕ G1 and T (Y ) ⊕ G1 have distinct Turing de-
gree. But then, C(T (X),G1) and C(T (Y ) ⊕ G1) have distinct Turing
degree, as they have the same degrees as T (X) ⊕ G1 and T (Y ) ⊕ G1,
respectively. Then, F0(G1,C(T (X),G1)) and F0(G1,C(T (Y ),G1)) have
distinct Turing degree, since these sets represent the images of the degrees
of C(T (X),G1) and C(T (Y )⊕ G1), respectively. Consequently, F(X,G)
and F(Y,G) are distinct, as they are equal to F0(G1,C(T (X),G1)) and
F0(G1,C(T (Y ),G1)), respectively. So X 7→ F(X,G) is injective, as was
required.

Definition 6.1.5 For F as defined in Theorem 6.1.4, let FG be the function
X 7→ F(G, X).

Theorem 6.1.6 There is a countable family of dense open sets D such that
for all D-generic reals G the following conditions hold.
1. If P is a perfect set with tree TP , then the range of FG on P contains

a perfect set Q with tree TQ such that

degree(TQ) ≤T π(degree(G) ∨ degree(TP)).

2. If Q is a perfect subset of the range of FG with tree TQ , then there is a
perfect set P contained in the range of F−1

G applied to Q with tree TP
such that

degree(TP) ≤T (degree(G) ∨ π−1(degree(TQ))).

Proof: Let D be the countable family of dense open sets such that FG
behaves as described in the previous lemma for all D-generic reals G. Fix
a particular D-generic G, and let 5(G) be an element of π(degree(G)).
Similarly, let 5(TP) be a representative of π(degree(TP)).

Fix ZG so that the injective continuous functions FG and F−1
G are re-

cursive relative to ZG . Consider a set H which is arithmetically generic
relative to 5(G) ⊕ 5(TP) ⊕ ZG , and let 5−1(H) be a representative of
π−1(degree(H)).

As TP is a perfect subtree of 2<ω, it is isomorphic to 2<ω by a function
which is recursive in TP . Let X (H) be the image of5−1(H) under this iso-
morphism. Then, X (H)⊕TP has the same Turing degree as5−1(H)⊕TP .
Consequently, the image of its degree under π is the degree of H ⊕5(TP).
Now, π(degree(X (H)⊕ G)) is the Turing degree of FG(X (H))⊕5(G),
so FG(X (H))⊕5(G)⊕5(TP) has the degree as H ⊕5(G)⊕5(TP).
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Consequently, there must be an integer e and a condition p on H , which
we can take to be the null condition, such that



(
{e}(H ⊕5(TP)⊕5(G)) ≡T H ⊕5(G)⊕5(TP) and

{e}(H ⊕5(TP)⊕5(G)) is image under FG of a path in TP .

)
Let TQ be defined by

TQ = {q : ∃p [q is extended by {e}(p ⊕5(TP)⊕5(G))]}

Note that TQ is recursive in 5(TP)⊕5(G).
Clearly, TQ is a tree. Every element of TQ has a proper extension in TQ

as {e}(p ⊕5(TP)⊕5(G)) is forced to be total. Let Q be the set of paths
in TQ . Since P is compact and FG is continuous, the range of FG on P ,
written FG(P), is closed. Note that every q ∈ TQ can be extended to an
element of FG(P). In fact for every q in TQ there is an H as above such
that q is extended by {e}(H ⊕ 5(TP) ⊕ 5(G)) and therefore belongs to
FG(P). Then the closed set Q generated by TQ is a subset of the closed set
FG(P). Finally, since no finite condition on H can determine the Turing
degree of H ⊕5(TP)⊕5(G), no finite condition on H can determine the
Turing degree of {e}(p ⊕5(TP)⊕5(G)). Thus, every element of TQ has
incompatible extensions, and so Q is a perfect set.

Thus, we have proven the first claim of Theorem 6.1.6. The second
claim follows by an analogous argument.

6.2 Moving information through π
6.2.1 Fixing the cone above 0′′

Theorem 6.2.1 For every Z ⊆ ω, there is a countable family of dense
open sets D such that for all D-generic reals G,

π(degree(Z ⊕ G))′′ ≥T degree(Z)

Proof: Let Z ⊆ ω be given.
We view G as a quadruple of reals G1, G2, G3, and G4. We will think

of G as a generic real, and let the countable family of dense open sets D
emerge at the end of our proof, once we know how generic G would have
to be in order for our arguments to apply to it.

Step 1. Fix a perfect binary tree T1 such that T1 is recursive in G1 and
any finite set of infinite paths in T1 consists of reals which are mutually
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generic relative to G2 ⊕ G3 ⊕ G4. Let P1 be the perfect set of infinite paths
in T1.

Let FG2 be the injective continuous function associated with G2 in
Lemma 6.1.4 such that

(∀X)[degree((FG2(X))⊕5(G2)) = π(degree(X ⊕ G2))],

where 5(G2) is a representative of π(degree(G2)). By Theorem 6.1.6, fix
a perfect set Q with associated perfect tree TQ such that TQ is recursive in
5(G1⊕G2), where5(G1⊕G2) is a representative of π(degree(G1⊕G2))
and Q is contained in the image of P1 under FG2 . Applying Theorem 6.1.6
again, fix a perfect set P2 ⊆ P1 with associated perfect tree T2 such
that FG2 maps the elements of P2 into Q and such that T2 is recursive
in G1 ⊕ G2.

Let (Hi : i ∈ ω) be the sequence of elements of P2 given by the leftmost
branches in P2 off of the rightmost branch of P2. We note that any finite
subset of (Hi : i ∈ ω) consists of reals which are mutually Cohen generic
relative to G2 ⊕ G3 ⊕ G4.

Step 2. We find A0 and A1 recursively in G1 ⊕ G2 ⊕ G3 to satisfy the
following properties.

∀U∀ j ∈ ω

(
(U ∈ P1 and G1 ⊕ G2 ≥T U ) →[

A0 ⊕ G2 ⊕ H2 j ≥ U ⇐⇒ (U = H2 j or U = H2 j+1)
])

(6.5)

∀U∀ j ∈ ω

(
(U ∈ P1 and G1 ⊕ G2 ≥T U ) →[

A1 ⊕ G2 ⊕ H2 j+1 ≥ U ⇐⇒ (U = H2 j+1 or U = H2 j+2)
])

(6.6)

By these properties, we embed the sequence (Hi : i ∈ ω) so that it
can be recovered from G1, G2, A0, and A1 by recursion using positive
instances of ≤T and various 10

3 properties relative to these parameters.
We can obtain such sets A0 and A1 by forcing with the following partially
ordered sets.

A condition in P A0 is a pair (p, F) such that p is a finite binary
sequences, and F is a finite subset of ω. For such pairs (p1, F1) and
(p2, F2), (p2, F2) extends (p1, F1) in P A0 if and only if p2 extends p1
as a binary sequence, F1 ⊆ F2, and for all i ∈ F1 and all (i, x) in
domain(p2) \ domain(p1), p2((i, x)) = C(H2i+1, H2i )(x). Thus, a con-
dition in P A0 specifies finitely much about A0 and specifies a finite set of
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columns on which further values of A0 must be obtained by copying the
appropriate set of the form C(H2i+1, H2i ).

We define P A1 similarly, changing the definition of P A0 so that a con-
dition in P A1 specifies finitely much about A1 and specifies a finite set of
columns on which further values of A1 must be obtained by copying the
appropriate set of the form C(H2i+2, H2i+1)’s.

By Corollary 2.5.4, let A0 and A1 be recursive in G1 ⊕ G2 ⊕ G3 and be
P A0 and P A1 generic, respectively.

For each i , the set of conditions (p, F) such that i ∈ F is dense in P A0

and in PA1 . Consequently, for each i the i th component of A0 is almost
equal to C(H2i , H2i+1), and the i th component of A1 is almost equal to
C(H2i+1, H2i+2). By Lemma 5.1.5 on page 62, the implications from right
to left in the conclusions of 6.5 and 6.6 are valid.

For the converse, we will concentrate on the left to right implication
in 6.5 and note that 6.6 is similar. Consider the case when the sequence
(Hi : i ∈ ω) ∪ U has the property that for any of its finite subsequences
S and for any of its elements X 6∈ S, X is Cohen generic relative to
S ⊕ G2 and U is a set which is not equal to H2 j or H2 j+1. Suppose
that (p, F) ∈ P A0 , (q2i , q2i+1 : i ∈ F) and q constitute a condition on
(H2i , H2i+1 : i ∈ F) and U . We may assume that j ∈ F .

Here we view a Cohen condition as a function from a finite set of natural
numbers into the set {0, 1}. (Note, we do not mean rule out the possibility
that U is one of the H2i ’s or H2i+1’s for an i unequal to j .) By extending
q if necessary, we may assume that it has the following properties.

1. For each i , the length of q2i+1 is equal to the number of arguments
at which the odd component of q2i is not zero. In other words, q2i+1
specifies exactly the amount of H2i+1 needed to determine the H2i+1
part of C(H2i+1, q2i ) up to the length of the odd part of q2i .

2. For each i , the length of the even part of q2i is equal to the number
of arguments n at which the odd component of q2i is equal to zero.
Similarly to the above, the even part of q2i specifies exactly the amount
of H2i+1 needed to determine the rest of C(H2i+1, q2i ) up to the coding
of the first n values of H2i+1.

3. The first element not specified by q2i is an element of its odd part.

Then, suppose that i ∈ F and c is a finite extension of C(q2i+1, q2i ).
Since the length of q2i+1 is equal to the number of arguments at which
the odd component of q2i is not zero, if we extend q2i to r2i so that r2i
takes nonzero value at each odd number not in the domain of q2i , then
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for any r2i+1 extending q2i+1, the new values of the term C(r2i+1, r2i )
beyond those given in C(q2i+1, q2i ) are obtained by copying the values
of r2i+1 beyond those specified by q2i+1. Similarly, if we extend q2i to
r2i so that r2i takes value zero at each odd number not in the domain of
q2i , then for any r2i+1, the new values of the term C(r2i+1, r2i ) beyond
those given in C(q2i+1, q2i ) are obtained by copying the values of the even
component of r2i beyond those specified by q2i . That is to say that there
are very different ways to achieve the same C(r2i+1, r2i ). Consequently,
there are two pairs of conditions r2i and r2i+1, and r∗

2i and r∗

2i+1 such that
the following conditions hold.
1. C(r2i+1, r2i ) = C(r∗

2i+1, r
∗

2i ) = c
2. For `2i and `2i+1 the least numbers not in the domains of q2i and q2i+1,

respectively, r2i (`2i ) 6= r∗

2i (`2i ) and r2i+1(`2i+1) 6= r∗

2i+1(`2i+1).
Then, for any finite extension ci of C(q2i+1, q2i ) there are extensions of

C(H2i+1, H2i ) to extend C but are incompatible with each other on both
coordinates at the first places not specified by (q2i , q2i+1).

Now, we can argue that the implication from left to right in 6.5 is
valid. Let e be an index for a recursive functional and let (p, F) ∈ P A0 ,
(q2i , q2i+1 : i ∈ F), and q be given as above. Suppose that there are finite
conditions p1 and (r∗

2i , r
∗

2i+1 : i ∈ F) such that (r∗

2i , r
∗

2i+1 : i ∈ F) forces
that (p1, F) extends (p, F), and r∗

2 j and p1 are sufficient to fix the com-
putations of {e}(x, r∗

2 j ⊕ p1) on every x less than or equal to some strict
upper bound ` on the lengths of the conditions in (q2i , q2i+1 : i ∈ F) and
q. Then, we can find an x and an r extending q with r(x) 6= {e}(x, p1) and
conditions (r2i , r2i+1 : i ∈ F) compatible with q and r∗

2 j such that

(r2i , r2i+1 : i ∈ F)  (p1, F) extends (p, F) in P A0 .

We do so as follows.
If U is not one of the H sets, then we can extend q so that q is incom-

patible with the value decided by r∗ for {e}(H2 j ⊕ A0). Otherwise, U is
one of the H sets other than H2 j or H2 j+1. Then we can find r∗∗ such that
r∗∗ fixes the computation of {e}(H2 j ⊕ A0) in the same way that r∗ does
and such that the conditions in r∗∗ on U and the H with which it is paired
are incompatible with their associated conditions in r∗ at some number
less than `. But then, one of r∗ or r∗∗ forces {e}(x, A0) 6= U (x). Since the
statement being forced is arithmetic, if the H2i ’s, H2i+1’s, and U are mu-
tually generic with respect to the (countably many) dense sets associated
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with forcing arithmetic sentences, then the implication from left to right
in 6.5 is valid.

Step 3. We find B0 and B1 recursively in G1 ⊕ G2 ⊕ G3 to satisfy the
following property.

(∀i ∈ ω) [(B0 ⊕ G2 ≥T Hi ⇐⇒ i 6∈ Z) and (B1 ⊕ G2 ≥T Hi ⇐⇒ i ∈ Z)]
(6.7)

By this property, we embed the atomic diagram of Z into the positive in-
stances of ≤T between B0 ⊕G2, B1 ⊕G2 and the elements of (Hi : i ∈ ω).
We can obtain such sets B0 and B1 by forcing with the following partially
ordered sets.

A condition in P B0 is a pair (p, F) such that p ∈ 2<ω and F is a subset
of the complement of Z . For such pairs (p1, F1) and (p2, F2), (p2, F2)
extends (p1, F1) in P B0 if and only if p2 extends p1 as a binary sequence,
F1 ⊆ F2, and for all i ∈ F1 and all (i, x) in domain(p2) \ domain(p1),
p2((i, x)) = Hi (x). Thus, a condition in P B0 specifies finitely much about
B0 and specifies a finite set of columns on which further values of B0 must
be obtained by copying the appropriate element from the sequence of Hi ’s.

We define P B1 similarly, changing the definition of P B0 so that F is re-
quired to be finite subset of Z , rather than a finite subset of its complement.

Suppose that B0 and B1 are P B0 and P B1 generic, respectively.
Now, we argue thatB0 and B1 satisfy 6.7.
For each i , if i 6∈ Z then the set of conditions (p, F) such that i ∈ F

is dense in P B0 , and if i ∈ Z then the set of conditions (p, F) such that
i ∈ F is dense in P B1 . Consequently, if i 6∈ Z then the i th component of
B0 is almost equal to Hi , and if i ∈ Z then the i th component of B1 is
almost equal to Hi . So the implications from right to left in 6.7 hold.

For the reverse implication, suppose that (p, F) is an element of P B0 ,
e and m are natural numbers, and (p, F)  {e}(B0 ⊕ G2) = Hm . In
particular, (p, F) decides every value of {e}(B0 ⊕ G2) relative to G2.

For every binary sequence q , if q extends p and for all i ∈ F1 and
all (i, x) in domain(q) \ domain(p), q((i, x)) = Hi (x), then (q, F) ex-
tends (p, F) in P B0 . The set of such q’s is recursive in ⊕i∈F Hi ⊕ G2.
Further, if (p1, F1) extends (p, F) in P B0 , then p1 is such a q. Thus, for
natural numbers x , and y, (p, F)  {e}(x, B0 ⊕ G2) = y if and only if
there is a q as above such that {e}(x, q ⊕ G2) = y. But then Hm is re-
cursive in G2 ⊕i∈F Hi : given input x , find a q as above and a y such that
{e}(x, q) = y, and then return value y.
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By our ongoing assumption that the sets Gi are mutually generic rela-
tive to G2, the Turing degrees of the paths in P1 form an independent set
relative to G2. That is to say that no one of them is recursive in G2 together
with the join of finitely many others. Consequently, for each pair of natural
numbers e and m and for each (p, F) ∈ P B0 with m 6∈ F , there is an
extension of (p, F) ∈ P B0 which forces {e}(x, B0 ⊕ G2) to be unequal to
Hm .

Now, assuming that G3 is sufficiently generic relative to G1 ⊕ G2, we
can apply Theorem 2.5.3 to conclude that there B0 and B1 which are recur-
sive in G1 ⊕ G2 ⊕ G4 ⊕ Z which satisfy 6.7. Here, G1 ⊕ G2 ⊕ Z is needed
to describe the partial orders P B0 and P B1 and G4 is needed to construct
B0 and B1 to be generic for these partial orders.

Genericity. How much genericity did we need for the previous steps?
In Step 1, we satisfied arithmetic properties between the Gi ’s, for which
meeting all arithmetic dense open sets is sufficient, and we cited the ex-
istence of a countable family of dense open sets sufficient for the conclu-
sions of Theorem 6.1.6. In Step 2, we satisfied only arithmetic properties
between the Gi ’s and the A j ’s; arithmetic genericity is sufficient. In Step 3,
we satisfied arithmetic properties between the Gi ’s, B j ’s, and Z ; arithmetic
genericity relative to Z is sufficient. Thus, if the Gi ’s are generic for the
countable family of dense open sets of Theorem 6.1.6 to ensure the contin-
uous representation of π and are mutually arithmetically generic relative
to Z , then we can successfully execute Steps 1-3.

Step 4. By Steps 1-3, there is a countable family of dense open sets D
such that for any D-generic G, viewing G as a quadruple G1⊕G2⊕G3⊕G4,
there exist objects as follows:
1. an injective continuous function F as in Lemma 6.1.4

(∀X)[degree(F(X)⊕5(G2)) = π(degree(X ⊕ G2))],

where we use 5(Gi ) to denote a representative of π(degree(G2));
2. perfect sets P1 and P2, represented by perfect trees T1 and T2 recur-

sive in G1 ⊕ G2, and a perfect set Q, represented by TQ recursive in
5(G1)⊕5(G2), such that Q is contained in the range of F on P1 and
P2 is contained in the range of F−1 on Q;

3. a set (Hi : i ∈ ω) of paths in P2 for which there are
(a) and sets A0 and A1 which are recursive in G1 ⊕ G2 ⊕ G3 and

satisfy 6.5 and 6.6,
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(b) and sets B0 and B1 which are recursive in G1 ⊕ G2 ⊕ G4 ⊕ Z and
satisfy 6.7.

Let5(A0),5(A1),5(B0), and5(B1) represent the values of π on the
degrees of A0, A1, B0, and B1, respectively. Now we consider the conse-
quences of properties (1) through (3) for these sets.

For our first observation, suppose that U∗
∈ Q, and fix U ∈ P1 so

that F(U ) = U∗. Suppose that U∗ is recursive in 5(G1) ⊕ 5(G2) and
also recursive in 5(A0) ⊕5(G2) ⊕5(H2n). Of course, this implies that
U∗

⊕ 5(G2) is recursive in 5(A0) ⊕ 5(G2) ⊕ 5(H2n). By the choice
of F , for all X in P1, degree(F(X) ⊕5(G2)) = π(degree(X ⊕ G2)). In
particular,

5(A0)⊕5(G2)⊕5(H2n) ≥T 5(U )⊕5(G2),

where 5(U ) is a representative of π(degree(U )). Since π is an automor-
phism of D, A0⊕G2⊕H2n ≥T U⊕G2. Similarly,5(G1)⊕5(G2) ≥T U∗

implies that G1 ⊕ G2 ≥T U . By the property 3(a) above, U must be one
of H2n or H2n+1. That is to say that either U∗ is equal to F(H2n) or it is
equal to F(H2n+1).

Similarly, if U∗ is an element of Q, recursive in 5(G1)⊕5(G2), and
also recursive in 5(A1)⊕5(G2)⊕5(H2n+1), then either U∗ is equal to
F(H2n+1) or it is equal to F(H2n+2).

We may now conclude that the sequence (F(Hi ) : i ∈ ω) is uniformly
recursive in 5(G)′′. For each i , Hi is recursive in G and F(Hi )⊕5(G2)
has degree π(degree(Hi ⊕ G2)), and so F(Hi ) is recursive in 5(G). We
compute the indices ei to compute F(Hi ) from 5(G) by recursion from
5(G)′′. Let e0 be given so that F(H0) is equal to {e0}(5(G)). Know-
ing e2n , we let e2n+1, e∗

2n+1, and e∗∗

2n+1 be the least triple of numbers
such that {e2n+1}(5(G)) is an element of Q, {e2n+1}(5(G)) is equal to
{e∗

2n+1}(5(G1)⊕5(G2)) and is also equal to {e∗∗

2n+1}(5(A0)⊕5(G2)⊕{e2n}(5(G))),
and {e2n+1}(5(G)) is not equal to {e2n}(5(G)). Knowing e2n+1, we de-
fine e2n+2, e∗

2n+2, and e∗∗

2n+2 similarly, substituting e2n+1, for e2n and A1
for A0. Applying induction, the observations in the previous paragraphs
ensure that for each i , ei is defined and {ei }(5(G)) is equal to F(Hi ).
Further, the triple ei , e∗

i , and e∗∗

i satisfies a 60
3(5(G)) property relative to

ei . The search to find the least such triple is recursive in 5(G)′′.
In fact, we have proven something stronger than was claimed. We have

shown that there is a sequence (ei : i ∈ ω) which is recursive in 5(G)′′

such that for all i , {ei }(5(G)) is equal to F(Hi ).
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Our second conclusion is that Z is recursive in (5(Z) ⊕ 5(G))′′.
By the above, the sequence (F(Hi ) : i ∈ ω) is uniformly recursive in
(5(Z)⊕5(G))′′. Further, for i equal to 0 or 1, Wi = {m : 5(Bi )⊕5(G2) ≥ F(Hm)}
is recursively enumerable in (F(Hi ) : i ∈ ω), 5(Bi ), and 5(G2), and
therefore recursively enumerable in (5(Z)⊕5(G))′′.

Consider W0 = {n : 5(B0) ⊕ 5(G2) ≥T F(Hn)}. In 6.7 we stated
the following: for each m, Hm is recursive in B0 ⊕ G2 if and only if
m 6∈ Z . Invoking the implication from right to left in the conclusion, if
m is in the complement of Z , then Hm is recursive in B0 ⊕ G2. This rela-
tion is preserved by 5, so 5(Hm) is recursive in 5(B0) ⊕ 5(G2). Since
F(Hm)⊕5(G2) has the same degree as 5(Hm)⊕5(G2), F(Hm) is re-
cursive in5(B0)⊕5(G2). Conversely, suppose that F(Hm) is recursive in
5(B0)⊕5(G2). Then, F(Hm)⊕5(G2) is recursive in 5(B0)⊕5(G2),
and so5(Hm)⊕5(G2) is also recursive in5(B0)⊕5(G2). But then, Hm
is recursive in B0 ⊕ G2, as5 represents the automorphism π on these sets.
But then m is in the complement of Z by the implication from left to right
in the conclusion of 6.7. Consequently, W0 is the complement of Z . An
analogous argument shows that W1 = {n : 5(B1)⊕5(G2) ≥T F(Hn)} is
equal to Z .

Now, we can computed Z from (5(Z) ⊕ 5(G))′′. Given n, we check
search for the least index e such that either {e}(5(B0)⊕5(G2)) = F(Hn)
or {e}(5(B1)⊕5(G2)) = F(Hn). By the above, there is such an e; n ∈ Z
if and only if {e}(5(B1)⊕5(G2)) = F(Hn).

Theorem 6.2.2 For every z ∈ D, z′′
≥T π(z).

Proof: Suppose that z is a given Turing degree and that z is a representative
of Z . Let 5(Z) be a representative of π(degree(Z)).

Applying Theorem 6.2.1 to the automorphism π−1 and the set 5(Z),
fix a countable family of dense open sets D∗ such that for every D∗-generic
G∗, the following condition holds.

π−1(degree(5(Z)⊕ G∗))′′ ≥T degree(5(Z)) (6.8)

By Theorem 6.1.1, fix a countable family of dense open sets D such
that for all D-generic G, there is a D∗-generic G∗ such that the degree
of G∗ is less than or equal to π(degree(G)). For the sake of the argument
below, we also arrange that D includes all of the dense open sets which are
arithmetically defined relative to Z .

Now, suppose that G is D-generic, and let G∗ be D∗-generic degree
below π(degree(G)). By 6.8, [π−1(degree(5(Z)+ G∗))]′′ is greater than
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or equal to degree(5(Z)). Thus, (Z ⊕ G)′′ ≥T 5(Z). By Theorem 2.5.12,
(Z ⊕G)′′ is equivalent to Z ′′

⊕G, and so Z ′′
⊕G ≥ 5(Z). But then5(Z)

is recursive in Z ′′ and any D-generic real. By Theorem 2.5.6, Z ′′
≥ 5(Z)

and Theorem 6.2.2 is proven.

Corollary 6.2.3 For any 2-generic set G,

degree(G) ∨ 0′′
≥T π(degree(G)).

Proof: Let G be 2-generic. By Theorem 6.2.2, degree(G)′′ ≥T π(degree(G))
and by Theorem 2.5.12, G ⊕ 0′′

≡T G ′′. Consequently,

degree(G) ∨ 0′′
≥T π(degree(G)),

as required.

Theorem 6.2.4 Suppose that π : D
∼
→D.

1. For all x ∈ D, x ∨ 0′′
≥T π(x).

2. For all x ∈ D, if x ≥ 0′′ then x = π(x).

Proof: By Theorem 5.1.8, let D be a countable family of dense open sets
such that for every D-generic G the following conditions hold.
1. G is 2-generic.
2. For every Y ⊆ ω, C(Y,G) is 2-generic.

Let x be an element of D, and let X be a representative of x . Let G
be D-generic. By Lemma 5.1.5, X ⊕ G has the same Turing degree as
C(X,G)⊕ G. Consequently,

π(degree(C(X,G)⊕ G)) ≥T π(degree(X))

and hence

π(degree(C(X,G)))+ π(degree(G)) ≥T π(degree(X)).

Since each of C(X,G) and G are 2-generic, degree(G)+0′′
≥T π(degree(G))

and degree(C(X,G))+ 0′′
≥T π(degree(C(X,G))). Thus,

degree(C(X,G))+ degree(G)+ 0′′

≥T π(degree(C(X,G)))+ π(degree(G))
≥T π(degree(C(X,G)⊕ G))
≥T π(degree(X)).



Moving information through π 83

Since X ⊕ G ≥T C(X,G),

degree(X)+ degree(G)+ 0′′
≥T π(degree(X)). (6.9)

Since 6.9 holds for every 2-generic G, Theorem 2.5.6 implies that
π(degree(X)) is less than or equal to degree(X) + 0′′, and we have
proven the first claim of Theorem 6.2.4.

The second claim follows easily. Suppose x ≥T 0′′, and so x ≥T x +0′′.
By the above, x+0′′

≥T π(x), and so x ≥T π(x). Since π was an arbitrary
automorphism of D, every automorphism of D maps x to a degree below
x . Thus, x ≥T π−1(x). By applying π to this inequality, π(x) ≥T x .
Hence, x = π(x), as required.

6.2.2 Invariance of the double-jump
Theorem 6.2.5 For every Z ⊆ ω, there is a countable family of dense
open sets D such that such that for all D-generic G,

π(degree(Z ⊕ G))′′ ≥T degree(Z ′′)

Proof: The proof of Theorem 6.2.5 runs parallel to the proof of Theo-
rem 6.2.1. However, in Theorem 6.2.1 we coded the atomic diagram of Z
into the degrees below Z ⊕ G, and now we will code the atomic diagram
of Z ′′ into the degrees below Z ⊕ G. This technical improvement should
not be too surprising. The restriction of ≥T to the degrees below Z ⊕ G is
60

3(Z ⊕ G) and should accommodate coding relations that are 60
2(Z) or

50
2(Z).
As before, we view G as a quadruple of reals G1, G2, G3, and G4. We

will think of G as a generic real, and let the countable family of dense open
sets D emerge at the end of our proof.

Steps 1 and 2. Define P1, T1, FG2 , Q, TQ ,P2 ⊆ P1, T2, and (Hi : i ∈ ω)
as in Step 1 of Theorem 6.2.1. Define A0 and A1 as in Step 2 of Theo-
rem 6.2.1.

Step 3 We find B0 and B1 recursively in G1 ⊕ G2 ⊕ G4 to satisfy the
following property.

(∀i ∈ ω)
[
(B0 ≥T Hi ⇐⇒ i 6∈ Z ′′) and (B1 ≥T Hi ⇐⇒ i ∈ Z ′′)

]
(6.10)

By this property, we embed the atomic diagram of Z ′′ into the positive in-
stances of ≤T between B0 ⊕G2, B1 ⊕G2 and the elements of (Hi : i ∈ ω).
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We can obtain such sets B0 and B1 by forcing with the partial orders de-
fined below.

Definition 6.2.6 1. Let ϕ be a 50
0 formula such that for all m,

∀x∃y ϕ(m, x, y, Z � y) ⇐⇒ m 6∈ Z ′′.

2. Let Sk be the recursive approximation to the Skolem function for the
formula (∀x)(∃y)ϕ(m, x, y, Z � y). That is, for each m, let Sk(m, x)
be the least y greater than Sk(m − 1, x) (if m > 0) such that for all
x1 ≤ x , there is a y1 ≤ y such that ϕ(m, x1, y1, Z � y1), if there is
such a y; and let Sk(m, x) be undefined, otherwise.

Substep 3.0. We define P B0 so that for a generic B0, for all m in the
complement of Z ′′, and for all sufficiently large y, the following conditions
hold.

B0((m, 2y)) 6= 0 ⇐⇒ (∃x)[y = Sk(m, x)] (6.11)
B0((m, 2y + 1)) 6= 0 ⇐⇒ (∃x)[y = Sk(m, x) and x ∈ Hm] (6.12)

If m 6∈ Z ′′, then Sk is a total injective function. Further, Hm is recursive
in B0 as follows. Fix k1 and k2 so that conditions 6.11 and 6.12 hold for all
y greater than k1 and so that k2 is the greatest x such that Sk(m, x) < k1.
Given x , find the x − k2nd y such that (m, 2y) ∈ B0 and 2y > k1, and
then x ∈ Hm if and only if (m, 2y + 1) ∈ B0. For example, to determine
whether k2 + 1 ∈ Hm find the first y such that y > k1 and (m, 2y) ∈ B0,
and then k2 + 1 ∈ Hm if and only if (m, 2y + 1) ∈ B0.

If m ∈ Z ′′, then Sk(m, x) is defined for only finitely many x’s. Con-
sequently, requiring that Conditions 6.11 and 6.12 hold for all suffi-
ciently large y is equivalent to requiring that for all sufficiently large y,
B0((m, y)) = 0.

Now, we define P B0 . A condition in P B0 is a pair (p, F) such that p is a
finite binary sequence, and F is a finite subset of ω. For such pairs (p1, F1)
and (p2, F2), (p2, F2) extends (p1, F1) in P B0 if and only if both belong to
P B0 , p2 extends p1 as a binary sequence, F1 ⊆ F2, and for all m ∈ F1 and
all y, if (m, 2y) ∈ domain(p2) \ domain(p1), then p2((m, 2y)) 6= 0 if and
only if (∃x)[y = Sk(m, x)], and if (m, 2y+1) ∈ domain(p2)\domain(p1),
then p2((m, 2y + 1)) 6= 0 if and only if (∃x)[y = Sk(m, x) and x ∈ Hm].

Thus, a condition in P B0 specifies finitely much about B0 and specifies
a finite set of columns on which further values of B0 must be obtained so
as to satisfy Conditions 6.11 and 6.12.
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Suppose that B0 is P B0 generic. By the remarks above, if m 6∈ Z ′′, then
B0 ≥T Hm .

For the converse, suppose that m ∈ Z ′′. Let (p, F) be an element
of P B0 , let e be a natural number, and suppose that (p, F) forces
{e}(B0 ⊕ G2) = Hm . For every binary sequence q , if q extends p and for
all i ∈ F and all (i, x) in domain(q) \ domain(p), q is defined so as to sat-
isfy Conditions 6.11 and 6.12, then (q, F) extends (p, F) in P B0 . Notice
that the conditions imposed by those i’s in F ∩ Z ′′ is recursive. Thus, the
set of such q’s is recursive in ⊕i∈F\Z ′′ Hi ⊕G2. Further, if (p1, F1) extends
(p, F) in P B0 , then p1 is such a q. Thus, for natural numbers x , and y,
(p, F)  {e}(x, B0 ⊕ G2) = y if and only if there is a q as above such that
{e}(x, q ⊕G2) = y. But then Hm would recursive in ⊕i∈F\Z ′′ Hi ⊕G2 ⊕ Z :
given input x , find a q as above and a y such that {e}(x, q) = y, and then
return value y.

By our ongoing assumption that the sets Gi are mutually generic rela-
tive to Z , G2 and the Turing degrees of the paths in P1 form an independent
set relative to Z . That is to say that no one of them is recursive in Z to-
gether with the join of finitely many others. Consequently, if m ∈ Z ′′, no
condition can force Hm to be recursive in B0.

So, if B0 is P B0 generic, then B0 has the property required by Condi-
tion 6.10.

Substep 3.1. We define P B1 so that for a generic B1, for all m
in Z ′′, if xm is the least witness x to ∃x∀y ¬ϕ(m, x, y, Z � y), the
60

2(Z) criterion for membership in Z ′′, then for all sufficiently large w,
B1((m, xm, w)) = Hm(w). Conversely, if xm is not the least such witness,
then we will ensure that for all sufficiently large w, B1((m, xm, w)) = 0.

Now, we define P B1 . A condition in P B1 is a pair (p, F) such that p
is a finite binary sequence, and F is a finite subset of ω × ω × ω<ω,
where each element of F is required to be a sequence of the form
(m, x, (Sk(m, i) : i < x)). In particular, for each i less than x , Sk(m, i) is
defined.

For such pairs (p1, F1) and (p2, F2), (p2, F2) extends (p1, F1) in P B0

if and only if both belong to P B1 , p2 extends p1 as a binary sequence,
F1 ⊆ F2, and the following condition holds.
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(∀(m1, x1, (Sk(m1, i) : i < x1)) ∈ F1)(∀w) (6.13)
(m1, x1, w) ∈ domain(p2) \ domain(p1) →(

w < Sk(m1, x1) → p2((m1, x1, w)) = Hm1(w) and
w ≥ Sk(m1, x1) → p2((m1, x1, w)) = 0

)
Thus, a condition in P B1 specifies finitely much about B1 and specifies

a finite set of columns indexed by (m, x) on which further values of a
generic B1 are equal to those of Hm up to Sk(m, x), if defined, and then
identically 0.

If m ∈ Z ′′, then let xm be the least witness x to ∃x∀y ¬ϕ(m, x, y, Z � y).
The set of conditions (p, F) such that (m, xm, (Sk(m, i) : i < xm)) ∈ F is
dense in P B1 . But then the extensions of this condition copy Hm into the
(m, xm)th column of B1. Consequently, if m ∈ Z ′′ and B1 is P B1-generic,
then B1 ≥T Hm .

For the converse, suppose that n is not an element of Z ′′. Let (p, F)
be an element of P B1 , let e be a natural number, and suppose that (p, F)
forces {e}(B1 ⊕ G2) = Hn . For every binary sequence q, if q extends p
and satisfies Condition 6.13, then (q, F) extends (p, F) in P B1 . Notice
that the conditions imposed by those m’s in such that m 6∈ Z ′′ and there
is an element (m, xm, (Sk(m, i) : i < xm)) in F is recursive. In fact, for
such m and xm , the (m, xm)th column is constrained to be finite. Thus,
the set of such q’s is recursive in the recursive join of the set of Hm’s for
which m ∈ Z ′′ and there is an (m, xm, (Sk(m, i) : i < xm)) ∈ F . Further,
if (p1, F1) extends (p, F) in P B1 , then p1 is such a q . Thus, for natural
numbers x , and y, (p, F)  {e}(x, B1 ⊕ G2) = y if and only if there is a
q as above such that {e}(x, q ⊕ G2) = y. But then Hn would recursive in
the above join, a contradiction as in Substep 3.0.

Consequently, for each n 6∈ Z ′′ and each e ∈ ω, there is no condition
which forces {e}(B1 ⊕ G2) to be equal to Hn .

So, if B1 is P B1 generic, then B1 has the property required by Condi-
tion 6.10.

Step 4. We can now complete our proof of Theorem 6.2.5. As in
the proof of Theorem 6.2.1, there is a countable family of dense open
sets D such that for each D-generic G, viewing G as a quadruple
G1 ⊕ G2 ⊕ G3 ⊕ G4, there exist objects as follows:
1. an injective continuous function F as in Lemma 6.1.4

(∀X)[degree(F(X)⊕5(G2)) = π(degree(X ⊕ G2))],
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where we use 5(Gi ) to denote a representative of π(degree(G2));
2. perfect sets P1 and P2, represented by perfect trees T1 and T2 recur-

sive in G1 ⊕ G2, and a perfect set Q, represented by TQ recursive in
5(G1)⊕5(G2), such that Q is contained in the range of F on P1 and
P2 is contained in the range of F−1 on Q;

3. a set (Hi : i ∈ ω) of paths in P2 for which there are
(a) and sets A0 and A1 which are recursive in G1 ⊕ G2 ⊕ G3 and

satisfy 6.5 and 6.6,
(b) and sets B0 and B1 which are recursive in G1 ⊕ G2 ⊕ G4 ⊕ Z and

satisfy 6.10.
Let5(A0),5(A1),5(B0), and5(B1) represent the values of π on the

degrees of A0, A1, B0, and B1, respectively. Now we consider the conse-
quences of properties (1) through (3) for these sets.

As in the proof of Theorem 6.2.1, the sequence (F(Hi ) : i ∈ ω) is uni-
formly recursive in5(G)′′. Now, let W0 = {n : 5(B0)⊕5(G2) ≥T F(Hn)}.
Since G ⊕ Z ≥T B0 ⊕ G2, 5(B0) and 5(G2) are recursive in 5(G ⊕ Z).
Thus, W0 is recursively enumerable relative to 5(G ⊕ Z)′′.

By Condition 6.10, for each n, B0 ⊕ G2 ≥T Hn if and only if
n 6∈ Z ′′. Consequently, 5(B0) ⊕ 5(G2) ≥T 5(Hn) if and only if
n 6∈ Z ′′. Since F(Hm)⊕5(G2) has the same degree as 5(Hm)⊕5(G2),
5(B0) ⊕ 5(G2) ≥T F(Hn) if and only if n 6∈ Z ′′. Thus, W0 is equal
to the complement of Z ′′, and so the complement of Z ′′ is recursively
enumerable relative to (5(Z)⊕5(G))′′.

By Condition 6.10, similarly applied to B1, Z ′′ is recursively enumer-
able relative to (5(G)⊕5(Z))′′. Hence, Z ′′ is recursive in (5(G)⊕5(Z))′′.

Genericity. Now, we can calculate the amount of genericity needed
above. As in Theorem 6.2.1, arithmetic genericity is sufficient for Steps 1
and 2. In Step 3, we satisfied arithmetic properties between the Gi ’s, B j ’s,
and Z ; arithmetic genericity relative to Z is sufficient. Thus, as in Theo-
rem 6.2.1 if the Gi ’s are generic for the countable family of dense open
sets of Theorem 6.1.6 to ensure the continuous representation of π and
are mutually arithmetically generic relative to Z , then we can successfully
execute Steps 1-3.

Theorem 6.2.7 Suppose that π : D
∼
→D.

1. For all z ∈ D, z′′
= π(z)′′.

2. The relation R(x, y) defined by y = x ′′ is invariant under π .
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Proof: Let Z ⊆ ω be given of degree z, and let 5(Z) be a representative
of π(degree(z)). Let D∗ be the countable family of dense open sets ob-
tained in Theorem 6.2.5 for the automorphism π−1 and the set 5(Z). By
Theorem 6.1.1 on page 67, there is a countable family of dense open sets
set D such that if G is D-generic then G is 2-generic and such that there
is a D∗ generic set G∗ which is recursive in the join of 5(Z) with 5(G),
a representative of π(degree(G)). Fix such G and and G∗.

Now consider the automorphism π−1
: D

∼
→D. By the previous para-

graphs, 5(Z)′′ is recursive in (Z ⊕5−1(G∗))′′, where 5−(G∗)′′ is a rep-
resentative of π−1(degree(G∗)). Since G∗ is recursive in 5(Z) ⊕ 5(G),
5−1(G∗) is recursive in Z ⊕ G. Consequently, 5(Z)′′ is recursive in
(Z ⊕ G)′′. By Theorem 2.5.12, (Z ⊕ G)′′ ≡T Z ′′

⊕ G, and so 5(Z)′′

is recursive in Z ′′
⊕ G. By Theorem 2.5.6, since for an arbitrary D-generic

set G, 5(Z)′′ is recursive in Z ′′
⊕ G, it must be the case that 5(Z)′′ is

recursive in Z ′′. Thus, z′′
≥T π(z)′′.

Now we apply the above paragraphs to the automorphism π−1 and the
degree π(z). We may conclude that π(z)′′ ≥T (π−1(π(z)))′′, or equiva-
lently that π(z)′′ ≥T z′′. Consequently, z′′

= π(z)′′ and we have verified
the first claim in Theorem 6.2.7.

For the second claim, let R(x, y) be the relation y = x ′′ and sup-
pose that y = x ′′. Then y ≥T 0′′, and by Theorem 6.2.4, π(y) = y,
and so π(y) = x ′′. By the previous paragraphs, x ′′

= π(x)′′, and
so π(y) = π(x)′′. Thus, R(x, y) implies R(π(x), π(y)). Similarly,
R(π(x), π(y)) implies R(π−1(π(x)), π−1(π(y))), that is R(π(x), π(y))
implies R(x, y). Thus, R is preserved by any automorphism of D.

6.3 Representing Aut(D) by arithmetic func-
tions

Theorem 6.3.1 Suppose that π : D
∼
→D.

1. There is a recursive function {e}(X, Y ) such that for all G, if G is
5-generic, then π(degree(G)) is represented by {e}(G ⊕ ∅

′′).
2. There is an arithmetic function F : 2ω → 2ω such that for all X ∈ 2ω,
π(degree(X)) is represented by F(X).

Proof: We prove Theorem 6.3.1 by returning to Theorem 5.1.2 and incor-
porating the extra information that for all degrees x , π(x) is recursive in
x ′′.
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By Theorem 5.1.2, there is a real parameter P , a countable family of
dense open sets DP , and an index for a recursive functional eP such that
the function G 7→ {eP}(G ⊕ P) represents π on the set of DP -generic
reals. By Theorem 6.2.4, for all degrees x , x ∨ 0′′

≥T π(x). But then,
there must be a Cohen condition p and an index e such that the following
condition holds.

p  {e}(G ⊕ ∅
′′) = {eP}(G ⊕ P) (6.14)

By replacing e with another index which refers to p as data, we may
assume that p is the empty condition. Then, there is a countable fam-
ily of dense open sets D containing DP such that for all D-generic G,
{e}(G ⊕ ∅

′′) = {eP}(G ⊕ P), and so the function G 7→ {e}(G ⊕ ∅
′′)

represents π on the set of D-generic reals.
By Lemma 5.1.5 and Theorem 2.5.6 (see page 63), let G1 and G2

be sufficiently generic so that for every set Y , G1, G2, C(Y,G1), and
C(Y,G2) are D-generic and so that the ideal of degrees below Y is rep-
resented as in Equation 6.15.

(C(Y,G1)⊕ G1) ∩ (C(Y,G2)⊕ G2) = (Y ) (6.15)

Equation 6.15 expresses a degree theoretic property of these sets. Con-
sequently, it is preserved by π . We consider the case when we replace the
variable Y with a particular D-generic G and use the representation of π
on the set of D-generics.

(
{e}(G ⊕ 0′′)

)
=(

{e}(C(G,G1)⊕ 0′′)⊕ {e}(G1 ⊕ 0′′)
)⋂(

{e}(C(G,G2)⊕ 0′′)⊕ {e}(G2 ⊕ 0′′)
)

(6.16)

Equation 6.16 expresses an arithmetic relationship between G, G1 and
G2, which is true of all D-generic reals which are also sufficiently generic
so that Equation 6.15 is satisfied. Thus, Equation 6.16 is forced by the
empty condition for the partial order to add three Cohen generic reals.

By an elementary counting of the quantifiers, Equation 6.16 is a 50
6

statement about G, G1, and G2. Consequently, it is satisfied by any triple
G, G1, and G2 which are mutually 5-generic.

Now, let G be an arbitrary 5-generic set. There are sets G1 and G2
such that G, G1 and G2 are mutually 5-generic, and also G1 and G2 are
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sufficiently generic so that all of G1, G2, C(G,G1), and C(G,G2) are D-
generic. For this choice of G1 and G2, the right-hand-side of Equation 6.16
represents the ideal of degree below π(degree(G)). And so, {e}(G ⊕ 0′′)
represents π(degree(G)) as well. Thus, we have verified the first claim in
Theorem 6.3.1.

The second claim follows almost immediately. Suppose that X is a
given set and let 5(X) represent π(degree(X)).

If G1 and G2 are sufficiently generic, then G1, G2, C(X,G1), and
C(X,G2) are 5-generic and represent (X) as follows.

(C(X,G1)⊕ G1) ∩ (C(X,G2)⊕ G2) = (X) (6.17)

Now suppose that G1 and G2 be 5-generic relative to X . First note, since
the transfer of genericity from a generic G to C(X,G) is direct, C(X,G1)
and C(X,G2) are 5-generic. (For the sake of the claim, we need only that
there is a k such that if G is k-generic then C(X,G) is 5-generic.) Second,
since C is a recursive function, Equation 6.17 is a 50

4 statement statement
about X which is forced, so it is satisfied by our sets G1, and G2. Applying
π and representing it by e as above, we obtain Equation 6.18,

({e}(C(X,G1)⊕∅
′′)⊕{e}(G1⊕∅

′′))∩({e}(C(X,G2)⊕∅
′′)⊕{e}(G2⊕∅

′′))

= (5(X)) (6.18)

where 5(X) is a representative of π(degree(X)). Let S(X,G1,G2) be the
set of e∗ such that {e∗

}(X ⊕ ∅
′′) represents a maximal element of (5(X)),

and note that S(X,G1,G2) is uniformly arithmetic relative to X , G1, and
G2.

But now we can represent π by an arithmetic function P on represen-
tatives. Given X , we first compute G1 and G2 from X (5) so that G1 and
G2 are mutually 5-generic relative to X ; see Theorem 2.5.8. Then we let
P(X) be {e∗

}(X ⊕0′′), where e∗ is the least element of S(X,G1,G2). The
function X 7→ {e∗

}(X ⊕ 0′′) gives the desired arithmetic representation of
π .

Corollary 6.3.2 Aut(D) is countable.

Proof: Every element of Aut(D) is represented by an arithmetically de-
fined function, and there are only countably many such definitions.
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6.3.1 Generic basis theorem
Definition 6.3.3 A set A ⊆ D is an automorphism base for D if and only if
every automorphism of D is determined by its action on A. That is, when-
ever π1 : D

∼
→D, π2 : D

∼
→D, and π1 and π2 agree on A, then π = π2.

Theorem 6.3.4 (Jockusch and Posner (1981)) If D is a countable family
of dense open sets, then the degrees represented by the D-generic reals
form an automorphism base for D.

Proof: The Jockusch and Posner (1981) Theorem follows from Equa-
tion 6.15 and the surrounding text, which states that for any countable
family of dense open sets D and every degree x , x can be written as a meet
of joins of degrees of D-generic reals.

Theorem 6.3.5 Suppose that g is the degree of a 5-generic subset of ω and
that π : D

∼
→D. Then π is fully determined by its value on g.

Proof: By Theorem 6.3.1, let e be given so that for all 5-generic sets G,
{e}(G ⊕ ∅

′′) is a representative of π(degree(G)). Consider the assertion,

{e}(G ⊕ 0′′) 6≡T G. (6.19)

Since e represents π on all sufficiently generic sets, the satisfaction of
Equation 6.19 depends only on the Turing degree the generic, and so it
is decided by the null condition. Writing Equation 6.19 out more fully, it
says, For all Turing functionals 8 and 9, there is an argument x, such
that either 8(x,G ⊕ ∅

′′) is not equal to G(x) or 9(x,G) is not equal to
{e}(x,G ⊕ ∅

′′). The disjunction of inequalities is a 50
3-statement about G.

Consequently, Equation 6.19 is a 50
5 statement about G.

Now, a 50
5 statement about G which is decided by the null condition,

is either true of all 5-generic sets or is false of all 5-generic sets. Since e
represents π on all 5-generic sets, π is the identity on one 5-generic degree
if and only if it is the identity on all 5-generic degrees. By Theorem6.3.4,
π is the identity on all 5-generic sets if and only if it is the identity on
D. Therefore, π is the identity on one 5-generic set if and only if it is the
identity on D.

Suppose that g is a 5-generic degree, and π1 and π2 are automorphisms
of D such π1(g) = π2(g). Then, π−1

1 ◦ π2(g) is equal to g. By the above,
π−1

1 ◦ π2 is the identity function, and so π1 is equal to π2. Thus, Theo-
rem 6.3.5 is verified
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Corollary 6.3.6 1. For any 5-generic degree g, the singleton {g} is an
automorphism base for D.

2. The degrees below 0(5) form an automorphism base for D.

Proof: The first claim is just a restatement of the previous theorem. The
second follows from the first by observing that there is a 5-generic degree
below 0(5).



7
Interpreting Aut(D) within D

In this chapter, we interpret the apparatus of persistent functions and
generic degrees into the first order theory of D.

7.1 Assigning representatives to degrees
7.2 Countable assignments
Definition 7.2.1 An assignment of reals consists of
1. A countable ω-model M of T , the theory of Definition 2.2.1 consisting

of the fragment of ZFC which includes only the instances of replace-
ment and comprehension in which the defining formula is 61.

2. A function f and a countable ideal I in D such that f : DM
→ I

surjectively and for all x and y in DM, M |= x ≥T y if and only if
f (x) ≥T f (y) in I.

Definition 7.2.2 For assignments (M0, f0, I0) and (M1, f1, I1), (M1, f1, I1)
extends (M0, f0, I0) if and only if
1. DM0 ⊆ DM1 ,
2. I0 ⊆ I1,
3. and f1 � DM0 = f0.

Definition 7.2.3 An assignment (M0, f0, I0) is extendable if

∀z1∃(M1, f1, I1)
(M1, f1, I1) extends (M0, f0, I0)), z1 ∈ I1, and

∀z2∃(M2, f2, I2)

 (M2, f2, I2) extends (M1, f1, I1), z2 ∈ I2, and

∀z3∃(M3, f3, I3)

[
(M3, f3, I3) extends

(M2, f2, I2) and z3 ∈ I3

] 
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Theorem 7.2.4 If (M, f, I) is an extendable assignment, then there is a
π : D

∼
→D such that for all x ∈ DM, π(x) = f (x).

Proof: Let (M, f, I) be an extendable assignment. We will show that there
is an ideal with a persistent automorphism ρ such that the ideal contains
DM and I and such that ρ extends f . Consequently, f is persistent. By
Theorem 4.4.3, f extends to an automorphism of D.

∼
IDM

f

∼
DM1

f1
I1 3 0′

Fig. 7.1 Extending to include 0′ in the range

Let (M1, f1, I1) extend (M, f, I), so that 0′ is an element of I1 and so
that the remaining clauses of Condition 7.2.3 are satisfied. We will show
that DM1 and I1 are equal and that f1 is a persistent automorphism of I1.

To see that I1 ⊆ DM1 , suppose that y1 is an element of I1. Let Y1 be
a representative of y1. By Theorem 3.2.3, there is a sequence of parameters
p which is recursive in y1 ∨ 0′ and which codes an isomorphic copy of
N with a unary predicate for Y1. Since 0′

∈ I1, p ⊂ I1. Since DM1 is
isomorphic to I1, there are parameters in DM1 which code an isomorphic
copy of N with a unary predicate for Y1. But then, Theorem 3.2.4 implies
that Y1 is arithmetically definable from a sequence of representatives of
these parameters. Consequently, Y1 ∈ M1 and so y1 ∈ DM1 .

To see that DM1 ⊆ I1, suppose that x1 is an element of DM1 . By
our choice of (M1, f1, I1), there is an (M2, f2, I2) such that x1 ∈ I2
and (M2, f2, I2) extends (M1, f1, I1). This situation is illustrated in Fig-
ure 7.2. Now, let F−1

2 (X1) denote a representative of f −1
2 (x1). There are

parameters q below f −1
2 (x1) ∨ 0′ which code N with a unary predicate

for F−1
2 (X1). Consequently, the pointwise image f2(q) of q is a sequence

of parameters below x1 ∨ f2(0′) which codes the same information. Of
course, 0′

∈ M and f2(0′) is equal to f (0′) ∈ I. We have shown that
I1 ⊆ DM1 , so f (0′) ∈ M1. Therefore, q ∈ M1 and, by Theorem 3.2.4,
F−1

2 (X1) ∈ M1. But then, f −1
2 (x1) ∈ M1 and so f1( f −1

2 (x1)) ∈ I1. Of
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∼

∼

f1
I1

DM2

f2
I2 3 x1

DM1

Fig. 7.2 Extending M1 to include x1 in the range

course, this means that x1 ∈ I1.
Thus, DM1 = I1 and f1 : I1

∼
→I1 is the extension of f .

It remains to show that f1 is persistent. For this, suppose that y2 ∈ D. It
will be sufficient to show that y2 belongs to an ideal I2 extending I1 such
that y2 ∈ I2 and f1 lifts to an automorphism of I2.

∼

f1
I1DM1

∼
DM3

f3

∼
DM2

f2
I2 3 y2

I3 3 y3

Fig. 7.3 Extending to include y2 in the range

We return to the argument of the previous paragraph. By our choice of
(M1, f1, I1), there is an (M2, f2, I2) such that y2 ∈ I2 and (M2, f2, I2)
extends (M1, f1, I1) so that the remaining clause of Condition 7.2.3 is sat-
isfied. Since DM1 = I1, we can identify the two ideals on the bottom level
of Figure 7.2 as in Figure 7.3. The remaining clause of Condition 7.2.3
asserts that for any y3, there is an extension (M3, f3, I3) of (M2, f2, I2)
such that y3 ∈ M3. We have indicated this extension property with dashed
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arrows.
But now we need only show that DM2 = I2 in order to establish our

claim. We argue for this equality in the way that we did for DM1 = I1.
In the previous argument, we applied the assumption that we could incor-
porate any element of DM1 into the range of some assignment extending
the given one (M1, f1, I1). By the final clause of Condition 7.2.3, this
same assumption is available for (M2, f2, I2). So, by the same argument
as before, DM2 = I2.

We have shown that the function f : DM ∼
→I can be extended to a

persistent automorphism f1 of the ideal I1, where DM
∪ I ⊆ I1. By

Theorem 4.4.3, there is an automorphism π of D which extends f1. This
automorphism extends f , which verifies Theorem 7.2.4.

Remark 7.2.5 By the Coding Theorem 3.1.2, the following properties
of (m, f , i) are definable in D. (Here m refers to a finite sequence
(m1, . . . ,mk) of degrees, and similarly for f and i).
1. m codes an ω-model M of T
2. i codes a countable ideal I in D

3. f codes a function f from DM onto I.
4. (M, f, I) is an extendable assignment.

7.3 Definability in D
7.3.1 Defining relative to parameters
Theorem 7.3.1 If g is the Turing degree of an arithmetically definable 5-
generic set, then the relation R(c, d) given by

R(c, d) ⇐⇒ c codes a real D and D has degree d

is definable in D from g.

Proof: Let G be an arithmetically definable 5-generic subset of ω and let
g be the Turing degree of G.

Consider the following property of c and d. There are m, f , and i such
that all of the following conditions are satisfied.
1. c codes N with a unary predicate for a set D;
2. m codes an ω-model M of T ;
3. i codes a countable ideal I in D;
4. f codes a function f from DM onto I;
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5. (M, f, I) is an extendable assignment;
6. g ∈ I, degree(G)M is the Turing degree of G as identified in M by

G’s arithmetic definition, and f (degree(G)M) = g;
7. the set D coded by c is an element of M, degree(D)M is the Turing

degree of D as defined in M, and f (degree(D)M) = d.
Suppose that c codes a set D and D has degree d. We form (M, f, I) by

letting M be any countable ω-model of T which contains D as an element.
We let I be DM and let f be the identity. Then (M, f, I) is extendable
and any sequence of codes for (M, f, I) will satisfy the above property.

Conversely, suppose that c and d are given so that there are m, f , and
i such that all of the above conditions are satisfied. By Theorem 7.2.4, fix
an isomorphism π : D

∼
→D such that for all x ∈ DM, π(x) = f (x). But

then π(g) = g, and by Corollary 6.3.6 π is the identity function. Letting D
denote the set coded by c, since f (degree(D)M) = d, D is a representative
of d.

By the Coding Theorem 3.1.2, the property written above is definable
in D relative to the parameter g. This verifies Theorem 7.3.1.

Theorem 7.3.2 Suppose that R is a relation on D. The following condi-
tions are equivalent.
1. R is induced by a projective, degree invariant relation on 2ω.
2. R is definable in D using parameters.

Proof: D is defined within the language of second order arithmetic. Con-
sequently, if R is definable in D using parameters, then R is induced by a
projective, degree invariant relation on 2ω.

For the converse, suppose that R(X1, . . . , Xn) on 2ω is a degree in-
variant relation on 2ω which is defined in second order arithmetic by the
formula ϕ relative to the real parameters, P1, . . . , Pk .

R(X1, . . . , Xn) ⇐⇒ ϕ(X1, . . . , Xn, P1, . . . , Pk)

We exhibit a definition of the induced relation R in D relative to the pa-
rameter g of Theorem 7.3.1 and parameters p1, . . . , pk which code N
with unary predicates for P1, . . . , Pk , respectively. For x1, . . . , xn in D,
R(x1, . . . , xn) if and only if there are c1, . . . , cn such that the following
conditions hold.
1. c1, . . . , cn code N with unary predicates for X1, . . . , Xn , respectively;
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2. X1, . . . , Xn are representatives for the degrees x1, . . . , xn , respec-
tively;

3. and for P1, . . . , Pk the sets coded by p1, . . . , pk , ϕ(X1, . . . , Xn, P1, . . . , Pk).
The first and third clauses can be expressed in the language of D

by applying the Coding Theorem 3.1.2. The second clause can be ex-
pressed in the language of D relative to the parameter g by applying
Theorem 7.3.1.

7.3.2 Defining without parameters.
Theorem 7.3.3 Suppose that R is a relation on D. The following condi-
tions are equivalent.
1. R has the following two properties.

(a) R is induced by a degree invariant relation on 2ω which is defin-
able in second order arithmetic.

(b) R is invariant under Aut(D).
2. R is definable in D.

Proof: The implication from (2) to (1) follows directly from the observa-
tion that D is defined in a first order way within second order arithmetic.

Suppose that R satisfies the two clauses of (1). Let ϕ be a formula in
the language of second order arithmetic such that for all X1, . . . , Xn ,

R(degreeX1, . . . , degreeXn) ⇐⇒ ϕ(X1, . . . , Xn).

Now we exhibit a definition of R in D. Suppose that x is a length n se-
quence from D. Then, since R is invariant under all automorphisms of D,
R(x) if and only if there is a z in the orbit of x with R(z). The latter condi-
tion is equivalent to the statement that there is a sequence of sets Z repre-
senting z in the orbit of x such that ϕ(Z). By Theorem 7.3.1 this condition
is equivalent to the one stating that there is a sequence of sets Z represent-
ing z and an extendable assignment (M, f, I) such that for all Zi ∈ Z,
f (degree(Zi )) = xi and such that ϕ(Z). This final condition can be ex-
pressed in the language of D by applying the Coding Theorem 3.1.2.

Corollary 7.3.4 If R is a relation on D and R is contained in the degrees
above 0′′, then R is definable in D if and only if R is induced by a degree
invariant relation on 2ω which is definable in second order arithmetic.

Proof: Corollary 7.3.4 follows from Theorem 7.3.2 by observing that
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By Theorem 6.2.4, every automorphism of D is the identity on all de-
grees greater than or equal to 0′′. Consequently, every relation on the de-
gree above 0′′ is invariant under all automorphisms of D. Thus, if R is a
relation on D and R is contained in the degrees above 0′′, then R satisfies
Condition (1b) of Theorem 7.3.2. Consequently, R is definable in D if and
only if it satisfies Condition (1a), that it is induced by a degree invariant
relation on 2ω which is definable in second order arithmetic.

7.3.3 Defining the double-jump
Theorem 7.3.5 The function x 7→ x ′′ is definable in D.

Proof: By Theorem 6.2.7, the relation y = x ′′ is invariant under all au-
tomorphisms of D. It is clearly degree invariant and definable in second
order arithmetic. Therefore, by Theorem 7.3.3, it is definable in D.

7.4 ω-homogeneity
Definition 7.4.1 D is ω-homogeneous if and only if for all p and q from
D, if D( p) ≡ D(q) then there is an automorphism π : D

∼
→D such that

π( p) = q.

Theorem 7.4.2 If there is a wellordering of 2ω which can be defined in
second order arithmetic, then D is ω-homogeneous.

Proof: Suppose that > is a wellordering of 2ω which can be defined in
second order arithmetic. Now suppose that a is a finite sequence from D.

Let L(a) be the <-lexicographically least sequence from 2ω such that
the sequence of degrees represented by A is automorphic to a. By Theo-
rem 7.3.3, for each i less than or equal to the length of a and for each n,
the property n is an element of the i th component of L(a) is definable in D
as a property of a. Thus, the type of a determines the sequence L(a). Of
course, if for two sequences a and b it is the case that L(a) = L(b), then
the orbits of a and b have a common point and so they are automorphic.
Consequently, if a and b have the same type, then they are automorphic,
as required to verify the ω-homogeneity of D.

Theorem 7.4.3 D is not ω-homogeneous in the model V [G1,G2] ob-
tained by adding two Cohen generic reals to V .

Proof: We consider Cohen forcing over V to add two mutually generic
reals (G1,G2). Let (g1, g2) denote the Turing degrees of the generic sets.
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First observe that the type of (g1, g2) in DV [G1,G2] depends only on the
Turing degrees of G1 and G2. Hence no finite condition on (G1,G2)
can change the Boolean value for a statement about (g1, g2) in the
structure DV [G1,G2]. Consequently, the type of (g1, g2) in the structure
DV [G1,G2] is equal to the type of (g2, g1) in the structure DV [G2,G1]. But
DV [G1,G2] = DV [G2,G1], so (g1, g2) and (g2, g1) have the same type in
structure DV [G1,G2]. However, by Theorem 6.2.2, there is no automor-
phism of DV [G1,G2] which takes g1 to g2 as G2 is not arithmetically defin-
able from G1. Consequently, the Turing degrees are not ω-homogeneous
in V [G1,G2].

Corollary 7.4.4 The statement D is ω-homogeneous is independent of
ZFC.

7.5 Biinterpretability conjectures
Definition 7.5.1 1. D is biinterpretable with second order arithmetic if

and only if the relation on c and d given by

R(c, d) ⇐⇒ c codes a real D and D has degree d

is definable in D.
2. We say that D is biinterpretable with second order arithmetic relative

to parameters if R is first order definable in D relative to finitely many
parameters from D.

We can restate Theorem 7.3.1 on page 96 in the language of Defini-
tion 7.5.1 .

Theorem 7.5.2 D is biinterpretable with second order arithmetic relative
to parameters.

The question of biinterpretability without parameters is equivalent to
the question of rigidity.

Theorem 7.5.3 The following are equivalent.
1. D is biinterpretable with second order arithmetic.
2. D is rigid.

Proof: Suppose that D is biinterpretable with second order arithmetic.
Then each degree in D is associated with the set of codes for represen-
tatives of it by a relation that is defined by a formula in the first order
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language of D. By the Coding Theorem 3.1.2, every countable relation on
D is definable in D, and so being the code for a subset of N, the standard
model of arithmetic, is preserved by any automorphism of D. In particu-
lar, codes for the standard model of arithmetic are mapped to codes for the
standard model of arithmetic. It follows that if p codes a set X ⊆ N and
π : D

∼
→D, then π( p) codes the same set X . Consequently, if π : D → D

and x ∈ D, then π(x) and x have the same set of representatives, and so
π(x) = x .

Conversely, suppose that D is rigid. Then, by Theorem 7.3.3, for every
arithmetically definable set X , the Turing degree of X is definable in D.
In particular, there is a 5-generic set G such that its Turing degree g is
definable in D. Theorem 7.3.1 states that the relation R(c, d) given by

R(c, d) ⇐⇒ c codes a real D and D has degree d

is definable in D from g. Given that g is definable in D, we can replace
the instances of g in the definition of R and conclude that R is defined by
a first order formula in D. Thus, D is biinterpretable with second order
arithmetic.

Conjecture 7.5.4 D is biinterpretable with second order arithmetic.
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8
Defining the Turing jump

In this chapter, we prove the Shore and Slaman (1999) theorem that the
function x 7→ x ′ is definable in D. The argument given below it taken
directly from (Shore and Slaman, 1999).

To establish the definability of the jump, we will first show that the
ideal I(10

2) of degrees with 10
2 representatives is definable within D in

terms of the double jump. By Theorem 7.3.5, the double jump is definable
in D, and so I(10

2) sets is definable in D. Of course, 0′ is the greatest
element of this ideal, so it is definable in D, too. Finally, we will observe
that the argument works relative to any given degree. Consequently, for
each x ∈ D, x ′ is uniformly definable from x within D. The definability of
the Turing jump follows.

Ultimately, our definition of I(10
2) is grounded on a sequence of com-

pactness arguments. In the next section, we present the Jockusch and Soare
(1972) Low Basis Theorem, by which we can control the complexity of the
sets that we produce. We will give the definition of I(10

2) in the second
section, and complete the proof of the definability of the jump in the one
after that.

8.1 Jockusch-Soare Low Basis Theorem
Definition 8.1.1 1. A tree T contained in ω<ω is finitely branching if and

only if there is a function f : ω → ω such that for all σ ∈ T and all i
in the domain of σ , f (i) ≥ σ(i).

2. A tree T is recursively bounded if and only if there is an f as above
such that f is recursive.

Usually one defines a tree to be finitely branching by saying that the tree
has finite fan-out. Clearly, our defining property implies this. One proves
the converse implication by defining a function f by recursion proving that

103
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each level of T is finite and that there is a finite upper bound on the fan-out
of finitely many elements of T .

Theorem 8.1.2 (König’s Lemma) Suppose that T is an infinite finitely
branching tree. Then T has an infinite path.

Theorem 8.1.2 is just the assertion that Cantor space is compact, put in
the present context.

Proof: We build a path through T by recursion. We let σi be the element
of T that we choose during step i of the recursion.

Since T is infinite, it is not empty. Let τ be an element of T . Then,
every initial segment of τ is also an element of T . Consequently, the null
sequence is an element of T , and we take it to be σ0. Note that since every
element of ω<ω extends the null sequence and T is an infinite subset of
ω<ω, there are infinitely many extensions of the null sequence in T .

Now, suppose that σi is given so that there are infinitely many exten-
sions of σi in T . Since T is finitely branching, there are only finitely many
immediate successors of σi in T . Since there are infinitely many exten-
sions of σi in T , at least one of these immediate successors of σi must
have infinitely many extensions in T . Let σi+1 be σ_(mi+1), where mi+1
is the minimal m such that σ_(m) ∈ T and σ_(m) has infinitely many
extensions in T .

Clearly, {σi : i ∈ ω} is an infinite path in T , as required.

Theorem 8.1.3 (Jockusch and Soare (1972)) Suppose that T is an infi-
nite50

1 recursively bounded tree, and suppose that A ⊆ ω is not recursive.
Then there is an infinite path X through T such that X 6≥T A.

Proof: Let f be the recursive function which shows that T is recursively
bounded. Let T f be the subtree of ω<ω defined by σ ∈ T f if and only if
for all n less than the length of σ , f (n) ≥ σ(n). Suppose that T is defined
by the 50

1 formula, (∀n)ϕ(σ, n), in which ϕ has only bounded quantifiers.
We let T ∗ be defined as follows.

T ∗
= {σ ∈ T f : (∀τ ⊆ σ)(∀n ≤ length(σ ))ϕ(τ, n)

Then T ∗ is a recursively bounded recursive subtree of ω<ω such that T
is a subtree of T ∗. Further, if X is an infinite path in T ∗, then for all `0,
for every ` > `0, X � ` ∈ T ∗ and thus (∀n ≤ `)ϕ(X � `0, n). Conse-
quently, X is an infinite path through T . Thus, for every 50

1 recursively
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bounded subtree of ω<ω, there is a recursively bounded recursive subtree
of ω<ω which has exactly the same set of infinite paths. Since we are only
concerned with the infinite paths in T , we may assume that T is recursive.

Let P be the notion of forcing in which the set of conditions is the set of
infinite recursive subtrees of T and these are ordered by inclusion. Suppose
that G is an ultrafilter on P which is generic with respect to meeting all the
dense subsets of P which are arithmetically definable relative to A. (This
is more genericity than we will need, but the arguments which follow do
not require that we be subtle here.)

Now, we check that there is a unique infinite path common to all of the
trees in G. For n ∈ ω, consider the set Sn of T ∗ in P such that there is a
σ ∗

∈ T ∗ such that σ ∗ has length greater than or equal to n and every σ in T1
is compatible with σ ∗. That is, T ∗ has a stem of length greater than or equal
to n. Now, suppose that T1 is an element of P . Then, T1 is a recursively
bounded, and hence finitely branching, infinite tree. Consequently, T1 has
an infinite path, say X1. Now, let T2 be the subtree of T1 consisting of
those elements of T1 which are compatible with X1 � n + 1. Since X1 is
an infinite path in T2, T2 is an infinite subtree of T1. It is recursive since it
is determined by a recursive condition on elements of the recursive tree T1.
Finally, T2 has a stem of length greater than or equal to n. Consequently,
Sn is dense in P . It is also arithmetically definable. Since G is generic, for
each n there is an element Tn of Sn in G. The elements of G are compatible
and so the stems of the Tn belong to every element of G. Hence, the limit
of the stems, call it X (G), of the Tn is an infinite path through all of the
elements of G. Further, if X is an infinite path in all of the Tn , then every
initial segment of X is compatible with the stems of all of the Tn and so
X = X (G).

Now, we argue that X (G) has the required property.
Suppose that T1 ∈ P , that 8 is a Turing functional, and that for each

x there is a y such that T1  8(x, X (G)) = y. Let x be fixed, let y be
the value decided by T1 for 8(x, X (G)), and consider the subtree S of T1
defined as follows.

S = {σ : σ ∈ T1 and 8(x, σ ) 6= y}

That is, σ ∈ S if and only if either 8(x, σ ) does not converge by a com-
putation of length less than the length of σ or it does converge by such a
computation and the value produced by that computation is different from
y. If S were infinite, then it would be an extension of T1 in P which forced
8(x, X (G)) not to equal y. Consequently, S is finite. But, then there must
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be an ` such that no element of T1 of length ` belongs to S. It follows
that T1 forces8(X (G)) to be recursive. Given x , the value of8(x, X (G))
forced by T1 can be computed by finding the least ` such that there is a y,
for every σ , if σ belongs to T1 and σ has length `, then 8(x, σ ) = y by
means of a computation of length less than `.

We can complete the proof of Theorem 8.1.3. Given a Turing func-
tional 8 and a tree T1 ∈ P , either there is an x such that T1 does not
decide 8(x, X (G)) and so there is a T2 extending T1 in P such that
T2  8(x, X (G)) 6= A(x), or T1 forces 8(X (G)) to be recursive and
therefore unequal to A. In either case, T1 cannot force 8(X (G)) to be
equal to A.

The dense sets associated with making8(X (G)) unequal to A are arith-
metic in A, so if G is generic with respect to these sets, then X (G) satisfies
the claim of Theorem 8.1.3.

We will use Theorem 8.1.3 in the following relativized form.

Theorem 8.1.4 Suppose that T is an infinite 50
n recursively bounded tree,

and suppose that A ⊆ ω is not10
n . Then there is an infinite path X through

T such that X 6≥T A.

8.2 Kumabe-Slaman forcing
Our definition of I(10

2) is based on the following technical fact.

Theorem 8.2.1 (Shore and Slaman (1999)) For X ∈ 2ω, the following
conditions are equivalent.
1. X is not recursive in 0(n).
2. There is a G ∈ 2ω such that X ⊕ G ≥T G(n+1).

As stated, Theorem 8.2.1 will be sufficient for our purposes, though
it holds in more generality; one can replace G(n+1) by the value of any
n + 1-fold composition of recursively enumerable and degree increasing
operations, or prove an analogous theorem for transfinite iterations of such
operations. See (Shore and Slaman, 1999).

Proof: The remainder of this section is devoted to the proof of Theo-
rem 8.2.1. The following notion of forcing is due to Kumabe and Slaman,
who used it to prove a version of Theorem 8.2.1 in which the nth jump is
replaced by the ωth jump and X not recursive in 0(n) is replaced by X is
not arithmetic.
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Definition 8.2.2 Let P be the following partial order.

1. The elements p of P are pairs (8p, X p) in which 8p is a finite use-
monotone Turing functional and X p is a finite collection of subsets of
ω. (See Definition 1.1.3.)

2. If p and q are elements of P , then p ≥ q if and only if
(a) i. 8p ⊆ 8q and

ii. for all (xq, yq, σq) ∈ 8q \ 8p and all (x p, yp, σp) ∈ 8p, the
length of σq is greater than the length σp,

(b) X p ⊆ Xq ,
(c) for every x , y, and X ∈ X p, if 8q(x, X) = y then 8p(x, X) = y.

In short, a stronger condition than p can add computations to 8p, pro-
vided that they are longer than any computation in8p and that they do not
apply to any element of Xp.

Definition 8.2.3 If80 and81 are finite use-monotone Turing functionals,
then 80 ≥0 81 if and only if (80,∅) ≥ (81,∅) in P .

If G ⊆ P is a (sufficiently, or indeed, even slightly) P-generic filter,
then G is naturally associated with the functional 8G =

⋃
{8p : p ∈ G}.

To prove Theorem 8.2.1, we will construct a G that is sufficiently P-
generic so that every 60

n statement about 8G is correctly decided by a
condition in P that belongs to G. We will also show that it possible meet
the relevant dense subsets of P and still arrange that 8G(A) is equal to
the characteristic function of the complete 60

n set relative to 8G . The total
effect will be to ensure that 8(n)G is recursive in the join of 8G and A

We will treat 8G as if it were a subset of ω and suppress the recursive
apparatus needed to represent 8G in this way.

Lemma 8.2.4 Let p = (8p, X p) be an element of P.

1. p  a ∈ 8G if and only if a ∈ 8p.
2. p  a 6∈ 8G if and only if

(a) either a is not a suitable triple,
(b) or a is equal to (x, y, σ ), a 6∈ 8p, and either

i. there is a (x0, y0, σ0) ∈ 8p such that the length of σ0 is greater
than the length of σ , or x0 is greater than or equal to x and σ0
is compatible with σ .

ii. or σ is an initial segment of one of the elements of X p.
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Proof: For the first claim, if a ∈ 8p then a ∈ 8G whenever p ∈ G. Con-
sequently, if a ∈ 8p then p  a ∈ 8G . Conversely, if a 6∈ 8p then let σ be
a sequence such that σ has length greater than the length of any sequence
mentioned in p or a and such that σ is incompatible with all of the ele-
ments of X p. Let x be the least number such that 8p(x, σ ) is not defined.
Then q = (8p ∪ {(x, 0, σ )}, X p) extends p in P , a 6∈ 8p ∪ {(x, 0, σ )}
and no extension r of q can have a ∈ 8r . Consequently, q  a 6∈ 8G and
so p 6 a ∈ 8G . The proof of the second claim is similar. One observes
that if conditions 2(a) and (b) do not hold, then it is possible to extend 8p
to some 8q so that p ≥ (8q, X p) and a ∈ 8q .

Definition 8.2.5 Let 8p be a finite use-monotone Turing functional. Let
ψ(8G) be a 50

n sentence (∀m)θ(m,8G) about 8G in which θ(m,8G)

is 60
n−1. For τ = (τ1, . . . , τk) a sequence of elements of 2<ω all of the

same length, we say that τ is essential to ¬ψ(8G) over 8p when the
following condition holds: For all q and all m, if q is a condition such that
(8p,∅) > q and q  ¬θ(m,8G), then8q \8p includes a triple (x, y, σ )
such that σ is compatible with at least one component of τ .

Definition 8.2.6 For 80 a finite use-monotone Turing functional, ψ(8G)
a 50

n sentence, and k in ω, let T (80, ψ, k) be the set of length k vectors τ

which are essential to ¬ψ(8G) over 80.

We order T (80, ψ, k) by extension on all coordinates. That is, σ ex-
tends τ if and only if for all i less than or equal to k, the i th coordinate of
σ extends the i th coordinate of τ . It is immediate that if σ extends τ and σ

is essential to ¬ψ(8G) over 80, then τ is also essential to ¬ψ(8G) over
80. Consequently, T (80, ψ, k) is a subtree of the tree of length k vectors
of binary sequences of equal length ordered as above. That is, T (80, ψ, k)
is a subtree of a recursively bounded recursive tree.

Lemma 8.2.7 Suppose that80 is a finite use monotone functional,ψ(8G)
is a 50

n sentence with n ≥ 1, and k is a natural number.

1. If there is a size k set X of subsets of ω such that (80, X)  ψ(8G),
then T (80, ψ, k) is infinite.

2. If T (80, ψ, k) is infinite, then it has an infinite path Y . Further, each
such Y is naturally identified with a size k set X(Y ) of subsets of ω
such that (80, X(Y ))  ψ(8G).
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Proof: Say that ψ(8G) is equal to (∀m)θ(m,8G) where θ(m,8G) is
60

n−1. For the first claim, suppose there is a size k set X = (X1, . . . , Xk)
of subsets of ω such that (80, X)  ψ(8G). Fix such an X and consider
the set of sequences τ` = (X1 � `, . . . , Xk � `), as ` ranges over ω. For
all q extending (80,∅) and all m, if q  ¬θ(m,8G), then q is incompat-
ible with (80, X). In particular, (8q, Xq ∪ X) does not extend (80, X)
in P . But then, there must be an i such that 8q \ 80 contains an element
(x, y, σ ) such that X i extends σ . This σ is compatible with the i th com-
ponent of each τ`. Consequently, each τ` is essential to ¬ψ(8G) over 80
and hence T (80, ψ, k) is infinite. This verifies the first claim.

For the second claim of the lemma, suppose that T (80, ψ, k) is infinite.
By König’s Lemma, since T (80, ψ, k) is a finitely branching tree, it has
at least one infinite path. Now suppose that Y is such an infinite path. Let
X(Y ) be the size k set {X1, . . . , Xk} in which each X i is the limit of the
i th coordinates of the elements of Y . For every extension q of (80,∅) and
every m, if q  ¬θ(m,8G) then 8q \ 80 includes an element (x, y, σ )
such that σ is compatible with at least one component of each element of
Y . But then, for all sufficiently large elements of Y , σ is extended by a co-
ordinate of Y , and so σ is extended by at least one of the elements of X(Y ).
Thus, for all m, no extension of (80, X(Y )) can force ¬θ(m,8G). There-
fore, (80, X(Y ))  ψ(8G), as required to verify the second claim.

Lemma 8.2.8 For each finite use monotone functional 80, each 50
n sen-

tence ψ(8G) with n ≥ 1, and each number k, T (80, ψ, k) is 50
n , uni-

formly in 80, ψ , and k.

Proof: First consider the forcing relation for sentences in which all of the
quantifiers are bounded. Suppose ¬θ(8G) is a bounded sentence about
8G . Applying Lemma 8.2.4, the forcing relation for atomic sentences
is defined by a bounded formula. By induction on bounded complexity,
whether (80, X)  ¬θ(8G) is also defined by a bounded formula, which
is given uniformly in terms of 80, ¬θ(8G), and X . Fix a bound m on
the quantifiers in the formula which defines this property. Again, by re-
ferring to Lemma 8.2.4, if X0 is a subset of X such that for all X ∈ X ,
there is an X0 ∈ X0 such that X and X0 agree on the numbers less than
m, then (80, X)  ¬θ(8G) if and only if (80, X0)  ¬θ(8G). Since
there are only finitely many incompatible binary sequences of length m,
we can capture the possible behaviors of sets X by quantifying over the
possible behaviors of subsets of the set of length m binary sequences.
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Consequently, uniformly in ¬θ , whether there is a finite set X such that
(80, X)  ¬θ(8G) is a bounded property given uniformly in terms of 80
and ¬θ(8G).

We now prove Lemma 8.2.8 by induction on n. First consider the base
case when n is equal to 1. That is ψ is of the form (∀x)θ(x,8G) and
θ(x,8G) is bounded. Let k be fixed and suppose that τ is a length k se-
quence of elements of 2<ω all of the same length. By Definition 8.2.5,
τ is essential to ¬ψ(8G) over 80 if and only if for all q ∈ P and all
m ∈ ω, if (80,∅) > q and q  ¬θ(m,8G), then 8q \ 80 includes a
triple (x, y, σ ) such that σ is compatible with at least one component of
τ . By the analysis of the forcing relation for bounded sentences, for each
finite use-monotone functional 8q , whether there is a finite set Xq such
that (80,∅) > (8q, Xq) and (8q, Xq)  ¬θ(m,8G) is a bounded prop-
erty of 8q and m. Thus, the quantifier over q in P can be replaced by a
quantifier over finite use-monotone functionals 8q with 80 ≥0 8q . (See
Definition 8.2.3.) Consequently, τ ’s being essential to ¬ψ(8G) over80 is
a 50

1 property of τ , and so T (80, ψ, k) is a 50
1 tree, verifying the lemma

for n = 1. Note that the 50
1 definition of T (80, ψ, k) was obtained uni-

formly in terms of 80, ψ , and k.
For the inductive argument, we assume that the lemma holds for n. We

repeat the argument for the base case, with the inductive assumption used
to analyze the forcing relation for50

n sentences. Let k be fixed and suppose
that τ is a length k sequence of elements of 2<ω all of the same length.
Again, τ is essential to ¬ψ(8G) over 80 if and only if,

for all q ∈ P and all m ∈ ω, if (80,∅) > q and q  ¬θ(m,8G),
then 8q \ 80 includes a triple (x, y, σ ) such that σ is compatible
with at least one element of τ .

This condition is equivalent to
for all8q with80 ≥0 8q , for all k, and all m ∈ ω, if there is a size
k set X such that (8q, X)  ¬θ(m,8G) then 8q \ 80 includes a
triple (x, y, σ ) such that σ is compatible with at least one element
of τ .

By Lemma 8.2.7, “there is a size k set X such that (8q, X)  ¬θ(m,8G)”
can be replaced by “T (8q,¬θ(m), k) is infinite”. Thus, τ is essential to
¬ψ(8G) over 80 if and only if,

for all 8q such that 80 ≥0 8q , for all k, and all m ∈ ω, if
T (8q,¬θ(m), k) is infinite then8q \80 includes a triple (x, y, σ )
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such that σ is compatible with at least one element of τ .
Since ¬θ(m,8G) is a 50

n sentence, we can apply induction to conclude
that T (8q,¬θ(m), k) is uniformly 50

n in terms of 8q , ψ , m, and k. As
a fact of pure definability, whether a 50

n subtree of a recursively bounded
recursive tree is infinite is itself 50

n: it is 60
n to state that there is a splitting

level in the recursive tree which is disjoint from the 50
n subtree. So, “τ is

essential to ¬ψ(8G) over80” is equivalent to a condition of the form “for
all 8q with 80 ≥0 8q , for all k, and all m ∈ ω, if a 50

n condition holds,
then so does a bounded one”. Thus, “τ is essential to ¬ψ(8G) over 80”
is a 50

n+1 property of τ , 80 and ψ . Consequently, for each k and for each
50

n+1 sentence ψ , T (80, ψ, k) is 50
n+1, uniformly in 80, ψ , and k. This

completes the verification of the lemma.

Corollary 8.2.9 Suppose that A is not10
n . Let80 be a finite use-monotone

functional, ψ(8G) be a 50
n sentence about 8G , and k be a positive

natural number. If there is a size k set X of subsets of ω such that
(80, X)  ψ(8G), then there is such a set X such that A 6∈ X .

Proof: Suppose that there is a size k set X of subsets of ω such that

(80, X)  ψ(8G).

By Lemmas 8.2.7 and 8.2.8, T (80, ψ, k) is a 50
n subtree of a recursively

bounded recursive tree T which has an infinite path.
By the Jockusch and Soare (1972) Theorem 8.1.4, there is an infinite

path Y in T (80, ψ, k) in which A is not recursive and so, in particular,
A /∈ X(Y ). By Lemma 8.2.7, (80, X(Y ))  ψ(8G) for any such Y . Thus,
we have the desired conclusion.

Lemma 8.2.10 Suppose that n is greater than 0, A is not 10
n , and ψ(8G)

is a 50
n sentence about 8G; say ψ(8G) = (∀x)θ(x,8G) in which θ is

60
n−1. For any condition p = (8p, X p) with A /∈ X p, there is a stronger

condition q = (8q, Xq) such that the following conditions hold.

1. A 6∈ Xq .
2. For all x, if 8q(x, A) is defined, then 8p(x, A) is defined. That is, q

does not add any new computations to 8G which apply to A.
3. Either q  ψ(8G) or there is an m such that q  ¬θ(m,8G).

Proof: Fix p = (8p, X p) in P . Let X1, . . . , Xk be an enumeration of the
elements of X p. If T (8p, ψ, k+1) is infinite, then Corollary 8.2.9 supplies



112 Defining the Turing jump

a condition r = (8p,X) forcing ψ(8G) with A /∈ X. As (2) is trivially
satisfied if 8p is kept fixed, our desired condition q is (8p,Xp ∪ X). If
T (8p, ψ, k + 1) is not infinite, then Xp ∪ {A} does not provide an infinite
path through it. Thus, for some `, τ (`) = (X1 � `, . . . , Xk � `, A � `)
is not essential to ¬ψ(8G) over 8p. Then, there is an number m and
a condition r = (8r , Xr ) extending (8p,∅) such that 8r does not add
any new computations compatible with any of the components of τ (`)
and r  ¬θ(m,8G). In particular, 8r does not add any new computa-
tions which apply to A or to any element of X p and, by Lemma 8.2.7
there is a k such that T (8r ,¬θ(m,8G), k) is infinite. We can now ap-
ply Corollary 8.2.9 again to get an X of size k with A /∈ X such that
(8r ,X)  ¬θ(m,8G). Our desired condition q is thus (8r ,Xp ∪ X).

Now we can complete the proof of Theorem 8.2.1. Suppose that A ⊆ ω
is not 10

n . Let (ψi (8G) : i ≥ 1) be a recursive enumeration of the 5n
sentences about 8G . We build a sequence of conditions (pi : i ∈ ω) so
that p0 = (∅,∅), pi > pi+1, and for all i , pi decidesψi (8G) and A /∈ Xpi .

Given pi−1, we obtain pi in two steps. Suppose that ψi is ∀xθi (x,8G)
and θi (x,8G) is 6n−1. First, we apply Lemma 8.2.10 to find a condition
q = (8q,Xq) extending pi−1 such that A 6∈ Xq ,8q(A) is equal to8p(A),
and either q  ψi (8G) or there is an m in ω such that q  ¬θi (m,8G).
Let ` be so large that it is greater than m, it is greater than the length of
any sequence mentioned in 8q , and for each X in Xq there is an x less
than ` with X (x) 6= A(x). We define pi to be (8q ∪ {(i, 0, A � `)},Xq),
if q  ψi (8G), and (8q ∪ {(i, 1, A � `)},Xq), if q  ¬ψi (8G). In other
words, we build pi by first deciding the i th5n sentence about8G without
extending8G(A), and then defining8G(i, A) to record the value decided.

Let8G be the union of the8pi . By induction on the logical complexity
of its subformulas, for each 5n sentence ψi about 8G , ψi (8G) is true if
and only if pi  ψi (8G). But then 8G(A) is the characteristic function
of a complete 6n set relative to 8G . So, 8G ⊕ A ≥T 8G(A) = 8

(n)
G , as

required.

8.3 Defining the jump: Shore-Slaman
Theorem 8.3.1 1. The ideal I(10

2) is definable in D.
2. 0′ is definable in D.

Proof: It is sufficient to show that I(10
2) is definable in D, since 0′ is its

greatest element.
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Let d be given with d ∈ D. If d ∈ I(10
2), then for all x , d + x ≤T x ′.

Consequently, for all x , d + x 6≥T x ′′. Conversely, if d 6∈ I(10
2), then by

Theorem 8.2.1 with n = 2, there is an x such that d + x ≥ x ′′. Conse-
quently, we have the following equivalence.

(∀d ∈ D)[d ∈ I(10
2) if and only if (∀x)(d + x 6≥T x ′′)] (8.1)

By Theorem 7.3.5, the function x 7→ x ′′ is definable in D. Conse-
quently, Equation 8.1 provides a definition of I(10

2) in D.

We can give a similar proof for the definability of the function x 7→ x ′.

Theorem 8.3.2 The functions a 7→ I(10
2(a)) and a 7→ a′ are definable

in D.

Proof: By relativizing Theorem 8.2.1, for each degree a and each d greater
than or equal to a, d is not 10

2 relative to a if and only if there is an x
greater than or equal to a such that d + x ≥T x ′′. Again, the double jump
is definable in D, and this equivalence provides first order definitions as
required.

Question 8.3.3 Is the relation “y is recursively enumerable relative to x”
definable in D?

A positive answer to Question 8.3.3 would follow from a proof of the
Biinterpretability Conjecture.
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