
The Irrationality Exponents of Computable Numbers

Verónica Becher Yann Bugeaud Theodore A. Slaman
Universidad de Buenos Aires Université de Strasbourg University of California Berkeley

vbecher@dc.uba.ar bugeaud@math.unistra.fr slaman@math.berkeley.edu

August 21, 2014

Mathematics Subjects Classification: Primary: 11J04, Secondary: 03Dxx.
Keywords: Irrationality exponent, computability, Cantor set.

The irrationality exponent a of a real number x is the supremum of the set of real numbers z
for which the inequality

0 < |x− p/q| < 1/qz

is satisfied by an infinite number of integer pairs (p, q) with q > 0. Rational numbers have
irrationality exponent equal to 1, irrational numbers have it greater than or equal to 2. The
Thue–Siegel–Roth theorem states that the irrationality exponent of every irrational algebraic
number is equal to 2. Almost all real numbers (with respect to the Lebesgue measure) have
irrationality exponent equal to 2. The Liouville numbers are precisely those numbers having
infinite irrationality exponent.

For any real number a greater than or equal to 2, Jarník (1931) used the theory of continued
fractions to give an explicit construction, relative to a, of a real number xa such that the
irrationality exponent of xa is equal to a. For a = 2, we can take x2 =

√
2. For a > 2, we

construct inductively the sequence of partial quotients of xa = [0; a1, a2, . . .]. For n ≥ 1, set
pn/qn = [0; a1, a2, . . . , an]. Take a1 = 2 and an+1 = bqa−2n c, for n ≥ 1, where b·c denotes the
integer part function. Then, the theory of continued fractions (see Schmidt, 1980) directly
gives that the irrationality exponent of xa is equal to a.

The theory of computability defines a computable function from non-negative integers
to non-negative integers as one which can be effectively calculated by some algorithm. The
definition extends to functions from one countable set to another, by fixing enumerations
of those sets. A real number x is computable if there is a base and a computable function
that gives the digit at each position of the expansion of x in that base. Equivalently, a real
number is computable if there is a computable sequence of rational numbers (rj)j≥0 such that
|x− rj | < 2−j for j ≥ 0.

The construction cited above shows that for any computable real number a there is a
computable real number xa whose irrationality exponent is equal to a. What of the inverse
question? Are there computable numbers with non-computable irrationality exponents? The-
orem 1 gives a characterization of the irrationality exponents of computable real numbers.

Theorem 1. A real number a greater than or equal to 2 is the irrationality exponent of some
computable real number if and only if a is the upper limit of a computable sequence of rational
numbers.
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A real number x is said to be right-computably enumerable (see Soare, 1969) if and only
if the set of rational numbers r such that r > x is computably enumerable, which is to say
that x is right-computably enumerable if and only if there is an algorithm to output a listing
(pn, qn)n≥0 of all integer pairs whose quotients are greater than x. By only enumerating
numbers smaller than any previously enumerated, one can show that x is right-computably
enumerable if and only if there is a computable strictly decreasing sequence of rational numbers
with limit x.

The set of left-computably enumerable real numbers is defined similarly but with non-
decreasing sequences. The computable real numbers are exactly those that are both, right and
left, computably enumerable. There are numbers that are just left-computably enumerable
or just right-computably enumerable. For example, if A is a computably enumerable but
not computable subset of the natural numbers, such as could be obtained from the Halting
Problem, then the real number xA =

∑∞
n=1 an2

−n, where for each n ≥ 1, an = 1 if n ∈ A and
an = 0 otherwise, is left-computably enumerable but not computable.

The theory of computability also considers algorithms that can use external data sets,
called oracles, in the course of their computations. An oracle is an infinite set of non-negative
integers, and algorithms can ask whether an integer is an element of the set. The oracle 0′

encodes all truths of first-order Peano arithmetic that can be expressed with just one block of
existential quantifiers. For example, the assertion that a polynomial with integer coefficients
in several variables has an integer-valued solution is a statement of this form. If a function can
be calculated by an algorithm using oracle 0′ we say that it is computable in 0′. Similarly, if
the set of rational numbers r such that r > x is computably enumerable in 0′ then we say that
x is right-computably enumerable in 0′, and the equivalence stated above apply relative to 0′.
In Lemma 4, we give other equivalences. In particular, x is right-computably enumerable in 0′

if and only if it is the upper limit of a computable sequence of rational numbers, which is the
condition cited in Theorem 1.

Now, consider the case of the irrationality exponent of a computable real number x. If x
is rational, its irrationality exponent is equal to 1. If x is irrational algebraic, its irrationality
exponent is equal to 2. In these cases, the irrationality exponents are clearly right-computably
enumerable in 0′. Now, suppose that x is not algebraic. Then, for every pair of rational
numbers p/q and b, |x−p/q| is not equal to 1/qb. Consequently, it is computable to determine
whether |x − p/q| is less than 1/qb by computing both quantities to sufficient precision to
determine which is larger. This implies that the set of rational numbers b for which there are
only finitely many rational numbers p/q such that |x− p/q| < 1/qb is computably enumerable
in 0′: Since x is computable, given a rational number b and an integer k, the existential
statement “there are integers p and q such that q is greater than k and |x − p/q| < 1/qb ”
constitutes a single query to 0′. Then, we can examine all pairs b and k (fix one enumeration)
and list b upon discovery of some k for which this query to 0′ is answered negatively; that is,
there are no p and q such that q is greater than k and |x− p/q| < 1/qb. It follows that, if the
irrationality exponent of x is finite, then it is right-computably enumerable in 0′.

Thus, to complete the proof of Theorem 1, we only need to show that for every real
number a greater than 2, if a is right-computably enumerable in 0′, then there is a computable
real number x such that x has irrationality exponent equal to a. Since there are numbers that
are right-computably enumerable in 0′ that are not computable, the proof of this direction
of the theorem, the existence direction, necessarily involves approximations of sets and real
numbers which cannot be directly computed. It also immediately implies the following
corollary.
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Corollary 2. There are computable real numbers whose irrationality exponent is not com-
putable.

Similarly and more generally, there are computable real numbers whose irrationality ex-
ponents have no monotonous approximations by a computable sequence of rational numbers.

We give two proofs of Theorem 1. The first one is more combinatorial and is based on
a construction given by Bugeaud (2008). The second one, more geometric and based on a
construction given by Jarník (1929), also yields the following corollary.

Corollary 3. For each real number a greater than or equal to 2 and right-computably enumer-
able in 0′, there is a computable Cantor-like construction whose limit set contains uncountably
many real numbers with irrationality exponent equal to a, countably many of which are com-
putable.

In fact, the natural measure on this Cantor set concentrates on the set of numbers with
the pre-specified irrationality exponent.

The next lemma states three equivalent, and useful, formulations of the property of right-
computable enumerability in 0′.

Lemma 4. For any real number a, the following properties are equivalent.

1. There is a computable sequence (aj)j≥0 of rational numbers such that lim supj≥0 aj = a.

2. There is strictly decreasing sequence (bj)j≥0 of rational numbers, that is computable in 0′

and has limit equal to a.

3. There is a computable doubly-indexed sequence (a(j, s))j,s≥0 of rational numbers satisfy-
ing that, for each j ≥ 0, the sequence (a(j, s))s≥0 is eventually constant and the sequence(
lims→∞ a(j, s)

)
j≥0 is strictly decreasing with limit a. Without loss of generality, the

following can be assumed:

(a) The number a(0, 0) is an integer greater than or equal to a(j, s), for j ≥ 0 and s ≥ 0.

(b) For each j ≥ 0, a(j, 0) = a(0, 0).

(c) For each s ≥ 0, the sequence (a(j, s))j≥0 is strictly decreasing.

Proof. (1⇒ 2) If a is rational, then the sequence (bj)j≥0 = (a+1/2j)j≥0 verifies Condition 2.
Assume that a is not rational and that (aj)j≥0 is a computable sequence of rational numbers
with limit supremum equal to a. Let M be an integer strictly greater than each of the values
aj , for j ≥ 0 (this value M may not be found computably in 0′, but it does exist). Define
b0 =M and j0 = 0.

Let (ck)k≥0 be a computable enumeration of the rational numbers. For n > 0, let jn be
the least j > jn−1 for which there is a k < j such that bn−1 is greater than ck and ck is greater
than the supremum of (aj)j≥jn . Let bn = ck for the least such k.

Since a is irrational, jn is well-defined and, since jn and bn are the least integers satisfying
“for-all” properties, they can be computed uniformly in 0′. Thus, (bn)n≥0 is computable in 0′.

By construction, (bn)n≥0 is strictly decreasing and all of its elements are greater than a.
Let b be the limit of (bn)n≥0. For a contradiction, suppose that b is greater than a and consider
ck∗ for k∗ the least index of a rational number strictly between b and a. Let n∗ be greater than
k∗ and also so large that ck∗ is greater than the supremum of (aj)j≥jn∗ . For every n greater
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than or equal to n∗, ck∗ satisfies the for-all property used to define bn. But then (bn)n≥n∗

must be contained in {ck : k < k∗}, a contradiction.

(2 ⇒ 3) Assume (bj)j≥0 is computable in 0′ with limit a. Let bj [s] the computable
approximation of the value bj such that the questions to the oracle 0′ are answered using the
set of numbers less than s that are enumerated into 0′ by computations of length less than s,
if that computation produces a value, and let bj [s] be 2, otherwise. It follows that, for each
j ≥ 0, there is an integer sj such that for every s ≥ sj , bj [s] = bj .

Let M be an integer greater than b0. For each s ≥ 0, we define the sequence (a(j, s))j≥0.
We let a(0, s) =M . For j > 0, we let

a(j, s) = bj [s]

provided that for all k < j it holds bk[s] > bk+1[s] > 2. If this condition fails, then we let

a(j, s) = (a(j − 1, s) + 2)/2,

the midpoint between a(j−1, s) and 2. By construction, a(j, s) satisfies conditions (a), (b) and
(c). Set s̃j = max{sk : k ≤ j}. Then, for each k ≤ j, we have bk[s] = bk for every s ≥ s̃j . By
hypothesis, (bj)j≥0 is strictly decreasing. Then, for each s ≥ s̃j , we deduce that a(j, s) = bj .
This ensures that the sequence (a(j, s))s≥0 is eventually constant and that (lims→∞ a(j, s))j≥0
is strictly decreasing with limit a.

(3⇒ 1) Assume (a(j, s))j,s≥0 is a sequence of rational numbers such that for each j ≥ 0 the
sequence (a(j, s))s≥0 is eventually constant and the sequence

(
lims→∞ a(j, s)

)
j≥0 is strictly

decreasing with limit a. Let `(s) be the computable function defined by `(0) = 0 and, for
s ≥ 1, let `(s) be the least j less than or equal to s− 1 such that a(j, s− 1) 6= a(j, s), if there
is such, and let `(s) be s− 1 otherwise. We define the computable sequence (as)s≥0 by

as = a(`(s), s).

By assumption on (a(j, s))j,s≥0, we deduce that lims→∞ `(s) = ∞. Further, there is an arbi-
trarily large t with at = a(`(t), t) = lims→∞ a(`(t), s). Thus, (as)s≥0 and

(
lims→∞ a(j, s)

)
j≥0

have a common subsequence. Since
(
lims→∞ a(j, s)

)
j≥0 is strictly decreasing with limit a, we

get that lim sups≥0 as is greater than equal to a. Dually, given any number b greater than a,
we can fix j so that lims→∞ a(j, s) < b and fix t so that for all s > t, `(s) > j. Then, for all
s > t,

as = a(`(s), s) < a(j, s) = lim
s→∞

a(j, s) < b

and so

lim sup
s≥0

as < b,

as required.

4



1 First proof of Theorem 1

First proof of Theorem 1. Let b ≥ 2 be an integer. Recently, Bugeaud (2008) constructed
a class C of real numbers whose irrationality exponent can be read off from their base-b
expansion. The class C includes the real numbers of the form

ξn =
∑
j≥1

b−nj ,

for a sequence n = (nj)j≥1 of positive integers satisfying nj+1/nj ≥ 2 for every large integer
j. To obtain good rational approximations to ξn, we simply truncate the above sum. Thus,
we set

ξn,J =
J∑
j=1

b−nj =
pJ
bnJ

, J ≥ 1.

It then follows from∣∣∣ξn − pJ
bnJ

∣∣∣ < 2

(bnJ )nJ+1/nJ
, J ≥ 1,

that the irrationality exponent µ(ξn) of ξn satisfies

µ(ξn) ≥ lim sup
j→∞

nj+1

nj
.

Shallit (1982) proved that the continued fraction expansion of some rational translate of any
such ξn can be given explicitly, and Bugeaud (2008) proved that its irrationality exponent is
given precisely by

µ(ξn) = lim sup
j→∞

nj+1

nj
,

and hence can be read off from its expansion in base b. This means that the denominators of
the best rational approximations to ξn are (except finitely many of them) powers of b.

Consequently, given a real number a ≥ 2 for which there is a computable sequence (aj)j≥0
of rational numbers such that lim supj→∞ aj = a, it is sufficient to construct a computable
strictly increasing sequence n = (nj)j≥1 of positive integers satisfying nj+1/nj ≥ 2 and

lim sup
j→∞

nj+1

nj
= a,

which we do as follows. By substituting 2 for any smaller values, we may assume that
each aj is greater than or equal to 2. We construct the desired sequence n by induction
as follows. Let n1 = 2. Given n1, . . . , nj , let nj+1 be the least n such that n/nj ≥ aj+1. By
construction, for all j, nj+1/nj ≥ 2. Consequently, nj ≥ 2j . Since (nj+1 − 1)/nj < aj+1,
nj+1/nj − aj+1 is less than or equal to 1/2j . It follows directly that lim supj→∞ nj+1/nj is
equal to lim supj→∞ aj = a.
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2 Second proof of Theorem 1

For each real number a greater than 2, Jarník (1931) gave a Cantor-like construction of a
fractal subset K of [0, 1] such that the uniform measure ν on K has the property that the set
of real numbers with irrationality exponent equal to a has ν-measure equal to 1. Thus, for all
real numbers b greater than a, the set of real numbers in K with irrationality exponent equal
to b has ν-measure equal to 0.

Lemma 5 (Jarník (1931)). For every real number a greater than or equal to 2, the set of
numbers with irrationality exponent equal to a has Hausdorff dimension 2/a.

We note that Jarník (1929) and Besicovitch (1934) independently established that the
set of real numbers with irrationality exponent greater than or equal to a has Hausdorff
dimension 2/a. Actually, Lemma 5 is not explicitly stated in Jarník (1931); however, it is an
immediate consequence of the results of that paper.

In the following and throughout this text, we denote by |I| the length of the interval I.

Lemma 6 (Mass Distribution Principle). Let ν be a finite measure, d a positive real number
and X a set with Hausdorff dimension less than d. Suppose that there is a positive real number
C such that for every interval I, ν(I) < C |I|d. Then we have ν(X) = 0.

Lemma 7. Let a be a strictly decreasing sequence of rational numbers greater than 2 which is
computable in 0′ and has limit equal to a, greater than 2. There is a Cantor-like construction
of a fractal K, with uniform measure ν, and a function C, computable in 0′, from Q∩ (0, 2/a)
to Q such that for each rational number d < 2/a, for every interval I, ν(I) ≤ C(d)|I|d.

Proof. We follow the proof of Jarník’s Theorem as presented in Falconer (2003). Let a be
(aj)j≥0. Fix a computable doubly-indexed sequence (a(j, s))j,s≥0 of rational numbers such
that for all j, lims→∞ a(j, s) = aj . Without loss of generality, we assume that for every s, the
sequence a(j, s)j≥0 is strictly decreasing, a(0, 0) is an integer and for all s, a(0, s) = a(0, 0).
Further, we fix a rational number β greater than 2 and assume that β is a lower bound for
the numbers a(j, s).

We fix some notation to be applied in the course of our eventual construction. For a
positive integer q and a real number b greater than β, let

Gq(b) =

{
x ∈

(
1

qb
, 1− 1

qb

)
: ∃p ∈ Z,

∣∣∣∣pq − x
∣∣∣∣ < 1

qb

}
.

For M a sufficiently large positive integer according to β, and p1 and p2 primes such that
M < p1 < p2 < 2M , the sets Gp1(b) and Gp2(b) are disjoint and the distance between any
point in Gp1(b) and any point in Gp2(b) is greater than or equal to

1

4M2
− 2

M b
≥ 1

8M2
.

For such M the set

HM (b) =
⋃

p prime
M<p<2M

Gp(b)

is the disjoint union of the intervals composing the sets Gp(b), so HM (b) is made up of intervals
of length less than or equal to 2/M b which are separated by gaps of length at least 1/(8M2).
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If I ⊆ [0, 1] is any interval with 3/|I| < M < p < 2M then at least p|I|/3 > M |I|/3 of the
intervals in Gp(b) are completely contained in I. By the prime number theorem, for sufficiently
large M the number of primes between M and 2M is at least M/(2 logM). Thus, for such M
and I, at least M2|I|/(6 logM) intervals of HM (b) are contained in I. With M1 sufficiently
large as above and larger than 3× 2a(0,0), let

Mk =Mk
k−1 =Mk!

1 , (k ≥ 1).

For a positive integer k, let j be the least integer less than k such that a(j+1, k) 6= a(j+1, k−1),
if such exists, and let j be k − 1, otherwise. That is, j is the greatest index less than k such
that the approximation to a remains unchanged at positions less than or equal to j from step
k − 1 to step k. Let

bk = a(j, k).

Let E0 = [0, 1] and for k = 1, 2, . . . let Ek consist of those intervals of HMk
(bk) that are

completely contained in Ek−1. By discarding intervals if necessary, we arrange that all intervals
in Ek−1 are split into the same number of intervals in Ek. The intervals of Ek are of length
at least 1/(2Mk)

bk and are separated by gaps of length at least

gk =
1

8M2
k

.

Thus, each interval of Ek−1 contains at least mk intervals of Ek where m1 = 1 and

mk =
M2
k

(2Mk−1)bk6 logMk
≥

cM2
k

(Mk−1)bk logMk
,

if k ≥ 2 and c = 1/(2a(0,0)6). Let

K =
⋂
k≥1

Ek.

Define a mass distribution ν on K by assigning a mass of 1/(m1 × . . . ×mk) to each of the
m1 × . . .×mk many k-level intervals. Let S be a subinterval of [0, 1]. For a lighter notation
we write 2ε to denote the length |S| of S. We estimate ν(S). Let k be the integer such that
gk ≤ 2ε < gk−1. The number of k-level intervals that intersect S is

• at most mk, since S intersects at most one (k − 1)-level interval.

• at most 1 + 2ε/gk ≤ 4ε/gk since the k-level intervals have gaps of at least gk between
them.

Each k-level interval has measure 1/(m1 × . . .×mk) so that

ν(S) ≤ min(4ε/gk,mk)

m1 × . . .×mk
≤

(4ε/gk)
s m1−s

k

m1 × . . .×mk
,

for every s between 0 and 1. Hence,

ν(S) ≤ 2s

(m1 × . . .×mk−1) m
s
kg
s
k

(2ε)s.
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Thus, ν(S) is at most

1
M b2

1 logM2

cM2
2

M b3
2 logM3

cM2
3

. . .
M

bk−1

k−2 logMk−1

cM2
k−1

2s

ms
kg
s
k

(2ε)s =

M b2
1 logM2

cM2
2

M b3
2 logM3

cM2
3

. . .
M

bk−1

k−2 logMk−1

cM2
k−1

(
M bk
k−1 logMk

cM2
k

)s
(8M2

k )
s2s (2ε)s =(

logM2 . . . logMk−1
)(
M b2

1 M
b3−2
2 . . .M

bk−1−2
k−2

)
(logMk)

s(16)sc−k+2−sM bks−2
k−1 (2ε)s.

We want to verify that for every j and for every s < 2/aj there is a C such that ν(S) < C(2ε)s.
It suffices to show that there is a C such that for every k,(

logM2 . . . logMk−1
)(
M b2

1 M
b3−2
2 . . .M

bk−1−2
k−2

)
(logMk)

s(16)s c−k+2−s < C M2−bks
k−1 . (*)

Fix k0 such that for every k ≥ k0, a(j + 1, k) = a(j + 1, k0). Thus, for every k ≥ k0,
a(j + 1, k) = aj+1. Then, define δ > 0 as follows so that for every k ≥ k0,

2−
(
bk

2

aj

)
≥ 2− 2

(
aj+1

2

aj

)
≥ 2− 2

aj+1

aj
= δ.

By the choice of k0 and the definition of bk, for all k > k0, it holds that bk < aj+1. Hence the
left hand side of the inequality (*) is at most a constant multiple of(

logM2 . . . logMk−1
)(
M

aj+1

1 M
aj+1−2
2 . . .M

aj+1−2
k−2

)
(logMk)

s(16)s c−k+2−s.

Furthermore, there is a constant C such that(
logM2 . . . logMk−1

)(
M

aj+1

1 M
aj+1−2
2 . . .M

aj+1−2
k−2

)
(logMk)

s(16)s c−k+2−s < C M δ
k−1.

The above inequality follows by noticing that M` =M `!
1 for ` ≥ 1, taking logarithms on each

side and recognizing that the contribution of Mk−1 is the dominating term for sufficiently
large k. The value of C is determined by the value k0, which is computable in 0′ as a function
of j.

Second proof of Theorem 1. Let a be a real number right-computably enumerable in 0′ and
greater than 2 (for a equal 2, taking x equals

√
2 suffices). Fix a computable doubly-indexed

sequence (a(j, s))j,s≥0 of rational numbers satisfying property (3) of Lemma 4. That is,
we assume that limj→∞ lims→∞ a(j, s) = a, for all s the sequence (a(j, s))j≥0 is strictly
decreasing, for all j ≥ 0 the sequence (a(j, s))s≥0 is eventually constant, for all s, we have
a(0, s) = a(0, 0) and a(1, s) = a(1, 0). The last condition gives an appropriate initialization of
the construction. Let K be the fractal with measure ν and C be the function associated with
this approximation of a in Lemma 7. Fix a computable function C(r, s) : Q × N → Q such
that for every r in Q, (C(r, s))s≥0 is eventually equal to C(r). We may also assume that for
all s, C(a(1, s), s) = C(a(1, 0), 0).

We compute a real number x in K. By recursion on s we construct a sequence of nested
intervals (I(s))s≥0 such that if I(s) is different from I(s − 1) then I(s) is an element of the
s-level of K. We define an auxiliary function `(s), with infinite limit, to approximate the
convergence of the sequence a(j, s). We also define an auxiliary integer-valued function q(j, s)
where j is an integer in [0, `(s)), with the intention that x avoids approximation by rational
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numbers with denominator q greater than or equal to q(j, s) within 1/qa(j,s). This intention
will be realized in the construction at step s onwards provided that at every step t ≥ s, `(t)
is greater than j; in particular, provided that a(j, s) and C(a(j, s), s) have reached their limit
values relative to s.

We will employ the following estimate. For a natural number q0 and a real number b
greater than or equal to 2, let

V (q0, b) =
⋃
q≥q0

{
x ∈

(
1

qb
, 1− 1

qb

)
: ∃p ∈ Z,

∣∣∣∣pq − x
∣∣∣∣ < 1

qb

}
.

Suppose that b1 > b2 > a. By Lemma 7, we can estimate ν(V (q0, b1)) by

ν
(
V (q0, b1)

)
≤
∑
q≥q0

∑
0<p<q

C
(
2/b2

)( 2

qb1

)2/b2
≤ 2C

(
2/b2

) ∑
q≥q0

q
( 1

qb1

)2/b2
≤ 2C

(
2/b2

) ∑
q≥q0

1

q2b1/b2−1
.

Thus, for any ε > 0 there is a q0, uniformly computable from ε, b1, b2 and C(2/b2), such that
ν(V (q0, b1)) is less than ε.

Initial step 0. Start with I(0) equal to the unit interval and `(0) = 0.

Step s, greater than 0. Let `(s) be the least j less than or equal to s such that

a(j + 1, s− 1) 6= a(j + 1, s) or C
(
2/a(j + 1, s), s− 1

)
6= C

(
2/a(j + 1, s), s

)
if such exists; otherwise, let `(s) be s. By our assumptions on a(j, s) and C(a(1, 0), s),
for every s > 0, we have that `(s) ≥ 1.

Let m(s) be the ν-measure given to a level-s interval in K. We find h(s) so that the
following inequality holds for each j such that 0 ≤ j < `(s),

2C
(
2/a(j, s), s

) ∑
q≥h(s)

1/q
2a(j,s)
a(j+1,s)

−1
<

1

s

m(s)

2s
.

We define q(j, s) for each j ∈ [0, `(s)) as follows: if q(j, s − 1) is defined then let
q(j, s) = q(j, s− 1); otherwise, let q(j, s) = h(s).

Let I(s) be the leftmost level-s interval in K that is included in I(s− 1) and satisfies

ν
(
I(s) ∩

⋃
0≤j<`(s)

V
(
q(j, s), a(j, s)

)
\ V
(
h(s), a(j, s)

))
< m(s)− 2

m(s)

2s

if such exists; otherwise, let I(s) be I(s− 1). Note that m(s) ≤ ν(I(s)).
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We now verify that the construction works. Define `min(s) = mint≥s `(t). We show by
induction on s that

ν
(
I(s) ∩

⋃
0≤j<`min(s)

V
(
q(j, s), a(j, s)

))
≤ ν(I(s))

(
1− 1

2s

)
.

Since `min(0) = 0, the inductive claim holds for s = 0. Assume the inductive claim for s− 1:

ν
(
I(s− 1) ∩

⋃
0≤j<`min(s−1)

V
(
q(j, s− 1), a(j, s− 1)

))
≤ ν

(
I(s− 1)

)(
1− 1

2s−1

)
.

Consider those integers j such that j < `min(s). By the definition of `min, we have a(j, s) = limt→∞ a(j, t)
and C(2/a(j, s), s) = limt→∞C(2/a(j, s), t) = C(2/a(j, s)). Further, by the discussion above,

ν
(
V
(
h(s), a(j, s)

))
≤ 2C

(
2/a(j, s), s

) ∑
q≥h(s)

1/q
2a(j,s)

a(j+1,s)
−1
.

In the construction we choose h(s) so that for each j less than `(s), the term on the right side
of this inequality is less than m(s)/(s2s). This ensures that for each j less than `min(s), the
same upper bound holds for ν(V (h(s), a(j, s))).

Now, consider the action of the construction during step s. If I(s) is equal to I(s − 1),
then

I(s) ∩
⋃

0≤j<`min(s)

V
(
q(j, s), a(j, s)

)
=

(
I(s) ∩

⋃
0≤j<`min(s−1)

V
(
q(j, s− 1), a(j, s− 1)

))
∪

(
I(s) ∩

⋃
`min(s−1)≤j<`min(s)

V
(
q(j, s), a(j, s)

))
.

The first component of the union has ν-measure at most ν(I(s))(1− 1/2s−1) and the second
component has ν-measure at most m(s)/2s. The union has measure at most ν(I(s))(1−1/2s),
as required.

Otherwise, I(s) is a proper subinterval of I(s− 1) and satisfies

ν
(
I(s) ∩

⋃
0≤j<`(s)

V
(
q(j, s), a(j, s)

)
\ V
(
h(s), a(j, s)

))
< m(s)− 2

m(s)

2s
.

Then,

I(s) ∩
⋃

0≤j<`min(s)

V
(
q(j, s), a(j, s)

)
=

(
I(s) ∩

⋃
0≤j<`min(s)

V
(
q(j, s), a(j, s)

)
\ V
(
h(s), a(j, s)

))
∪

(
I(s) ∩

⋃
0≤j<`min(s)

V
(
h(s), a(j, s)

))
.
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The ν-measure of the first component of the union is less than

m(s)− 2
m(s)

2s
= ν

(
I(s)

)(
1− 1

2s−1

)
.

As in the previous case, the ν-measure of the second component is less than ν(I(s))/2s. Again,
the union has measure at most ν(I(s))(1− 1/2s), as required.

It remains to show that there are infinitely many s such that I(s) is a proper subinterval
of I(s− 1). Consider an s such that `(s) is equal to `min(s). Since

ν
(
I(s− 1) ∩

⋃
0≤j<`min(s−1)

V
(
q(j, s− 1), a(j, s− 1)

))
< ν

(
I(s− 1)

)(
1− 1

2s−1

)
,

we may fix an s-level subinterval I of I(s− 1) such that

ν
(
I ∩

⋃
0≤j<`min(s−1)

V
(
q(j, s− 1), a(j, s− 1)

))
< ν(I)

(
1− 1

2s−1

)
.

For this I,

I ∩
⋃

0≤j<`(s)

V
(
q(j, s), a(j, s)

)
\ V
(
h(s), a(j, s)

)
⊆

(
I ∩

⋃
0≤j<`min(s−1)

V
(
q(j, s), a(j, s)

))
∪

(
I ∩

⋃
`min(s−1)≤j<`(s)

V
(
q(j, s), a(j, s)

)
\ V
(
h(s), a(j, s)

))
.

For each j such that `(s− 1) ≤ j < `(s), q(j, s) is equal to h(s), so the second component of
the union is empty. Thus,

ν
(
I ∩

⋃
0≤j<`(s)

V
(
q(j, s), a(j, s)

)
\ V
(
h(s), a(j, s)

))
< ν(I)

(
1− 1

2s−1

)
= m(s)− 2

m(s)

2s
.

Hence, the conditions for the construction to define I(s) to be a proper subinterval of I(s− 1)
are satisfied, as required.

Consider the sequence given by the closures of the intervals I(s), s ≥ 0. This is a com-
putable nested sequence of intervals whose lengths approach zero in the limit. Let x be the
unique real number in their intersection. By construction, x is computable (as is its base-b
expansion, for every integer b greater than or equal to 2.)

We now prove that the irrationality exponent of x is equal to a. For each j ≥ 0, let
bj = lims→∞ a(j, s). The sequence (bj)j≥0 is strictly decreasing with limit a. The construction
ensures that for every j, there is a step s such that I(s) is a level-s interval of K containing
real numbers that have at least one rational approximation p/q within 1/qbj . Thus, the real
number x has irrationality exponent greater than or equal to a. We now show it can not be
greater than a. Suppose that b is greater than a. Let j be such that b is greater than bj and
let s be such that `min(s) is greater than j. Then, for all t > s, a(j, t) = a(j, s) = bj and
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q(j, t) = q(j, s). Further, for any t > s, ν(I(t) \ V (q(j, t), bj)) is positive. If there were an
integer q > q(j, s) and an integer p such that∣∣∣∣x− p

q

∣∣∣∣ < 1

qb
,

then there would be a t greater than s such that

I(t) ⊂
(p
q
− 1

qbj
,
p

q
+

1

qbj

)
.

But then I(t)\V (q(j, t), bj) would be empty, a contradiction with the fact that it has positive
measure.
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