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Abstract

We give an algorithm that computes an absolutely normal Liouville number.

1 The main result

The set of Liouville numbers is

tx P RzQ : @k P N, Dq P N, q ą 1 and ||qx|| ă q´ku

where ||x|| “ mint|x ´m| : m P Zu is the distance of a real number x to the nearest integer
and other notation is as usual. Liouville’s constant,

ř

kě1 10´k!, is the standard example of
a Liouville number. Though uncountable, the set of Liouville numbers is small, in fact, it is
null, both in Lebesgue measure and in Hausdorff dimension (see [6]).

We say that a base is an integer s greater than or equal to 2. A real number x is normal to
base s if the sequence psjx : j ě 0q is uniformly distributed in the unit interval modulo one.
By Weyl’s Criterion [11], x is normal to base s if and only if certain harmonic sums associated
with psjx : j ě 0q grow slowly. Absolute normality is normality to every base.

Bugeaud [6] established the existence of absolutely normal Liouville numbers by means of
an almost-all argument for an appropriate measure due to Bluhm [3, 4]. The support of this
measure is a perfect subset of the Liouville numbers, Bluhm’s fractal. The Fourier transform
of this measure decays quickly enough to ensure that those harmonic sums grow slowly on a
set of measure one. Thus, Bugeaud’s proof exhibits a nonempty set but does not provide a
construction of an absolutely normal Liouville number.

A real number x is computable if there is a base s and an algorithm to output the digits
for the base-s expansion of x, one after the other. In this note we show the following:

Theorem. There is a computable absolutely normal Liouville number.

We regard this result as a step into the ancient problem posed by Émile Borel [5] on ex-
hibiting a natural instance of an absolutely normal number. Borel’s understanding of “natural”
may have been towards numbers that can be described geometrically (as π), analytically (as
e), or algebraically (as

?
2q. To our mind, algorithmic descriptions are also explicit, immediate

and worthy of investigation.
We give an algorithm that determines a real number in the unit interval by recursively

constructing a nested sequence of dyadic intervals. At each step the algorithm obtains a
new subinterval containing sufficiently many points that satisfy, simultaneously, a better
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approximation to the Liouville condition, and a better approximation to absolute normality.
The number obtained by the algorithm is the unique point in the intersection of these intervals.

The discrepancy of a finite sequence of real numbers is a quantitative indicator of whether
its elements are uniformly distributed modulo one in the unit interval. We translate between
bounds on harmonic sums and bounds on discrepancy using a discrete version of LeVeque’s
Inequality (Theorem 2.4 in [9]), proved in Lemma 7.

Like Bugeaud, we use the ingredients of Bluhm’s measure. However, we combine those
ingredients differently so as to work within subintervals of the unit interval and make explicit
the Liouville exponent and the level in Bluhm’s fractal. By adapting an argument of Daven-
port, Erdös and LeVeque [8], we prove that the set of points in a given interval having small
harmonic sums has large measure. See Lemma 10.

Our algorithm relies on the fact that the Fourier transform of Bluhm’s measure decays
not only quickly but also uniformly quickly over all intervals. For any given positive ε
there is an extension length L with the following property. Consider any interval the form
rp2´a, pp`1q2´aq, for some non-negative integer p. So, the endpoints have a finite expansion in
base 2, requiring at most a digits. Let b be the counterpart number of digits in the expansion
of the left endpoint in base s (precisely, b “ ra{ log2 ss). Then, there is a level in Bluhm’s
fractal such that for the corresponding measure and for every ` as large as L, the set of reals
x in this interval whose harmonic sum associated with psjx : b ď j ă b ` `q is below ε, has
large measure. We prove this in Lemma 11.

In addition, we exploit another feature of discrepancy: as a function of finite sequences
psjx : a ď j ă bq, it is continuous in two ways. One is with respect to the real variable x. That
is, for any real numbers such that |x ´ y| is small, if psjx : a ď j ă bq has small discrepancy
then psjy : a ď j ă bq also has small discrepancy. Lemma 12 formalizes this idea giving
quantitative estimates. The second way is with respect to the length of the sequence, given
by the variables a and b. That is, for any c such that c ´ a is non-negative and c{pb ´ aq
is small, if psjx : a ď j ă bq has small discrepancy then both psjx : a ď j ă b ` cq and
psjx : a´ c ď j ă bq also have small discrepancy. Lemma 13 formalizes this feature in a way
that is conveniently applicable.

The algorithm constructs a real number x as the point in the intersection of a nested
sequence of dyadic intervals. At each step, the algorithm determines one such dyadic interval,
ensuring that the set of real numbers in it has small discrepancy and meets a designated
Liouville exponent. However, at each step we do not consider the discrepancy of the entire
sequence but the discrepancy of the current extension. Using the mentioned continuity of
discrepancy, we conclude that the discrepancy of the limit point x output by the algorithm
converges to zero.

We do not provide bounds on the time complexity for our algorithm. Without the Liouville
condition, it is possible to compute absolutely normal numbers efficiently. Specifically, there
are algorithms that output the first n digits of an absolutely normal number in time polynomial
in n. The most efficient of these algorithms requires time just above quadratic [1], where speed
is achieved by controlling, at each step, the size of the subinterval and how much progress is
done towards absolute normality. The algorithm we present here is not consistent with such a
strategy because it does not control the size of the subinterval at each step. So, the estimations
of harmonic sums, which are inherently costly, are associated with necessarily long sequences.
Constructing Liouville numbers that are normal to a given base, but not necessarily absolutely
normal, as done in [10], admits a much simpler approach and can be done in linear time.
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2 Bluhm’s measure for computing Liouville numbers

We write epzq to denote ez. We write the Fourier transform of a real function f as

pfpxq “

ż

R
fptqep´2πixtq dt.

Recall that the Fourier transform of a positive bounded measure ν is defined, for x P R, by

pνpxq “

ż

R
ep´2πixtq dνptq.

We write log without subscript for the logarithm in base e, and add a subscript for other bases.

2.1 Continuous replacements for step functions

We make use of measures which are supported by subintervals I of r0, 1s and have Fourier
transforms which decay quickly. Bluhm [3] gives examples of such and we employ them here.

Definition 1. Let R be a real number less than 1{2. Define the function FR on r´1{2, 1{2s by

FRpxq “
15

16
R´5pR2 ´ x2q2 when |x| ď R, and FRpxq “ 0 otherwise.

Let the Fourier series for FRpxq be denoted by
ÿ

nPZ
cpRqn ep2πinxq.

Notice that the definition is such that
ż

R
FRpxqdx “ 1.

As Bluhm points out, the Fourier coefficients

cpRqn “

ż 1{2

´1{2
FRptq ep´2πintq dt

satisfy

c
pRq
0 “ 1, |cpRqn | ď 1, and |cpRqn | ď n´2R´2.

Definition 2. For a subinterval I of r0, 1s, let RI be such that 4RI is equal to the length of I.
Let b be the center point of the interval I and let FI be the translation of FRI

by b, defined as

FIpxq “
15

16
RI
´5pRI

2 ´ px´ bq2q2 when |x´ b| ď RI , and FIpxq “ 0, otherwise.

The support of FI is contained in I and the analogous inequalities hold for the coefficients
of the Fourier series for FI ,

c
pIq
0 “ 1, |cpIqn | ď 1, and |cpIqn | ď n´2RI

´2.
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2.2 Bluhm-style measures

Bluhm [3, 4] showed that the set of Liouville numbers supports a Rajchman measure, that is,
a positive measure whose Fourier transform vanishes at infinity. Bluhm’s measure is the limit
of a sequence of measures µk, for k P N. The measure µk is supported by a set of real numbers
x such that there is at least one rational number p{q such that 0 ă |x ´ p{q| ă 1{qk. Here,
rather than taking a limit of measures, we perform a sequence of finite steps to compute a real
x in the limit and argue that for each step there is an appropriate action to take by appealing
to an appropriate Bluhm-style measure.

Definition 3 ([3]). For every pair of integers m and k such that k ě 1, let

Epm, kq “
ď

m ď q ă 2m
prime q

tx P R : ||qx|| ď q´1´ku.

As usual, we write C2 for the class of functions whose first and second derivative both
exist and are continuous.

Lemma 4 ([3, Lemma 3.2]). There is a family of C2 functions gm,k, parametrized by the pairs
of positive integers m and k, such that the support of gm,k is included in Epm, kq, ygm,kp0q “ 1,
and such that for every function Ψ in C2 of compact support, for every positive integer k and
for every positive real δ, there is an integer M “ MpΨ, k, δq such that for every m ě M and
for every x P R,

| {pΨgm,kqpxq ´ pΨpxq| ď δp1` |x|q´1{p2`kq logpe` |x|q log logpe` |x|q.

Bluhm defines gm,k by taking the sum of functions FI for appropriate subintervals of those
comprising Epm, kq and then normalizing so that ygm,kp0q “ 1.

Definition 5. We let νI be the measure on r0, 1s obtained by integrating FI . For m and k
positive integers, we let νI,m,k be the measure on r0, 1s obtained by integrating FIgm,k.

Lemma 6. For every subinterval I of r0, 1s and every positive integer k, there is a positive
integer M such that for all m ěM , νI,m,kpIq “ 1.

Proof. νI,m,kpIq is equal to {FIgm,kp0q, which by Lemma 4 can be made equal to xFIp0q “ 1 by
choosing m sufficiently large.

Observe that the support of νI,m,k is included in the support of gm,k, which in turn is
included in Epm, kq.

3 Lemmas

We say an interval is s-adic if it is of the form pps´a, pp ` 1qs´aq for non-negative integers a
and p. We use xa; sy to denote ra{ log2 ss. We write txu to denote the non-integral part of a
real x. The cardinality of a set S is denoted by #S.

The discrepancy of a finite sequence px1, . . . , xnq of reals in the unit interval with respect
to a fixed interval ru, vs is

Dpru, vs, px1, . . . , xnqq “
ˇ

ˇ

ˇ

#tj : 1 ď j ď n and u ď xj ă vu

n
´ pv ´ uq.

ˇ

ˇ

ˇ
.

4



If we consider its discrepancy with respect to every subinterval in the unit interval, we have

Dpx1, . . . , xnq “ sup
0ďuăvď1

Dpru, vs, px1, . . . , xnqq

Thus, a real number x is normal to base s exactly when the sequence ptsjxu : j ě 0q is
uniformly distributed in the unit interval, that is,

lim
nÑ8

Dptsjxu : 0 ď j ă nq “ 0.

Lemma 7 ([2, Lemma 3.8]). For any positive real ε there is a finite set of positive integers T
and a positive real δ such that for any sequence of reals in the unit interval px1, . . . , xnq,

if for all t P T,
1

n2

ˇ

ˇ

ˇ

n
ÿ

j“1

eptxjq
ˇ

ˇ

ˇ

2
ă δ then Dpx1, . . . , xnq ă ε.

Furthermore, such T and δ can be computed from ε.

Proof. By LeVeque’s Inequality (see Theorem 2.4 [9])

Dpx1, . . . , xnq ď
´ 6

π2

8
ÿ

t“1

1

t2

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

eptxjq
ˇ

ˇ

ˇ

2¯ 1
3
.

Since
ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

eptxjq
ˇ

ˇ

ˇ

2
ď 1.

we get for each positive integer h,
8
ÿ

t“h`1

1

t2

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

eptxjq
ˇ

ˇ

ˇ

2
ď

8
ÿ

t“h`1

1

t2
ď

ż 8

h`1
x´2dx ď

1

h` 1
.

Assume
1

n2

ˇ

ˇ

ˇ

n
ÿ

j“1

eptxjq
ˇ

ˇ

ˇ

2
ă
ε3

2
for all positive integers t less than or equal to h. Thus,

h
ÿ

t“1

1

t2

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

eptxjq
ˇ

ˇ

ˇ

2
`

8
ÿ

t“h`1

1

t2

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

eptxjq
ˇ

ˇ

ˇ

2
ď

h
ÿ

t“1

1

t2
ε3

2
`

1

h` 1
ď
ε3π2

12
`

1

h` 1
.

We can computably choose h so that p6{π2q
`

ε3π2{12`1{ph`1q
˘

1
3 ă ε. Then,Dpx1, . . . , xnq ă ε.

This proves the lemma with T “ t1, . . . , hu and δ “ ε3{2.

Lemma 8. Let I be a dyadic interval with length 2´a and let k be a positive integer. Let s be
a base and let t be a positive integer. Then, there is an integer M such that for every m ěM
and every positive integer `,

ż

1

`2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xa;sy``
ÿ

n“xa;sy`1

ep2πitsnxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dνI,m,kpxq ă
100

`
.

Moreover, M is uniformly computable from I, k, s and t.
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Proof. Let

Z “

ż

1

`2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xa;sy``
ÿ

n“xa;sy`1

ep2πitsnyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dνI,m,kpyq.

Then,

Z “

ż

1

`2

ÿ̀

n,q“1

ep2πitsxa;sy`ny ´ 2πitsxa;sy`qyqdνI,m,kpyq

“
1

`2

˜

ż

ÿ̀

n“1

1dνI,m,kpyq `

ż

ÿ

n‰q

ep2πitsxa;sy`ny ´ 2πitsxa;sy`qyqdνI,m,kpyq

¸

.

“
1

`
`

1

`2

ÿ

n‰q

{νI,m,kpts
xa;sy`n ´ tsxa;sy`qq.

We now give upper bounds for the values of {νI,m,k. Since R is one fourth of the length of I,
which is 2´a, by the above

xFIpxq ď x´2R´2 “
22a`4

x2
.

According to Lemma 4, for sufficiently large m,
ˇ

ˇ

ˇ

{gm,kFIpxq ´xFIpxq
ˇ

ˇ

ˇ
ď δθkpxq,

where δ is a constant and can be made arbitrarily small by choice of m, and

θkpxq “ p1` |x|q
´1{p2`kq logpe` |x|q log logpe` |x|q.

Let c be such that

θkpxq ď cp1` |x|q´1{k.

Notice c is uniformly computable from k. Thus,

|{νI,m,kpts
xa;sy`n ´ tsxa;sy`qq| “|zgmFIpts

xa;sy`n ´ tsxa;sy`qq|

ďxFIpts
xa;sy`n ´ tsxa;sy`qq ` δcp1` |tsxa;sy`n ´ tsxa;sy`q|q´1{k

ď
22a`4

|tsxa;sy`n ´ tsxa;sy`q|2
` δc

1

|tsxa;sy`n ´ tsxa;sy`q|1{k
.

ď
24

t2|sn ´ sq|2
`

δc

t1{ksxa;sy{k
1

psn ´ sqq1{k
.

From which it follows,

Z ď
1

`
`

2

`2

`´1
ÿ

q“1

ÿ̀

n“q`1

ˆ

16

t2|sn ´ sq|2
`

δc

t1{ksxa;sy{k
1

psn ´ sqq1{k

˙

.
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Now, for positive p, analyze the sum

`´1
ÿ

q“1

ÿ̀

n“q`1

1

psn ´ sqq1{p
ď

`´1
ÿ

q“1

ÿ̀

n“q`1

1

psn{2q1{p

ď21{p
`´1
ÿ

q“1

ÿ̀

n“q`1

s´n{p

ď21{p
`´1
ÿ

q“1

ż `

q
s´x{pdx

ď21{p
`´1
ÿ

q“1

p

logpsq
s´q{p

ď21{p
p

logpsq

ż `

0
s´x{pdx

ď21{p
ˆ

p

logpsq

˙2

.

Hence,

Z ď
1

`
`

2

`2
16

t2
22

ˆ

1{2

logpsq

˙2

`
2

`2
δc

t1{ksxa;sy{k
21{k

ˆ

k

logpsq

˙2

.

By noting that t is a positive integer and choosingM so that for every m ěM , δ is sufficiently
small,

Z ď
1

`
`

32

`2 logpsq2
`

1

`2
ă

100

`
.

By, [3, page 314], M is uniformly computable from the other parameters of the construction.

Definition 9. Let s be a base. Let I be a dyadic interval of length 2´a. Let ` and t be
positive integers, and ε be a positive real. We define

ApI, `, s, t, εq “

$

&

%

x P I :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

`

xa;sy``
ÿ

n“xa;sy`1

ep2πitsnxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε

,

.

-

.

The following is an adaptation of an argument due to Davenport, Erdős and LeVeque in [8]
reproduced as Lemma 1.8 in [7]).

Lemma 10. Let s be a base, I be a dyadic interval of length 2´a and k a positive integer.
Let t be a positive integer. Let ε and δ be positive reals with ε less than 1{2. Then there are
positive integers M and L such that for all m greater than or equal to M

νI,m,k

˜

ď

`ěL

ApI, `, s, t, εq

¸

ă δ.

Furthermore, L is uniformly computable from k, ε, δ, s and t, and does not depend upon I.
On the other hand, M is uniformly computable from I, k, s and t.
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Proof. By the definition of ApI, `, s, t, γq,

γ2 νI,m,kpApI, `, s, t, γqq ď

ż

1

`2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xa;sy``
ÿ

n“xa;sy`1

ep2πitsnxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dνI,m,kpxq.

By Lemma 8, there is an M such that for all m ěM and all positive integers `,

ż

1

`2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xa;sy``
ÿ

n“xa;sy`1

ep2πitsnxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dνI,m,kpxq ă
100

`
.

We fix this value of M and let m be greater than or equal to it. Then,

νI,m,kpApI, `, s, t, γqq ă
100

γ2 `
.

Note that the above inequality holds for any real number γ. For the rest of the proof we fix
parameters I, s, t, γ “ ε{7 and abbreviate ApI, `, s, t, ε{7q by writing A`, for varying values
of `. Set `1 “ 1 and `j`1 “ r`j{p1´ ε{7qs` 1 for j ě 1 such that

`j`1 ´ `j
`j`1

ą
ε

7
and

`j`1 ´ `j
`j

ă 2
ε

7
`

2

`j
.

For each j, let hj be the integer in r`j , `j`1q that minimizes νI,m,kpAhj
q{hj . Hence,

`j`1´1
ÿ

`“`j

νI,m,kpA`q

`
ě p`j`1 ´ `jq

νI,m,kpAhj
q

hj
ě
ε

7
νI,m,kpAhj

q.

Thus,

100
73

ε3

`j`1´1
ÿ

`“`j

1

`2
ą νI,m,kpAhj

q,

and so for every j,

100
73

ε3
1

`j ´ 1
ą

8
ÿ

p“j

νI,m,kpAhpq.

Let j0 be minimal such that

`j ´ 1 ě
100

δ

73

ε3
and

2

`j0
ă
ε

7
.

Note that jo does not depend on I. Then, by the first inequality,

δ ą
8
ÿ

j“j0

νI,m,kpAhj
q.
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Now, consider an x P I such that for all j ě j0, x R Ahj
, or equivalently,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

hj

xa;sy`hj
ÿ

`“xa;sy`1

ep2πits`xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε

7
,

and let ` be a positive integer greater than or equal to `j0 . Let j be such that `j ď ` ă `j`1.
Note that,

1

`

xa;sy``
ÿ

n“xa;sy`1

ep2πitsnxq ´
1

hj

xa;sy`hj
ÿ

n“xa;sy`1

ep2πitsnxq “

1

`

¨

˝

xa;sy``
ÿ

n“xa;sy`1

ep2πitsnxq ´

xa;sy`hj
ÿ

n“xa;sy`1

ep2πitsnxq

˛

‚`

ˆ

1

`
´

1

hj

˙ xa;sy`hj
ÿ

n“xa;sy`1

ep2πitsnxq.

It follows that for such x,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

`

xa;sy``
ÿ

n“xa;sy`1

ep2πitsnxq ´
1

hj

xa;sy`hj
ÿ

n“xa;sy`1

ep2πitsnxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă

ˆ

`j`1 ´ `j
`j

˙

`

ˆ

`j`1 ´ `j
`j

˙

ă

ˆ

2
ε

7
`

2

`j

˙

`

ˆ

2
ε

7
`

2

`j

˙

ă 6
ε

7
.

and by the triangle inequality, for this x,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

`

xa;sy``
ÿ

`“xa;sy`1

ep2πits`xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

hj

xa;sy`hj
ÿ

`“xa;sy`1

ep2πits`xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` 6
ε

7
ă
ε

7
` 6

ε

7
“ ε.

Then, x R ApI, `, s, t, εq. So,
Ť

`ě`j0
ApI, `, s, t, εq is contained in

Ť

jěj0
Ahj

and thereby

νI,m,k

´

Ť

`ě`j0
ApI, `, s, t, εq

¯

ă δ. This proves the lemma for M as above and L equal to `j0 ,
with the observation that since j0 did not depend on I neither does L.

Lemma 11. Let S be a set of bases, I be a dyadic interval of length 2´a and k a positive
integer. Let ε be a positive real number. Then, there are positive integers M and L such that
for every m ěM ,

νI,m,kpIq “ 1, and

νI,m,k

`

ty P I : @s P S,@` ě L, Dptsjyu : xa; sy ď j ă xa` `; syq ă εu
˘

ě 1
2 .

Furthermore, L is uniformly computable from k, S and ε, and does not depend on I; M is
uniformly computable from I, k, S and ε.

Proof. Let T and γ be, respectively, the set of positive integers and the real number determined
by Lemma 7 with input ε.
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For each s P S and t P T apply Lemma 10 with ε equal to γ, and with δ equal to 1{p2#T#Sq.
Let M0 and L0 be, respectively, the maximum of the values of M and L output by Lemma 10
in each case. Then, for every m ěM0,

ÿ

tPT

ÿ

sPS

νI,m,k

˜

ď

`ěL0

ApI, `, s, t, γq

¸

ă
ÿ

tPT

ÿ

sPS

1

2#T#S
“

1

2
.

The proof is completed by taking L to be the minimum integer such that for every s P S,
xa` L; sy ě xa; sy ` L0, and by taking M to be the maximum between M0 and the value M
determined by Lemma 6.

Lemma 12. For every base s and for every positive real ε there is an integer L with the
following property. Let ru, vs be any subinterval of r0, 1s such that

2ε ă v ´ u, 2ε ă u in case u ­“ 0, and 2ε ă 1´ v in case v ­“ 1.

For all ` ě L and for all real numbers x and y satisfying |x ´ y| ă 2´`, if for each interval
J Ď r0, 1s with endpoints in t0, u˘ ε, v ˘ ε, 1u, DpJ, ptsjxu : j ă x`; syqq ă ε, then

Dpru, vs, ptsjyu : j ă x`; syqq ă 8ε.

Proof. Let s, ru, vs and ε be fixed as above. Let L be an integer such that r| logspεq|s is less
than εxL; sy. Suppose that ` is greater than or equal to L and that x and y are real numbers
such that |x´ y| ă 1{2` and for each interval J with endpoints contained in t0, u˘ ε, v˘ ε, 1u
DpJ, ptsjxu : j ă x`; syqq ă ε.

We first show that #tj : tsjyu P ru, vs and 0 ď j ă x`; syu is greater than p|v´u|´8εqx`; sy.
Consider the interval ru` ε, v ´ εs. By assumption,

#tj : tsjxu P ru` ε, v ´ εs and 0 ď j ă x`; syu ą
``

pv ´ εq ´ pu` εq
˘

´ ε
˘

x`; sy

ą ppv ´ uq ´ 3εqx`; sy.

If sj2´` is less than ε and x P ru ` ε, v ´ εs then y P ru, vs. Further, sj2´` ą ε only when
j ą x`; sy ´ | logspεq| and, by choice of L, there are at most εx`; sy many such integers j less
than or equal to x`; sy. Then,

#tj : tsjyu P ru, vs and 0 ď j ă x`; syu ą ppv ´ uq ´ 3εqx`; sy ´ εx`; sy

ą ppv ´ uq ´ 4εqx`; sy.

Similarly, regarding only the fully non-trivial case in which 0 ă u and v ă 1,

#tj : tsjyu P r0, us and 0 ď j ă x`; syu ą pu´ 4εqx`; sy

#tj : tsjyu P rv, 1s and 0 ď j ă x`; syu ą pp1´ vq ´ 4εqx`; sy

and so

ppv ´ uq ` 8εqx`; sy ą #tj : tsjyu P ru, vs and 0 ď j ă x`; syu ą ppv ´ uq ´ 8εqx`; sy,

as required.

Lemma 13. Let ε be a positive real. Let any sequence of reals in the unit interval px1, . . . , xnq
of length n. Let py1, . . . , y`q is a sequence of reals of length ` such that Dpy1, . . . , y`q ă ε. If
n ă ε` then for all k ď `, Dpx1, . . . , xn, y1, . . . , ykq ă 2ε and Dpy1, . . . , yk, x1 . . . , xnq ă 2ε.

Proof. Immediate from the definition.

10



4 Proof of the Theorem

For n an integer greater than or equal to 2 and ε a positive real number, let L11pn, εq and
L12pn, εq be the supremum of the output numbers L in Lemmas 11 and 12, respectively, for
inputs s, a base less than or equal to n, Liouville exponent k equal to n, and ε, a positive real
number. Without loss of generality, we assume that L11 and L12 increase as the first argument
increases and as the second argument decreases.

Definition 14. An interval I Ď r0, 1s meets the Liouville condition for exponent k if for any
real x P I there is an integer q ą 1 such that ||qx|| ă q´k.

Then, a real number is Liouville when for each exponent k there is an interval that
contains x and meets the Liouville for exponent k.

4.1 Algorithm

We proceed by recursion to define a sequence of dyadic intervals rxn, xn`2´anq, that is to say
that an is a non-negative integer and xn is of the form p{2an with 0 ď p ă 2an . To simplify
notation, let εn “ 1{8n.

Let x0 “ 0 and a0 “ 0. Given rxn, xn`2´anq from the previous step, let rxn`1, xn`1`2´an`1q

be the dyadic interval minimizing an`1 and breaking ties by minimizing xn, with the following
conditions:

• rxn`1, xn`1 ` 2´an`1q Ď rxn, xn ` 2´anq.

• rxn`1, xn`1 ` 2´an`1s meets the Liouville condition for exponent n` 1.

• an`1 ą L12pn` 1, εn`1{16q.

• For every base s less than or equal to n` 1,

xan`1; syεn`1{16 ą xL11pn` 2, εn`2{16q; sy.

• For every base s less than or equal to n, for all nontrivial intervals J Ď r0, 1s with
rational endpoints of the form rp1{8

n´2, p2{8
n´2s and for all integers ` P ran, an`1q,

DpJ, ptsjxn`1u : j ă x`; syqq ă 128εn.

• For every base s less than or equal to n ` 1, for all nontrivial intervals J Ď r0, 1s with
rational endpoints of the form rp1{8

n`1, p2{8
n`1s,

DpJ, ptsjxn`1u : j ă xan`1; syqq ă εn`1.

4.2 Verification

We first check by induction that the sequence pxn : n ě 0q is well defined. We have specified
x0 and a0 explicitly. It is immediate that for step n “ 1 there is a suitable choice for x1 and a1.
Assume that the sequence is defined up to and including rxn, xn ` 2´anq, where n ě 1. Let I
be the interval rxn, xn` 2´ans and let S be the set of bases less than or equal to n` 1. Apply
Lemma 11 for ε “ εn`1{16, k “ n ` 1, I, a “ an and S. Obtaining L11pn ` 1, εn`1{16q “ L
and m “M .

Let a be a positive integer with the following properties:

11



• a ą pn` 3q log2m,

• a ą L12pn` 1, εn`1{16q,

• For every base s less than or equal to n` 1,

xa; syεn`1{16 ą xL11pn` 2, εn`2{16q; sy.

• For every base s less than or equal to n` 1,
`

xa; sy ´ xan; sy
˘

εn`1{16 ą xan; sy.

Let Y be the set of reals y P I such that

@s P S,@` ě L11pn` 1, εn`1{16q, Dptsjyu : xan; sy ď j ă xan ` `; syq ă εn`1{16.

By definition, Y satisfies

νI,m,n`1pY q ě
1

2
.

Fix a real number y P Y , which implies y P Epm,n ` 1q X I and for every s P S and every
` ě L11pn` 1, εn`1{16q,

Dptsjyu : xan; sy ď j ă xan ` `; syq ă εn`1{16.

By inductive hypothesis, an ą L12pn, εn{16q ě L12pn, εnq and for every base s ď n and all
nontrivial intervals J Ď r0, 1s with rational endpoints of the form rp1{8

n, p2{8
ns,

DpJ, ptsjxnu : j ă xan; syqq ă εn.

Let J˚ be a subinterval of r0, 1s of the form rp1{8
n´1, p2{8

n´1s. Then, Lemma 12 applies to
the pair xn and y and the interval J˚ to conclude that

DpJ˚, ptsjyu : j ă xan; syqq ă 8εn.

By inductive hypothesis again, for all s ď n, we have xan; syεn{16 ą xL11pn` 1, εn`1{16q; sy,
and so by Lemma 13, for all ` ď L11pn` 1, εn`1{16q and all s ď n,

DpJ˚, ptsjyu : j ă xan ` `; syqq ă 16εn.

If ` is such that L11pn ` 1, εn`1{16q ă ` ď a ´ an, then ptsjyu : j ă xan ` `; syq is the
concatenation of the two sequences ptsjyu : j ă xan; syq and ptsjyu : xan; sy ď j ă xan ` `; syq,
both of which have discrepancy, with respect to interval J˚, less than 8εn, and so it has
discrepancy less than 8εn. Thus, for every ` between an and a,

DpJ˚, ptsjyu : j ă x`; syqq ă 16εn.

Let ry, y` 2´aq be a dyadic interval such that y´ y ă 2´a. As above for xn and y, Lemma 12
applies to the pair y and y to conclude that for every ` between an and a and every subinterval
J of r0, 1s of the form rp1{8

n´2, p2{8
n´2s,

DpJ, ptsjyu : j ă x`; syqq ă 8 ¨ 16εn “ 128εn.

12



Further, for every s ď n` 1, since Dptsjyu : xan; sy ď j ă xa; syq ď εn`1{16 (obtained above)
and pxa; sy ´ xan; syqεn`1{16 ě xan; sy, for any interval J Ď r0, 1s,

DpJ, ptsjyu : j ă xa; syqq ă 2 ¨ εn`1{16 “ εn`1{8,

and so, by Lemma 13,

DpJ, ptsjyu : j ă xa; syqq ă 8 ¨ εn`1{8 “ εn`1.

Lastly, since y P Epm,n ` 1q, let q be a positive prime such that m ď q and ||qy|| ă q´n´2.
Let y˚ P ry, y ` 2´aq. We verify that ||qy˚|| ă q´n´1.

Since y ´ y ă 2´a, then, y ´ y˚ ă 2´a.
Since a ą pn` 3q log2m, then, 2´a ă m´n´3 ă q´n´3pq ´ 1q.
Thus,

q 2´a ă q´n´2pq ´ 1q

q´n´2 ` q 2´a ă q´n´1

||qy|| ` |qy ´ qy˚| ă q´n´1

||qy˚|| ă q´n´1, as required.

Hence, ry, y ` 2´aq satisfies all requirements to be a dyadic interval for step n` 1.
Now, let x be the limit of the sequence pxn : n ě 0q. By virtue of the second condition

in the specification of xn`1 from xn, x is a Liouville number. To check that x is absolutely
normal, let s be a base, ε a real number and J an interval. By a continuity argument, we may
fix positive integer m and assume that the endpoints of J are dyadic rational numbers of the
form p{8m. Consider N so large that s ď N , m ă N ´ 3 and ε ą 8εN . Let ` be a positive
integer greater than or equal to aN . Let n be such that an ď ` ă an`1. By choice of xn`1,
Lemma 12 applies to xn`1 and x to conclude that

DpJ, ptsjxu : j ă x`; syqq ă 8 ¨ 128εn.

Since the sequence εn goes to zero as n goes to infinity, the discrepancy of ptsjxu : j ă x`; syq
goes to zero as ` goes to infinity. Hence, x is absolutely normal. This completes the proof.
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