AN INTRODUCTION TO THE THEORY OF NUMBERS

Fifth Edition, First Printing by
Ivan Niven
Herbert S. Zuckerman

Hugh L. Montgomery

John Wiley (New York), 1991

CORRECTIONS

PAGE/LINE	
v/-8	for '(Section 2.4)' read '(Section 2.5)'
v/-7	for 'Hansel' read 'Hensel' (Gretel's theorem was omitted)
vi/-4	After 'C. Pomerance' insert 'J. Rickert'
vi/-3	between 'H.' and 'C. Williams' delete 'J. Rickert'
vii/7	for 'Bionomial' read 'Binomial'
2/-11	for '135' read '133'
4/18	for $\{-2, -1, 0, 1, 2, \ldots\}$ read $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
6/19	for ' $a = 248$ ' read ' $a = 428$ '
27/2	for 'Let $\mathcal N$ denote' read 'Let N denote'
33/-11	As of July, 1992, the largest prime known is M_{756839} .
53/4	for $(p-1) \equiv -1$ read $(p-1)! \equiv -1$
56/2	for ' $ac + bc$ ' read ' $ad + bc$ '
72/-1	for ' p^{α_r} ' read ' p^{α_i} '
88/5	after $x^2 + x + 47$ insert $\equiv 0$
88/7	for ' $a = 1$ ' read ' $a \equiv 1$ '
88/-17	for $x^2 + x + 7 \pmod{81}$ read $x^2 + x + 7 \equiv 0 \pmod{81}$
88/-16	for $x^2 + x + 7 \pmod{3}$ read $x^2 + x + 7 \equiv 0 \pmod{3}$
107/3	insert 'and $k > 0$ '
107/-12	after 'if and only if' insert ' m is composite and'
108/-8	for ' \pmod{m} ' read ' \pmod{q} '
110/14	for $x^2 \equiv a \pmod{p}$ read $v^2 \equiv k \pmod{p}$
114/-11	for $x^2 \equiv a' \text{ read } (x-r)^2 \equiv k'$
130/25	for 'Corollary 2.29' read 'Corollary 2.30'
141/Problem 18	replace '111111111111' by '1111118111111' (in two places)
142/3	before '.' insert 'and that $p > 2$ '
153/10	insert 'g.c.d. $(m_1, m_2) = 1$ '

OVER

```
for 'if \left(\frac{d}{p}\right) = 1.' read 'if p|d or \left(\frac{d}{p}\right) = 1.'
153/-11
                           for '\left(\frac{d}{p}\right) = 1' read '\left(\frac{d}{p}\right) = 1 or 0' (in two places)
153/-8
162/18
                           after 'and only if' insert 'p = 2, p = 5, or'
162/-6
                           after \binom{p}{5} = 1 insert 'or 0'
                           after 'if and only if' insert 'p = 5 or'
162/-3
162/-1
                           after 'if and only if' insert 'p = 2 or'
                           for '-x = n - 1 + 1 - \nu' read '-x = -n - 1 + 1 - \nu'
181/10
                           after 'p^{\beta}|n' add ', \beta > 0'
189/2
195/Problem 5
                           Replace first '.' by ','
196/6
                           for 'Theory' read 'Theorem'
                           after 'distinct' insert 'and non-consecutive'
205/Problem 14
219/3
                           after 'solvable' insert 'and b \neq 0'
233/-9
                           for 'v' read 'y'
                           for 'b = 1' read 'b = -1'
245/7
                           for 'y = -1' read 'y = 1'
245/7
249/2
                           after 'N(p) = 2p^2 - p' add ', except that N(2) = 4'
279/17
                           for 'b is odd' read 'b is even'
                           for 'at' read 'a'
302/-2
                           for '207' read '210'
323/1
330/-3
                           for 'i \geq 1' read 'i > 1'.
                           for 'a_0 > 0' read 'a_0 \ge 0'.
333/-14
340/-15
                           for 'integers x and all y' read 'pairs of integers x, y'
                           for 'to \xi' read 'h_n/k_n to \xi with n > 0'
340/-14
                           replace '\xi - \frac{h}{k}' by '|\xi - \frac{h}{k}|'
344/Problem 4
                           for \sum_{k=0}^{p(k)} x^k, read \sum_{k=0}^{\infty} p(k)x^k,
456/-7
512/7
                           for '3360' read '3660'.
                           for '1, 4, 7 (mod 27)' read '4, 13, 22 (mod 27)'
514/-17
                           for '(b) (x+1)^2 \equiv 4' read '(b) (x-6)^2 \equiv 4'
515/7
                           for '(d) (2x+1)^2 \equiv 5' read '(d) (x-6)^2 \equiv 11'
515/8
                           for 'x \equiv \pm 5 \pmod{19}' read 'x \equiv \pm 9 \pmod{19}'
515/9
516/\S 3.1; 6.(a)
                           for \pm 1, \pm 2, \pm 3 \pmod{13} read \pm 1, \pm 3, \pm 4 \pmod{13}
518/-15
                           insert '(7, 24, 25), (24, 7, 25)'.
```

Revised 8 September, 1994