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1 Introduction

In this article I outline a proof of the theorem (proved in [25]):

Conjecture of Taniyama-Shimura =⇒ Fermat’s Last Theorem.

My aim is to summarize the main ideas of [25] for a relatively wide audi-
ence and to communicate the structure of the proof to non-specialists. The
discussion is inevitably technical at points, however, since a large amount
of machinery from arithmetical algebraic geometry is required. The reader
interested in a genuinely non-technical overview may prefer to begin with
Mazur’s delightful introduction [19] to the Taniyama-Shimura conjecture,
and to relations with Fermat’s Last Theorem and similar problems. Another
excellent alternative source is the Bourbaki seminar of Oesterlé [21]. This
seminar discusses the relation between elliptic curves and Fermat’s Last The-
orem from several points of view, but gives fewer details about the argument
of [25] than the present summary. See also [11].

The proof sketched here differs from that of [25] in two ways. First of
all, we exploit a suggestion of B. Edixhoven which allows us to prove the
theorem without introducing an auxiliary prime in the proof. Such a prime
is necessary to prove the general result of [25], but turns out to be superfluous
in the case of Galois representations which are “semistable,” but not finite,
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at some prime. (In the application to Fermat, the relevant representations
are semistable and non-finite at the prime 2.) Secondly, we give a uniform
argument to lower the level, avoiding a preliminary use of Mazur’s Theorem
([25], §6), but appealing to the result of [20] instead.

This article is the written version of a June, 1989 lecture given at the
Université Paul Sabatier (Toulouse) in connection with the Prix Fermat. I
wish to thank Matra Espace, the sponsor of the prize, as well as the mathe-
matical community of Toulouse, for their warm welcome. Special thanks are
due Professor J.B. Hiriart-Urruty, who devised the prize, arranged its spon-
sorship, and organized its administration. The author also thanks B. Edix-
hoven, S. Ling and R. Taylor for helpful conversations, and the I.H.E.S. for
hospitality during the preparation of this article.

2 Elliptic curves over Q

An elliptic curve over the rational field Q is a curve of genus 1 over Q which is
furnished with a distinguished rational point O. (For background on elliptic
curves, the reader is invited to consult [13], [34], or [28], Chapter IV.) The
curves which will interest us are those arising from an affine equation

y2 = x(x− A)(x + B), (1)

where A and B are non-zero relatively prime integers with A + B non-zero.
The curve E given by this affine equation is understood to be the curve in
the projective plane P2 given by the homogenized form of (1), namely

Y 2Z = X3 − (A−B)X2Z − ABXZ2;

the point O is then the unique “point at infinity,” which has homogeneous
coordinates (0, 1, 0)

It is frequently essential to view E as a commutative algebraic group over
Q. In particular, given two points P and Q on E with coordinates in a field
K ⊇ Q (we write P, Q ∈ E(K)), a sum P + Q is defined, and is rational
over K. The coordinates of P + Q are rational functions in the coordinates
of P and Q, with coefficients in Q; these coefficients depend on the defining
equation of E. The identity element of this group is the distinguished point
O. Further, three distinct points sum to O in the group if and only if they
are collinear.
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According to the Weierstrass theory ([13], Ch. 9), we may describe E over
C as the quotient C/L, where L is a suitable period lattice for E. To do
this, we fix a non-zero holomorphic differential ω of E over C and construct
L as { ∫

γ
ω

∣∣∣ γ ∈ H1 (E(C),Z)
}

.

From this description, we see easily for each n ≥ 1 that the group

E[n] = {P ∈ E(C) |n · P = O }

is a free Z/nZ-module of rank 2, and in particular has order n2. Indeed,
this follows from the isomorphism E[n] ≈ 1

n
L/L and the fact that L is free

of rank 2 over Z. The points of E[n] are those whose coordinates satisfy
certain algebraic equations with rational coefficients, depending again on the
defining equation of E. In particular, the finite group E[n] consists of points
of E(Q) and is stable under conjugation by elements of Gal(Q/Q). Thus
E[n] may be viewed as a free rank-2 Z/nZ-module which is furnished with
an action of Gal(Q/Q). This action amounts to a homomorphism

ρn : Gal(Q/Q) → Aut(E[n]),

where Aut(E[n]) is the group of automorphisms of E[n] as a Z/nZ-module,
so that Aut(E[n]) ≈ GL(2,Z/nZ). Notice that Gal(Q/Q) acts on E[n]
through group automorphisms because conjugation is compatible with the
addition law on E. To see this, we note again that the addition law is given
by formulas with coefficients in Q.

The kernel of ρn is an open subgroup Hn of Gal(Q/Q). Let Kn = Q
Hn

.
Then Kn is concretely the finite extension of Q obtained by adjoining to Q
the coordinates of all points in E[n]. This field is a Galois extension of Q,
whose Galois group Gn = Gal(Kn/Q) is isomorphic to the image of ρn, and
especially is a subgroup of Aut(E[n]). A great deal is known about the family
of Gn as E/K remains fixed and n varies. For example, J-P. Serre proved in
[29] that the index of Gn in Aut(E[n]) remains bounded as n →∞, provided
that E is not an elliptic curve with “complex multiplication.”

The curves excluded by this theorem of Serre, i.e., those with complex
multiplication, form an extremely interesting class of elliptic curves, for which
a variety of problems can be treated. For example, Shimura [33] proved
the Taniyama-Shimura Conjecture (described below) for such elliptic curves.
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However, this class is essentially disjoint from the class of curves that we are
going to consider.

Indeed, suppose that E is given by (1), where the integers A and B satisfy
the mild conditions 32|B, 4|(A+1). Then as Serre has indicated ([30], §4.1),
E is a semistable elliptic curve, having bad reduction precisely at the primes
dividing ABC, where C = −(A+B). By a well known theorem of Serre-Tate
[31], E does not have complex multiplication.

The concepts “semistability” and “bad reduction” can be explained in a
rough way as follows (cf., e.g., [13], Ch. 5). Given an equation for E with
integer coefficients, plus a prime number p, we reduce the equation mod p,
thus obtaining an equation over the finite field Fp. If this equation defines
an elliptic curve Ẽ over Fp (as opposed to a singular cubic curve), then E
has good reduction at p, and the elliptic curve Ẽ over Fp is the reduction of
E mod p. For example, we get an elliptic curve mod p from the equation
(1) if and only if the three numbers A, B, A + B remain non-zero mod p.
An elliptic curve E has bad reduction mod p if no equation for E can be
found which reduces to an elliptic curve over Fp. There is, in fact, a “best
possible equation” for E: its minimal Weierstrass model ([13], Ch. 5, §2).
The curve E has good reduction at p if and only if this model defines an
elliptic curve mod p. In the case of bad reduction, the minimal Weierstrass
model is singular mod p; one says that the bad reduction is multiplicative if
the only singularity of the minimal Weierstrass model mod p is an ordinary
double point. Finally, E is said to be semistable if, for every prime number p,
E has either good or multiplicative reduction at p.

The conductor of an elliptic curve E over Q is a positive integer N which
is divisible precisely by the primes p at which E has bad reduction ([13],
Ch. 14). To say that E is semistable is equivalent to say that N is square
free. The conductor N is then the product

∏
p∈B

p1, where B is the set of primes

of bad reduction. For instance, assume again that E is given by (1) and that
the conditions

32|B, 4|(A + 1) (2)

are satisfied. Then
N =

∏
p|(ABC)

p. (3)

Serre has suggested that N be termed the “radical” of ABC in this case.
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A second integer associated with a curve E over Q is its minimal discrim-
inant, a non-zero integer ∆ = ∆E which is roughly the discriminant of the
minimal Weierstrass equation for E. It is given in terms of the coefficients
of this equation by a well known formula (see for example [13], p. 68). If E
is given by (1) and the conditions (2) are satisfied, then we have

∆ =
1

28
· (ABC)2. (4)

Next, let E be an elliptic curve over Q, and let p be a prime of good
reduction for E. Write again Ẽ for the reduction of E mod p, so that Ẽ is
an elliptic curve over Fp. Let Ẽ(Fp) denote the group of rational points of
Ẽ, i.e., the group of points on Ẽ with coordinates in the base field Fp. We
define ap = ap(E) to be the difference

p + 1 − #Ẽ(Fp).

To motivate consideration of this integer, we recall that p + 1 represents the
number of points on the projective line P1 over Fp.

3 `-division points

In this §, we suppose that E is the elliptic curve given by an equation (1),
where A and B are as usual non-zero relatively prime integers such that A+B
is non-zero. We suppose in addition that the divisibilities (2) hold. We fix
a prime number ` ≥ 5, and let ρ = ρ` be the representation of Gal(Q/Q)
giving the action of Gal(Q/Q) on the group E[`] of `-division points of E.
We let K = K` be the Galois extension of Q gotten by adjoining to Q the
(coordinates of the) points in E[`].

Proposition 3.1 (Mazur) The representation ρ is an irreducible two-di-
mensional representation of Gal(Q/Q).

This proposition is proved as Proposition 6 in [30], §4.1. The proof given
by Serre in [30] is based on results of Mazur [18], and relies on the fact that
the 2-division points of E are rational over Q (i.e., K2 = Q). This latter fact
is evident from the fact that the right-hand side of (1) factors over Q.
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The global property of ρ furnished by Proposition 3.1 is complemented by
a second, much more elementary, global property. Let χ = χ` be the mod `
cyclotomic character Gal(Q/Q) → F∗

` giving the action of Gal(Q/Q) on the
group µ` of `th roots of unity in Q. Then we have

Proposition 3.2 The determinant of ρ is the character χ.

The proposition follows from the isomorphism
2

Λ E[`]
∼→ µ` given by the

e`-pairing of Weil.
We now discuss some local properties of ρ. Let p be a prime number.

Choose a place v of Q lying over p, and let Dv ⊂ Gal(Q/Q) be the corre-
sponding decomposition group. This group is isomorphic to the Galois group
Gal(Qp/Qp), where Qp is the algebraic closure of Qp in the completion of

Q at v. Let Iv be the inertia subgroup of Dv. The quotient Dv/Iv may be
identified canonically with the Galois group of the residue field of v, which
is an algebraic closure Fp of Fp. Hence Dv/Iv is isomorphic to the pro-cyclic

group Ẑ, with the chosen “generator” of the group being the Frobenius sub-
stitution x 7→ xp. Lifting this generator back to Dv, we obtain an element
Frobv of Dv which is well defined modulo Iv. Any other place v′ of Q over p
is of the form g · v for some g ∈ Gal(Q/Q). Replacing v by v′ has the effect
of conjugating the triple (Dv, Iv, Frobv) by g.

We say that ρ is unramified at p if ρ(Iv) = {1}. This condition is visibly
independent of the choice of v as a place lying over p. It amounts to the
statement that the extension K/Q is unramified at the prime p, or equiv-
alently to the condition that p be prime to the discriminant of K. If ρ is
unramified at p, then ρ(Frobv) is an element of the image of ρ which is well
defined, i.e., independent of the choice of Frobv as a lifting of the Frobenius
substitution. Further, the conjugacy class of ρ(Frobv) in the image depends
only on p. Note that the representation ρ is ramified (i.e., not unramified)
at the prime p = `. This follows from Proposition 3.2, since χ is ramified at
`. Equivalently, Proposition 3.2 guarantees that K contains the cyclotomic
field Q(µ`), and this field is already ramified at `.

The following result is standard (cf. [28], Ch. 4, §1.3).

Proposition 3.3 Suppose that p is prime to `N , where N is the conductor
of E. Then ρ is unramified at p. Moreover, for each v dividing p, we have
the congruence

trace
(
ρ(Frobv)

)
≡ ap (mod `). (5)
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Let ∆ = ∆E again be the minimal discriminant of E. For each prime
number p, let vp(∆) be the valuation of ∆ at p, i.e., the exponent of the
highest power of p which divides ∆.

Proposition 3.4 Suppose that p 6= ` and that p divides N . Then ρ is
unramified at p if and only if vp(∆) ≡ 0 mod `.

This result, noted by Frey [10] and Serre [30], §4, is an easy consequence
of the theory of the Tate curve, as exposed in [28]. In concrete terms, one
checks the ramification of ρ at p by viewing E over the maximal unramified
extension Qnr

p of Qp in Qp. The representation ρ is unramified at p if and
only if all points of E[`] are defined over Qnr

p . By the theory of the Tate
curve, we can construct the extension Qnr

p (E[`]) of Qnr
p by adjoining to Qnr

p

the `th roots of the Tate parameter q attached to E over Qp. Since ` 6= p, q
is an `th power in Qnr

p if and only if the valuation of q is divisible by `. This
valuation coincides with the valuation of ∆.

Proposition 3.4 remains true if the hypothesis p|N is suppressed. Indeed,
if p is prime to N , then vp(∆) = 0, so the congruence vp(∆) ≡ 0 mod ` is
satisfied a fortiori . At the same time, the representation ρ is unramified at
p, as stated in Proposition 3.3.

In order to remove the hypothesis p 6= ` in the two previous Propositions,
we need to introduce the technical notion of finiteness ([30], p. 189). Let p
be a prime number, and choose a place v|p. The decomposition group Dv is
then the Galois group Gal(Qp/Qp), as noted above. By restricting to Dv the

action of Gal(Q/Q) on E[`], we may view E[`] as a Gal(Qp/Qp)-module. We
say that ρ is finite at p if there is a finite flat group scheme V of type (`, `)
over Zp such that the Gal(Qp/Qp)-modules V(Qp) and E[`] are isomorphic.
If p 6= `, this means simply that ρ is unramified at p. In general, we may
paraphrase this property of ρ by saying that E[`] has “good reduction at p.”

Proposition 3.5 The representation ρ is finite at a prime number p if and
only if vp(∆) ≡ 0 mod `.

The only new information provided by this Proposition is the criterion
for finiteness in the case p = `. For the proof, see [30], p. 201.
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4 Modular elliptic curves

Let E be an elliptic curve over Q. The Taniyama-Shimura Conjecture (also
known as the Weil-Taniyama Conjecture) states that E is modular. One can
define this concept in several equivalent ways, either by connecting up the
integers ap of §2 with the coefficients of modular forms, or else by considering
the geometry of modular curves.

We begin with the latter. (See [32], [22], or [34], Ch. 11, §3 for background
on modular curves.) Let N be a positive integer, and consider the group

Γo(N) =
{ (

a b
c d

)
∈ SL(2,Z)

∣∣∣ c ≡ 0 mod N
}

.

Recall that the group SL(2,Z) acts on the Poincaré upper half plane

H = { τ ∈ C | =(τ) > 0 }

by fractional linear transformations(
a b
c d

)
: τ 7→ aτ + b

cτ + d
.

The quotient Yo(N) = Γo(N)\H is an open Riemann surface, which has a
standard compactification Xo(N). This modular curve has a canonical model
over Q, which we denote simply Xo(N) to lighten notation.

Although there is no question here of explaining the origin of the canonical
model, we should mention at least that this model is connected intimately
with the interpretation of Xo(N) and Yo(N) as modular varieties. The idea
is that to each τ ∈ H we can associate the lattice Lτ = Z + Zτ in C, and
then the elliptic curve Eτ = C/Lτ . Two elliptic curves Eτ and Eτ ′ are
isomorphic if and only if the elements τ and τ ′ of H have the same image in
SL(2,Z)\H. More generally, given N ≥ 1, we associate to τ ∈ H the pair
(Eτ , CN) consisting of the elliptic curve Eτ and the cyclic subgroup CN of E
generated by the image of 1

N
∈ C on Eτ . Then two τ ’s give isomorphic pairs

if and only if they map to the same element of Yo(N). Further, every pair
consisting of an elliptic curve E over C, together with a cyclic subgroup of
order N arises in this way from some τ . Hence the curve Yo(N) parametrizes
isomorphism classes of data “elliptic curves with cyclic subgroups of order
N .” It is via this interpretation that one defines Yo(N) and Xo(N) over Q.
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In fact, with a more sophisticated definition of the data to be classified, one
arrives at a good definition over Z [16].

The Jacobian of Xo(N) is the abelian variety Jo(N); this is a complete
group variety whose dimension is the genus g(N) of the curve Xo(N). This
genus is given by a well known formula (see, e.g., [23], p. 455). The integer
g(N) is 0 for all N ≤ 10, and we have for example g(11) = 1, g(23) = 2.

We let S(N) be the complex vector space of weight-2 holomorphic cusp
forms for Γo(N). Such a form is a holomorphic function f(τ) on H for which
the differential f(τ) dτ is invariant under the group Γo(N). Thus f(τ) dτ
may be viewed as a regular differential on the open curve Yo(N), and the
condition that f(τ) belong to S(N) is the condition that f(τ) dτ extend to a
holomorphic differential on Xo(N) over C. The space S(N) may thereby be
identified with the space of holomorphic differentials on the curve Xo(N), a
space of dimension g(N).

Each f(τ) ∈ S(N) may be expanded as a Fourier series
∑

n≥1
anq

n, where

q = e2πiτ . The sum
∑

anq
n is viewed often as a formal series in q, and is

known as the “q-expansion” of the cusp form f .
The space S(N) comes equipped with a commuting family of endomor-

phisms, the Hecke operators Tn (n ≥ 1). (See [32], Chapter 3.) These oper-
ators are traditionally written on the right, so that f |Tn denotes the image
of f under Tn. The Tn may be expressed as polynomials in the operators Tp

where p is prime. (For example, they are multiplicative: Tnm = Tn ◦Tm when
n and m are relatively prime.) The operators Tp are given by the following
well known formula, expressing the q-expansion of f |Tp in terms of that of f :

Tp : f =
∑

anq
n 7→

{ ∑
apnq

n + p
∑

anq
pn if p is prime to N ;∑

apnq
n if p divides N .

An eigenform in S(N) is a non-zero f ∈ S(N) which is an eigenvector for
each of the operators Tn. The eigenvalues (λn) coming from a given eigenform
f are known to be algebraic integers which all lie in a finite extension of Q
which is independent of n.

Taniyama-Shimura Conjecture. Let E be an elliptic curve over Q, and
let N be its conductor. Then there is an eigenform f ∈ S(N) with the
following property: for each prime p not dividing N , the integer ap of §2 is
the eigenvalue of f for the operator Tp.
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If f exists for a given E, one says that E is modular. Because of our
detailed knowledge of the arithmetic of modular forms and abelian varieties
(the author is especially thinking of [2, 9]), the condition that E be modular
can be reformulated in a variety of ways. For example, B. Mazur [19] has
recently proved

Proposition 4.1 Suppose that E is an elliptic curve over Q with the fol-
lowing property: there is a non-zero homomorphism of abelian varieties
h: E → Jo(M), defined over C, for some M ≥ 1. Then E is modular.

The novelty of this statement is that h is not assumed to be defined over
Q.

Another remark which may serve to orient the reader is that the form f
in the Taniyama-Shimura Conjecture is (up to multiplication by a constant)
the unique non-zero element of S(N) having the property

f |Tp = ap · f for all but finitely many p.

More precisely, f is a constant multiple of a newform (in the sense of [1]) of
level N . All coefficients of f are rational integers.

Finally, A. Weil proved in [35] that an elliptic curve E over Q is modular
provided that its L-function L(E, s) has the analytic properties one expects
of it. This L-function is defined as an infinite product

∏
p Lp(E, s) (s ∈ C,

<s > 3/2), over the set of prime numbers p (Euler product). The factor
Lp(E, s), for p prime to N , is

(1− app
−s + p1−2s)−1.

5 Modular representations of Gal(Q/Q)

Let N be a positive integer, and let T = TN be the subring (i.e., Z-algebra)
of EndC(S(N)) generated by the operators Tn for n ≥ 1. As is well known
([32], Ch. 3), this ring is a free Z-module of rank equal to the dimension g(N)
of S(N). In particular, if m is a maximal ideal of T, then the residue field
km = T/m is a finite field, say of residue characteristic `. One can show (see
[5], Th. 6.7 or [25], §5) that there is a semisimple continuous homomorphism

ρm : Gal(Q/Q) → GL(2, km)

having the properties:

10



1. det ρm = χ` : Gal(Q/Q) → F∗
` ⊆ k∗m

2. ρm is unramified at all primes p not dividing `N

3. trace ρm(Frobv) = Tp mod m for all p 6 |`N .

(Here, χ` is again the mod ` cyclotomic character of Gal(Q/Q) and, in the
last property, Frobv is a Frobenius element in a decomposition group Dv for
a prime of Q dividing p.)

The representation ρm is unique up to isomorphism. This follows from
the Cebotarev Density Theory, which states that all elements of the image
of ρm are conjugate to Frobenius elements ρm(Frobv), plus the fact that a
two-dimensional semisimple representation is determined by its trace and
determinant.

Example. Let E be a modular elliptic curve of conductor N , and let f ∈ S(N)
be an eigenform whose eigenvalue under Tp is ap for each p prime to N .
The action of T on f is given by the homomorphism ϕ : T → C which
takes each T ∈ T to the eigenvalue of f under T . This homomorphism
is in fact Z-valued, as remarked above. If ` is a prime number, and m =
ϕ−1

(
(`)

)
, then ρm : Gal(Q/Q) → GL(2,F`) is the semisimplification ρss

of the representation ρ : Gal(Q/Q) → Aut(E[`]). This semisimplification
is defined to be the direct sum of the Jordan-Hölder factors of ρ. In other
words, ρss is the direct sum of two one-dimensional representations in case ρ
is not simple, while ρss is ρ if ρ is already semisimple. Hence, we have ρm ≈ ρ
in this latter case.

Now let F be a finite field and suppose that

σ : Gal(Q/Q) → GL(2,F)

is a continuous semisimple representation. We say that σ is modular of level
N if there is a maximal ideal m of T and an embedding ι : T/m ⊂ F such
that the F-representations

Gal(Q/Q)
σ−→ GL(2,F) ⊂ GL(2,F)

Gal(Q/Q)
ρm−→ GL(2,T/m)

ι
↪→ GL(2,F)

are isomorphic. Equivalently, one requires a homomorphism

ω : T → F
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such that

trace
(
σ(Frobp)

)
= ω(Tp), det

(
σ(Frobp)

)
= p̄

for all but finitely many primes p. Here, Frobp denotes Frobv for some v|p
and p̄ is the image of p in F. (Thus p̄ is p mod `, if ` is the characteristic of
F.) The term “modular of level N” is a shorthand phrase used to indicate
that the representation σ arises from the space S(N); this space could be
described more verbosely as the space of weight-2 cusp forms on Γo(N) with
trivial character.

Assuming that ρ is modular of level N , we say that N is minimal for ρ
if there is no divisor M of N , with M < N , such that ρ is modular of level
M . Regarding ρ as fixed, and possible levels N as varying, we note that if ρ
is modular of some level N , then ρ is modular of some minimal level No|N .
(The question of the uniqueness of No is more subtle, but not an issue here.)
Also, it is essentially evident that once ρ is modular of level N , it is modular
of all levels N ′ which are multiples of N .

The following statement is a variant of the main theorem of [25].

Theorem 5.1 Let σ be an irreducible two-dimensional representation of
Gal(Q/Q) over a finite field of characteristic ` > 2. Assume that σ is modular
of square free level N , and that there is a prime q|N , q 6= ` at which σ is not
finite. Suppose further that p is a divisor of N at which σ is finite. Then σ
is modular of level N/p.

This theorem immediately gives:

Conjecture of Taniyama-Shimura =⇒ Fermat’s Last Theorem.

Indeed, suppose that the Taniyama-Shimura Conjecture is true. To prove
Fermat’s Last Theorem under this assumption, it suffices to show that there
is no triple (a, b, c) of non-zero integers which satisfies the equation

a` + b` + c` = 0,

where ` ≥ 5 is a prime. Arguing by contradiction, we assume that there is
such a triple. Dividing out by any common factor, we may suppose that the
three integers a, b, and c are relatively prime. Further, after permuting these
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integers, we may suppose that b is even and that a ≡ 1 mod 4. Following
Frey [10], we consider the elliptic curve E with Weierstrass equation

y2 = x(x− a`)(x + b`).

According to our discussion above, the conductor of E is the radical N =
rad(abc) of abc, and its minimal discriminant is ∆ = (abc)2`/28. The group
V = E[`] provides an irreducible representation σ of Gal(Q/Q) which is
finite at every odd prime but not finite at the prime 2. Applying Theorem 5.1
inductively, we deduce that σ is modular of level 2. This is impossible, since
the ring T2 ⊆ End(S(2)) is the 0-ring, in view of the fact that the dimension
g(2) of S(2) is 0.

To prove the Theorem, we will work with two related abelian varieties over
Q. First, we have Jo(N), the Jacobian Pico(Xo(N)) of the modular curve
Xo(N). We make use of the fact that the ring T = TN operates faithfully
on Jo(N) as a ring of endomorphisms which are defined over Q. This action
is determined uniquely by the relation between it and the tautological action
of T on S(N). Namely, S(N) is canonically the space of differentials on the
Albanese variety Alb(Jo(N)), which in turn is the abelian variety dual to
Jo(N). Thus S(N) is functorially the cotangent space to the dual of Jo(N).
This functorial relation translates the action of T on Jo(N) as a ring of
endomorphisms into the classical action of T on S(N).

Suppose now that σ is given as in the Theorem, and let m ⊂ T be a
maximal ideal corresponding to σ as in the definition of “modular of level
N .” One checks immediately that we can replace σ by ρm in the Theorem.
From now on, let us regard m as fixed and let us assume that σ is ρm. We
will write simply k for the residue field km of m and ρ for ρm.

For each endomorphism α ∈ m, we let Jo(N)[α] be the kernel of α on
the group Jo(N)(Q) of points on Jo(N) with coordinates in Q. Let W =
Jo(N)[m] be the intersection ⋂

α∈m

Jo(N)[α].

This group is a subgroup of the finite group Jo(N)[`] of `-division points of
Jo(N), and carries natural commuting actions of k and of Gal(Q/Q).

Here is the first key result needed to prove Theorem 5.1:

Proposition 5.2 Assume, if ` divides N , that ρ is not modular of level
N/`. Then ρ is equivalent to the k-representation W of Gal(Q/Q).
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Let V be the representation ρ, regarded as a 2-dimensional k-vector space
with an irreducible action of Gal(Q/Q). Using the Eichler-Shimura relations
for Jo(N), one shows immediately ([18], Chapter II, Proposition 14.2, or [25],
Theorem 5.2) that the semisimplification of W as a k[Gal(Q/Q)]-module is
isomorphic to a non-empty product of copies of V . Thus the proposition
states, in effect, that the k-dimension of W is 2. This is again easy to prove
in case ` is prime to N (loc. cit.). When `|N , [20] proves the desired statement
under the hypothesis that ρ is not modular of level N/`. The reader is invited
to consult these articles for details of the proofs.

With this preliminary proposition recorded, it is time to discuss the strat-
egy of the proof of Theorem 5.1. As noted above, the representation ρ oc-
curring in Theorem 5.1 will be modular of some minimal level D|N . This
level is divisible by q, because ρ is assumed to have “bad reduction” at this
prime (i.e., assumed not to be finite at q). Further, to prove Theorem 5.1, it
suffices to show that D is prime to p. Indeed, if D is prime to p, then N/p
is a multiple of D, and ρ is certainly modular of level N/p, as desired.

To prove that D is prime to p, we can argue by contradiction, supposing
instead that D is divisible by p. In this situation, D is of the form pqL, with
L square free and prime to pq. Thus the pair (ρ, D) has all the properties of
the pair (ρ, N), and the additional property that D is a minimal level for ρ.
We are to deduce a contradiction from these data.

Replacing D by N , we see that Theorem 5.1 will follow if we can de-
duce a contradiction from the following assumptions about the irreducible
representation ρ:

1. ρ is modular of level N , where N is square free and divisible by the
distinct primes p and q, with q 6= `.

2. ρ is finite at p, but not at q.

3. The level N is a minimal level for ρ.

Note that the last assumption implies in particular the hypothesis of
Proposition 5.2. Hence we will be able to use in our argument that the
Galois module W = Jo(N)[m] defines ρ.

Fix now primes of Q dividing p and q, let Dp and Dq be the corresponding
decomposition groups in Gal(Q/Q), and let Fp and Fq be the corresponding
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residue fields. For the moment, we focus attention on the action of Dq on
Jo(N)[`] and its subgroup W .

We require some results about this action which follow from the fact
that Jo(N) has semistable reduction at the prime q. These results are cer-
tainly not elementary. Indeed, the semistable reduction that we need follows
from the work of Deligne-Rapoport [4] on the reduction of modular curves
(see also [16] and [7] for recent, related work), together with results of Ray-
naud [24] relating the reductions of curves with the reductions of their Jaco-
bians. The information that is to be deduced about Jo(N)[`] is contained in
Grothendieck’s article on Néron models and monodromy [12].

We need first to consider the modular curve Xo(N/q) over the base fields
Fq and Fq. For this, it is necessary to invoke the “modular interpretation”
of the curves Xo(N) which was discussed above. We view Xo(N/q) over
Fq as classifying pairs (F, C), where F is an elliptic curve and C a cyclic
subgroup of order N/q on F . The points of the curve Xo(N/q) over Fq

(i.e., with coordinates in Fq) consist of a finite number of “cusps” (points at
infinity), together with points representing the isomorphism classes of pairs
(F, C) over Fq. Among these latter points are the supersingular points, those
represented by pairs (F, C) for which F is supersingular in the sense that the
group F (Fq)[q] of points on F of order dividing q is reduced to the trivial
group. The number of supersingular points on Xo(N/q) over Fq is finite, and
can be calculated quite easily. For example, this number is 1 + g(q) when
N = q and so is 2 when N = 11 and 3 when N = 23.

Let S be the set of these supersingular points. Then S carries a natu-
ral action of Gal(Fq/Fq), coming from the action of this Galois group, by
conjugation, on pairs (F, C) over Fq. We may view this action as an ac-
tion of Dq which is unramified, i.e., which factors through the quotient of
Dq by its inertia subgroup. We will interested in the free abelian group ZS

on S. This group has a commuting family of Hecke operators Tn ∈ End(S)
(n ≥ 1). These can be defined directly in terms of pairs (F, C) for which F
is supersingular. In particular, suppose that ` 6= q is a prime, and let s ∈ S
be the class of (F, C). For each cyclic subgroup D of F which has order `
and which is not contained in C, consider the quotient elliptic curve F/D
and its subgroup (C ⊕D)/D, which has order N . The image of s under T`

is the sum of the classes of the various quotients (F/D, (C ⊕D)/D). (There
are ` + 1 possible subgroups D when ` is prime to N , and ` such subgroups
otherwise.) On the other hand, the operator Tq is defined on S as the nega-
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tive of the operator (F, C) 7→ (F, C)(q) which takes each pair to its conjugate
under the generator x 7→ xq of the Galois group Gal(Fq/Fq). The operators
Tn with n not necessarily prime can be expressed in terms of the T` by the
same formulas which link together the operators labelled Tn on S(N).

Let L now be the group of elements of ZS which have degree 0, the
degree of an element being the sum of its coefficients. It is immediate that
the operators Tn we have just defined map L into itself. We get in this way an
action of the formal polynomial ring Z[. . . , Tn, . . .] on L. By transposition,
we obtain an action of this ring on Hom(L, µm) for every m ≥ 1, where µm

is the group of mth roots of unity in Qq. We have a compatible action of

the decomposition group Dq = Gal(Qq/Qq) on Hom(L, µm) in which Dq acts
both on L (in the manner just explained) and on µm (in the standard way).

It follows from the work of Grothendieck, Raynaud, and Deligne-Rapo-
port [12, 24, 4] that there is a natural inclusion

Hom(L, µm) ↪→ Jo(N)(Qq)[m]

which is compatible with the actions of Dq and the Tn (n ≥ 1) on both sides.
The image of this inclusion is known as the toric part of Jo(N)(Qq)[m], and
will be denoted Jo(N)[m]t.

This terminology requires some explanation. Consider the abelian variety
Jo(N) over Qq and imagine the problem of “reducing Jo(N) mod q.” In
general, the variety Jo(N) has bad reduction at q, which is to say that its
“best reduction” (Néron model) over Fq is not necessarily an abelian variety
over Fq. This reduction has, however, a maximal toric subgroup T , and it is
the character group HomFq

(T ,Gm) of T which we have called L. The group

Hom(L, µm) naturally extends to a finite flat group scheme over Zq whose
reduction mod q is the kernel T [m] of multiplication by m on the Fq-torus
T .

The action of Z[. . . , Tn, . . .] which we have defined in an ad hoc way is in

fact the functorial action of T ⊆ End
(
Jo(N)

)
on HomFq

(T ,Gm). In other

words, Z[. . . , Tn, . . .] acts on L through its quotient T = TN , and the action
is just the functorial one coming from the interpretation of L in terms of the
Néron model.

We now set m = ` and return to consideration of Jo(N)[`] and its sub-
module W . We set W t = W ∩ Jo(N)[`]t. Equivalently, we have

W t = Hom(L/mL,Gm),
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since W is the kernel of m on Jo(N)[`]. The quotient W/W t is naturally a
submodule of Jo(N)[`]/Jo(N)[`]t. We recall that ` 6= q.

Proposition 5.3 The Dq-modules W t and W/W t are unramified.

Proof . Since ` 6= q, the Dq-module µ` is unramified. The Dq-module
L is certainly unramified, since Dq acts on L, by construction, through its
quotient Gal(Fq/Fq). Hence Jo(N)[`]t is unramified, and we may conclude
that its submodule W t is unramified.

Similarly, to prove that W/W t is unramified, it suffices to show that
Jo(N)[`]/Jo(N)[`]t is unramified. This latter fact follows from Grothendieck’s
theory of semistable reduction ([12], §2.3–2.4). Indeed, let A be a semistable
abelian variety over Qq (to fix ideas). Identify the dual Hom(A[`], µ`) of the
group of `-division points on A with the kernel Ǎ[`] of multiplication by `
on the abelian variety Ǎ dual to A. Then A[`]/A[`]t is dual to a subgroup of
the largest subgroup Ǎ[`]f of Ǎ[`] which extends to a finite flat group scheme
over Zq (i.e., which is unramified).

Corollary The k-vector space L/mL has dimension 1.

Proof . The statement to be proved is equivalent to the statement that
W t has k-dimension 1. Since W has dimension 2, we must show that W is
isomorphic neither to W t nor to W/W t. By the Proposition, each of these
modules is unramified. By hypothesis, however, W is ramified at q.

To prove Theorem 5.1, we will derive the inequality

dimk(L/mL) ≥ 2,

which contradicts the above Corollary. To do this, we need to find a second
interpretation of the lattice L, or rather of a “primitive” subgroup of it. To
define this subgroup, we recall that L is associated to the mod q reduction
of the abelian variety Jo(N), where N is a square-free integer divisible by
the distinct primes p and q. Write M for the quotient N/(pq), and consider
the Jacobian Jo(Mq) of the modular curve Xo(Mq). Let X be the analogue
of L for Jo(Mq), i.e., the character group of the largest torus in the mod q
reduction of Jo(Mq). There are two natural degeneracy maps

Xo(N) →→ Xo(Mq),
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corresponding to the two obvious ways of associating to a pair (F, C), with
C cyclic of order Mpq, a pair (F ′, C ′) with C ′ ⊂ F ′ cyclic of order Mq. (We
can take F ′ = F and let C ′ be the unique subgroup of C having order Mq,
or else take F ′ to be the quotient of F by the subgroup C ′′ of C with order
p. In the latter case, we take C ′ = C/C ′′.) These lead to two maps L →→ X,
or equivalently to a map

π : L → X ⊕X.

This map is surjective, as one sees by applying theorems of Eichler on the
arithmetic of quaternion algebras over Q. The kernel of π is the p-primitive
subgroup of L, and it is this subgroup that we wish to reinterpret.

The reinterpretation comes from the second type of modular curve, a
Shimura curve coming from a rational quaternion division algebra. Choose
a quaternion division algebra of discriminant pq over Q, and let O be a
maximal order in this algebra.

Let C be the algebraic curve over Q associated to the problem of classify-
ing abelian varieties A of dimension 2, furnished with an action ofO, together
with a “Γo(M)-structure.” The latter object is an O-stable subgroup of A
which is isomorphic to (Z/MZ)2. The curve C is the Shimura curve which
we need. It is, in some sense, a variant of the curve Xo(M), since the re-
placement O 7→ M(2,Z) returns us to the theory of modular curves which we
have already met. Indeed, to give an operation of M(2,Z) on a 2-dimensional
abelian surface is essentially the same as to give an elliptic curve: if E is an
elliptic curve, then E × E has an evident action of M(2,Z), and one sees
easily that any A with an action of this ring is isomorphic to such a product.
On the other hand, the fact that p and q appear in the discriminant of O
makes Xo(N) = Xo(pqM) a better analogue of C.

Before we can reinterpret the p-primitive subgroup of L, we have two
minor choices to make. Namely, the ring O has residue fields at p and
at q which are finite fields of cardinality p2 and q2, respectively. Choose
isomorphisms κp and κq between these fields and the quadratic subfields of
Fp and Fq, respectively. (There are two possible choices for each of p and q.)
These maps may be viewed as homomorphisms

κp : O → Fp, κq : O → Fq.

Let T ′ be the toric part of the mod p reduction of the Néron model
of the Jacobian Pico(C). One can show that this torus coincides with the
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connected component of 0 in the reduction. This means that Pico(C) has
“purely multiplicative reduction” at the prime p. To see that this is the case,
one uses results of Grothendieck and Raynaud, cited above, to relate the
reduction of Pico(C) to the mod p reduction of C. The latter is studied in
well known articles of Cerednik and Drinfeld [3, 6]. (Further discussion of the
mod p reduction of Pico(C) is found in Kurihara [17], articles of Jordan-Livné
[14, 15], and [26].)

Let Y = HomFp
(T ′,Gm), so that Y is a free abelian group whose rank is

the dimension of Pico(C). Then we have

Theorem 5.4 ([25, 26]) The group Y is naturally isomorphic to the p-
primitive part of L. Equivalently, we have an exact sequence

0 → Y
θ→ L

π→ X ⊕X → 0. (6)

The words “naturally isomorphic” are intended to convey the information
that the map θ introduced in (6) is compatible with the Hecke operators
Tn ∈ End(Jo(N)) for n ≥ 1 and their analogues Tn ∈ End(J) which were
introduced by Shimura. In connection with these operators, it might be
worth remarking that the operators Tp and Tq are each involutions on the
subgroup Y of L. (The operator Tq is already an involution on L.) The map
θ is canonical in the sense that it depends only on the choices of κp and κq.
The effect of a change in κp or κq is to compose θ (on either the left or right)
with the corresponding Hecke operator Tp or Tq.

The Hecke operators Tn on J form a commutative family, and thus
amount a priori to an action of the formal polynomial ring Z[. . . , Tn, . . .]
on J . One sees from Theorem 5.4 that this ring acts on Y , at least, through
its quotient TN , since Z[. . . , Tn, . . .] acts on L through this quotient. On the
other hand, the fact that J has purely multiplicative reduction at p ensures
that End(J) acts faithfully on Y . Putting these two facts together, we learn
that the Tn may be viewed as an action of T = TN on J .

Next, let us view X ⊕X as a T-module via (6). In other words, we use
the degeneracy maps introduced above to consider X⊕X as a quotient of L.
Write (X ⊕X)m for the localization of this T-module at the maximal ideal
m of T.

Proposition 5.5 The module (X ⊕X)m vanishes.
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To prove the proposition, we use the third assumption made about ρ,
namely the supposed minimality of N as a level for ρ. Let TN be the image
of TN in End(X ⊕X), and let m ⊆ TN be the image of m in this quotient.
Clearly, the non-vanishing of (X ⊕ X)m would imply that m is a maximal
ideal of TN , rather than the unit ideal (1) of this ring. From this, we would
be able to deduce the existence of a maximal ideal mN/p ⊂ TN/p which gives
the representation ρ = ρm, contrary to the supposed minimality.

Here are some details concerning the construction of mN/p: Consider the func-
torial action of TN/p on X and the resulting diagonal action of this ring on X⊕X.
Let TN/p be the image of TN/p in End(X ⊕ X). The idea is that the rings TN

and TN/p are essentially identical. More precisely, they share a large common
subring R: the subring of End(X ⊕ X) generated by the Tn with n prime to p.
(The operator labelled Tn in TN and the operator labelled Tn in TN/p act in the
same way on X ⊕X, provided that n is prime to p.) Moreover, they both lie in
the commutative subring S of End(X ⊕X) which is generated by R and the two
operators labelled Tp: one coming from TN and one coming from TN/p. Suppose
now that m is a maximal ideal of TN . Then m ∩ R is a maximal ideal of R.
By using Nakayama’s lemma (or the going-up theorem of Cohen-Seidenberg), we
may find a maximal ideal mN/p of TN/p whose intersection with R is m ∩R of R.
Let mN/p be the inverse image of mN/p in TN/p. Then the representations ρ and
ρmN/p

are easily seen to coincide in the following strong sense: the residue fields
of m, m ∩ R, and mN/p are all identical, and the representations ρ and ρmN/p

are
equivalent representations of Gal(Q/Q) over this finite field.

Corollary The k-vector space Y/mY has dimension 1.

This assertion is an immediate consequence of the corollary to Proposi-
tion 5.3, the exact sequence (6), and Proposition 5.5.

Proposition 5.6 The kernel J [m] of m on J(Q) is non-zero.

Proof . Indeed, this kernel, viewed “locally” as the kernel of m on J(Qp),
contains the toric subgroup

J [m]t = Hom(Y/mY, µ`).

The above corollary shows that this subgroup is of dimension 1, and in par-
ticular that it is non-zero.
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Proposition 5.7 The group J [m], viewed as a k[Gal]-module, contains a
submodule isomorphic to the module V .

Proof . We recall that V is by definition a k-vector space of dimension 2 with
an action of Gal(Q/Q) which is equivalent to ρ. By using the Eichler-Shimura
relations for J , and the argument referred to in the proof of Proposition 5.2,
we may deduce that the semisimplification of J [m] is isomorphic to a direct
sum of copies of V . The desired result follows from this fact, plus the non-
vanishing of J [m].

We again take the “local” point of view which amounts to viewing J [`] and
its submodules V , J [m], . . . as D-modules, where D = Dp is a decomposition
group for p in Gal(Q/Q). As in [12], we let J [`]f be the largest subgroup of
J [`] which extends to a finite flat group scheme over Zp. (Note that the case
p = ` is not excluded in our situation, so that “finite” cannot automatically
be equated with “unramified.”) We have J [`]t ⊆ J [`]f , where J [`]t is a
subgroup of J [`] isomorphic to Hom(Y/`Y, µ`). The quotient J [`]f/J [`]t may
be identified with the kernel Ψ[`] of multiplication by ` on the group Ψ of
components in the mod p reduction of J , since J has purely multiplicative
reduction at p (cf. [12], 11.6.12). By hypothesis, V is finite at p, so that
we have V ⊆ J [`]f . Equivalently, the k-vector space V f = V ∩ J [`]f is of
dimension 2. (It coincides with V .) On the other hand, the intersection V t =
V ∩ J [`]t is contained in the group Hom(Y/mY, µ`), which is of dimension 1
over k by the Corollary to Proposition 5.5. Therefore, V f/V t is non-zero.
This gives in particular the statement:(

J [`]f/J [`]t
)

[m] 6= 0.

Equivalently, we have

Proposition 5.8 The group Ψ[m] is non-zero.

This Proposition will lead to the final contradiction, showing the incom-
patibility of the three assumptions made above. As explained earlier, this
incompatibility implies Theorem 5.1. The principal point is that the asser-
tion of Proposition 5.8 implies that ρ = ρm is modular of level N/p, contrary
to the assumption that N is a minimal level for ρ. Indeed, the author shows
in [25] that there is a map

F : X ⊕X → Ψ
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which is, for practical purposes, surjective. Thus, if Ψ[m] is non-zero, then
(X ⊕X)m is non-zero, which contradicts Proposition 5.5.

The existence of F is implicit in [15], which exhibits a quantitative relation
between Ψ and a quotient of X ⊕ X. To construct F , the author uses the
exact sequence (6), plus a description of Ψ in terms of Y which is due to
Grothendieck [12]. Namely, there is a bilinear pairing

( , ) : Y × Y → Z,

the monodromy pairing for J mod p, such that Ψ is canonically the cokernel
of the map

Y → Hom(Y,Z), y 7→ (y, ·).

This pairing is defined in terms of the mod p reduction of the curve C. An
analysis similar to that which establishes (6) shows that the monodromy
pairing on Y is the restriction to Y of an analogous pairing on L, which in
turn is the restriction to L of an explicit diagonal pairing on ZS , where S
is again the set of supersingular points of Xo(N/q) over Fq. This means, in
particular, that Ψ may be calculated in concrete terms.

In [25], the author inserts Ψ into a commutative diagram of exact se-
quences and constructs F by appealing to the Snake Lemma. The resulting
long exact sequence gives a description of the cokernel of F , which turns
out to be the a quotient of Φ, the group analogous to Ψ which is associated
to the mod q reduction of Jo(N). One should consider F to be “essentially
surjective” because Φ is a group which can be ignored when studying irre-
ducible two-dimensional representations of Gal(Q/Q). The point is that Φ
is Eisenstein in the sense that the relation Tr = (r + 1) holds on Φ, for all
primes r which do not divide N ([25, 27, 8]). This implies easily that the
support of Φ as a T-module is contained in the set of maximal ideals for
which the corresponding two-dimensional representations of Gal(Q/Q) are
reducible. In particular, Φm = 0.
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