
LIKELY INTERSECTIONS

SEBASTIAN ETEROVIĆ AND THOMAS SCANLON

Abstract. We prove a general likely intersections theorem, a counterpart to

the Zilber-Pink conjectures, under the assumption that the Ax-Schanuel prop-

erty and some mild additional conditions are known to hold for a given category
of complex quotient spaces definable in some fixed o-minimal expansion of the

ordered field of real numbers.

For an instance of our general result, consider the case of subvarieties of
Shimura varieties. Let S be a Shimura variety. Let π : D → Γ\D = S

realize S as a quotient of D, a homogeneous space for the action of a real

algebraic group G, by the action of Γ < G, an arithmetic subgroup. Let
S′ ⊆ S be a special subvariety of S realized as π(D′) for D′ ⊆ D a ho-

mogeneous space for an algebraic subgroup of G. Let X ⊆ S be an irre-
ducible subvariety of S not contained in any proper weakly special subva-

riety of S. Assume that the intersection of X with π(gD′) is persistently

likely as g ranges through G with π(gD′) a special subvariety of S, mean-
ing that whenever ζ : S1 → S and ξ : S1 → S2 are maps of Shimura

varieties (regular maps of varieties induced by maps of the corresponding

Shimura data) with ζ finite, dim ξζ−1X + dim ξζ−1π(gD′) ≥ dim ξS1. Then
X ∩

⋃
g∈G,π(gD′) is special π(gD′) is dense in X for the Euclidean topology.

1. Introduction

If X is a complex manifold and f : Y → X and g : Z → X are two sufficiently
nice maps from complex analytic spaces to X, then we say that an intersection
between Y and Z is unlikely if dim f(Y ) + dim g(Z) < dimX 1 and that it is likely
otherwise. Conjectures of Zilber-Pink type predict that in many cases of interest
there are very few unlikely intersections. For example, the Zilber-Pink conjecture
for Shimura varieties takes the following form. We let X be a Shimura variety
and Y ⊆ X be a subvariety of X that is not contained in any proper weakly
special subvariety (in the sense of Shimura varieties) of X. The conclusion of the
conjecture in this case is that the union of all unlikely intersections between Y and
special subvarieties of X is not Zariski dense in Y . In this paper, we address the
complementary question of describing the likely intersections.

This is not the first time that the likely intersection problem has been addressed.
In Section 4 we discuss several specializations of our main theorem and the rela-
tion between our results and those which appear in the literature. Three notable
instances are the “all or nothing” theorem of Baldi, Klingler, and Ullmo [8] on
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1We will be working with cases in which f(Y ) is automatically a finite Boolean combination of

(at least) real analytic subvarieties of X. This happens, for example, when f : Y → X is proper
or definable in an o-minimal expansion of the real field. In this case, we could take dim to mean

the o-minimal dimension or the maximal dimension of a submanifold of f(Y ).
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the density of the typical Hodge locus, the results of Tayou and Tholozan [31] de-
scribing the typical Hodge locus of polarized variations of Hodge structure over a
smooth complex quasiprojective variety, and the work of Gao [12, 14] (following on
the work of André, Corvaja, and Zannier [1]) on the generic rank of the Betti map,
from which a sufficient condition for the density of torsion in subvarieties of abelian
schemes is derived.

We formulate and prove our main theorem (Theorem 3.3) in terms of defin-
able analytic maps from complex algebraic varieties to definable complex quotient
spaces. See Section 2 for details. In brief, a definable complex quotient space S is
a complex analytic space which may be presented as a double coset space Γ\G/M
where G is an open subgroup of the real points of an algebraic group, M ≤ G is
a suitable subgroup, and Γ ≤ G is a discrete subgroup together with a choice of a
definable (in a fixed o-minimal expansion of the real numbers) fundamental set F .
Examples of such definable complex quotient spaces include complex tori, Shimura
varieties, Hopf manifolds, and (mixed) period spaces. We then define a special
subvariety of a definable complex quotient space S to be the image of a map of
definable complex quotient spaces S′ → S (or possibly taken only from some sub-
category of definable complex quotient spaces) which is a definable map induced
by an algebraic group homomorphism followed by translation. For example, the
special subvarieties of complex tori would be translates by torsion points of subtori
and the special subvarieties of period spaces would come from period subdomains.
We must also consider a more general class of weakly special varieties, which are the
fibers of maps of definable complex quotient spaces and the images of these fibers
under other maps of definable complex quotient spaces. We identify a condition we
call well-parameterization of weakly special subvarieties whereby all of the weakly
special varieties in some given definable complex quotient space come from those
appearing in countably many families of weakly special subvarieties. In our appli-
cations this condition is easy to verify as we restrict to subcategories of definable
complex quotient spaces for which there are only countably many morphisms all
told.

Consider S = Γ\G/M = Γ\D and D′ ⊆ D a homogeneous space for a subgroup
G′ ≤ G. We will write πΓ : D → S for the quotient map. It may happen that
πΓ(gD

′) ⊆ S is a special subvariety of S for many choices of g ∈ G, where “many”
might mean that the set of such g is dense in G. For example, if D = h2 is the
Cartesian square of the upper half plane, Γ = PGL2

2(Z) and D′ = {(τ, τ) : τ ∈ h}
is the diagonal, then all modular plane curves may be expressed as πΓ(gD

′) as g
ranges through PGL2

2(Q) acting via pairs of rational linear transformations. In
such a situation we might expect that if X is a quasiprojective complex algebraic
variety and f : Xan → S is a definable complex analytic map from the analyti-
fication of X to S, then the set f−1

⋃
g∈G,πΓ(gD′) special πΓ(gD

′) of special inter-

sections is dense in X provided that the intersections are likely in the sense that
dim f(X)+dimD′ ≥ dimS. This is not quite right as the intersection may become
unlikely after transformation through a special correspondence. We account for this
complication with the notion of persistently likely intersections. Our main Theo-
rem 3.3 asserts that if we know that the Ax-Schanuel theorem holds for our given
category of definable complex quotient spaces (which satisfies some natural closure
properties and the well-parameterization of weakly special subvarieties condition),
then, in fact, when the intersection of f(X) with the family of sets πΓ(gD

′), where
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g ∈ G, is persistently likely, the set of special intersections is dense in X (even in
the Euclidean topology).

When working in the setting of variations of Hodge structures, our result im-
proves the “all or nothing” theorem of [8] first by giving a criterion for the typical
Hodge locus to be dense (namely persistent likeliness with families), and secondly
by obtaining a euclidean dense set of likely intersections using a specific subcollec-
tion of the family of all special varieties. On the other hand, the general setting
of definable quotients spaces does not allow for measure theoretic techniques, so
we are unable to recover the equidistribution results appearing in, for example,
[8] and [31]. But our result does imply some of the applications of these equidis-
tribution results. For example, in the setting of the moduli space of principally
polarized abelian varieties of dimension g, given two subvarieties S and D of Ag

of complimentary dimensions and so that dimS ≤ 2, our result implies the part of
[31, Theorem 1.22] stating that the set of points in S isogenous to a point in D is
euclidean dense in S. See also Section 4 for more applications. An advantage of the
present work is that our results apply directly to the likely intersections problem in
contexts not covered by [31], such as for mixed Shimura varieties, or more generally,
for variations of mixed Hodge structures.

Unsurprisingly, Ax-Schanuel theorems play key roles in the existing proofs of the
density of special intersections. What may be surprising is that our argument is
not an abstraction of the proofs appearing, for example, in [8], [31] or [12]. Instead,
our arguments are inspired by the work of Aslanyan and Kirby [3], especially with
the proof of their Theorem 3.1. The reader will recognize a resemblance between
our notion of persistent likeliness and the J-broad and J-free conditions of [3],
which themselves extend freeness and rotundity conditions from earlier works on
existential closedness as a converse to Schanuel-type statements. While the contents
of our arguments differ, the structure of many of the results of Daw and Ren in [11]
inspired our approach.

Our own interest in the likely intersections problem was motivated by [25, Con-
jecture 3.13] in the second author’s work with Pila on effective versions of the
Zilber-Pink conjecture.

This paper is organized as follows. In Section 2 we define definable quotient
spaces and develop some of their basic theory. These definitions and results owe
their form to the formalism of Bakker, Brunebarbe, Klingler and Tsimerman [5, 4]
used to study arithmetic quotients and more generally mixed period spaces. In
that section we express precisely what the Ax-Schanuel condition means and show
that under the well-parameterization of weakly special subvarieties hypothesis, it
implies a uniform version of itself. Section 3 is devoted to the statement and proof
of our main theorem on dense special intersections. In Section 4 we detail several
specializations of the main theorem, including to Hodge loci, intersections with
modular varieties, and density of torsion in subvarieties of abelian schemes.

Acknowledgments. During the writing of this paper S.E. was partially sup-
ported through the NSF grant RTG DMS-1646385 and the EPSRC fellowship
EP/T018461/1, and T.S. was partially supported by NSF grants DMS-1800492,
FRG DMS-1760414, and DMS-22010405. The authors have no competing inter-
ests, financial or otherwise. S.E. thanks E. Ullmo and G. Baldi for hosting him
at IHÉS, for sharing an early version of [8], and for discussing problems around
the density of special intersections. T.S. thanks Z. Gao, M. Orr, and U. Zannier
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for offering detailed accounts of the state of the art on likely intersection problems
for modular curves and torsion in abelian schemes. Both authors thank the refer-
ees for their close reading, for their insightful questions, and for suggesting several
improvements.

2. Complex quotient spaces and S-special varieties

We express our theorems on likely intersections in terms of classes of definable
complex quotient spaces. Our formalism is similar to what appears in [5], though
we explicitly include the fundamental domain giving the definable structure as part
of our data.

Throughout we work in an appropriate o-minimal expansion of the real field R
(usually Ran,exp), and the word definable is meant with respect to this choice of
o-minimal structure.

Definition 2.1. A definable quotient space is given by the data of

• a definable group G,
• a definable compact subgroup M ≤ G of G,
• a discrete subgroup Γ ≤ G of G, and
• F ⊆ D := G/M a definable open fundamental set for the action of Γ on D
(that is, D =

⋃
γ∈Γ γF and there is a finite subset Γ′ ⊆ Γ so that if x ∈ F

and γx ∈ F for some γ ∈ Γ, then γ ∈ Γ′) for which the closure F of F is
contained in

⋃
γ∈Γ′′ γF for some finite subset Γ′′ ⊆ Γ.

We write SΓ,G,M ;F both for the quotient space Γ\D = Γ\G/M regarded as a
definable, real analytic space where the definable structure comes from F , and for
the data (G,M,Γ,F) giving this space. We denote the corresponding quotient map
by πΓ : D → SΓ,G,M ;F . When the data are understood, we suppress them and write
S for SΓ,G,M ;F and π : D → S for the quotient map.

The class of definable quotient spaces forms a category DQS with the following
notion of a morphism.

Definition 2.2. A morphism f : SΓ1,G1,M1;F1 → SΓ2,G2,M2;F2 is given by a defin-
able map of groups φ : G1 → G2 and an element a ∈ G2 for which

• φ(M1) ≤M2,
• φ(Γ1) ≤ a−1Γ2a, and
• there is a finite set Ξ ⊆ Γ2 with aφ(F1) ⊆

⋃
ξ∈Ξ ξF2, where φ : D1 → D2

is the map induced on the quotient spaces.

The induced map on the double quotient space is a definable real analytic map
which we also denote by f .

Remark 2.3. If f : SΓ1,G1,M1;F1
→ SΓ2,G2,M2;F2

is a morphism of definable quotient
spaces as in Definition 2.2, then it is definable in the sense that its graph on the
specified fundamental domains

Graph(f) := {(x, y) ∈ F1 ×F2 : f(πΓ1
(x)) = πΓ2

(y)}
is definable. Indeed, it is clear that the induced map φ : D1 → D2 is definable and
for (x, y) ∈ F1×F2 we have that (x, y) ∈ Graph(f) if and only if

∨
ξ∈Ξ ξ ·y = aφ(x).

The category DQS has a terminal object and is closed under fiber products.

Proposition 2.4. There is a terminal object in DQS.
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Proof. Take G = M = Γ = {1} to be the trivial group and then let F := G/M ,
which is a singleton. The one point space {∗} = SG,Γ,M ;F is a definable quotient
space and for any definable quotient space S = SG′,Γ′,M ′;F ′ , the unique set theoretic
map S → {∗} is induced by the unique map of groups φ : G′ → {1} and a = 1 ∈
{1}. □

Proposition 2.5. The category DQS has pullbacks.

Proof. More concretely, we need to show that given maps f : S2 → S1 and g :
S3 → S1 of definable quotient spaces, there are maps of definable quotient spaces
g : S4 → S2 and f : S4 → S3 fitting into the following Cartesian square.

S4

g

��

f // S3

g

��
S2

f // S1

Express Si = SGi,Γi,Mi;Fi and f : S2 → S1 as Γ2xM2 7→ Γ1a2φ(x)M1 and
g : S3 → S1 as Γ3xM3 7→ Γ1a3ψ(x)M1 where φ : G2 → G1 and ψ : G3 → G1 are
definable group homomorphisms, a2 ∈ G1 and a3 ∈ G1. Let G4 := G2 ×G1

G3,
M4 := M2 ×M1

M3, and Γ4 := Γ2 ×Γ1
Γ3. For the fiber products defining G4 and

M4 we use the maps φ : G2 → G1 (and its restriction to M2) and ψ : G3 → G1

(and its restriction to M3). In defining Γ4, we use the maps x 7→ a2φ(x)a
−1
2 and

x 7→ a3ψ(x)a
−1
3 . Regarding G4 as a subgroup of G2 ×G3 and then D4 := G4/M4

as a subset of G2/M2 ×G3/M3 = D2 ×D3, we let F4 := D4 ∩ (F2 ×F3). □

A useful observation is that a morphism of definable quotient spaces always
factors as a surjective map followed by a map induced by an inclusion of subgroups.

Proposition 2.6. Every map f : S1 → S2 of definable quotient spaces fits into a
commutative diagram

S1
f //

q
  

S2

S3

p

>>

where q : S1 → S3 is surjective and p : S3 → S2 is induced by an inclusion of
subgroups and has compact fibers.

Proof. Take Si = SGi,Γi,Mi;Fi
for 1 ≤ i ≤ 2 and let φ : G1 → G2 be a definable

homomorphism and a ∈ G2 so that f : S1 → S2 is given by Γ1xM1 7→ Γ2aφ(x)M2.
Define G3 := φ(G1) ≤ G2, a definable group. Set Γ3 := φ(Γ1), M3 := φ(M1),

and F3 := φ(F1) where φ : G1/M1 → G3/M3 is the induced map. We make the
following observations:

(a) Since Γ2 is discrete and Γ3 is a subgroup of a−1Γ2a, then Γ3 is discrete.
(b) The map φ is clearly definable. A general fact about continuous group actions

on topological spaces, is that the projection map under a group action is an

open map. Therefore the maps G1
φ−→ G3

∼= G1/ kerφ, G1
π1−→ G1/M1 and

G3
π3−→ G3/M3 are continuous open maps. So given an open subset U ⊆ G1/M1,

we have that φ(U) = π3 ◦ φ ◦ π−1
1 (U) is open in G3/M3. This gives that φ is

open.
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(c) Since φ is continuous and M1 is compact, M3 is also compact.
(d) Since φ is definable and open, then so is F3. We also get that⋃

γ∈Γ3

γF3 =
⋃

γ∈Γ1

φ(γ)φ(F1) = φ(G1/M1) = G3/M3.

(e) We will now show that F3 is a fundamental set for the action of Γ3 on G3/M3.
For this, let Ξ be a finite subset of Γ2 such that aF3 ⊆

⋃
ξ∈Ξ ξF2, and let

Ξ−1 := {ξ−1 : ξ ∈ Ξ}. Since F2 is a fundamental set for the action of Γ2 on
G2/M2, there is a finite subset Γ′

2 ⊂ Γ2 such that whenever γy ∈ F2 for some
y ∈ F2 and some γ ∈ Γ2, then γ ∈ Γ′

2.
Define Γ′

3 := (a−1ΞΓ′
2Ξ

−1a) ∩ Γ3, which is clearly a finite subset of Γ3.
Suppose now that x ∈ F3 and γ ∈ Γ3 are such that γx ∈ F3. Choose ξ1, ξ2 ∈ Ξ
such that ax ∈ ξ1F2 and aγx ∈ ξ2F2. Choosing γ̃ ∈ Γ2 such that γ = a−1γ̃a,
we then get γ̃x ∈ ξ2F2. In other words ξ−1

1 ax, ξ−1
2 γ̃ax ∈ F2. Since ξ−1

2 γ̃ax =
(ξ−1

2 γ̃ξ1)ξ
−1
1 ax and ξ−1

2 γ̃ξ1 ∈ Γ2, we conclude that ξ−1
2 γ̃ξ1 ∈ Γ′

2. Therefore,
γ̃ ∈ ΞΓ′

2Ξ
−1, which gives that γ ∈ Γ′

3.
(f) We will now show that the closure of F3 is contained in finitely many Γ3-

translates of F3. Let Γ′′
2 be a finite subset of Γ2 such that F2 ⊆

⋃
γ∈Γ′′

2
γF2.

Then, keeping the notation of Ξ and Γ′
2 used above, we get

aF3 ⊆
⋃
ξ∈Ξ

ξF2 ⊆
⋃
ξ∈Ξ

ξ

 ⋃
γ∈Γ′′

2

γF2

 .

Choose x ∈ F3. Let γ0 ∈ Γ3 be such that γx ∈ F3. Let ξ1, ξ ∈ Ξ and
γ ∈ Γ′′

2 be such that aγ0x ∈ ξ1F and ax ∈ ξ2γF2. Let γ̃0 ∈ Γ2 be such
that γ0 = a−1γ̃0a. We then get that ξ−1

1 γ̃0ax, ξ
−1
2 γ−1ax ∈ F2, and since

ξ−1
1 γ̃0ax =

(
ξ−1
1 γ̃0γξ2

)
ξ−1
2 γ−1ax, we conclude that ξ−1

1 γ̃0γξ2 ∈ Γ′
2. Therefore

γ0 ∈ a−1ΞΓ′
2Ξ

−1 (Γ′′
2)

−1
a.

We can therefore use the finite set Γ′′
3 := a−1ΞΓ′

2Ξ
−1 (Γ′′

2)
−1
a ∩ Γ3 to obtain

that F3 ⊆
⋃

γ∈Γ′′
3
γF3.

The observations above show that the data (G3,M3,Γ3,F3) yield a definable
quotient space. Set S3 := SG3,Γ3,M3;F and let q : S1 → S3 be the map Γ1xM1 7→
Γ3φ(x)M3. The map p : S3 → S2 is then given by Γ3xM3 7→ Γ2axM2.

We now look at the fibers of p. Given x ∈ G3, the fiber over p(Γ3xM3) is given
by

(
a−1Γ2axM2

)
∩ G3. Observe that if γ1, γ2 ∈ Γ2 are such that a−1γ1axM2 ∩

a−1γ2axM2 ̸= ∅, then a−1γ1axM2 = a−1γ2axM2. On the other hand, since p is a
definable map, then the fibers of p have finitely many connected components. Since
M2 is compact, disjoint translates of M2 can be separated by Euclidean open sets.
So there is a finite subset ∆ ⊂ Γ2 such that(

a−1Γ2axM2

)
∩G3 =

⋃
γ∈Γ2

(
a−1γ2axM2

)
∩G3 =

⋃
γ∈∆

(
a−1γ2axM2

)
∩G3.

Thus the fibers of p are compact and in fact consist of a bounded number of homo-
geneous spaces for the compact group M2 ∩G3. □

For the problems we consider in this paper we require that our definable quotient
spaces come equipped with a complex structure and for the domain D to arise as
a subset of an algebraic variety.
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Definition 2.7. A definable complex quotient space is a definable quotient space
SΓ,G,M ;F together with the data of a complex algebraic group G and an algebraic
subgroup B ≤ G of G for which G is a definable subgroup of G(C)M = B(C)∩G,
and D = G/M ⊆ (G/B)(C) =: Ď(C) is an open domain in the complex points of
the algebraic variety Ď.

A morphism f : SΓ1,G1,M1;F1
→ SΓ2,G2,M2;F2

of definable complex quotient
spaces is a morphism of definable quotient spaces for which the definable map of
groups is given by a map of algebraic groups φ : G1 → G2 for which φ(B1) ≤ B2.

The class of definable complex quotient spaces with this notion of morphism
forms a category DCQS.

We leave it to the reader to check that the proofs of the basic closure properties
for the category DQS, such as the existence of a terminal object and closure under
fiber products, go through for the category DCQS. In practice, the morphisms in
DCQS we consider satisfy a stronger conclusion than what Proposition 2.6 gives.
That is, in practice, a map f : SG1,Γ1,M1;F1 → SG2,Γ2,M2;F2 in DCQS is given by a
map of algebraic groups φ : G1 → G2 (and an element a ∈ G2) for which M1 is a
finite index subgroup of φ−1(M2). It then follows from the proof of Proposition 2.6
that f factors as f = p ◦ q where q : S1 → S3 is a surjective DCQS morphism and
p : S3 → S2 is a DCQS morphism with finite fibers.

As we have defined definable complex quotient spaces, such a space SG,Γ,M ;F
may have singularities. Since M is compact, the singularities are at worst locally
isomorphic to those coming from a quotient by a finite group. In our applications,
we will consider only cases where these quotients may be desingularized by passing
to a finite cover by another definable complex quotient space.

For some purposes we may wish to restrict to an even smaller category S. We
always assume about our given category S of definable complex quotient spaces that
it satisfies some basic closure properties. Let us specify these with the following
convention.

Convention 2.8. The category S is a subcategory of DCQS satisfying the following
conditions.

• The one point space {∗} is a terminal object of S.
• The category S is closed under fiber products.
• Every S-morphism f : S1 → S2 factors as f = p ◦ q where q : S1 → S3 is a
surjective S-morphism and p : S3 → S2 is an S-morphism with finite fibers.

In Section 3 we will impose an additional restriction on S.

Definition 2.9. If f : S1 → S2 is an S-morphism, then the image f(S1) is called
an S-special subvariety of S2.

In Definition 2.9 we refer to f(S1) as a special subvariety. It is, in fact, always
a complex analytic subvariety of S2. Indeed, if we factor f = p ◦ q as given by
Convention 2.8, then p : S3 → S2 is a finite and, hence, proper map of complex
analytic spaces so that by Remmert’s proper mapping theorem its image p(S3) =
f(S1) is a complex analytic subvariety of S2. Using this observation, we may modify
Definition 2.9 to require the morphism f : S1 → S2 witnessing that f(S1) is an
S-special subvariety of S2 to be finite.
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Definition 2.10. An S-family of weakly special subvarieties of S ∈ S is given by a
pair of S-morphisms

S1

ζ

��

ξ

  
S S2

for which ζ is a map with finite fibers over its image and ξ is surjective. For each
b ∈ S2, the image ζξ−1{b} is a weakly S-special subvariety of S.

Remark 2.11. An S-special variety is weakly S-special as if f : S1 → S expresses
f(S1) as an S-special subvariety of S with f finite, then we can take ζ = f , S2 = {∗},
ξ : S1 → S2 the unique map to {∗}. If we take S to be the category DCQS, then
the converse that every weakly S-special variety is actually S-special holds.

In another extreme, every singleton in S ∈ S is a weakly special variety witnessed
by S = S1 = S2 and ξ = ζ = idS .

For our results it will be important that all S-weakly special varieties come from
countably many S-families of weakly special subvarieties. We isolate this as an
hypothesis and verify this condition in cases of interest.

Definition 2.12. We say that the weakly S-special subvarieties of S ∈ S are well-
parameterized if there are countably many S-families of weakly special subvarieties
of S,

S1,i

ζi

~~

ξi

!!
S S2,i

for i ∈ N, so that for every weakly S-special subvariety S′ ⊆ S of S there is some
i ∈ N and c ∈ S2,i so that S′ = ζiξ

−1
i {c}. More generally, we say that the weakly

S-special subvarieties are well-parameterized if for every S ∈ S the weakly S-special
subvarieties of S are well-parameterized.

Remark 2.13. When S is itself countable, by which we mean that there are only
countably many objects in S and the set of S-morphisms between any two such ob-
jects is itself countable, then the weakly S-special subvarieties are well-parameterized.

Remark 2.14. The well-paramaterization condition may fail in some cases. From
the theory of Douady spaces, we know that all complex analytic subvarieties of a
given compact definable complex quotient space S are parameterized by countably
many complex analytic families of analytic spaces. However, when parameterizing
weakly special varieties, the Douady universal family need not arise as a weakly
special family as defined in Definition 2.10. Moreover, there need not be natural
parameterizations of the weakly special varieties in the cases that S is non-compact.
The Hopf manifold construction may be instructive here. For example, consider p
and q two multiplicatively independent complex numbers of modulus less than
one, X := C2 ∖ {(0, 0)}, Γ := ⟨(p, q)⟩ the subgroup of Aut(X) generated by the
map (x, y) 7→ (px, qy), and M := Γ\X. The Hopf manifold M may be realized
as a definable complex quotient space and is a compact complex manifold with a
noncompact, connected group of automorphisms. One by one, these automorphisms
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define special subvarieties ofM×M , but they cannot be parameterized by a family
of weakly special varieties.

Let us indicate now the key functional transcendence condition which may hold
in a category S of definable complex quotient spaces.

Definition 2.15. Fix a category S of definable complex quotient spaces. We say
that f : Xan → S′ ⊆ SΓ,G,M ;F ∈ S, a definable complex analytic map from the
analytification of a complex algebraic variety X to a weakly S-special variety S′ ⊆ S
satisfies the Ax-Schanuel condition relative to S if whenever k ∈ Z+ is a positive
integer, and (γ, γ̃) : ∆k → Xan ×D is a complex analytic map, where

∆ = {z ∈ C : ∥z∥ < 1} ,

with πΓ ◦ γ̃ = f ◦ γ, then either

tr.degC(C(γ, γ̃)) ≥ dimS′ + rk(dγ̃)

or f(γ(∆k)) is contained in a proper weakly S-special subvariety of S′.

Under the hypothesis that the weakly S-special subvarieties are well-parameterized,
the Ax-Schanuel condition implies a uniform version of itself, expressed as Propo-
sition 2.20.

Since our statement of this uniform version is a bit dense, we take this opportu-
nity to explain it with a few words. Basically, what it says is that if we are given an
S-family of weakly special varieties and a family of algebraic varieties which might
witness the failure of the transcendence degree lower bound in the Ax-Schanuel
property, the weakly special variety in the alternative provided by the Ax-Schanuel
property may be chosen from one of finitely many preassigned S-families of weakly
special varieties.

Before proving Proposition 2.20 we require two lemmas. The first describes
families of weakly special subvarieties algebraically. The second allows us to recast
Ax-Schanuel in differential algebraic terms.

Lemma 2.16. Let f : Xan → SΓ,G,M ;F =: S ∈ S be a definable complex analytic
map from a complex algebraic variety to a definable complex quotient space in S.
Let

S1

ζ

��

ξ

  
S S2

be an S-family of weakly special subvarieties. Then there are algebraically con-
structible sets B and T ⊆ X × B so that the set of fibers {Tb : b ∈ B(C)} is equal
to {f−1ζξ−1{c} : c ∈ S2}.

Proof. The fiber product Xan×S S1 is a definable complex analytic variety and the
map ζ ′ : Xan ×S S1 → Xan is a definable, finite, holomorphic map. As such, the
ramification locus D ⊆ X of ζ ′ is a definable, complex analytic subvariety of X. By
the Peterzil-Starchenko definable Chow theorem [24], D is an algebraic subvariety
of X. By Noetherian induction, the family of fibers {f |−1

D ζξ−1{c} : c ∈ S2} is
represented by a constructible family. Thus, it suffices to replace X by X ∖D so
that we may assume that ζ ′ : Xan ×S S1 → Xan is unramified and has finite fibers.
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By the Riemann Existence Theorem [27, Théorème 5.1], there is an algebraic
variety X ′, a regular map of algebraic varieties ζ ′ : X ′ → X and an analytic map
f ′ : (X ′)an → S1 realizing (X ′)an as the fiber product Xan ×S S1. The fiber
equivalence relation

Eξ◦f ′ := {(x, y) ∈ X ′ ×X ′ : ξ(f ′(x)) = ξ(f ′(y))}
is analytic and definable, and hence algebraic by the definable Chow theorem. The
quotient B := X ′/Eξ◦f ′ may be realized within the category of constructible sets
as a constructible set [26, Lemme 2 and Théorème 7]. Let us write ν : X ′ → B for
the quotient map. We may then take

T := {(x, b) ∈ X ×B : (∃x′ ∈ X ′)ζ ′(x′) = x and ν(x′) = b} .

□

Definition 2.17. Let f : Xan → S ∈ S be a definable complex analytic map from
the complex algebraic variety X to the definable complex quotient space S in S.
We say that a subvariety Y ⊆ X is relatively weakly S-special of relative dimension
at most d if there is a weakly S-special S′ ⊆ S of dimension at most d for which
Y = f−1S′.

Note that in Definition 2.17, because we allow for the possibility that the map f
does not have finite fibers, it could happen that the dimension of Y itself is greater
than d. On the other hand, the intersection of S′ with f(X) may even be empty!
Thus, the dimension of Y could be less than d.

It follows from Lemma 2.16 that if the weakly S-special subvarieties are well-
parameterized, then for any definable complex analytic map f : Xan → S ∈ S from
a complex algebraic variety X to some definable complex quotient space S in S we
can recognize the pullbacks under f of weakly special varieties, in the sense that for
each number d the collection of relatively weakly S-special subvarieties of dimension
at most d comprise a countable collection of algebraic families of subvarieties of X.

Definition 2.18. Let f : Xan → S ∈ S be a definable complex analytic map
from the complex algebraic variety X to to a definable complex quotient space S
in S. Given any field M over which X and a countable collection of families of
relatively weakly S-special subvarieties of X including all such relatively weakly
S-special subvarieties are defined, by an M -relatively weakly S-special variety of
dimension at most d we mean an M -variety of the form Yb where Y ⊆ X ×B is an
algebraic family of relatively weakly S-special subvarieties of dimension at most d
and b ∈ B(M).

Using the Seidenberg embedding theorem we may reformulate the Ax-Schanuel
property in differential algebraic terms. To be completely honest, the embedding
theorem as stated and proven by Seidenberg in [29, 30] is not quite sufficient in that
he starts with a finitely generated differential subfield K ⊆ M(U) of a differential
field of meromorphic functions on the open domain U ⊆ Cn and then shows that for
any finitely generated differential field extension L of K at the cost of shrinking U
to some open subdomain V ⊆ U we may embed L into M(V ) over the embedding
of K. For our purposes, we will need to start with a possibly countably generated
differential field K ⊆ M(U). The necessary extension of embeddings theorem is
a consequence of the the Cauchy-Kovalevskaya theorem [32] and appears as The-
orem 1 of [23]. Iterating this construction countably many steps, we see that if
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K ⊆ M(U) is a countable differential subfield of the meromorphic functions on
some open domain in Cn and L is a countably generated differential field extension
of K, then L embeds into the differential field of germs of meromorphic functions
at some point x ∈ U over the embedding of K.

We recall the generalized Schwartzian and generalized logarithmic derivative
constructions from [28]. Consider S = SG,Γ,M ;F a definable complex quotient space

and fix an integer k. From the action G ↷ Ď of the algebraic group G on the
quasiprojective algebraic variety Ď and a positive integer k, there is a differentially
constructible map χ̃ : Ď → Z from Ď to some algebraic variety Z so that for any
differential field (L, ∂1, . . . , ∂k) extending C (where the derivations ∂i commute and
vanish on C) we have that for x, y ∈ Ď(L),

χ̃(x) = χ̃(y) ⇐⇒ (∃g ∈ G(C))gx = y

where

C = {a ∈ L : ∂i(a) = 0 for 1 ≤ i ≤ k}
is the common constant field of L. In particular, if this common constant field is
C, then we may express the quotient of Ď(L) by G(C) as the image of χ̃. When
f : Xan → S is a definable, complex analytic map from the analytification of a
quasiprojective algebraic variety X to S, then we may define a differentially ana-
lytically constructible function χ : Xan → Z by the rule that for any meromorphic
γ : U → Xan (where U ⊆ Ck is an open domain in Ck), χ(γ) := χ̃(π−1

Γ (f(γ))

where π−1
Γ is any branch of the inverse of πΓ. Theorem 3.12 of [28] shows that χ

is actually differentially constructible. (That theorem is stated in the case where
Xan = S and f = idS , but the proof goes through in the more general case.)

Lemma 2.19. Fix S a category of definable complex quotient spaces. Suppose
that the weakly S-special subvarieties are well-parameterized and that f : Xan →
S′ ⊆ SΓ,G,M ;F ∈ S is a definable complex analytic map from the analytification
of a complex algebraic variety X to an S-weakly special subvariety of a definable
complex quotient space in S, satisfying the Ax-Schanuel condition. Let K be a
countable subfield of C over which X and a complete collection of algebraic families
of relatively weakly S-special varieties are defined. Let k and d be two positive
integers.

Then for any differential field (L, δ1, . . . , δk) with k-commuting derivations for
which K is a subfield of the constants C of L and C is algebraically closed and any
C-relatively weakly S-special Y of dimension at most d, if (γ, γ̃) ∈ Y (L) × Ď(L)
satisfies χ(γ) = χ̃(γ̃), rk((δiγ)1≤i≤k) = k and tr.degC C(γ, γ̃) < d + k, then there

is a C-relatively weakly S-special Z ⊊ Y for which γ ∈ Z(L).

Proof. Consider Y and (γ, γ̃) ∈ Y (L) as in the statement of the lemma. LetM be a
countable differential subfield of L with an algebraically closed field of constants C ′

containing K and over which Y and the point (γ, γ̃) are defined. By the embedding
theorem, we may realizeM as a differential field of germs of meromorphic functions.
Let S′ ⊆ S be the S-weakly special variety of dimension at most d for which
Y = f−1S′. By Ax-Schanuel applied to γ and γ̃ regarded as meromorphic functions,
there is a proper weakly S-special subvariety S′′ ⊊ S′ with the image of f ◦ γ
contained in S′′. The algebraic variety Z := f−1S′′ is then relatively C-weakly
special. Let M ′ := Mdc be the differential closure of M and M ′′ := M(C)dc be
the differential closure of the differential field generated over M by C. In M ′′, γ
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satisfies the condition that it belongs to a C-relatively weakly special variety of
relative dimension strictly less than d where C is the constant field. As M ′′ is an
elementary extension ofM ′, the same is true inM ′ [20, page 53]. Since the constant
field of the differential closure is the algebraic closure of the constant field of the
initial field, we see that γ belongs to a C-relatively weakly special variety of relative
dimension strictly less than d. □

A uniform version of the Ax-Schanuel condition follows from Lemma 2.16 using
the compactness theorem.

Proposition 2.20. Let f : Xan → S′ ⊆ SΓ,G,M ;F ∈ S be a definable complex
analytic map from the analytification of a complex algebraic variety X to a definable
complex quotient space satisfying the same hypotheses as in Lemma 2.19.

Given an S-family

S1

ζ

��

ξ

  
S S2

of weakly S-special subvarieties of S, a positive integer k ∈ Z+, and a family Y ⊆
(X × Ď) × B of subvarieties of X × Ď, then there are finitely many S-families of
weakly special subvarieties

S1,i

ζi

~~

ξi

!!
S S2,i

for 1 ≤ i ≤ n so that for any pair of parameters b ∈ B and c ∈ S2 and analytic
map (γ, γ̃) : ∆k → Yb ⊆ X × D with γ(∆k) ⊆ ζξ−1{c} =: S′

c, f ◦ γ = πΓ ◦ γ̃,
rk(dγ̃) = k, and dimYb < k + dimS′

c, there is some i ≤ n and d ∈ S2,i for which

f ◦ γ(∆k) ⊆ ζiξ
−1
i {d} ⊊ S′

c.

Proof. Apply the compactness theorem to Lemma 2.16. See the proofs of [2, The-
orem 3.5] or [18, Theorem 4.3] for details on how to formalize the compactness
argument. □

Remark 2.21. Proposition 2.20 will play a crucial role in the proof of our main
Theorem 3.3. When applied, we will be considering instances of the failure of the
Ax-Schanuel dimension lower bound in families of weakly special subvarieties. In
order to carry out our inductive argument we need to know that the proper weakly
special varieties which account for a failure of the lower bound on the dimension of
intersections predicted by Ax-Schanuel vary uniformly.

3. Density of special intersections

In this section we state and prove our general theorem that, when persistently
likely, intersections with special varieties are dense.

Throughout this section S is a category of definable complex quotient spaces
satisfying our usual hypotheses from Convention 2.8 and some further requirements.
Let us specify with the following convention the properties we require.
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Convention 3.1. The category S of definable complex quotient spaces satisfies the
following conditions.

• S is closed under fiber products.
• The terminal definable complex quotient (one point) space {∗} belongs to S
as do the unique maps S → {∗} for S ∈ S.

• If f : S1 → S2 is an S-morphism then there are S-morphisms q : S1 → S3

and p : S3 → S2 so that f = p ◦ q, q is surjective, and p has finite fibers.
• For every S ∈ S there is some smooth S′ ∈ S and a finite surjective S-
morphism S′ → S.

• The S-weakly special varieties are well-parameterized.
• Every definable analytic map f : Xan → S ∈ S from the analytification of
an algebraic variety to a definable complex quotient space in S considered
in this section satisfies the Ax-Schanuel condition relative to S .

With the following definition we specify what is meant by intersections being
persistently likely.

Definition 3.2. Let S = SG,Γ,M ;F ∈ S and let D′ ⊆ D = G/M be a homogeneous
space for some definable subgroup G′ ≤ G. Let S′ := π(D′). Let f : Xan → S be a
complex analytic map from the analytification of an algebraic variety X to S. We
say that X has likely intersection with S′ if dim f(X)+dimS′ ≥ dimS, where here,
the dimension is the local o-minimal dimension. That is, S′ is a possibly countable
union of definable sets and dimS′ is the max of the dimensions of the definable
subsets of S′. We say the intersection is persistently likely if whenever ζ : S1 → S
and ξ : S1 → S2 are surjective S-morphisms with ζ a map with finite fibers, then
dim ξ(ζ−1f(X)) + dim ξ(ζ−1S′) ≥ dimS2. We say that X has likely, respectively,
persistently likely, intersection with the family {π(gD′)}g∈G if there is a definable
subset Q ⊂ G (possibly empty)2 with dimQ < dimG such that for every g ∈ G \Q
the variety X has likely, respectively, persistently likely, intersection with π(gD′).

Note first that the definition of likely intersection does not require f(X) ∩ S′

to be non-empty for X and S to have likely intersection. We also note that while
the intersection of X and S′ may be persistently likely, this does not imply that X
has persistently likely intersection with {π(gD′)}g∈G. However, one can check that
in many cases of interest, such as when S is an abelian variety or a power of the
modular curve, the implication holds.

With these definitions in place we may now state our main theorem.

Theorem 3.3. Let S = SG,Γ,M ;F ∈ S and let f : Xan → S be a definable complex
analytic map from the irreducible quasi-projective complex algebraic variety X to S.
Let D′ ⊆ D = G/M be a homogeneous space for some definable subgroup G′ ≤ G.

Suppose that the intersection of X with the family {π(gD′)}g∈G is persistently
likely. Let U ⊆ X(C) be an open subset of the complex points of X. Then the set
B := {g ∈ G : f(U) ∩ πΓ(gD′ ∩ F) ̸= ∅} has nontrivial interior.

In particular, by unwinding the meaning of density one sees that if the set {g ∈
G : πΓ(gD

′) is a special subvariety of S} is Euclidean dense in G, then the set of

2It is convenient to assume here that the empty set has dimension −∞. with dimQ < dimG
such that for every g ∈ G \Q the variety X has likely, respectively, persistently likely, intersection

with π(gD′).
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special intersections,

f−1
⋃

g∈G,πΓ(gD′) is special

πΓ(gD
′)

is dense in X for the Euclidean topology.

Proof. We break the proof of Theorem 3.3 into several claims. The claims at the
beginning of the proof are really just reductions permitting us to consider a simpler
situation. The main steps of the proof begin with Claim 3.3.9 in which we compute
the dimension of the incidence correspondence R. We then use this computation to
show that B and G have the same o-minimal dimension, so that B has nontrivial
interior in G.

Claim 3.3.1. We may assume that f : Xan → S is an embedding.

Proof of Claim: The equivalence relation Ef := {(x, y) ∈ X ×X : f(x) = f(y)}
is a definable and complex analytic subset of the quasi-projective algebraic variety
X ×X. Hence, by the definable Chow theorem, Ef is itself algebraic. Let Y be a
nonempty Zariski open subset of X/Ef , considered as a constructible set. Then f

induces an embedding f : Y ↪→ S whose image is dense in f(X). Shrinking U , we

may assume that f(U) ⊆ f(Y ) and then replacing U by U ′ := f
−1
f(U) ⊆ Y (C),

we see that if the theorem holds for f : Y an → S and U ′, then it also holds for
f : Xan → S and U . ✠

With Claim 3.3.1 in place, from now on we will regard X as a locally closed
subvariety of S. With the next claim we record the simple observations that it
suffices to prove the theorem for any given open subset of U in place of U and that
we may take U to be definable.

Claim 3.3.2. If Theorem 3.3 holds for some nonempty open V ⊆ U in place of U ,
then it holds as stated. Moreover, we may assume that U is definable.

Proof of Claim: The set {g ∈ G : V ∩ π(gD′ ∩ F) ̸= ∅} is a subset of {g ∈ G :
U ∩ π(gD′ ∩ F) ̸= ∅}. Hence, if the former set has nonempty interior, so does the
latter. For the “moreover” clause apply the main body of the claim to the case that
V ⊆ U is a nonempty open ball. ✠

From now on we will take U to be definable and will continue to refer to the
open subset of X under consideration as U even after taking various steps to shrink
it.

Another basic reduction we shall employ is that it suffices to prove the theorem
for a finite cover of S.

Claim 3.3.3. If ρ : S̃ → S is a surjective S-morphism with finite fibers, then we

may find an instance of the statement of Theorem 3.3 with S̃ in place of S so that

the truth of Theorem 3.3 for S̃ implies the result of S.
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Proof of Claim: Filling the Cartesian square

Y
f //

ρ

��

S̃

ρ

��
Xan f // S

we obtain a complex analytic space Y := Xan×S S̃. Since ρ : Y → Xan is finite, Y is

itself the analytification of an algebraic variety. Let X̃ be an irreducible component

of this algebraic variety and then let Ũ := ρ−1U .

The map ρ : S̃ → S comes from a homomorphism of algebraic groups φ :

G̃ → G and some element a ∈ G where S̃ = S
G̃,Γ̃,M̃ ;F̃ . This map induces a map

ρ̂ : G̃/M̃ =: D̃ → D. Let D̃′ be a component of ρ̂−1D′. If we succeed in showing

that {g ∈ G′ : f(Ũ) ∩ πΓ̃(gD̃
′ ∩ F̃)} contains some nonempty open set V , then

aφ(V ) would be a nonempty open subset of {g ∈ G : f(U) ∩ πΓ(gD
′ ∩ F)}, as

required. ✠

Let us record a useful consequence of Claim 3.3.3.

Claim 3.3.4. We may assume that S is smooth.

Proof of Claim: By Convention 3.1, we may find a surjective S-morphism S̃ → S

with finite fibers with S̃ smooth. By Claim 3.3.3, if we know the theorem for S̃,
then we may deduce it for S. ✠

Another useful consequence of Claim 3.3.3 is that we may assume that f(X) is
dense in S with respect to the weakly special topology.

Claim 3.3.5. We may assume that there is no proper weakly special variety S′′ ⊊ S
with f(X) ⊆ S′′.

Proof of Claim: Let us prove Theorem 3.3 by induction on the dimension of S.
If f(X) ⊆ S′′ ⊊ S where S′′ is a weakly special variety, then we could find an
S-morphism ζ : S1 → S with finite fibers, a surjective S-morphism ξ : S1 → S2,
and a point b ∈ S2 so that f(X) ⊆ ζ(ξ−1{b}). By Claim 3.3.3, we may assume that
S1 = S and ζ = idS . That is, f(X) ⊆ ξ−1{b} =: Sb ⊊ S. By Convention 3.1, the
weakly special variety Sb, being the fiber product of S with the the one-point space
{∗} over S2, is definably isomorphic to a space in S. By induction on dimension,
Theorem 3.3 already holds for Sb. ✠

By our hypothesis that the intersection between X and S′ is persistently likely,
it is, in particular, likely. Since we have reduced to the case that f : Xan → S is
an embedding by Claim 3.3.1, we may express the likeliness of this intersection by
an equation

dimC(X) + dimC(S
′) = dimC(S) + k
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for some nonnegative integer k. Notice that we have expressed this equality with
dimensions as complex analytic spaces. Later, when we write “dim” without qual-
ification we mean the o-minimal dimension, for which we would have

dimX + dimS′ = dimS + 2k .

By the uniform Ax-Schanuel condition, which holds in S by Convention 3.1 and
Proposition 2.20, there is a finite list of families of weakly special varieties

S1,i

ζi

~~

ξi

!!
S S2,i

for 1 ≤ i ≤ n where ζi : S1,i → S is an S-morphism with finite fibers and ξi : S1,i →
S2,i is a surjective S-morphism and if ℓ is a natural number with (γ, γ̃) : ∆ℓ → U×D
complex analytic with πΓ ◦ γ̃ = g ◦ γ, rk(dγ) = ℓ > k, and γ̃(∆ℓ) ⊆ gD′ for some
g ∈ G, then for some i ≤ n and b ∈ S2,i we have γ̃(∆ℓ) ⊆ ζi(ξ

−1
i {b}) ⊊ S.

Claim 3.3.6. We may assume that ζi : S1,i → S is surjective for each i ≤ n.

Proof of Claim: By Claim 3.3.5, we have reduced to the case that f(X) is
not contained in any proper weakly special subvariety of S. For any i ≤ n with
ζi(S1,i) ̸= S, we would thus have that ζi(S1,i) ∩ f(X) is a proper complex analytic
subvariety of f(X). Thus, we may shrink U so that for such an i we have ζi(S1,i)∩
U = ∅. We will thus never encounter weakly special varieties of the form ζi(ξ

−1{b})
with γ(∆ℓ) ⊆ ζi(ξ

−1{b}) ∩ U . Thus, we may omit these families of weakly special
varieties from our list. ✠

We may adjust our family of weakly special varieties to remember only the maps
ξi : S1,i → S2,i.

Claim 3.3.7. We may assume that S1,i = S and ζi : S1,i → S is the identity map
idS : S → S.

Proof of Claim: Work by induction on n. In the inductive case of n + 1, apply
Claim 3.3.3 to replace S by S1,n+1. We then need to replace S1,i for i ≤ n by
S1,i ×S S1,n+1. Conclude by induction. ✠

We shrink U once again to ensure that all of the fibers of ξi have the same
dimension when restricted to U .

Claim 3.3.8. We may shrink U to a smaller nonempty open set so that for all i ≤ n
there is some number di ∈ N so that for all u ∈ U we have dim(ξ−1

i {ξi(u)}∩f(U)) =
di.

Proof of Claim: For each i ≤ n and each natural number j ≤ dimU , let

Fi,j := {u ∈ U : dimu(f
−1ξ−1

i {ξi(f(u))}) = j} .

Here dimu( ) refers to the o-minimal dimension at u.
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The definable set U is the finite disjoint union of the definable sets
n⋂

i=1

Fi,di

as (d1, . . . , dn) ranges through [0,dim(U)]n. We may cell decompose U subjacent
to these definable sets. Let V be an open cell in this cell decomposition. Then for
some sequence (d1, . . . , dn) we have V ⊆

⋂n
i=1 Fi,di

. Because V is an open cell, for
each u ∈ V , we have

dimu(f
−1ξ−1

i {ξ(f(u))}) = dimu(V ∩ f−1ξ−1
i {ξ(f(u))})

= dim(V ∩ f−1ξ−1
i {ξi(f(u))}) .

Apply Claim 3.3.2 to conclude. ✠

Consider now the following incidence correspondence.

R := {(u, g) ∈ U ×G : f(u) ∈ πΓ(gD
′ ∩ F)}

Note that R is definable.

Claim 3.3.9. We have
dim(R) = dim(G) + 2k .

Proof of Claim: Fix the base point ∗ ∈ D′ = G′/M ′ corresponding to M ′ =
M ∩G′ in the coset space. For u ∈ U , let ũ ∈ F with πΓ(ũ) = u. Let g0 ∈ G with
g0∗ = ũ. We will check that Ru := {g ∈ G : (u, g) ∈ R} is a homogenous space for
M ×G′ with fibers isomorphic to G′ ∩M . Indeed, if h ∈ G′ and m ∈ M , we have
ũ = g0mhh

−1∗, demonstrating that f(u) ∈ πΓ((g0mh)D
′∩F). That is, g0mh ∈ Ru.

On the other hand, if g ∈ Ru, then we can find some h so that g0∗ = ũ = gh−1∗.
That is, m := g−1

0 gh−1 ∈M , the stabilizer of ∗ in G. That is, g = g0mh ∈ g0MG′.
We compute that for g1, g2 ∈ G′ and m1,m2 ∈M , we have g0g1m1 = g0g2m2 only
if g−1

2 g1 = m2m
−1
1 =: h ∈ G′ ∩M =M ′.

Using the fiber dimension theorem, since all fibers over U have the same dimen-
sion, dim(M ×G′)− dim(M ∩G′), we now compute that

dimR = dim f(U) + dimRu for any u ∈ U

= dimU + dim(M ×G′)− dim(M ∩G′)

= dimX + dimM + (dimG′ − dim(M ∩G′))

= dimX + dimM + dimS′

= dimX + (dimG− dimS) + dimS′

= dimG+ 2k .

✠

Abusing notation somewhat, for g ∈ G we will also write Rg for the fiber {u ∈
U : (u, g) ∈ R}. Note that Rg is definably, complex analytically isomorphic to
f(U) ∩ πΓ(gD

′ ∩ F ′) which is a locally closed complex analytic subset of S. It
follows that the o-minimal dimension of Rg is always even.

For each i ≤ dimX, let us define

Bi := {g ∈ G : dimRg = i} .
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Claim 3.3.10. For i < 2k, we have Bi = ∅.

Proof of Claim: We have reduced through Claim 3.3.4 to the case that S is
smooth. Hence, each component of f(U)∩ πΓ(gD′ ∩F ′) has complex dimension at
least dimU + dimD′ − dimS = k. ✠

The set B of the statement of the theorem may be expressed as

B =

dimU⋃
i=0

Bi .

By Claim 3.3.10, we actually have

B =

dimU⋃
i=2k

Bi .

With the next claim we show that (again by shrinking U) we may arrange that
B = B2k.

Claim 3.3.11. Possibly after shrinking U , we have Bi = ∅ for i > 2k.

Proof of Claim: Suppose that ℓ > k and g ∈ B2ℓ. Shrinking U if necessary,
we may assume that g ∈ G \ Q, where Q is given by the definition of X having
persistently likely intersection with the family {π(gD′)}g∈G. Then the complex
analytic set f(U) ∩ πΓ(gD′ ∩ F) has a component L of complex dimension ℓ. Let
(γ, γ̃) : ∆ℓ → U×gD′ be a complex analytic map with rk(dγ) = ℓ and πΓ◦γ̃ = f ◦γ.
By our choice of the witnesses to the Ax-Schanuel property for S, for some i ≤ n
and b ∈ S2,i we have

f ◦ γ(∆ℓ) ⊆ ξ−1
i {b} =: Sb ⊊ S .

By our reduction from Claim 3.3.8 and the fiber dimension theorem, we have

dimX = dimU = dim f(U) = dim ξif(U) + dim(f(U) ∩ Sb) .

Moreover, by the homogeneity of πγ(gD
′), we also have

dimπγ(gD
′) = dim ξiπγ(gD

′) + dim(πγ(gD
′) ∩ Sb)

and, of course,

dimS = dimS2,i + dimSb .

By our hypothesis of persistently likely intersections, we have that X has a
persistently likely intersection with π(gD′), hence

dimC ξif(U) + dimC ξiπγ(gD
′) = dimC S2,i + k′

for some k′ ≥ 0.
Written in terms of o-minimal dimension this says

dim ξif(U) + dim ξiπγ(gD
′) = dimS2,i + 2k′ .

Combining these equalities, we compute that

dim(f(U) ∩ Sb) + dim(πγ(gD
′) ∩ Sb) = dimSb + 2k − 2k′ .
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Since, k′ ≥ 0, this means that the expected (complex) dimension of a component
of f(U)∩πγ(gD′)∩Sb is at most k, but L is such a component of complex dimension
greater than k. That is, L is an atypical component of the intersection inside Sb ⊊ S.
Applying uniform Ax-Schanuel again, we may extend the family of weakly special
varieties

S1,i

ζi

~~

ξi

!!
S S2,i

for n+1 ≤ i ≤ n2 so that each such atypical component will satisfy L ⊆ ζi(ξ
−1
i {b2}) ⊊

Sb ⊊ S for some i ≤ n2 and b2 ∈ S2,i.
Repeating the reductions of the earlier claims and this extension of the list of

weakly special witnesses to Ax-Schanuel dimS + 1 times, we reach a contradiction
to the hypothesis that Bi is nonempty for some i > 2k. ✠

Thus, B = B2k. So we have

dimG+ 2k = dimR = dimB2k + 2k = dimB + 2k .

Subtracting 2k from both sides, we conclude that dimB = dimG. Hence, by
cell decomposition, B contains an open subset of G. □

4. Applications

In this section we illustrate Theorem 3.3 by considering various situations in
which it applies.

4.1. Arithmetic quotients. Our formalism is derived from that of Bakker, Klin-
gler, and Tsimerman in [5] for the study of arithmetic quotients. They consider
definable complex quotient spaces SG,Γ,M ;F in which the algebraic group G is a
semisimple Q-algebraic group, Γ is arithmetic (so commensurable with G(Z) for
some / any choice of an integral model for G), and M is compact. They often
require Γ to be neat; we will return to that issue in a moment. The definable fun-
damental domain F is not chosen sufficiently carefully in [5], an issue that was then
addressed and fixed in [6]. A similar issue is addressed in [22] in that one needs
to take F to be constructed from a Siegel set associated to a maximal compact
subgroup of G containing M .

If we drop the neatness requirement on Γ, then an arithmetic quotient need not
be smooth, but because every arithmetic group has a neat subgroup of finite index,

for any arithmetic quotient S we may find a smooth arithmetic quotient S̃ and a

surjective map of arithmetic quotients S̃ → S with finite fibers.
The one point space is clearly a terminal object in the category of arithmetic quo-

tients and the pullback construction of Proposition 2.5 specializes to the category
of arithmetic quotients. Since there are only countably many arithmetic quotients
all told and at most countably many maps of algebraic groups between algebraic
groups defined over the rational numbers, it follows that the weakly special varieties
are well-parameterized within the category of arithmetic quotients.

The main theorem of [7] is that period mappings associated to polarized varia-
tions of integral Hodge structures satisfy the Ax-Schanuel condition with respect
to S. It is an interesting open question whether every definable analytic map
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f : Xan → S where S is an arithmetic definable complex quotient space necessarily
satisfies the Ax-Schanuel condition with respect to S.

Our last observation in verifying Convention 3.1 and the hypotheses of Theo-
rem 3.3 for arithmetic quotients is that if D′ ⊆ D is a homogeneous space for which
πΓ(D

′) ⊆ S is a special variety, then for every g ∈ G(Q)∩G, πΓ(gD′) is also special.
Thus the set of g ∈ G for which πΓ(gD

′) is special is dense in G for the Euclidean
topology.

Returning to the case where we know f : Xan → S to be a period mapping and
f(X) is not contained in any proper weakly special subvariety, the union of f−1S′

ranging over all proper special subvarieties S′ ⊊ S is called the Hodge locus. In [19],
a dichotomy theorem is proven for a modified form of the Hodge locus which they
call the Hodge locus of positive period dimension: either this locus is Zariski dense
in X or it is itself a proper algebraic subvariety of X. In a recent preprint [17],
tight conditions for the density of the Hodge loci are established.

Because the special subvarieties of S come from Q-semisimple algebraic sub-
groups of G and there are only finitely many such subgroups up to G = G(R)+-
conjugacy, all special subvarieties of S come from finitely many families of homo-
geneous spaces in the sense of Theorem 3.3. That is, we can find finitely many
homogeneous spaces D1, . . . , Dn ⊆ D so that for any special subvariety S′ ⊆ S
there is some g ∈ G and i ≤ n with S′ = πΓ(gDi). Thus, if the intersection of X
with special subvarieties of the form π(gD′

i) is persistently likely, then the Hodge
locus is Euclidean dense in X. In fact, the subset of the Hodge locus of the form
f−1

⋃
h∈G,πΓ(hDi) special πΓ(hDi) is Euclidean dense in X. In [8] a theorem of a

similar flavor is proven. They show that if the typical Hodge locus is nonempty,
then it is analytically dense in X. Here the typical Hodge locus is the union of all
components of f−1S′ of expected dimension as S′ ranges through the special sub-
varieties of S. The proof in [8] uses some elements in common with ours. Notably,
Ax-Schanuel plays a central role in both proofs. To pass from a nonempty typical
locus to one which is dense, they argue through an analysis of Lie algebras to find
enough special varieties. Such a technique is not available to us in general as we
must postulate the existence of special varieties of a given shape. On the other
hand, such an argument does not immediately lend itself to a study of intersections
with a restricted class of special varieties.

Definability of the period mappings associated to admissible, graded polarized,
variations of mixed Hodge structures has been established by Bakker, Brunebarbe,
Klingler, and Tsimerman in [4] and then Ax-Schanuel for these maps was proven
independently by Chiu [10] and Gao and Klingler [15]. Indeed, Chiu has established
a stronger Ax-Schanuel theorem with derivatives for such period maps associated
to variations of mixed Hodge structures [9]. These results give the necessary in-
gredients to extend our result on the density of Hodge loci to variations of mixed
Hodge structures. We will return to the special case of universal abelian schemes
over moduli spaces in Section 4.3 to draw a conclusion from the combination of our
Theorem 3.3 and Ax-Schanuel in the context of mixed Shimura varieties.

4.2. Modular varieties. For the sake of illustration, let us consider a very special
case of Theorem 3.3. We take S = An = Y0(1)

n. That is, S is affine n-space
(for some positive integer n) regarded as the coarse moduli space of n-tuples of
elliptic curves. We may see S as an arithmetic quotient space, taking G = PGLn

2 ,
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Γ = PGLn
2 (Z), and the homogeneous space D may be identified with hn where

h = {z ∈ C : Im(z) > 0} is the upper half plane.
If σ = ⟨σ1, . . . , σm⟩ is a finite sequence taking values in {1, . . . , n} we may define

πσ : S → Am by (x1, . . . , xn) 7→ (xσ1
, . . . , xσm

). For J ⊆ {1, . . . , n} we list the
elements of J in order as J = {j1 < j2 < . . . < jm} and write πJ for π⟨j1,...,jm⟩. For
a singleton J = {j}, we just write πj for πJ .

For S′ ⊆ S a special subvariety of S provided that for each i ≤ n the projection
map πi : S′ → A1 is dominant, then S′ defines a partition Π(S′) of {1, . . . , n}
by the rule that i and j lie in a common element of the partition if and only if
dimπ⟨i,j⟩S

′ = 1. Given a partition Π of {1, . . . , n} we say that S′ is a special
variety of type Π if Π(S′) = Π. Let us observe that a special variety of type Π has
dimension equal to #Π.

Fix a partition Π with #Π = m. Let D′
Π ⊆ D be the homogeneous subspace

of D defined by τi = τj if and only there is some ν ∈ Π with {i, j} ⊆ ν. Then
πΓ(D

′
Π) =: S′ is the corresponding multi-diagonal subvariety of S and is a special

variety of type Π. Indeed, the special varieties of the form πΓ(gD
′
Π) as g ranges

through PGLn
2 (Q) ∩G are exactly the special varieties of type Π.

For a partition Π of {1, . . . , n} and subset J ⊆ {1, . . . , n} of {1, . . . , n}, we define
Π ↾ J := {ν ∩ J : ν ∈ Π, ν ∩ J ̸= ∅}

to be the restriction of the partition Π to J .
It is easy to check that for any special variety S′ ⊆ S and subset J ⊆ {1, . . . , n},

the projection πJ(S
′) is a special variety and Π(πJ(S

′)) = Π ↾ J . With these
combinatorial preliminaries in place, we may state the specialization of Theorem 3.3
to the case of Y0(1)

n.

Proposition 4.1. Let n ≥ 1 be a positive integer and Π a partition of {1, . . . , n}. If
X ⊆ An is an irreducible complex algebraic subvariety of affine n-space, regarded as
the coarse moduli space of n-tuples of elliptic curves, and for every J ⊆ {1, . . . , n}
we have #Π ↾ J + dimπJ(X) ≥ #J , then

X ∩
⋃

S′⊆An special of type Π

S′

is dense in X for the Euclidean topology.

Proof. Let us check that the intersection between X and the family {π(hDΠ)}h∈G

is persistently likely. Let

S1

ζ

��

ξ

  
S S2

be a pair of surjective maps of arithmetic quotients with ζ finite. The arith-
metic quotients S1 and S2 will take the form S1 = SPGLn

2 ,Γ1,M1;F1
and S2 =

SPGLk
2 ,Γ2,M2;F2

with k ≤ n where Γj is an arithmetic group for j = 1 and 2 and the

corresponding homogeneous spaces are hn and hk, respectively. Since each PGL2

factor is simple, the maps of algebraic groups corresponding to ζ and ξ are given by
coordinate projections followed by an inner automorphism defined over Q. That is,
the map of groups corresponding to ξ is given by ⟨g1, . . . , gn⟩ 7→ ⟨gj1 , . . . , gjk⟩ fol-

lowed by an inner automorphism of PGLk
2 defined overQ for some collection of k dis-

tinct numbers j1, . . . , jk between 1 and n, and likewise for ζ. Let J = {j1, . . . , jk},
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then permuting coordinates we see that this family of weakly special varieties fits
into the commuting square

S1

ζ

��

ξ

  
S

πJ ��

S2

ζ̃~~
Ak

where ζ̃ : S2 → Ak is finite. We then have

dim ξζ−1X + ξζ−1π(hDΠ) = dimπJX + dimπJ(π(hDΠ))

= dimπJX +#Π ↾ J

≥ k

= dimS2

Since PGLn
2 (Q)+ is the commensurator of PGLn

2 (Z) and is dense inG = PGLn
2 (R)+,

the concluding “in particular” clause of Theorem 3.3 applies and we find that the
intersections of X with special varieties of type Π is dense in X in the Euclidean
topology. □

Instances of Proposition 4.1 appear in the literature. Habegger shows in [16,
Theorem 1.2] that if X ⊆ A2 is a curve defined over the algebraic numbers, then
there is a constants c = c(X) > 0 and p0(X) > 0 so that for every prime number
p > p0(X) there is an algebraic point P ∈ X(Qalg) ∩ Y0(p)(Qalg) with logarithmic
height h(P ) ≥ c log(p) where here Y0(p) is the modular curve parametrizing the
isomorphism classes of pairs of elliptic curves ⟨E,E′⟩ for which there is an isogeny
E → E′ of degree p. Habegger’s result implies in particular that for n = 2 and
Π = {{1, 2}}, if X ⊆ A2

Qalg is an affine plane curve defined over the algebraic

numbers, then the intersection of X with the special varieties of type Π is Zariski
dense in X. Using equidistribution results, this Zariski density could be upgraded
to Euclidean density.

In the discussion after Remark 3.4.5 in [33], Zannier sketches an argument show-
ing that if X ⊆ A2 is a rational affine plane curve, then the intersections of X
with special curves of type Π, as in the previous paragraph, are dense in X in the
Euclidean topology.

4.3. Torsion in families of abelian varieties. If π : A→ B is an abelian scheme
of relative dimension g over the irreducible quasiprojective complex algebraic variety
B and X ⊆ A is a quasi-section of π, by which we mean that π restricts to a
generically finite map on X, then under some mild nondegeneracy conditions, we
expect that the set

π(X ∩Ator) = {b ∈ B(C) : (∃n ∈ Z+)Xb ∩Ab(C)[n] ̸= ∅}
of points on the base over which X meets the torsion subgroup of the fiber is
dense in B if and only if dimB ≥ g. Masser-Zannier prove in [21] that when B =
P1∖ {0, 1,∞} and π : A→ B is the square of the Legendre family of elliptic curves
defined in affine coordinates by y21 = x1(x1−1)(x1−λ) and y22 = x2(x2−1)(x2−λ)
where λ ranges over B, and X is the curve defined by x1 = 2 and x2 = 3, then the
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set π(X ∩ Ator) is finite. This theorem sparked much work on torsion in families
of abelian varieties culminating in a result announced by Gao and Habegger that,
at least for such abelian schemes π : A → B defined over Qalg, if X ⊆ A is an
algebraic variety, also defined over Qalg so that the group generated by X is Zariski
dense in A and π(X ∩Ator) is Zariski dense in B, then dimX ≥ g.

In the opposite direction, André, Corvaja, and Zannier study in [1] the problem of
density of torsion through an analysis of the rank of the Betti map. In an appendix
to that paper written by Gao, it is shown that if π : A→ B is a principally polarized
abelian scheme of relative dimension g which has no non-trivial endomorphism (on
any finite covering), and for which the image of S in the moduli space Ag of abelian
varieties of dimension g itself has dimension at least g and X ⊆ A is the image of a
section of π, then π(X∩Ator) is dense in B in the Euclidean topology. The proof of
this result made use of the Ax-Schanuel theorem for pure Shimura varieties and was
subsequently upgraded. See in particular Gao’s work on the Ax-Schanuel theorem
for the universal abelian variety [13] and on the Betti map in [12, 14].

Gao’s main theorem, Theorem 1.1, in [12] may be seen as a geometric elaboration
of what Theorem 3.3 means for the density of torsion. Gao considers an abelian
scheme π : A→ B of relative dimension g over a quasiprojective complex algebraic
variety B and a closed irreducible subvarierty X ⊆ A and then establishes the
conditions under which the generic rank of the Betti map restricted to X may be
smaller than expected. It is noted with [1, Proposition 2.2.1] that density of the
torsion in X follows from the Betti map, generically, having rank 2g on X. Thus,
the converse of Gao’s condition gives a criterion for when the torsion is dense.

In more detail, taking finite covers if necessary, one may pass from the problem
of density of torsion in X as a subvariety of A, to the density of torsion in ι̃(X)
in A where A → A is a universal abelian variety over a moduli space A of abelian
varieties of some fixed polarization type with some fixed level structure and the
Cartesian square

A
ι̃ //

π

��

A

π

��
B

ι // A
expresses A→ B as coming from this universal family. To ease notation, we replace

B by ι(B) and X by X̃. Shrinking the moduli space, possibly taking covers, and
moving to an abelian subscheme of AB , we may arrange that X is not contained in
any proper weakly special varieties. At this point, Theorem 3.3 says that X ∩Ator

is dense in X in the Euclidean topology if the intersection of X with the zero
section is persistently likely. Gao’s criterion expresses geometrically what persistent
likelihood means here: for any abelian subscheme A′ of AB , if p : AB → AB/A

′ is
the quotient map, then dim p(X) is at least the relative dimension of AB/A

′ over
B.
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