Complexity of Isomorphism for First Order Theories

David Marker

Mathematics, Statistics, and Computer Science
University of Illinois at Chicago

June 5, 2015
How little we know

We say a Borel equivalence relation E on X is *smooth* if there is a Borel measurable $f : X \to Y$ for some Polish space Y such that $xEy \iff f(x) = f(y)$, i.e., $E \leq_B i(Y)$.

Let $x \in 2^\omega$. Identifying 2^ω and 2^{ω^2} view x as coding $(x_0, x_1, \ldots) \in (2^\omega)^\omega$. Let $A_x = \{x_0, x_1, \ldots\}$. Define $x =^+ y$ if and only if $A_x = A_y$. (This was \cong_2 in Chris’ tutorial) $=^+$ is Borel but not smooth.

Problem: Find a first order theory T such that \cong_T is not smooth and $=^+ \not\leq_B \cong_T$.

A counterexample to Vaught’s Conjecture would do but there must be something simpler.
A Borel equivalence relation E is **countable** if every E-class is countable.

A Borel equivalence relation E is **essentially countable** if $E \sim_B E'$ for some countable Borel equivalence relation E'.

Example

- $x, y \in 2^\omega; xE_0y \iff \exists n \forall m > n \ x(m) = y(m)$;
- (Vitali relation) $x, y \in \mathbb{R}; xE_vy \iff x - y \in \mathbb{Q}$.

E_0 and E_v are countable but not smooth and $E_0 \sim_B E_v$.

\equiv^+ is not essentially countable, indeed if E is countable then $E \not\sim_B \equiv^+$.

Problem Is there a first order theory T such that \cong_T is essentially countable but not smooth?
Hjorth–Kečhris on $L_{\omega_1,\omega}$

Theorem (Hjorth–Kečhris)

If E is a countable Borel equivalence relation there is $\phi \in L_{\omega_1,\omega}$ such that $\sim \subset_B E$.

Theorem (Feldman–Moore)

If E is a countable Borel equivalence relation on X there is a countable group G and a Borel measurable action of G on X such that xEy if and only if x and y are in the same G orbit.

There is a universal orbit equivalence relation for G.

Let U_G be the shift equivalence relation on $(2^\omega)^G$.

If E is an orbit equivalence relation for a G action, then $E \leq_B U_G$.
Let $\mathcal{L} = \{\hat{g} : g \in G\} \cup \{U_n(x) : n \in \omega\}$, where the \hat{g} are unary functions and U_n is a unary predicate.

Let σ assert that \mathcal{M} is principle homogenous space for G, i.e., G acts faithfully and transitively.

For $\mathcal{M} \models \sigma$ let $f_\mathcal{M} : G \to 2^\omega$

$$f_\mathcal{M}(g)(n) = 1 \iff \mathcal{M} \models U_n(\hat{g}(0)).$$

Then $\mathcal{M} \cong \mathcal{N} \iff f_\mathcal{M} U_G f_\mathcal{N}$. So $\cong_{\sigma} \leq_B U_G$.

An easy argument also shows $U_G \leq_B \cong_{\sigma}$.
We have reductions

\[F : X \to \text{Mod}(\sigma) \quad \text{and} \quad H : \text{Mod}(\sigma) \to (2^\omega)^G \]

such that

\[x Ey \iff F(x) \cong F(y) \]

and

\[\mathcal{M} \cong \mathcal{N} \iff H(\mathcal{M}) U_G H(\mathcal{N}) \]

Theorem (Luzin–Novikov Uniformization)

Let \(F : X \to Y \) be Borel measurable such that \(F^{-1}(x) \) is countable for all \(x \). Then

i) If \(A \subseteq X \) is Borel then so is \(F(A) \);

ii) There is a Borel \(s : F(X) \to X \) such that \(F(s(x)) = x \) for all \(x \in F(X) \).
\[F : X \rightarrow \text{Mod}(\sigma) \text{ and } H : \text{Mod}(\sigma) \rightarrow (2^\omega)^G \]

\[xEy \Leftrightarrow F(x) \cong F(y) \text{ and } \mathcal{M} \cong \mathcal{N} \Leftrightarrow H(\mathcal{M})U_G H(\mathcal{N}) \]

- \(E \) is countable so \(H \circ F \) has countable sections. Thus \(H(F(X)) \) is Borel.
- \(U_G \) is a countable equivalence relation. Thus

\[[H(F(X))]_{U_G} = \{ x : \exists y \in H(F(X)) \ y U_G x \} \text{ is Borel.} \]

- \([F(X)]_{\cong_\sigma} = H^{-1}([H(F(X))]_{U_G}) \) is Borel.
- \([F(X)]_{\cong_\sigma} \) is Borel and invariant, hence, by Lopez-Escobar it is \(\text{Mod}(\phi) \) for some \(\phi \in \mathcal{L}_{\omega_1,\omega} \) and \(F \) gives a Borel reduction of \(E \) to \(\text{Mod}(\phi) \).
• We have $E \leq_B \text{Mod}(\phi)$.

• Let $S = \{(x, y) : x \in X \text{ and } y \cong F(x)\}$. For any y there are countably many x such that $(x, y) \in S$, thus there is a Borel measurable $s : \text{Mod}(\phi) \to X$ such that $(s(y), y) \in S$.

s is a reduction of \cong_ϕ to E so $E \sim_B \cong_\phi$.
I know one simple general fact about \cong_T for first order theories.

Theorem

Let T be a complete first order theory such that $S_1(T)$ is uncountable. Then $=^+ \leq_B \cong_T$.

- Need to look at small T to answer earlier problems;
- This is not so surprising. The set of types realized has to be part of the invariants of a structure.

When all you have a hammer, everything looks like a nail.
Scott sets and S-saturated models

Definition

$S \subseteq 2^\omega$ is a Scott set if

i) If $x, y \in S$ and $z \leq_T x \oplus y$, then $z \in S$.

ii) If $\mathcal{T} \subseteq 2^{<\omega}$ is an infinite tree recursive in some element of S, then there is $f \in [\mathcal{T}] \cap S$.

Definition

Let $\mathcal{M} \models T$ and let S be a Scott set containing T. Then \mathcal{M} is S-saturated if

i) $\text{tp}(\bar{a}) \in S$ for all $\bar{a} \in \mathcal{M}$;

ii) If $p(v, \bar{w}) \in S$, $\bar{a} \in \mathcal{M}$ and $p(v, \bar{a})$ is finitely satisfiable, then $p(v, \bar{a})$ is realized in \mathcal{M}.
S-saturated models

S-saturated models were studied by Knight–Nadel, Wilmers, Macintyre–Marker.

Theorem

Let S be a countable Scott set with $T \in S$.

i) There is a countable S-saturated model of T.

ii) If M and N are countable S-saturated models of T, then $M \cong N$.

Theorem

Suppose T is not small and r codes a perfect tree of types. If S_1 and S_2 are countable Scott sets containing r and M_i is a countable S_i-saturated models of T then

$$M_1 \cong M_2 \iff S_1 = S_2.$$
Reducing \equiv^+ to \cong_T

Let r code a perfect tree of types.

- There is a countable family of Borel measurable functions \mathcal{F} such that if $A \subseteq 2^\omega$, then $\text{cl}_\mathcal{F}(A)$ is a Scott set containing $A \cup \{r\}$;
- There is a perfect set $P \subseteq 2^\omega$ that is \mathcal{F}-independent, i.e. if $A \subseteq P$ then $\text{cl}_\mathcal{F}(A) \cap P = A$. Let $f : 2^\omega \to P$ be a continuous bijection.
- For $A \subset 2^\omega$ countable, let \mathcal{M}_A be a countable $\text{cl}_\mathcal{F}(f(A))$-saturated model of T.
 Then $x \equiv^+ y \iff \mathcal{M}_{Ax} \cong \mathcal{M}_{Ay}$.

Corollary

If T is not small and $h\text{Mod}(T)$ is the set of ω-homogeneous models of T, then $\equiv^+ \sim_B \cong |h\text{Mod}(T)|$
Smooth-by-Smooth

One can ask many questions of the form: If $\cong_{T'}$ behaves well for all completions of T does \cong_T behave well?

Problem Suppose $\cong_{T'}$ is smooth for all completions T' of T. Is \cong_T-smooth?

Definition

We call an equivalence relation E **smooth-by-smooth** if there there is a smooth equivalence relation $E^* \supseteq E$ such that $E|[x]_{E^*}$ is smooth for all x.

Elementary equivalence is smooth, so \cong_T above would be smooth-by-smooth.

Does smooth-by-smooth \Rightarrow smooth?
There is Σ^1_1 smooth-by-smooth equivalence relation with all equivalence classes Borel that is not Borel. Let $(x, y) E (x', y')$ if and only if $x = x'$ and at least one of the following:

i) $y = y'$;

ii) $x \notin WO$;

iii) x, y, y' code linear orders, y and y' embed into x and $y \equiv y'$.

$(x, y) E^*(x', y')$ if and only if $x = x'$

- If $x \notin WO$, the $[(x, y)]_{E^*}$ is the single E-class $\{x\} \times 2^\omega$;

- If $x \in WO$ has order type α then $[(x, y)]_{E^*}$ is has one E-class for all $\beta \leq \alpha$ and many singleton classes

- E has classes of arbitrary Borel complexity.
A Borel smooth-by-smooth equivalence relation is smooth.

Let E be a Borel equivalence relation. Then E is non-smooth if and only if there is a Borel probability measure μ that is
i) non E-atomic; i.e., $\mu([x]_E) = 0$ for all x;
ii) E-ergodic, i.e., $\mu(A) = 0$ or 1 for all E-invariant Borel A.

For E_0 Lebesgue measure works.
Borel smooth-by-smooth

Suppose $E^* \supset E$ is smooth but E is not smooth.

There is a non-E-atomic, E-ergodic probability measure μ on X.

μ is E^*-ergodic. Thus since E^* is smooth there must be some x with $\mu([x]_{E^*}) = 1$.

But then $\mu|[x]_{E^*}$ is E-ergodic and non E-atomic, thus $E|[x]_{E^*}$ is not smooth.

Thus if \cong_T is Borel and $\cong_{T'}$ is smooth for all completions of T, then \cong_T is smooth.