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MORITA EQUIVALENCE FOR OPERATOR ALGEBRAS

Marc A. Rieffell

Let A be a C*-algebra, and let B be a hereditary sub-
algebra of 2, that is, a C*-subalgebra such that if a ¢ A and
if O<as<b for some b€ B, then a € B. kecall [20] that
there is a natural bijection between hereditary subalgebras of A
and (closed) left ideals of A given by

L = LnL*, B -+ (closed span of AB).

We are interested in the relation between B and the
two-sided ideal which B generates. Then for simplicity of
notation we may as well replace A by this ideal, that is, only
consider full hereditary subalgebras, where by a full hereditary
subalgebra we mean one which is contained in no proper two-sided

ideal of the containing algebra.

It is more-or-less well-known [20] that the representation
theories of A and 3 are equivalent (when B is full), as
follows: to any Hermitian A-module V (the Hilbert space for a
non-degenerate *-representation of A) one associates the
Hermitian B-module BV consisting of the part of V on which
B acts non~-degenerately, and one notices that A-intertwining
operators (that is, module homomorphisms) restrict to
B-intertwining operators, so that one obtains in this way a
functof from the category of Hermitian A-modules to the category
of Hermitian B-modules. This functor is an equivalence of
categories. At the level of irreducible representations this
is usually seen by discussing the extension of pure states of
B to pure states of A §20]l. But this approach is not
functorial, so let us describe here a slightly different approach
which is functorial, and which is important for the rest of our
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discussion. We want to start with a Hermitian B-module W and
construct from it in a canonical way a Hermitian A-module. Let
L = AB (closed span), the left ideal of A corresponding to
B, and view L as a left-A-right-B-bimodule. Form the purely
algebraic tensor proddct L@BW, which is a lgft A-module, and
define a pre-inner-product on it by

<x0w, y@wo> = <(y*x)w, LARST

which makes sense since y*x ¢ B for x,y ¢ L. Notice the
relation with positive linear functionals. Factoring by the
space of vectors of length zero and completing, we obtain a
Hilbert space 2. It is not difficult to verify that the
action of A on L@BW extends to give a non-degenerate
*-representation of A on Aw. If W1 is another Hermitian
B-module and T ¢ HomB(W, Wy),. then idLsT gives in_an evident
way an element of HomA(AW,Awl), and one obtains this way a
functor from the category of Hermitian B-modules to the category
of Hermitian A-modules. It is not difficult to verify that this
functor is the other half of the equivalence between these

categories.

Now let C be another full hereditary subalgebra of A,
so that the representation theory of C is equivalent to that
of A, and so to that of B. The equivalence between the
representation theories of C and B can be seen directly as
follows. Let X = CAB (the closed linear span), which is a
C-B-bimodule, If W is a Hermitian B-module, let CW be the
completion of xeBw for the inner product defined as above. In
this way we obtain a functor from Hermitian B-modules to
Hermitian C-modules. To go in the other direction, use X* = BAC
in the analogous way to construct PV = X*GCV for any Hermitian
C-module V. To see that these two functors give an equivalence,

one notices, for example, that
Cc,B _ *
(V) = xeg(X*e,V),
which is naturally isomorphic to V as C-modules by means of
the unitary map defined on elementary tensors by
X8 (Y*®v) ~xy*v,

The concept of strong Morita equivalence involves the
recognition that the relation betweem B and C given by- X as
above may well occur naturally even when the algebra A is not
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at first in evidence. To see how this works one must abstract
the relations between B,C and X. Of crucial importance is
the fact that X is not just a C-B-bimodule, but that it also
has inner-products with values in B and C, given by

<x, y>C = xy*, <x, y>B = x*y_

These were vital in defining the ordinary inner products on the
modules X@BW and X*@cV. By a B-valued inner-product on a
right B-module X we mean a B-valued sesquilinear form < , >B’

cofijugate linear in the first variable, such that

1. <X, X> is a positive element of B for each x ¢ X,

B
2. <X, y>B* = <¥, x>p for x, v ¢ X,
3. <X, yb>B = <x, y>Bb for x, y ¢ X, b e B.
A C-valued inner-product on a left C-module X is defined
analogously except that it is conjugate linear in the second
variable and 3 is replaced by
3'. <ex, Y>o = C<X, ¥Y>q for x, y ¢ X, ¢ ¢ C.
The relation between B, C and X can then be abstracted as
fol;ows:

DEFINITION. Let C and B be C*-algebras. By a
C-B-equivalence bimodule is meant a C-B-bimodule X on which
are defined a C-valued and a B-valued inner-product such that

1. <X, ¥>oZ = X<Y, z>p for x, vy, 2z ¢ X,

2. The representation of C on X is a continuous
*-representation by operators which are bounded for
<, >p, that is <cx, cx>p s Hcllz<x, x> as positive
elements of B, etc., and similarly for the right
representation of B,

3. The linear span of <X, X>B, which is an ideal in B,
is dense in B, and similarly for <X, x>c
(For historical reasons 11, 24] such X were at first called

"imprimitivity bimodules".)

We say that two C*-algebras B and C are strongly Morita
equivalent if there exists a C-B-equivalence bimodule.

It is not difficult to verify [211 that
lxll = ll<x, 2> 1% (= Nex, x>l %)
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defines a norm on X, and that all the structure extends to the
completion of X. From now on we will assume that X is
complete for this norm.

Let us now see how to recapture A from a C-B-eguivalence
bimodule. This is done by means of the "linking" algebra
introduced in [5]. Specifically, let A be the algebra of
matrices of form

c X X,y e X, ce C, beB
(5 %)
where ; means y viewed as an element of i, which is X with
conjugate linear operations (the analogue of X* used earlier,
with b-§ = yb* etc.). The product, involution and norm on A
are defined in the natural way in terms of the operations on B
and C, their actions on X and the B-valued and C-valued inner
products. Then it is not difficult to verify that A is a
C*-algebra, and that B and C, which are heredi;ary subalgebras

in the obvious way, are full.

Before giving some examples, it is useful to remark that,
in fact, C is not needed for the above construction, since it
is already determined by B and X. Specifically, we will say,
following [24], that a right B—module X is a right B-rigged
space if it has a B-valued inner-product such that the span of
éx, x>B is dense in B. These objects, under various names,
have also appeared in the work of Paschke [19], and very
recently in the work of Miscenko and Fomenko [17] concerned with
the index of elliptic operators over C*-algebras, and the work
of Kasparov [14, 15] concerned with K-theory and extensions of
C*~-algebras. (See also {34, 35].) The condition that the closed
span of <X, X>B, which is an ideal of B, must coincide with
B, is sometimes dropped (but may be récovered by replacing B
by this ideal), and X is sometimes required to complete with
" respect to the norm It <x, x>B||;5 used above. One can then
think of X as being the analogue of a Hilbert space, and it is
then natural to define the algebra, L(X), of “"bounded operators”
on X as being the algebra of continuous B-module homomorphisms
of X into itself which have adjoints with respect to . , ;B in
the evident sense. It is then not difficult to verify that
L(X) 4is a pre-C*-algebra, which will be complete if X is (241,
Carrying further the analogy with Hilbert spaces, one defines the
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corresponding ideal, K(X), of "compact operators" to be the
closed span of the "rank one" operators - <x, Y>e defined for

X, Y ¢ X by

<X, ¥y>oZ = X<y, z>p.

Then K(X) is the appropriate algebra to take fér C, since it
then follows readily that X is a C-B-equivalence bimodule [24].

If B and C are C*-algebras and if X is a C-B-
equivalence bimodule, then the equivalence between the
representation theories of B and C which X determines will
preserve many properties. To begin with, it can easily be shown
{27] that X determines an isomorphism between the lattices of
two-sided ideals of B and C, and in particular, a homeo-
morphism between the primitive ideal spaces of B and. C.
Furthermore, the equivalence of representation theories will
preserve weak containment, CCR-ness, GCR-ness, and also direct
integrals to the extent that they make sense.

EXAMPLE 1. Let G be a locally compact group and H a
closed subgroup with both unimodular for éimplicity of notation.
Let G act on .G/H, and let C = C*(G, G/H) be the
corresponding transformation group C*-algebra [20]. Let
B = C*(H) be the group C*-algebra of H. We show how these
are naturally strongly Morita equivalent [241. For this
purpose we work with the dense subalgebras Cc(G, G/H) and
cc(H) of continuous functions of compact support. We_let
X = CC(G), with CC(H) acting on the right by convolution
(viewing elements of CC(H) as measures on G supported on H),
and Cc(G. G/H) acting on the left by

(FE) (x) = J F(y, i)f(y-lx)dy
G
for F ¢ Cc(G' G/H) and f ¢ CC(G).
For £, g € CC(G) let
<f, g>B(t) = (f**xg) (t) t € H

<f, g>c(x: y) = I (f(yt)g* (t-ly'lx)dt
H

for x,y € G. All this can be completed to give a C-B-
eguivalence bimodule. The corresponding eguivalence of the
representation theories is essentially Mackey's imprimitivity
theorem, as iﬁ'discussed in [241]. Notice that the linking
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algebra for this situation is not at first in evidence.

EXAMPLE 2. Let M be a connected compact space, and let
E be a finite-dimensional vector bundle over M on which there
is a Hermitian form. Let B =C(M), the C*~algebra of -
continuous finctions on M, and let X be the space of
continuous sections of E. Then X is a B-module in the
obvious way, and the Hermitian form on E defines a B-valued
inner product on X so that X becomes a B-rigged space.
Notice that , C is not around at first, but it can be defined as
above, and is just the homogeneous C*-algebra [9] corresponding
to the field of Hilbert spaces E. Notice also that the
linking algebra is not at first in evidence.

This example suggests that more generally one should
consider B~rigged spaces over arbitrary C*-algebras to be vector
bundles over "non~-commutative locally compact spaces", at least
if in the commutative case we allow the fibers to vary in
dimension (dropping local triviality) and even to be infinite
dimensiohal (so we are really talking about continuous fields of
Hilbert spaces [9]), though if one also allows zero-dimensional
fibers, then one should drop Fhe requirement that <X, X>B
have dense span in B. The appropriate definition of the
analogue of the usual locally trivial bundles with finite
dimensional fibers is suggested by:

Swan's Theorem [31]. Let M be a compact space and let
B=C(M). Let E be a vector bundle over M (locally trivial
with finite-~dimensional fibers), and let X be the space of
continuous cross-sections of E, whi¢h is a B-module in the
obvious way. ‘Then X is finitely generated and projective as
a B-module. Conversely, every finitely generated projective .
B-module arises in this way from a vector bundle over M.
Furthermore, bundle maps correspond to module homomorphisms, so
that the category of vector bundles over M is equivalent to
the category of finitely generated projective B-modules.

We include here for one direction of this theorem a sketch
of a proof which makes somewhat closer contact with C*-algebras
than the proofs which appear in the literature at present. So
suppose we are given a vector bundle:. E over M, and let X
be the space of continuous sections of E. By a standard
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argument using a partition of the identity, E can be equipped
with a Hermitian form, so that X becomes a B-rigged space
(with the span of <X, X>, not dense if there are zero-

dimensional fibers). It is easily seen that X is complete
for the norm defined above, so that L(X) and its ideal K(X)
are C*-algebras. We wish to show that X is a projective

finitely-generated B-module. To do this we will apply the
following criterion (closely related to theorem IXI 3.4(3) of [2]),
which is equally valid in the non-commutative case:

PROPOSITION. Let B be a C*-algebra with identity
element, and let X be a B-rigged space (with the span of
<X, X>B perhaps not dense). If 1x ¢ K(X), so that

K(X) = L(X), then X is finitely generated and projective as a
B-module.
Proof. For notational simplicity let C = K(X) as above.

- Then by hypothesis there are two finite sequences, (yi) and
(zi) of elements of X such that

ly = 2<¥;30 25%¢ -

Then for any x ¢ X we have

) X = 1lyx = I<y,, 257X = Zyi<zi, X>p,
so that X is finitely generated by the Yy- Let n be the
length of the sequences (yi) and (zi). We now embed X as
a direct summand of B“, showing that X . is projective. The
embedding map, ¢, is defined by ‘ ‘ '

o(x) = (<zi. x>B)i x ¢ X,

while the projection, y, of B" onto X is defined by

_ n
W((bi)) = Eyibi (bi) € B,
It is easily seen that lX = Yeo¢ as reguired. Q.E.D.

We remark that the condition that 1x e K(X) also implies
that X is self-dual, in the sense that the mapping of X into
'HomB(X, B) which to x ¢ X assigns the B-valued functional
y = <X, ¥>p, is surjective [19, 251. Conversely, one can
show that if X is finitely generated and self-dual, then
1, ¢ K(X). The self-duality condition has been used by Alain

X g
Connes in recent lectures concerning these matters.

We return to our proof of one direction of Swan's theorem.
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With B = C(M) and X the space of cross-sections of E, we
must show that lX e K(X). Let (pi) be a partition of unity
each element of which is supported in an open set over which E
is trivial. From this triviality it is easily seen that for
each i one can find a finite séquence (xi) of elements of X
such that

iU
Py S Ix<Xke ¥>cr

where we use .here the fact that B ¢ L(X) since B |is
commutative, and where the inequality is to be understood as one
2 K(X) = C.

between positive operators in L(X)
It follows that
- i i
1y = Ipy S Iy, "%k *¢7ce
But the right~hand-side must then be invertible. Thus the ideal

K(X) contains an invertible element of  L(X) and so must.be all
of L(X). This concludes the proof.

The point of view that finitely generated projective
modules over unital C*-algebras should be thought of as the
analogues over "non-commutative'compact spaces" of ordinary
vector bundles has been used very fruitfully by Alain Connes in
his recent announcement [8] concerning differential geometry on
"non-commutative compact spaces". :

Another indication that viewing B-rigged spaces as non-
commutative vector bundles is not an unreasonable point of view,
comes as follows. If the B-rigged space is thought of as some
kind of vector bundle, then C and B might be pictured
(incorrectly) as made up of fiber algebras of different sizes
- over some space. This suggests that if one tensors both algebras
with the algebra, K, of compact operators on a separable‘Hilbert
space one should obtain isomorphic algebras. This works
remarkably often. Specifically, let us say that C*-algebras
B and C are stably isomorphic if B@K and C®K are isomorphic.
Then a theorem of L. Brown 4] gives, by means of the linking

algebra as discussed in [51]:

THEOREM. Any two C*-algebras which are stably isomorphic
are strongly Morita equivalent. Two C*-algebras which are
strongly Morita equivalent, and which both have countable
approximate identities, are stably isomorphic.
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But it should be noted that in many examples, such as those
above and below, there will be no natural isomorphism between
BBK and C8K.

EXAMPLE 3. The algebras in this example will be at the
opposite extreme of those in Example 2, namely, they will be
simple (with identity element). Let w be an irrational
number, let Z denote the integers as a subgroup of the real
numbers, R, and let 2w act on R/Z in the evident way, that
is as powers of the irrational rotation of the circle by angle
27w, Let B = C* (2w, R/Z), the corresponding transformation
group C*-algebra, with dense subalgebra Cc(Zw, R/Z). It is
known that B is simple. (Discussion of this example, with
references, can be founﬁ in [29].) .Define the structure of a
right B-rigged space on X = CC(R) (or at 1least its eventual
completion) as follows: If £,9 € CC(R) and F € Cc(Zw, R/Z)
let

(fF) (r) = Znezf(r-nw)F(nw, r-nw)
<f£, g>glmw, r) = Znezf(r-n)g(r-n+mw),

forr € R and m € Z. If one then calculates what the algebra
C must be which is determined by X and B, one finds [26, 29]
that it is just C = C*(Z, R/2Zw) with operations given, for

£, g€ X, G€C, by

(Gf) (r) = & G(n, r)f(r-n)

nez

<f£,9>-(m, r) = Znezf(r-nw)§(r~nw—m).

(Notice again that the linking algebra is not initially in
evidence.) Since C contains the identity operator on X,
it follows from the proposition given above that X is a
finitely generated projective B-module, and so should be
considered a "vector bundle" of the nicest kind over the simple
C*-algebra B. This is an important example in Alain Connes'
announcement concerning differential geometry on "non-

commutative compact spaces" [71].

It is easily seen that C above is isomorphic to
C*(Zw-l, R/Z). From this it can be shown, more generally,
that if v and w are irrational numbers which are-in the same °
orbit for the action of GL(2, 2Z) by linear fractional
transformations, then the corresponding algebras are strongly
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Morita equivalent [291]. That the converse is true follows from
recent work of Pimsner and Voiculescu [21] and myself [29] in
" which the images of the KO groups of these algebras under their
unique trace are calculated. (The Ko groups themselves were
subsequently calculated by Pimsner and Voiculescu in [22].)
Specifically, it is shown that for the algebra B above, the
image is just (2+Zw)n(O, 11]. This requires showing the
existence of many projections in these algebras, and, in fact,
it was the finding of the strong Morita equivalences described
above which first led me to finding these projections. The
connection is the following standard argument from the purely
algebraic theory of Morita equivalence and projective modules
01, 21. Let (Yi) and (zi) be as in the above proposition
so that

1x = Z<yi, zi>c.
If we let D = Mn(B), the algebra of nxn matrices over B, and
if we view Xn as a C-D=equivalence bimodule in the evident way,
and let y = (yi) and zZ = (zi) as elements of xn, then
<Y, 2. = lx. But then a simple calculation shows from this
that <y, x>D must be idempotent in D, and so defines an element
of KO(B). So, in the specific example of the irrational
rotation algebras, what one must do is to find specific x and
y such that  «<x, Y>g = 1, and then calculate the corresponding
idempotent in a sufficiently explicit way so that its trace can
be calculated [29].

As suggested by the first and third examples above, the
situations in which the concept of strong Morita equivalence has
been most useful up to now involve actions of groups. For the
case of induced representations of groups this can be seen in
[24, 27].. Strong Morita equivalence plays an important role in
Phil Green's work (12, 13] which illuminates, simplifies and
extends Pukanszky's deep work on characters of connected Lie
groups [23]. (See Green's survey in the section of these
proceedings concerned with dynamical systems.) Applications of
strong Morita equivalence to the subject of transformation
group C*-algebras are also described in the section of these
proceedings concerned with dynamical systems (see also {28]) and
further resulté are contained in {32, 331]. An application of

" strong Morita equivalence to crossed .product algebras occurs in
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L301]. Most recently, strong Morita equivalence plays an
important role in the thesis of Alex Kumjian [16], in which
semigroups of local homeomorphisms, and associated C*-algebras,
are used to unify and study a number of recent constructions of
simple C*~algebras. (See Jean Renault's article in these proceedings.)

Let me also mention some unpublished results of Phil Green.
For one thing, he has shown that any C*-algebra which is strongly
Morita equivalent to a continuous trace algebra must be a
continuous trace algebra, and that any continuous trace algebra
is locally strongly Morita equivalent to a commutative C*-algebra.
Moreover, if T is a paracompact locally compact space, then
the Morita equivalence classes of continuous trace algebras whose
primitive ideal space is homeomorphic to T form a kind of
Brauer group isomorphic to the cohomology group HB(T, 2) which
is discussed in [9]. Secondly, he has shown that if A and B
are AF algebras, then A and B are strongly Morita equivalent
if and only if their Elliott groups are isomorphic as ordered
groups, but disregarding the hereditary generating subset.

Why have we uséd the word "strong” in the .above discussion
of Morita equivalence? In pure algebra, two rings are said to
be Morita equivalent if their categories of left modules are
equivalent. The fundamental theorem of Morita [18, 1, 2] then
says that this is the same as the existence of an equivalence
bimodule for the rings (analogous to the equivalence bimodules
defined above). For a C*-algebra the appropriate category to
use is the category of Hermitian modules. It is then certainly
true, for the reasons sketched earlier, that any equivalence
bimodule gives an equivalence of the categories of Hermitian
modules. But the converse is false for C*-algebras, since the
equivalence given by an equivalence bimodule will preserve weak
containment of representations and direct integrals of
representations, while an arbitrary equivalence need not [25],
Thus we must keep the two concepts distinct. In view of Morita's
work, we will say that two C*-algebras are (ordinary) Morita
equivalent if their categories of Hermitian modules are
equivalent (where we require that the equivalence preserve the
*-operation on the morphisms of these categories). But we should
hasten to remark that this terminology clashes somewhat with the
purely algebraic terminology, for if two C*~-algebras both have
identity elements, which is the only situation in which purely



296 MARC A. RIEFFEL

algebraic Morita equivalence has been defined so far, then these
two C*-~algebras will be purely algebraically Morita equivalent
if and only if they are strongly Morita equivalent as defined

above [31].

Let us now explore briefly the consequences of (ordinary)
Morita equivalence of C*—algebras.' Now the fepresentations of a
C*-algebra correspbnd to the hormal representations of its von
Neumann enveloping algebra. That is, the category of Hermitian
modules over a C*-algebra is canonically isomorphic to the
category of normal modules over its von Neumann enveloping algebra,
where by a normal module we mean the Hilbert space of a normal
non-degenerate representation. It is then natural to say that
two von Neumann algebras are Morita equivalent if their categories
of normal representations are equivalent, and we see then that
the question of (ordinary) Morita equivalence for C*-algebras just
becomes a gquestion about Morita equivalence of von Neumann
algebras. But for von Neumann algebras the analogue of Morita's
fundamental theorem is true, that is, if two von Neumann algebras
. are Morita equivalent then there exists an equivalence bimodule
between them [25]. For von Neumann algebras M and N the
definition of an M-N-egquivalence bimodule is the same as that
given earlier for C*-algebras except that condition 2 there
must be strengthened by requiring that for any x,y ¢ X the
functional M -+ <mx, Y>u is normal, while condition 3 must be
weakened by requiring only that the linear span of <X, X>M be
w*~dense in M (and similarly for N). Thus we can form the
corresponding linking algebra, and this will be a von Neumann
algebra as long as X 1is complete in an appropriate w* sense,
which can always be arranged (251]. Thus we see that two von
Neumann algebras are Morita equivalent if they occur as reductions
of some bigger von Neumann algebra by projections of central
carrier 1. This can provide a pleasant point of view. For
example, one can define type I von Neumann algebras as being those
which are Morita equivalent to (i.e. have the same representation
theory as) commutative von Neumann algebras. Recently Walter
Beer has shown (3] that similar statements can be made for
C*-algebras. In particular, a C*-algebra is of type I if and
only if it is Morita equivalent to a commutative C*-algebra,
while a separable C*-algebra is nuclear [6] if and only if it is
Morita equivalent to an AF C*algebra. (This fact depends
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on work of Elliott [10], as well as Connes' results descriﬁing

injective factors [7].
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